1
|
Pinna MV, Diquattro S, Garau M, Grottola CM, Giudicianni P, Roggero PP, Castaldi P, Garau G. Combining biochar and grass-legume mixture to improve the phytoremediation of soils contaminated with potentially toxic elements (PTEs). Heliyon 2024; 10:e26478. [PMID: 38455572 PMCID: PMC10918015 DOI: 10.1016/j.heliyon.2024.e26478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
The combination of soil amendments with plants can be a viable option for restoring the functionality of PTEs-contaminated soils. Soil recovery could be further optimized through the mixed cropping of plant species (e.g. legumes and grasses) with different physiological characteristics. The aim of this study was to assess the phytoremediation ability of Vicia villosa Roth. And Lolium rigidum Gaud. Grown alone or in mixture in a soil contaminated with PTEs (C), i.e. Cd (23 mg kg-1), Pb (4473 mg kg-1) and Zn (3147 mg kg-1), and amended with 3% biochar (C + B). Biochar improved soil fertility and changed PTEs distribution, reducing soluble fractions and increasing the more stable ones. The addition of biochar increased the plant biomass of hairy vetch and annual ryegrass, both in monoculture and when in mixture. For example, shoot and root biomass of the C + B intercropped hairy vetch and annual ryegrass increased 9- and 7-fold, and ∼3-fold respectively, compared to the respective C plants. The biochar addition decreased PTE-uptake by both plants, while mixed cropping increased the uptake of PTEs by shoots of hairy vetch grown in C and C + B. The bioaccumulation, translocation factors, and mineralomass showed that hairy vetch and annual ryegrass behaved as phytostabilising plants. PTE mineralomasses proved that mixed cropping in C + B increased the overall capacity of PTE accumulation by plant tissues, particularly the root system. Therefore, the combination of biochar and legumes/grasses mixed cropping could be an effective solution for the recovery of PTEs-contaminated soils and the mitigation of their environmental hazard.
Collapse
Affiliation(s)
- Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Stefania Diquattro
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Corinna Maria Grottola
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS) of the National Research Council (CNR), Naples, Italy
| | - Paola Giudicianni
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS) of the National Research Council (CNR), Naples, Italy
| | - Pier Paolo Roggero
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| |
Collapse
|
2
|
Serrano MF, López JE, Henao N, Saldarriaga JF. Phosphorus-Loaded Biochar-Assisted Phytoremediation to Immobilize Cadmium, Chromium, and Lead in Soils. ACS OMEGA 2024; 9:3574-3587. [PMID: 38284006 PMCID: PMC10809702 DOI: 10.1021/acsomega.3c07433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Soil contamination with heavy metals (HM) poses significant challenges to food security and public health, requiring the exploration of effective remediation strategies. This study aims to evaluate the remediation process of soils contaminated with Cd, Cr, and Pb using Lolium perenne assisted by four types of biochar: (i) activated coffee husk biochar (BAC), (ii) nonactivated biochar coffee husk (BSAC), (iii) activated sugar cane leaf biochar (BAA), and (iv) nonactivated biochar sugar cane leaf (BSAA). Biochar, loaded with phosphorus (P), was applied to soils contaminated with Cd, Cr, and Pb. L. perenne seedlings, averaging 2 cm in height, were planted. The bioavailability of P and heavy metals (HM) was monitored every 15 days until day 45, when the seedlings reached an average height of 25 cm. At day 45, plant harvesting was conducted and stems and roots were separated to determine metal concentrations in both plant parts and the soil. The study shows that the combined application of biochar and L. perenne positively influences the physicochemical properties of the soil, resulting in an elevation of pH and electrical conductivity (EC). The utilization of biochar contributes to an 11.6% enhancement in the retention of HM in plant organs. The achieved bioavailability of heavy metals in the soil was maintained at levels of less than 1 mg/kg. Notably, Pb exhibited a higher metal retention in plants, whereas Cd concentrations were comparatively lower. These findings indicate an increase in metal immobilization efficiencies when phytoremediation is assisted with P-loaded biochar. This comprehensive assessment highlights the potential of biochar-assisted phytoremediation as a promising approach for mitigating heavy metal contamination in soils.
Collapse
Affiliation(s)
- María F Serrano
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711 Bogotá, Colombia
| | - Julián E López
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65-46, 050034 Medellín, Colombia
| | - Nancy Henao
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711 Bogotá, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711 Bogotá, Colombia
| |
Collapse
|
3
|
Lam EJ, Keith BF, Bech J, Gálvez ME, Rojas R, Alvarez FA, Zetola V, Montofré ÍL. An extension of the characteristic curve model of plant species behavior in heavy metal soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9477-9494. [PMID: 36707498 DOI: 10.1007/s10653-023-01490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
This article proposes a mathematical model to characterize phytoremediation processes in soils contaminated with heavy metals. In particular, the proposed model constructs characteristic curves for the concentrations of several metals (As, Cd, Cu, Fe, Pb, Sb, and Zn) in soils and plants based on the experimental data retrieved from several bibliographical sources comprising 305 vegetal species. The proposed model is an extension of previous models of characteristic curves in phytoremediation processes developed by Lam et al. for root measurements using the bioconcentration factor. However, the proposed model extends this approach to consider roots, as well as aerial parts and shoots of the plant, while at the same time providing a less complex mathematical formula compared to the original. The final model shows an adjusted R2 of 0.712, and all its parameters are considered statistically significant. The model may be used to assess samples from a given plant species to identify its potential as an accumulator in the context of soil phytoremediation processes. Furthermore, a simplified version of the model was constructed using an approximation to provide an easy-to-compute alternative that is valid for concentrations below 37,000 mg/kg. This simplified model shows results similar to the original model for concentrations below this threshold and it uses an adjusted factor defined as [Formula: see text] that must be compared with a threshold depending on the metal, type of measurement, and target (e.g., accumulator or hyperaccumulator). The full model construction shows that 90 out of the 305 species assessed have a potential behavior as accumulators and 10 of them as hyperaccumulators. Finally, out of the 1405 experimental measurements, 1177 were shown to be accumulators or hyperaccumulators. In particular, 85% of the results coincide with the reported values, thus validating the proposed model.
Collapse
Affiliation(s)
- Elizabeth J Lam
- Chemical Engineering Department, Universidad Católica del Norte, 1270709, Antofagasta, Chile.
| | - Brian F Keith
- Department of Computing and Systems Engineering, Universidad Católica del Norte, 1270709, Antofagasta, Chile
| | - Jaume Bech
- Soil Science Laboratory, Faculty of Biology, Universidad de Barcelona, Barcelona, Spain
| | - María E Gálvez
- Chemical Engineering Department, Universidad Católica del Norte, 1270709, Antofagasta, Chile
| | - Rodrigo Rojas
- Chemical Engineering Department, Universidad Católica del Norte, 1270709, Antofagasta, Chile
| | - Fernando A Alvarez
- Administration Department, Universidad Católica del Norte, 1270709, Antofagasta, Chile
| | - Vicente Zetola
- Construction Management Department, Universidad Católica del Norte, 1270709, Antofagasta, Chile
| | - Ítalo L Montofré
- Mining Business School, ENM, Universidad Católica del Norte, Antofagasta, Chile
- Mining and Metallurgical Engineering Department, Universidad Católica del Norte, 1270709, Antofagasta, Chile
| |
Collapse
|
4
|
Rajput VD, Kumari A, Minkina T, Barakhov A, Singh S, Mandzhieva SS, Sushkova S, Ranjan A, Rajput P, Garg MC. A practical evaluation on integrated role of biochar and nanomaterials in soil remediation processes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9435-9449. [PMID: 36070110 DOI: 10.1007/s10653-022-01375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Soil decontamination and restoration continue to be a key environmental concern around the globe. The degradation of soil resources due to the presence of potentially toxic elements (PTEs) has a substantial influence on agricultural production, food security, and human well-being, and as a result, urgent action is required. PTEs pollution is not a threat to the agroecosystems but also a serious concern to human health; thereby, it needs to be addressed timely and effectively. Hence, the development of improved and cost-effective procedures to remove PTEs from polluted soils is imperative. With this context in mind, current review is designed to distinctly envisage the PTEs removal potential by the single and binary applications of biochar (BC) and nanomaterials (NMs).2 Recently, BC, a product of high-temperature biomass pyrolysis with high specific surface area, porosity, and distinctive physical and chemical properties has become one of the most used and economic adsorbent materials. Also, biochar's application has generated interest in a variety of fields and environments as a modern approach against the era of urbanization, industrialization, and climate change. Likewise, several NMs including metals and their oxides, carbon materials, zeolites, and bimetallic-based NMs have been documented as having the potential to remediate PTEs-polluted environments. However, both techniques have their own set of advantages and disadvantages, therefore combining them can be a more effective strategy to address the growing concern over the rapid accumulation and release of PTEs into the environment.
Collapse
Affiliation(s)
- Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006.
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Anatoly Barakhov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Shraddha Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, 400085, India
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Manoj Chandra Garg
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh, 201313, India
| |
Collapse
|
5
|
Williams JM, Thomas SC. High-carbon wood ash biochar for mine tailings restoration: A field assessment of planted tree performance and metals uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165861. [PMID: 37516177 DOI: 10.1016/j.scitotenv.2023.165861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Unique properties of biochar render it appealing for revegetating and decontaminating historic, barren, and chemically complex mine tailings. Bottom ash from bioenergy facilities can contain high levels of charcoal residue, and thus qualify as a type of biochar; the wide availability of this material at low cost makes it of particular interest in the context of tailings remediation. Nevertheless, bottom ash is variable and often contains residual toxic metal/loids that could be phytoabsorbed into plant tissues. We implemented a replicated field trial on historic contaminated metal mine tailings in Northern Ontario (Canada) over a range of high‑carbon wood ash biochar (HCWAB) dosages (0-30 t/ha) to evaluate tree and substrate responses. Sapling survivorship and aboveground biomass growth were quantified over a 4-year period; substrate chemical parameters were measured using acid-digestion and ICP-MS, as well as ion exchange resin probes. To assess elemental composition of sapling tissues, we used electron probe microanalysis combined with laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on intact samples across the range of dosages applied. Survival and growth of saplings peaked at mid-range ash dosages of 3-6 t/ha. Similarly, substrate ion availability of P, K, and Zn were stable at lower dosages, but increased above 6 t/ha. The trace amounts of toxic metal/loids of concern measured in wood ash (As, Cd, Cu, and Pb) did not result in significantly increased sapling tissue concentrations at low to moderate dosages, but in some cases tissue contaminant levels were elevated at the highest dosage examined (30 t/ha). Our findings highlight the potential for high‑carbon wood ash biochar to be used for metal mine restoration at low to moderate dosages.
Collapse
Affiliation(s)
- Jasmine M Williams
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks St., Toronto M5S 3B3, Canada.
| | - Sean C Thomas
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks St., Toronto M5S 3B3, Canada
| |
Collapse
|
6
|
El Rasafi T, Haouas A, Tallou A, Chakouri M, Aallam Y, El Moukhtari A, Hamamouch N, Hamdali H, Oukarroum A, Farissi M, Haddioui A. Recent progress on emerging technologies for trace elements-contaminated soil remediation. CHEMOSPHERE 2023; 341:140121. [PMID: 37690564 DOI: 10.1016/j.chemosphere.2023.140121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Abiotic stresses from potentially toxic elements (PTEs) have devastating impacts on health and survival of all living organisms, including humans, animals, plants, and microorganisms. Moreover, because of the rapid growing industrial activities together with the natural processes, soil contamination with PTEs has pronounced, which required an emergent intervention. In fact, several chemical and physical techniques have been employed to overcome the negative impacts of PTEs. However, these techniques have numerous drawback and their acceptance are usually poor as they are high cost, usually ineffectiveness and take longer time. In this context, bioremediation has emerged as a promising approach for reclaiming PTEs-contaminated soils through biological process using bacteria, fungus and plants solely or in combination. Here, we comprehensively reviews and critically discusses the processes by which microorganisms and hyperaccumulator plants extract, volatilize, stabilize or detoxify PTEs in soils. We also established a multi-technology repair strategy through the combination of different strategies, such as the application of biochar, compost, animal minure and stabilized digestate for stimulation of PTE remediation by hyperaccumulators plants species. The possible use of remote sensing of soil in conjunction with geographic information system (GIS) integration for improving soil bio-remediation of PTEs was discussed. By synergistically combining these innovative strategies, the present review will open very novel way for cleaning up PTEs-contaminated soils.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Health and Environment Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, B.P 5366, Maarif, Casablanca, Morocco.
| | - Ayoub Haouas
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Anas Tallou
- Department of Soil, Plant and Food Sciences - University of Bari "Aldo Moro", Italy
| | - Mohcine Chakouri
- Team of Remote Sensing and GIS Applied to Geosciences and Environment, Department of Earth Sciences, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Yassine Aallam
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco; Mohammed VI Polytechnic (UM6P) University, Ben Guerir, Morocco
| | - Ahmed El Moukhtari
- Ecology and Environment Laboratory, Faculty of Sciences Ben Msik, Hassan II University, PO 7955, Sidi Othmane, Casablanca, Morocco
| | - Noureddine Hamamouch
- Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fes, Morocco
| | - Hanane Hamdali
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| | | | - Mohamed Farissi
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty, USMS, Beni Mellal, Morocco
| | - Abdelmajid Haddioui
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| |
Collapse
|
7
|
Liang J, Chang J, Xie J, Yang L, Sheteiwy MS, Moustafa ARA, Zaghloul MS, Ren H. Microorganisms and Biochar Improve the Remediation Efficiency of Paspalum vaginatum and Pennisetum alopecuroides on Cadmium-Contaminated Soil. TOXICS 2023; 11:582. [PMID: 37505548 PMCID: PMC10383370 DOI: 10.3390/toxics11070582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Phytoremediation can help remediate potential toxic elements (PTE) in soil. Microorganisms and soil amendments are effective means to improve the efficiency of phytoremediation. This study selected three microorganisms that may promote phytoremediation, including bacteria (Ceratobasidium), fungi (Pseudomonas mendocina), and arbuscular-mycorrhizal fungi (AMF, Funneliformis caledonium). The effects of single or mixed inoculation of three microorganisms on the phytoremediation efficiency of Paspalum vaginatum and Pennisetum alopecuroides were tested under three different degrees of cadmium-contaminated soil (low 10 mg/kg, medium 50 mg/kg, and high 100 mg/kg). The results showed that single inoculation of AMF or Pseudomonas mendocina could significantly increase the biomass of two plants under three different degrees of cadmium-contaminated soil, and the growth-promoting effect of AMF was better than Pseudomonas mendocina. However, simultaneous inoculation of these two microorganisms did not show a better effect than the inoculation of one. Inoculation of Ceratobasidium reduced the biomass of the two plants under high concentrations of cadmium-contaminated soil. Among all treatments, the remediation ability of the two plants was the strongest when inoculated with AMF alone. On this basis, this study explored the effect of AMF combined with corn-straw-biochar on the phytoremediation efficiency of Paspalum vaginatum and Pennisetum alopecuroides. The results showed that biochar could affect plant biomass and Cd concentration in plants by reducing Cd concentration in soil. The combined use of biochar and AMF increased the biomass of Paspalum vaginatum by 8.9-48.6% and the biomass of Pennisetum alopecuroides by 8.04-32.92%. Compared with the single use of AMF or biochar, the combination of the two is better, which greatly improves the efficiency of phytoremediation.
Collapse
Affiliation(s)
- Jiahao Liang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiechao Chang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayao Xie
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Liquan Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | | | - Mohamed S Zaghloul
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Haiyan Ren
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Song J, Li Y, Tang H, Qiu C, Lei L, Wang M, Xu H. Application potential of Vaccinium ashei R. for cadmium migration retention in the mining area soil. CHEMOSPHERE 2023; 324:138346. [PMID: 36893865 DOI: 10.1016/j.chemosphere.2023.138346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Despite numerous reports on phytoremediation of heavy metals contaminated soil, there are few reports on plant retention of heavy metals in the mining area slope. This study was the first of its kind to explore the cadmium (Cd) retention capacity of the blueberry (Vaccinium ashei Reade). Firstly, we investigated the stress response of blueberry to different soil Cd concentrations (1, 5, 10, 15, 20 mg/kg) to assess its potential for phytoremediation by pot experiments. The results showed that the blueberry biomass exposed to 10 and 15 mg/kg Cd was significantly increased compared with the control (1 mg/kg Cd); the blueberry crown increased by 0.40% and 0.34% in 10 and 15 mg/kg Cd-contaminated soil, respectively, compared with control; the blueberry heigh did not even change significantly in each treatment group; the total chlorophyll content, peroxidase and catalase activity of blueberry were enhanced in 5-20 mg/kg Cd treatments. Furthermore, the Cd contents of blueberry in the root, stem and leaf increased significantly as the Cd concentration of soil increased. We found that more Cd accumulated in blueberry root: the bioaccumulation concentration factor was root > stem > leaf for all groups; the residual-Cd (Cd speciation) in soil increased by 3.83%-411.11% in blueberry-planted versus unplanted groups; blueberry improved the Cd-contaminated soil micro-ecological environment including soil organic matter, available K and P, as well as microbial communities. Then, to investigate the effect of blueberry cultivation on Cd migration, we developed a bioretention model and revealed that soil Cd transport along the model slope was significantly weakened by blueberry cultivation, especially at the bottom of the model. In a word, this research suggests a promising method for the phytoremediation of Cd-contaminated soil and the reduction of Cd migration in mining areas.
Collapse
Affiliation(s)
- Jianjincang Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yongyun Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Aba, 623000, Sichuan, PR China
| | - Chengshu Qiu
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 61130, Sichuan, PR China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
9
|
Biochar as a Green Sorbent for Remediation of Polluted Soils and Associated Toxicity Risks: A Critical Review. SEPARATIONS 2023. [DOI: 10.3390/separations10030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Soil contamination with organic contaminants and various heavy metals has become a global environmental concern. Biochar application for the remediation of polluted soils may render a novel solution to soil contamination issues. However, the complexity of the decontaminating mechanisms and the real environment significantly influences the preparation and large-scale application of biochar for soil ramification. This review paper highlights the utilization of biochar in immobilizing and eliminating the heavy metals and organic pollutants from contaminated soils and factors affecting the remediation efficacy of biochar. Furthermore, the risks related to biochar application in unpolluted agricultural soils are also debated. Biochar production conditions (pyrolysis temperature, feedstock type, and residence time) and the application rate greatly influence the biochar performance in remediating the contaminated soils. Biochars prepared at high temperatures (800 °C) contained more porosity and specific surface area, thus offering more adsorption potential. The redox and electrostatic adsorption contributed more to the adsorption of oxyanions, whereas ion exchange, complexation, and precipitation were mainly involved in the adsorption of cations. Volatile organic compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) produced during biochar pyrolysis induce negative impacts on soil alga, microbes, and plants. A careful selection of unpolluted feedstock and its compatibility with carbonization technology having suitable operating conditions is essential to avoid these impurities. It would help to prepare a specific biochar with desired features to target a particular pollutant at a specific site. This review provided explicit knowledge for developing a cost-effective, environment-friendly specific biochar, which could be used to decontaminate targeted polluted soils at a large scale. Furthermore, future study directions are also described to ensure a sustainable and safe application of biochar as a soil improver for the reclamation of polluted soils.
Collapse
|
10
|
Yong MT, Babla M, Karan S, Katwal U, Jahandari S, Matta P, Chen ZH, Tao Z. Coal tailings as a soil conditioner: evaluation of tailing properties and effect on tomato plants. PLANT GROWTH REGULATION 2022; 98:439-450. [PMID: 35892116 PMCID: PMC9302870 DOI: 10.1007/s10725-022-00870-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/04/2022] [Indexed: 06/02/2023]
Abstract
The global coal industry yields a vast amount of tailings waste, and the utilisation of these tailings necessitates innovative efforts contributing to the United Nations Sustainable Development Goals. One of such novel initiatives is to reuse coal tailings (CT) safely, ecofriendly, and cost-effectively in agroecosystems as a soil conditioner to enhance the productivity of lands. This study aimed to evaluate the potential utilisation of coal tailings waste in the soil amelioration to improve plant performance. The physico-chemical characteristics of coal tailings from two Australian mining sites (CT1 and CT2) showed that the tailings samples are alkaline with loamy and loamy sand textures, respectively. The tailings have ~ 3% of macronutrients, high carbon (C), and low heavy metals and metalloids (As, Cd, Se, Cu, Zn, and Pb). The germination rate of tomato seeds was improved in the low-rate CT treatment. Greenhouse tomato plants exhibited an increase in leaf's K, Ca, and Mg contents in CT1 and CT2 treatments. More importantly, the CT treatment-induced accumulation of heavy metals in plants was mostly insignificant in both CT treatments. Therefore, we highlight the potential application of coal tailings as a soil conditioner because of the beneficial effect of improved carbon and nutrients (N, P, K, Mg, and Ca) in tomato leaves. Further amendment of the coal tailings should focus on the adjustment of pH and the addition of other beneficial materials for the improvement of soil properties for crops in both the greenhouse and the field.
Collapse
Affiliation(s)
- Miing-Tiem Yong
- School of Science, Western Sydney University, Penrith, NSW 2751 Australia
| | - Mohammad Babla
- School of Science, Western Sydney University, Penrith, NSW 2751 Australia
| | - Shawan Karan
- Technical Support Services and Mass Spectrometry Facility, Western Sydney University, Campbelltown, NSW 2560 Australia
| | - Utsab Katwal
- Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751 Australia
| | - Soheil Jahandari
- Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751 Australia
| | - Pushpinder Matta
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751 Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751 Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751 Australia
| | - Zhong Tao
- Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751 Australia
| |
Collapse
|
11
|
Biochar, Ochre, and Manure Maturation in an Acidic Technosol Helps Stabilize As and Pb in Soil and Allows Its Vegetation by Salix triandra. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Past mining extraction activities still have a negative impact in the present time, the resulting metal(loid) contaminated soils affecting both the environment and human health. Assisted phytostabilization technology, combining soil conditioner application to immobilize metal(loid)s and plant growth to reduce erosion and leaching risks, is a useful strategy in the restoration of metal(loid) contaminated lands. However, contaminants will respond differently to a particular amendment, having their own specific characteristics. Therefore, in multi-contaminated soils, soil conditioner combination has been suggested as a good strategy for metal(loid) immobilization. In the present study, in a mesocosm experiment, organic (biochar and manure) and inorganic (ochre) amendments were evaluated in single and combined applications for their effect on metal(loid) stabilization and Salix triandra growth improvement, in an arsenic and lead highly contaminated soil. Specifically, the effects of these amendments on soil properties, metal(loid) behavior, and plant growth were evaluated after they aged in the soil for 6 months. Results showed that all amendments, except biochar alone, could reduce soil acidity, with the best outcomes obtained with the three amendments combined. The combination of the three soil conditioners has also led to reducing soil lead availability. However, only ochre, alone or combined with the other soil fertilizers, was capable of immobilizing arsenic. Moreover, amendment application enhanced plant growth, without affecting arsenic accumulation. On the contrary, plants grown on all the amended soils, except plants grown on soil added with manure alone, showed higher lead concentration in leaves, which poses a risk of return of lead into the soil when leaves will shed in autumn. Considering that the best plant growth improvement, together with the lowest increase in lead aerial accumulation, was observed in manure-treated soil, the addition of manure seems to have potential in the restoration of arsenic and lead contaminated soil.
Collapse
|
12
|
Gao Y, Wu P, Jeyakumar P, Bolan N, Wang H, Gao B, Wang S, Wang B. Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114973. [PMID: 35398638 DOI: 10.1016/j.jenvman.2022.114973] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Soil heavy metal contamination caused by mining activities is a global issue. These heavy metals can be enriched in plants and animals through the food chain, and eventually transferred to the human system and threatening public health. Biochar, as an environmentally friendly soil remediation agent, can effectively immobilize heavy metals in soil. However, most researchers concern more about the remediation effect and mechanism of biochar for industrial and agricultural contaminated soil, while related reviews focusing on mining soil remediation are limited. Furthermore, the remediation effect of soil in mining areas is affected by many factors, such as physicochemical properties of biochar, pyrolysis conditions, soil conditions, mining environment and application method, which can lead to great differences in the remediation effect of biochar in diverse mining areas. Therefore, it is necessary to systematically unravel the relevant knowledge of biochar remediation, which can also provide a guide for future studies on biochar remediation of contaminated soils in mining areas. The present paper first reviews the negative effects of mining activities on soil and the advantages of biochar relative to other remediation methods, followed by the mechanism and influencing factors of biochar on reducing heavy metal migration and bioavailability in mining soil were systematically summarized. Finally, the main research directions and development trends in the future are pointed out, and suggestions for future development are proposed.
Collapse
Affiliation(s)
- Yining Gao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Natural Resources, Guiyang, 550025, Guizhou, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Nanthi Bolan
- The Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Natural Resources, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
13
|
Influence of Clay Mineral Amendments Characteristics on Heavy Metals Uptake in Vetiver Grass (Chrysopogon zizanioides L. Roberty) and Indian Mustard (Brassica juncea L. Czern). SUSTAINABILITY 2022. [DOI: 10.3390/su14105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phytoremediation is limited when heavy metals reduce soil quality and, subsequently, inhibit plant growth. In this study, we evaluated the use of attapulgite and bentonite as amendments in soil contaminated with multiple metals, to improve the phytoremediation capacity of Vetiver grass and Indian mustard. A 21-day greenhouse study was undertaken, to investigate plant tolerance in heavy-metal-contaminated soil, as well as heavy-metal absorption in plant roots and shoots. The results showed a generally higher root-uptake rate for Cr, Cu, Co, Ni, and Zn in Vetiver grass. Overall, the highest absorption for Ni, Cr, Co, Cu, and Zn was 1.37, 2.79, 1.39, 2.48 and 3.51 mg/kg, respectively, in the roots of Vetiver grass. Clay minerals inhibited the translocation of some heavy metals. The addition of attapulgite improved the phytoremediation capacity of Vetiver for Ni, Cr, and Co, while bentonite improved Vetiver’s absorption of Cu and Zn. The translocation factor for Ni in one of the attapulgite treatments was 2, indicating that attapulgite improved the phytoextraction of Ni by Vetiver grass. Our results confirm that attapulgite at 2.5% (w/w) can successfully improve the phytostabilization of heavy metals by Vetiver grass. Indian mustard showed no significant metal uptake that could be detected by inductively coupled plasma optical emission spectrometry (ICP-OES), despite the addition of attapulgite and bentonite. This research contributes to the knowledge repository of suitable amendments that improve the phytoremediation properties of Vetiver grass.
Collapse
|
14
|
Lebrun M, Bourgerie S, Morabito D. Effects of Different Biochars, Activated Carbons and Redmuds on the Growth of Trifolium repens and As and Pb Stabilization in a Former Mine Technosol. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:403-414. [PMID: 34041578 DOI: 10.1007/s00128-021-03271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Soil pollution by metal(loid)s is an important issue in Europe, as it causes environmental and health problems. Therefore, remediation of these areas is needed. The success of phytoremediation process will depend on the ability of plants to implement, which can require the addition of amendments to the soil in order to improve soil conditions, immobilize pollutant and thus ameliorate plant growth. Amendments that can be used are biochar, activated carbon and redmuds, all of which have previously shown positive outcomes. The objectives of this study were to evaluate the effects of several amendments (biochars, activated carbons and redmuds) on (i) the soil physico-chemical properties of a former mine technosol contaminated by As and Pb, (ii) As and Pb immobilization and (iii) the growth of Trifolium repens. Results showed that amendment addition could ameliorate soil conditions, by reducing soil acidity (pH increased by 1.2 to 1.7 units) and immobilizing pollutants (85 to 99% of Pb immobilized); and improve plant growth (dry weight increased 1.5 to 2.5 times). However, not all amendments were beneficial to the soil and plant. For instance, the L27 activated carbon acidified soil pH, mobilized As and lowered plant growth. This study has allowed us to conclude that amendment effect is dependent on soil type, metal(loid)s and amendment properties, and it is thus necessary to choose the right amendment. Finally, amendments could be combined for better outcomes.
Collapse
Affiliation(s)
- Manhattan Lebrun
- INRA USC1328, LBLGC EA1207, University of Orléans, Orléans, France.
| | | | | |
Collapse
|
15
|
Effect of Biochar Application Depth on a Former Mine Technosol: Impact on Metal(Loid)s and Alnus Growth. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The contamination of soil by potentially toxic elements (PTEs) is a problem resulting from various anthropic activities including the exploitation of mines, which determines an accumulation of metal(loid)s in the surrounding area. It is therefore necessary to use remediation techniques to prevent the potential damage to human health and the ecosystem. One of these techniques is phytoremediation, which involves the revegetation of contaminated areas in such a way as to reduce the spread of contaminants and entry into the groundwater by stabilizing the metal(loid)s in the soil, decreasing their mobility. To increase the ability of plants to grow under the extreme conditions of contaminated soils, it is necessary to use amendments, which can also intervene directly in reducing the mobility of contaminants. In this study, an open-field mesocosm was set up using a former mining technosol contaminated mainly by As. A biochar produced from hardwood was added at two different depths to evaluate the effectiveness of these application modalities for an overall observation duration of 17 months. Iron sulphate was also applied in both non-biochar and biochar amended conditions. In addition, trees of Alnus sp. were planted to examine the effectiveness of these plants for their use in soil remediation and the effect of the treatments used. The results showed an increase in soil pH induced by the biochar, which decreased over time. During the period examined, the application of biochar in the deepest layer was able to retain As more effectively. The Alnus sp. showed similar growth rates among the various treatments, resulting from its tolerance towards arsenic.
Collapse
|
16
|
Bali AS, Sidhu GPS. Arsenic acquisition, toxicity and tolerance in plants - From physiology to remediation: A review. CHEMOSPHERE 2021; 283:131050. [PMID: 34147983 DOI: 10.1016/j.chemosphere.2021.131050] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 05/25/2023]
Abstract
Globally, environmental contamination by potentially noxious metalloids like arsenic is becoming a critical concern to the living organisms. Arsenic is a non-essential metalloid for plants and can be acclimatised in plants to toxic levels. Arsenic acquisition by plants poses serious health risks in human due to its entry in the food chain. High arsenic regimes disturb plant water relations, promote the generation of reactive oxygen species (ROS) and induce oxidative outburst in plants. This review evidences a conceivable tie-up among arsenic levels, speciation, its availability, uptake, acquisition, transport, phytotoxicity and arsenic detoxification in plants. The role of different antioxidant enzymes to confer plant tolerance towards the enhanced arsenic distress has also been summed up. Additionally, the mechanisms involved in the modulation of different genes coupled with arsenic tolerance have been thoroughly discussed. This review is intended to present an overview to rationalise the contemporary progressions on the recent advances in phytoremediation approaches to overcome ecosystem contamination by arsenic.
Collapse
Affiliation(s)
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, 136119, India.
| |
Collapse
|
17
|
Madejón P, Navarro-Fernández CM, Madejón E, López-García Á, Marañón T. Plant response to mycorrhizal inoculation and amendments on a contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147943. [PMID: 34058592 DOI: 10.1016/j.scitotenv.2021.147943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Understanding the combined effects of soil amendments and inoculation of mycorrhizal fungi on the response of different plant species during the phytostabilization process of trace elements contaminated soils is a challenge. This task is more difficult but more realistic when studied under field conditions. We assess the combined effects of two amendment doses and mycorrhizal inoculation on the response of saplings of two tree species planted in a contaminated field. The amendments were a mix of sugar beet lime and biosolid compost. The inoculation treatments were made with a commercial inoculum of arbuscular mycorrhizal fungi for wild olive and ectomycorrhizal fungi for stone pine. Results showed a weak or null effect of the mycorrhizal inoculation on plant growth, survival and trace element accumulation. There was a significant increase on P nutrition for stone pine, growing on non-amended conditions. Soil amendments were very effective reducing trace elements availability and their accumulation in both plant species, especially in roots. However, the effects on plant biomass were species-dependent and contrasted; low-dose amendments increased the biomass of wild olive by 33.3%, but reduced by 28% that of pine. The high doses of amendments (60 T ha-1) produced some negative effects on plant growth and nutrition, probably related to the increase of soil salinity. Both plant species, stone pine and wild olive, have been proved to be adequate for phytostabilization of contaminated soils under Mediterranean climate, due to their drought tolerance and the low transfer of trace elements from root to shoot, thus reducing toxicity for the food web. To implement microbial-assisted phytoremediation approaches, a better understanding of the diversity and ecology of plant-associated microorganisms is needed. The use of indigenous fungi, locally adapted and tolerant to contamination, would be more suitable for phytostabilization purposes.
Collapse
Affiliation(s)
- Paula Madejón
- IRNAS, CSIC, Avenida Reina Mercedes 10, 41012 Seville, Spain.
| | | | | | - Álvaro López-García
- Estación Experimental del Zaidín (EEZ), CSIC, Dept. Soil Microbiology and Symbiotic Systems, Profesor Albareda 1, 18008 Granada, Spain; Universidad de Jaén, Dept. Animal Biology, Plant Biology and Ecology, Campus Las Lagunillas, s/n. 23071 Jaén, Spain; Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Av. del Mediterráneo, S/N, 18006 Granada, Spain
| | - Teodoro Marañón
- IRNAS, CSIC, Avenida Reina Mercedes 10, 41012 Seville, Spain
| |
Collapse
|
18
|
Zahra N, Hafeez MB, Shaukat K, Wahid A, Hasanuzzaman M. Fe toxicity in plants: Impacts and remediation. PHYSIOLOGIA PLANTARUM 2021; 173:201-222. [PMID: 33547807 DOI: 10.1111/ppl.13361] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 05/07/2023]
Abstract
Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe-contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe-contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested.
Collapse
Affiliation(s)
- Noreen Zahra
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Kanval Shaukat
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | - Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
19
|
Tripathi S, Sharma P, Purchase D, Chandra R. Distillery wastewater detoxification and management through phytoremediation employing Ricinus communis L. BIORESOURCE TECHNOLOGY 2021; 333:125192. [PMID: 33915458 DOI: 10.1016/j.biortech.2021.125192] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to assess the phytoremediation potential of Ricinus communis L. for heavy metals remediation via rhizospheric bacterial activities for distillery wastewater detoxification and management. Results revealed that distillery wastewater contained high levels of metals and other physico-chemical pollution parameters that could cause environmental pollution and aquatic toxicity. The identified bacterium produced several plant growth-promoting compounds including siderophores, ligninolytic enzymes, and indole acetic acid that resulted in nutrient enhancement and improved mineralization of metals in the plants during stress conditions. The bioconcentration factor (BCF) of all the metals examined were > 1, which showed that these metals are accumulating in the root, shoot, and leaves of Ricinus communis L. Most of the metals are stablised in the roots but Pb, Cd and Zn were translocated more to the shoorts (TC>1). The ability of Ricinus communis L. to grow in metals-containing distillery wastewater and reduce heavy metals and organic contaminants suggests that it can be used to provide an effective treatment of distillery wastewater. The use of Ricinus communis L. is an eco-friendly tool for the reduction of organometallic contamination and protecting agricultural land.
Collapse
Affiliation(s)
- Sonam Tripathi
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow 226025, UP, India
| | - Pooja Sharma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow 226025, UP, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, UK
| | - Ram Chandra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow 226025, UP, India.
| |
Collapse
|
20
|
Abstract
Abandoned mine lands (AMLs), which are considered some of the most dangerous anthropogenic activities in the world, are a source of hazards relating to potentially toxic elements (PTEs). Traditional reclamation techniques, which are expensive, time-consuming and not well accepted by the general public, cannot be used on a large scale. However, plant-based techniques have gained acceptance as an environmentally friendly alternative over the last 20 years. Plants can be used in AMLs for PTE phytoextraction, phytostabilization, and phytovolatilization. We reviewed these phytoremediation techniques, paying particular attention to the selection of appropriate plants in each case. In order to assess the suitability of plants for phytoremediation purposes, the accumulation capacity and tolerance mechanisms of PTEs was described. We also compiled a collection of interesting actual examples of AML phytoremediation. On-site studies have shown positive results in terms of soil quality improvement, reduced PTE bioavailability, and increased biodiversity. However, phytoremediation strategies need to better characterize potential plant candidates in order to improve PTE extraction and to reduce the negative impact on AMLs.
Collapse
|
21
|
Rathika R, Srinivasan P, Alkahtani J, Al-Humaid LA, Alwahibi MS, Mythili R, Selvankumar T. Influence of biochar and EDTA on enhanced phytoremediation of lead contaminated soil by Brassica juncea. CHEMOSPHERE 2021; 271:129513. [PMID: 33429262 DOI: 10.1016/j.chemosphere.2020.129513] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 05/28/2023]
Abstract
Phytoremediation technology is an eco-friendly technology for the treatment of the polluted environment. Conversely, the natural and synthetic amendments have been revealed to improve the heavy metal phytoextraction from polluted soils with hyperaccumulation and/or non-hyper accumulating plants. This study evaluated the synergistic effect of biochar (BC) and EDTA to enhance phytoextraction of heavy metal lead (Pb) from artificially polluted soil by Brassica juncea. The BC and EDTA amendment enhanced the growth and survival of B. juncea under Pb stress environment. BC and EDTA significantly increased the biomass of B. juncea and significantly increased the total chlorophyll content in the combined amendment of BC and EDTA (22.2 mg/g) compared to the individual amendment of BC (12.8 mg/g) and EDTA (12.2 mg/g) respectively. The combined use of EDTA and biochar showed enhanced Pb uptake (60.2 mg/g) compared to control (10.0 mg/g). The order of Pb uptake was found to be BC + EDTA (60.2 mg/g) ˃ EDTA (23.5 mg/g) ˃ BC (22. 0 mg/g) ˃ control (10.0 mg/g). The maximum activity of SOD (35.2 ± 1.2 U/mg), POD (47.0 ± 1.8 U/mg) and CAT (28.0 ± 1.0 U/mg) was obtained in the mixed application of EDTA and BC. The obtained results revealed that the combined use of BC and EDTA was the most advantageous option for the treatment of Pb contaminated soil as compared to individual amendments.
Collapse
Affiliation(s)
- R Rathika
- PG& Research Department of Biotechnology, Mahendra Arts & Science College, Kalippatti, Namakkal, 637501, Tamil Nadu, India
| | - P Srinivasan
- PG& Research Department of Biotechnology, Mahendra Arts & Science College, Kalippatti, Namakkal, 637501, Tamil Nadu, India
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - L A Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - R Mythili
- PG& Research Department of Biotechnology, Mahendra Arts & Science College, Kalippatti, Namakkal, 637501, Tamil Nadu, India.
| | - T Selvankumar
- PG& Research Department of Biotechnology, Mahendra Arts & Science College, Kalippatti, Namakkal, 637501, Tamil Nadu, India.
| |
Collapse
|
22
|
Sharma P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. BIORESOURCE TECHNOLOGY 2021; 328:124835. [PMID: 33618184 DOI: 10.1016/j.biortech.2021.124835] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 05/12/2023]
Abstract
The aim of this review to address the plant-associated bacteria to enhance the phytoremediation efficiency of the heavy metals from polluted sites and it is also highlighted advances for the application in wastewater treatment. Plant-associated bacteria have potential to encourage the plant growth and resistance under stress conditions. Such bacteria could enhance plant growth by controlling growth hormone, nutrition security, producing siderophore, secondary metabolites, and improving the antioxidant enzymes system. This review also explores the concepts and applications of bacteria assisted phytoremediation, addressing aspects that affect phytoremediation and pathways for restoration. Significant review issues relating to production and application of bacteria for improvement of bioremediation were established and presented for possible future research. Bacteria assisted phytoremediation is cost-effective strategy and metal sequestration mechanism that hold high metal biosorption capacities. This also takes into consideration the current state of technology implementations and proposals for prospective clean-up studies.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Lucknow 226 025, Uttar Pradesh, India
| |
Collapse
|
23
|
Lebrun M, Miard F, Nandillon R, Morabito D, Bourgerie S. Effect of biochar, iron sulfate and poultry manure application on the phytotoxicity of a former tin mine. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1222-1230. [PMID: 33825566 DOI: 10.1080/15226514.2021.1889964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In phytomanagement approach the application of a combination of amendments is an option for remediating arsenic polluted areas and valorized biomass obtained. Various amendments can be used. Biochar has been shown to reduce metal(loid) availability, and increase soil fertility, while iron sulfate has a considerable As binding capacity, and poultry manure is a source of nutrients. A phytotoxicity test was performed by applying the three amendments (2% biochar, 0.15%, 0.30% and 0.45% iron sulfate and 0.4% poultry manure) to a former tin mine technosol, to investigate their effects on (i) soil pore water properties, (ii) metal(loid) immobilization and (iii) Phaseolus vulgaris L. growth, used as a bioindicator. Biochar addition alone did not affect soil properties or plant parameters. However, the addition of iron sulfate acidified the soil, decreased soil pore water As concentrations, and increased the ones of Fe and Pb. It also improved plant growth, and reduced As and Pb aerial and root concentrations. Finally, the addition of poultry manure had no effect on soil and plants. Based on our results, the combination of iron sulfate with biochar may be a solution for reducing soil toxicity of the Abbaretz mining technosol, improving its fertility, and thus ameliorating plant growth.Novelty statement:The work presented in this manuscript describes the effect of amendment application, i.e., biochar, chicken dung and/or iron sulfate, on soil properties, metals availability and dwarf bean growth, plant used as bioindicator.Our results showed that the combination of a low amount of iron sulfate with biochar is the strategy to reduce soil toxicity, improved its fertility and consequently authorizes plant growth.This study is one of the first describing the effects of combined amendments on a mining soil properties with focusing on metal(loid) mobility.
Collapse
Affiliation(s)
- Manhattan Lebrun
- University of Orléans, INRA USC1328, Orléans, France
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Florie Miard
- University of Orléans, INRA USC1328, Orléans, France
| | | | | | | |
Collapse
|
24
|
Ghosh D, Maiti SK. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:559-576. [PMID: 33174450 DOI: 10.1080/15226514.2020.1840510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mining activities causes heavy metal pollution and adversely affect the ecological safety and human well-being. Phytoremediation-biochar synergy can effectively remediate mine spoils contaminated with heavy metals (HM). A review which focuses exclusively on the application of biochar assisted phytoremediation in HM contaminated mine spoil is lacking. Mechanisms of metal immobilization by biochar, potential plants and contaminated biomass disposal methods has also been reviewed. Availability of biochar feedstock and production conditions, optimization of application rate, application techniques, selection of suitable hyperaccumulators and cost optimization of bulk biochar production are the key to a successful biochar-based HM remediation of mine tailings and coalmine spoil. Presently, herbs and shrubs are mostly used as phytoremediators, use of woody trees would encourage a long-term metal sequestration which would reduce the cost of biomass disposal. Also, use of non-edible plants would prevent the plants from entering the food chain. For a holistic biochar-phytoremediation technique, incineration and pyrolysis can effectively dispose contaminated biomass. From the economical viewpoint, the environment cost-benefit analysis should be considered before considering the feasibility of a technology.HighlightsMass scale in-situ biochar production and economics are keys issues.Biochar assisted phytoremediation for HM contaminated mine spoils.Long term studies using woody biomass needs attention.Disposal of contaminated biomass by pyrolysis method.
Collapse
Affiliation(s)
- Dipita Ghosh
- Department of Environmental Science and Engineering, Centre of Mining Environment, Indian Institute of Technology (Indian School of Mines), Dhanbad, India Jharkhand
| | - Subodh Kumar Maiti
- Department of Environmental Science and Engineering, Centre of Mining Environment, Indian Institute of Technology (Indian School of Mines), Dhanbad, India Jharkhand
| |
Collapse
|
25
|
Daryabeigi Zand A, Tabrizi AM, Heir AV. Co-application of biochar and titanium dioxide nanoparticles to promote remediation of antimony from soil by Sorghum bicolor: metal uptake and plant response. Heliyon 2020; 6:e04669. [PMID: 32802987 PMCID: PMC7419332 DOI: 10.1016/j.heliyon.2020.e04669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022] Open
Abstract
Association of titanium dioxide nanoparticles (TiO2 NPs) and biochar (BC) to assist phytoremediation of Sb contaminated soil was investigated in this study. Seedlings of Sorghum bicolor were exposed to different regimes of TiO2 NPs (0, 100, 250 and 500 mg kg-1) and BC (0, 2.5% and 5%), separately and in combination, to investigate the effects on plant growth, Sb absorption and accumulation and physiological response of the plant in Sb contaminated soil. Co-application of TiO2 NPs and BC had positive effects on plant establishment and growth in contaminated soil. Greater accumulation of Sb in the shoots compared to the roots of S. bicolor was observed in all treatments. Application of BC increased immobilization of Sb in the soil. Using TiO2 NPs significantly increased accumulation capacity of S. bicolor for Sb with the greatest accumulation capacity of 1624.1 μg per pot achieved in "250 mg kg-1 TiO2 NPs+2.5% BC" treatment (P < 0.05). Association of TiO2 NPs and BC significantly increased chlorophyll a (Chl a) and chlorophyll b (Chl b) contents of S. bicolor compared to the TiO2 NPs-amended treatments. Results of this study presented a promising novel technique by combined application of TiO2 NPs and BC in phytoremediation of Sb contaminated soils. Co-application of TiO2 NPs and BC could reduce the required amounts of TiO2 NPs for successful phytoremediation of heavy metal polluted soils. Intelligent uses of plants in accompany with biochar and nanomaterials have great application prospects in dealing with soil remediation.
Collapse
Affiliation(s)
- Ali Daryabeigi Zand
- School of Environment, College of Engineering, University of Tehran, No. 25, Azin St., 141556135 Tehran, Iran
| | - Alireza Mikaeili Tabrizi
- Department of Environmental Sciences, Gorgan University of Agricultural Sciences & Natural Resources, Shahid Beheshti St., 4913815739 Golestan, Iran
| | - Azar Vaezi Heir
- School of Environment, College of Engineering, University of Tehran, No. 25, Azin St., 141556135 Tehran, Iran
| |
Collapse
|