1
|
Fakhri N, Fadel M, Abdallah C, Karam C, Iakovides M, Oikonomou K, Formenti P, Doussin JF, Borbon A, Sciare J, Hayes PL, Afif C. Characterization of PM 2.5 emissions from on-road vehicles in the tunnel of a major Middle Eastern city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124769. [PMID: 39173861 DOI: 10.1016/j.envpol.2024.124769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Traffic emissions are an important source of air pollution worldwide, but in the Middle East, this problem is exacerbated by weak or no enforcement of emission regulations. Comprehensive measurements of fine PM emission factors (EFs) from road transport in the region have not yet been conducted, but such data are necessary for quantitative assessments of the health impact of transport emissions in the region. To address this need, PM2.5 samples collected inside the Salim Slam tunnel in Beirut, Lebanon were analyzed for carbonaceous matter (organic carbon (OC) and elemental carbon (EC)), water-soluble ions, elements, and selected organic compounds. The OC/EC ratio was 1.8 for the total fleet and 2.6 for light-duty vehicles (LDV), in agreement with the dominant proportion of gasoline LDV in the Lebanese fleet. A Cu/Sb ratio of 4.2 ± 0.1 was observed, offering a valuable metric for detecting brake wear emissions in subsequent studies conducted in the region. The EFs of carbonaceous matter, elements and ions generally varied by a factor 0.1 and 10 in comparison to literature values, while those for alkanes and polycyclic aromatic hydrocarbons were similar to the upper values previously reported. The average number size distribution was characterized by a single mode around 35 nm. The particles number EF (for diameters between 10 and 480 nm) was within the range of 1014-1015 particles per kg of fuel. The chemical mass balance model showed an average contribution to EF of 62% from non-exhaust sources. This study highlights the need for more enforceable stringent vehicular regulations because of the local practices (i.e., removal of catalyst) and some EF values are very high compared to other studies/countries.
Collapse
Affiliation(s)
- Nansi Fakhri
- EMMA Research Group, Centre d'Analyses et de Recherche, Faculty of Sciences, Université Saint-Joseph, Beirut, Lebanon; Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montréal, Québec, Canada; Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Marc Fadel
- EMMA Research Group, Centre d'Analyses et de Recherche, Faculty of Sciences, Université Saint-Joseph, Beirut, Lebanon; Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France
| | - Charbel Abdallah
- EMMA Research Group, Centre d'Analyses et de Recherche, Faculty of Sciences, Université Saint-Joseph, Beirut, Lebanon; Groupe de Spectrométrie Moléculaire et Atmosphérique, GSMA, Université de Reims-Champagne Ardenne, UMR CNRS 7331, 2, Moulin de la Housse, BP1039, 51687, Reims, France
| | - Cyril Karam
- EMMA Research Group, Centre d'Analyses et de Recherche, Faculty of Sciences, Université Saint-Joseph, Beirut, Lebanon
| | - Minas Iakovides
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Konstantina Oikonomou
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Paola Formenti
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS, 7583, Université Paris-Est-Créteil, Université de Paris, Institut Pierre Laplace, Créteil, France
| | - Jean-François Doussin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS, 7583, Université Paris-Est-Créteil, Université de Paris, Institut Pierre Laplace, Créteil, France
| | - Agnès Borbon
- Laboratoire de Météorologie Physique (LaMP-UMR 6016, CNRS, Université Clermont Auvergne), 63178 Aubière, France
| | - Jean Sciare
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Patrick L Hayes
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montréal, Québec, Canada.
| | - Charbel Afif
- EMMA Research Group, Centre d'Analyses et de Recherche, Faculty of Sciences, Université Saint-Joseph, Beirut, Lebanon; Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus.
| |
Collapse
|
2
|
Jiang N, Li M, Wang Z, Hao X, Guo Z, Guo J, Zhang R, Zhang H, Chen J, Geng N. P-phenylenediamines (PPDs) and 6PPD-quinone in tunnel PM 2.5: From the perspective of characterization, emission factors, and health risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136269. [PMID: 39461291 DOI: 10.1016/j.jhazmat.2024.136269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
P-phenylenediamines (PPDs) and a quinone derivative (6PPD-Q), as antioxidants added to tires, can inevitably enter into the environment during tire wear emission, posing potential health and ecological risks. However, investigation on their pollution characteristics in PM2.5 is still lacking, especially for high-pollution scenarios, such as tunnels. Herein, we investigated the pollution characteristics and emission factors, as well as the correlation analysis and daily intakes of PM2.5-bound PPDs and 6PPD-Q in tunnel. The results indicated heavy PPDs and 6PPD-Q pollution were observed in tunnel PM2.5, with the concentration at the two tunnel sites being 3.83 and 8.73 times higher than those at the urban site, respectively. PPDs were negatively correlated to relative humidity and positively to temperature. Emission factors of 6PPD and 6PPD-Q were 3013.54 and 1466.67 ng·veh-1·km-1 for large vehicles. PPDs and 6PPD-Q were most harmful to children, and annual exposure dosages at the tunnel sites were 4.64 times higher than those at the urban site. This study conducted a comparison of PPDs and 6PPD-Q in urban and tunnel environments for the first time. Our findings clarified the key factors to reduce the pollution of PPDs in tunnel and supported policy-making for emission reduction of PPDs and 6PPD-Q.
Collapse
Affiliation(s)
- Nan Jiang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Minzhen Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zichen Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xuexin Hao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhangpeng Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Jiasen Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiqin Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
3
|
Fu J, Fang T, Gao Y, Wang T, Jia Z, Guo D, Mao H. Emission characteristic, spatial distribution, and health risk of polycyclic aromatic compounds (PAHs, NPAHs, and OPAHs) from light-duty gasoline and diesel vehicles based on on-road measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173390. [PMID: 38815831 DOI: 10.1016/j.scitotenv.2024.173390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Vehicle exhaust is the primary source of polycyclic aromatic compounds (PACs). Real road tests using a portable vehicle measurement system on light-duty gasoline vehicles and light-duty diesel trucks were conducted to investigate gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and oxy-PAHs (OPAHs) in vehicle exhaust with different emission standards, fuel types, and altitudes. The results showed that with the tightening of emission standards, the overall emission factors (EFs) of PACs decreased. Compared with China V diesel vehicles, the emissions of PAHs, OPAHs, and NPAHs from China VI diesel vehicles were 75.1 %, 84.4 %, and 61.2 % lower, respectively. With a ∼100 m increase in altitude, the EFs of PAHs, OPAHs, and NPAHs of diesel vehicles increased 1.88, 1.92, and 1.59 times due to incomplete combustion. In addition, the EFs of PAHs and OPAHs in gasoline vehicles were lower than those in diesel vehicles. In contrast, the proportion of PAHs with highly toxic components, such as dibenzo[a,h]anthracene (DahA) and benzo[a]pyrene (BaP), and the EFs of gas-phase NPAHs in gasoline vehicles were higher than those in diesel vehicles. Furthermore, the emissions of 1,8-DNP from diesel vehicles cannot be disregarded. 1,8-DNP was the main gas-phase NPAHs emitted by China VI and China V diesel vehicles, accounting for 49.3 % and 26.0 %, respectively. Moreover, gas-phase PACs contributed more to the EFs than particle-phase PACs, whereas particle-phase PACs have greater toxic effects. Although the EFs of PAHs are more than 100 times those of NPAHs, the toxic equivalent concentrations (TEQBaP) of PAHs in diesel and gasoline vehicles were approximately 6.5 times and 35 times those of NPAHs. The spatial distribution characteristics revealed that PACs emissions were mainly concentrated in urban areas and highways, and the differences in the toxicity of PACs emissions between different cities depended on the proportion of diesel vehicles. The average TEQBaP of PAHs and NPAHs in Haidong, Haibei, Huangnan, Hainan, Guoluo, and Yushu was 8.42 μg/m3 and 0.36 μg/m3, respectively, while those of Xining and Haixi were 0.24-0.29 μg/m3 and 0.09-0.108 μg/m3 higher, respectively. This study provides a comprehensive understanding of the emission characteristics, health risks, and spatial distribution of PACs from diesel and gasoline vehicle PACs in urban areas.
Collapse
Affiliation(s)
- Jiaqi Fu
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yutong Gao
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhenyu Jia
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Dongping Guo
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Chen XX, Wang B, Cai W, Zhang YH, Shen L, Zhu YY, Wang T, Meng XH, Wang H, Xu DX. Exposure to 1-nitropyrene after weaning induces anxiety-like behavior partially by inhibiting steroid hormone synthesis in prefrontal cortex. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134911. [PMID: 38889457 DOI: 10.1016/j.jhazmat.2024.134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
1-Nitropyrene (1-NP) is a neurodevelopmental toxicant. This study was to evaluate the impact of exposure to 1-NP after weaning on anxiety-like behavior. Five-week-old mice were administered with 1-NP (0.1 or 1 mg/kg) daily for 4 weeks. Anxiety-like behaviour was measured using elevated-plus maze (EPM) and open field test (OFT). In EPM test, time spending in open arm and times entering open arm were reduced in 1-NP-treated mice. In OFT test, time spent in the center region and times entering the center region were diminished in 1-NP-treated mice. Prefrontal dendritic length and number of dendrite branches were decreased in 1-NP-treated mice. Prefrontal PSD95, an excitatory postsynaptic membrane protein, and gephyrin, an inhibitory postsynaptic membrane protein, were downregulated in 1-NP-treated mice. Further analysis showed that peripheral steroid hormones, including serum testosterone (T) and estradiol (E2), testicular T, and ovarian E2, were decreased in 1-NP-treated mice. Interestingly, T and E2 were diminished in 1-NP-treated prefrontal cortex. Prefrontal T and E2 synthases were diminished in 1-NP-treated mice. Mechanistically, GCN2-eIF2α, a critical pathway that regulates ribosomal protein translation, was activated in 1-NP-treated prefrontal cortex. These results indicate that exposure to 1-NP after weaning induces anxiety-like behaviour partially by inhibiting steroid hormone synthesis in prefrontal cortex.
Collapse
Affiliation(s)
- Xiao-Xi Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Bo Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Wei Cai
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yi-Hao Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Li Shen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yan-Yan Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Tao Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiu-Hong Meng
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; The Second Affiliated Hospital of Anhui Medical University, Hefei 230032 China.
| |
Collapse
|
5
|
Zhao T, Huang C, Zhang Y, Zhu Y, Chen X, Wang T, Shao J, Meng X, Huang Y, Wang H, Wang H, Wang B, Xu D. Prenatal 1-Nitropyrene Exposure Causes Autism-Like Behavior Partially by Altering DNA Hydroxymethylation in Developing Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306294. [PMID: 38757379 PMCID: PMC11267330 DOI: 10.1002/advs.202306294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/13/2024] [Indexed: 05/18/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by social communication disability and stereotypic behavior. This study aims to investigate the impact of prenatal exposure to 1-nitropyrene (1-NP), a key component of motor vehicle exhaust, on autism-like behaviors in a mouse model. Three-chamber test finds that prenatal 1-NP exposure causes autism-like behaviors during the weaning period. Patch clamp shows that inhibitory synaptic transmission is reduced in medial prefrontal cortex of 1-NP-exposed weaning pups. Immunofluorescence finds that prenatal 1-NP exposure reduces the number of prefrontal glutamate decarboxylase 67 (GAD67) positive interneurons in fetuses and weaning pups. Moreover, prenatal 1-NP exposure retards tangential migration of GAD67-positive interneurons and downregulates interneuron migration-related genes, such as Nrg1, Erbb4, and Sema3F, in fetal forebrain. Mechanistically, prenatal 1-NP exposure reduces hydroxymethylation of interneuron migration-related genes through inhibiting ten-eleven translocation (TET) activity in fetal forebrain. Supplement with alpha-ketoglutarate (α-KG), a cofactor of TET enzyme, reverses 1-NP-induced hypohydroxymethylation at specific sites of interneuron migration-related genes. Moreover, α-KG supplement alleviates 1-NP-induced migration retardation of interneurons in fetal forebrain. Finally, maternal α-KG supplement improves 1-NP-induced autism-like behaviors in weaning offspring. In conclusion, prenatal 1-NP exposure causes autism-like behavior partially by altering DNA hydroxymethylation of interneuron migration-related genes in developing brain.
Collapse
Affiliation(s)
- Ting Zhao
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Cheng‐Qing Huang
- School of Food and BioengineeringHefei University of TechnologyHefei230009China
| | - Yi‐Hao Zhang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Yan‐Yan Zhu
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Xiao‐Xi Chen
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Tao Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Jing Shao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Xiu‐Hong Meng
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Yichao Huang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Hua Wang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Hui‐Li Wang
- School of Food and BioengineeringHefei University of TechnologyHefei230009China
| | - Bo Wang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - De‐Xiang Xu
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| |
Collapse
|
6
|
Zhang X, Qi A, Wang P, Huang Q, Zhao T, Yang L, Wang W. Influence of oil extraction on concentration distributions, migration, secondary formation and carcinogenic risk of NPAHs and OPAHs in air and soil in an oilfield development area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170736. [PMID: 38325475 DOI: 10.1016/j.scitotenv.2024.170736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Oil extraction leads to environmental pollution from the oilfields and dweller activities, however, knowledge of the concentration distributions, migration, secondary formation and toxicity of nitrated/oxygenated polycyclic aromatic hydrocarbons (N/OPAHs) in oilfield regions is limited. In this research, atmospheric and soil samples in 7 different location types in an important oil industrial base in China were gathered. The ΣNPAHs and ΣOPAHs in the air ranged from 0.05 to 2.47 ng/m3 and 0.14-22.72 ng/m3, respectively, and in soil ranged from 0.22 to 17.81 ng/g and 9.69-66.86 ng/g, respectively. Both NPAHs and OPAHs in the atmosphere exhibited higher concentrations during winter. The atmospheric NPAH concentrations decreased exponentially with distance from urban area especially in the summer, revealing the impact of vehicles on the air in the Yellow River Delta area. High NPAH and OPAH concentrations were found only in soil near oil extraction facilities, indicating that the impact of oil extraction is limited to the soil near the extraction facilities. The air-soil exchanges of N/OPAHs were assessed through fugacity fraction analysis, and NPAHs were in the equilibrium-deposition state and OPAHs were in the net-deposition state in the winter. Higher incremental lifetime cancer risk (ILCR) occurred at the urban, industrial, and oilfield sites in the atmospheric samples, and the soil samples had the largest ILCR values in the oilfield sites. However, ILCR values for both air and soil did not exceed the threshold of 10-6.
Collapse
Affiliation(s)
- Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Anan Qi
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu 210093, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Debbarma S, Raparthi N, Venkataraman C, Phuleria HC. Characterization and apportionment of carbonaceous aerosol emission factors from light-duty and heavy-duty vehicle fleets in Maharashtra, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123479. [PMID: 38325510 DOI: 10.1016/j.envpol.2024.123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
This study aims to investigate the characteristics of carbonaceous aerosols and estimate emission factor (EF) based on roadway tunnel measurements, from two distinct vehicular fleets: an all light-duty vehicle (LDV) fleet, and a mixed fleet of 80% LDV and 20% heavy-duty vehicle (HDV). Carbonaceous content (organic carbon: OC and elemental carbon: EC) in total fine particles (PM2.5) accounted for 41% ± 6.8% in LDV fleet and 48% ± 7.2% in mixed fleet. While higher volatile OC dominated in the LDV fleet emissions, in mixed fleet, lower volatile OC and EC emissions dominated due to the presence of higher HDV and super-emitter (SE) fractions which led to significantly higher optically active absorbing aerosols. Reconstructed HDV fleet EF was higher than LDV fleet by 36 times (PM2.5), 19 times (OC) and 51 times (EC). Our findings emphasize the significance of implementing vehicle inspection and maintenance programs, coupled with decarbonization of HDVs to mitigate on-road vehicular emissions in India.
Collapse
Affiliation(s)
- Sohana Debbarma
- Interdisciplinary Programme in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India
| | - Nagendra Raparthi
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India; Air Quality Research Center, University of California Davis, Davis, CA, USA
| | - Chandra Venkataraman
- Interdisciplinary Programme in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India; Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Harish C Phuleria
- Interdisciplinary Programme in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India; Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
8
|
Liu X, Xue Q, Tian Y, Jia B, Chen R, Huo R, Wang X, Feng Y. Potential toxic components in size-resolved particles and gas from residential combustion: Emission factor and health risk. ENVIRONMENT INTERNATIONAL 2024; 185:108551. [PMID: 38452465 DOI: 10.1016/j.envint.2024.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/28/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Particulate matter (PM) from residential combustion is an existential threat to human health. Emission factors (EFs) of multiple potential toxic components (PTCs) in size-resolved PM and gas from eight residential fuel combustion were measured, and size distribution, gas/particle partitioning and health risks of the PTCs were investigated. Average EFs from clean coal and anthracite coal were PTEs (sum of EFs of 11 Potential Toxic Elements, 6.62 mg/kg fuels) > PAHs (sum of 22 Polycyclic Aromatic Hydrocarbons, 1.12 mg/kg) > OPAHs (sum of 5 Oxygenated Polycyclic Aromatic Hydrocarbons, 0.45 mg/kg) > PAEs (sum of 6 Phthalate Esters, 0.11 mg/kg) > NPAHs (sum of 14 Nitropolycyclic Aromatic Hydrocarbons, 16.84 μg/kg) > OPEs (sum of 7 Organophosphate Esters, 7.57 μg/kg) > PCBs (sum of 6 Polychorinated Biphenyls, 0.07 μg/kg), which were 2-3 and 1-2 orders of magnitude lower than the EFs of PTCs (except PTEs) from bituminous coal and biomass. Most PAHs, OPAHs and NPAHs, which may mainly originate from chemical reactions, showed similar size distributions and averagely 85 % concentrated in PM1. PTEs, PAEs, OPEs and PCBs generated from the release from raw fuels may have a higher proportion, so their size distributions were more complex and varied with combustion temperature, volatility of compounds, binding mode of the raw fuels, and so on. In addition, clean coal and high-quality anthracite coal could reduce the health risks from the potential organic toxic components, but also reveal the stumbling block of PTEs in risk control.
Collapse
Affiliation(s)
- Xiao Liu
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qianqian Xue
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yingze Tian
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - Bin Jia
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Rui Chen
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ruiqing Huo
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoning Wang
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yinchang Feng
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| |
Collapse
|
9
|
Zhang X, Wang X, Liang W, Liu M, Wang X, Zhao X. The occurrence, sources, and health risks of substituted polycyclic aromatic hydrocarbons (SPAHs) cannot be ignored. ENVIRONMENT INTERNATIONAL 2024; 183:108390. [PMID: 38150805 DOI: 10.1016/j.envint.2023.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Similar to parent polycyclic aromatic hydrocarbons (PPAHs), substituted PAHs (SPAHs) are prevalent in the environment and harmful to humans. However, they have not received much attention. This study investigated the occurrence, distribution, and sources of 10 PPAHs and 15 SPAHs in soil, water, and indoor and outdoor PM2.5 and dust in high-exposure areas (EAH) near industrial parks and low-exposure areas (EAL) far from industrial parks. PAH pollution in all media was more severe in the EAH than in the EAL. All SPAHs were detected in this study, with alkylated and oxygenated PAHs being predominant. Additionally, 3-OH-BaP and 1-OH-Pyr were detected in all dust samples in this study, and 6-N-Chr, a compound with carcinogenicity 10 times higher than that of BaP, was detected at high levels in all tap water samples. According to the indoor-outdoor ratio, PAHs in indoor PM2.5 in the EAH mainly originated from indoor pollution sources; however, those in the EAL were simultaneously affected by indoor-outdoor air exchange and indoor sources. Most target PAHs tended to deposit from air to dust, and this tendency was significantly negatively associated with the octanol-air partitioning coefficient of PAHs. SPAHs in the environment are primarily derived from the petroleum industry and the mixed combustion of gasoline, biomass, and coal. The toxicity equivalence factors of SPAHs were predicted using QSAR models to assess their lifetime carcinogenic risk (ILCR). The ILCRtotal from PAHs for adults in the EAH was >10-4. Though the levels of 6-N-Chr and 1-Me-Pyr in the environment were markedly lower than those of PPAHs, their ILCRs from PM2.5 inhalation and dermal contact with water exceeded 10-6. This study is significant for recognizing and controlling the health risks associated with SPAHs in humans.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaolei Wang
- Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Weigang Liang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Liu
- Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Wang
- Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
10
|
Zhang Y, Zhao J, Hu Q, Mao H, Wang T. Nitro substituent caused negative impact on occurrence and development of atherosclerotic plaque by PM 2.5-bound polycyclic aromatic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167700. [PMID: 37827309 DOI: 10.1016/j.scitotenv.2023.167700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
PM2.5 exposure is a significant risk factor for the occurrence and development of atherosclerosis. Polycyclic aromatic hydrocarbons (PAHs) play prominent roles in PM2.5-related toxicity. However, the nitrated derivatives of PAHs, nitrated polycyclic aromatic hydrocarbons (NPAHs), have strong oxidizing properties due to the nitro substituents. Thus, the in vivo and in vitro experiments exposure to benzo[a]pyrene (BaP) and 6-nitro benzo[a]pyrene (NBaP) were conducted to evaluate the effect of nitro substituent on the atherosclerosis due to (or attributable to) PAHs. The results showed that NBaP exposure induced the inhibition of human umbilical vein endothelial cells (HUVECs) viability and cell morphology damage via more severe oxidative stress than BaP exposure. Furthermore, exposure to PM2.5-bound NBaP caused dyslipidemia in the Apolipoprotein E-deficient (ApoE-/-) mice, including the increment of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and malondialdehyde levels, and the decrement of high-density lipoprotein cholesterol levels, superoxide dismutase and glutathione peroxidase levels in serum and aorta. Furthermore, histology showed atherosclerotic plaque in the aorta of ApoE-/- mice. However, there were no significant differences of the physiological and pathological changes between BaP and control groups. Thus, NPAHs induced endothelial dysfunction and dyslipidemia via severe oxidative stress, and further accelerated the occurrence and development of atherosclerosis compared with the parent PAHs. Our findings provide the first evidence that nitro substituent caused much severer negative health impact of polycyclic aromatic compounds, which highlight the significance of NPAHs in health risk estimation of polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Yu Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - JingBo Zhao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300071, China
| | - Qian Hu
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - HongJun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
11
|
Zhang J, Han Y, Wei C, Bandowe BAM, Lei D, Wilcke W. Sediment record of polycyclic aromatic compounds and black carbon over the last ~400 years in Sanjiaolongwan Maar Lake, northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167438. [PMID: 37778557 DOI: 10.1016/j.scitotenv.2023.167438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Fuel usage is an important catalyst for socio-economic development and human well-being. Human activities have resulted in significant increases in emissions from biomass burning (BB) and fossil fuel (FF) combustion which have significantly adversely affected human, ecosystem, and planetary health in this era of the Anthropocene. Sanjiaolongwan Maar Lake (SJLW), as a typical crater lake, uniquely receives atmospheric deposition from long-distance transport, and thus, its sediments reflect environmental change and human impacts on a broad scale. In this study, the concentrations and compositions of combustion products, including polycyclic aromatic compounds (PACs, i.e., polycyclic aromatic hydrocarbons (PAHs) and their oxygenated (OPAHs) and nitrogen heterocyclic derivatives (AZAs)) and black carbon (BC and its constituents char and soot), in SJLW over the past 400 years were investigated. The results showed that the PACs and soot concentrations and fluxes in SJLW have rapidly increased since 1950. The concentrations of the total PACs increased ~4 times after the 1950s. Such a fast increase is consistent with the rapid industrialization after the establishment of the People's Republic of China (PRC), which has further accelerated beginning with the implementation of the reform and opening up policy of the PRC in 1978. Moreover, the variations in the compositions of PACs, as well as the decrease in the char/soot ratio, demonstrate a transition in energy usage from BB to FF combustion. The decrease in the benzo[e]pyrene/benzo[a]pyrene ratio indicated an increase in local emissions (because of increasing industrialization in northeast China). The temporal profile of perylene concentrations, fluxes, and perylene/5-ring PAHs ratios strongly suggest that perylene mainly originated from non-pyrogenic sources. The records of PACs and BC in SJLW offer valuable perspectives on human impacts and provide important references for the start of the Anthropocene.
Collapse
Affiliation(s)
- Jianing Zhang
- State Key Laboratory of Loess, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Han
- State Key Laboratory of Loess, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Xi'an 710061, China.
| | - Chong Wei
- Shanghai Carbon Data Research Center, CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Benjamin A Musa Bandowe
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister Platz 1, 76131 Karlsruhe, Germany
| | - Dewen Lei
- State Key Laboratory of Loess, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister Platz 1, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Valduga AT, Gonçalves IL, Saorin Puton BM, de Lima Hennig B, Sousa de Brito E. Anthraquinone as emerging contaminant: technological, toxicological, regulatory and analytical aspects. Toxicol Res 2024; 40:11-21. [PMID: 38223676 PMCID: PMC10786786 DOI: 10.1007/s43188-023-00202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 07/12/2023] [Indexed: 01/16/2024] Open
Abstract
Anthraquinone (anthracene-9,10-dione) is a multifaceted chemical used in the paper industry, in the production of synthetic dyes, in crop protection against birds and is released from fossil fuels. Additionally, the anthraquinone scaffold, when substituted with sugars and hydroxyl groups is found in plants as metabolites. Because of these multiple applications, it is produced on a large scale worldwide. However, its toxicological aspects have gained interest, due to the low limits in the foods defined by legislation. Worrying levels of anthracene-9,10-dione have been detected in wastewater, atmospheric air, soil, food packaging and more recently, in actual foodstuffs. Recent investigations aiming to identify the anthracene-9,10-dione contamination sources in teas highlighted the packaging, leaves processing, anthracene metabolism, reactions between tea constituents and deposition from the environment. In this context, this review seeks to highlight the uses, sources, biological effects, analytical and regulatory aspects of anthracene-9,10-dione. Graphical Abstract
Collapse
Affiliation(s)
- Alice Teresa Valduga
- Graduate Program in Ecology, Universidade Regional Integrada do Alto Uruguai e das Missões-Erechim, Avenida Sete de Setembro, Erechim, RS 1621 Brazil
- Graduate Program in Food Engineerng, Universidade Regional Integrada do Alto Uruguai e das Missões-Erechim, Avenida Sete de Setembro, Erechim, RS 1621 Brazil
| | - Itamar Luís Gonçalves
- Faculty of Medicine, Universidade Regional Integrada do Alto Uruguai e das Missões-Erechim, Avenida Sete de Setembro, Erechim, RS 1621 Brazil
| | - Bruna Maria Saorin Puton
- Graduate Program in Food Engineerng, Universidade Regional Integrada do Alto Uruguai e das Missões-Erechim, Avenida Sete de Setembro, Erechim, RS 1621 Brazil
| | - Bruna de Lima Hennig
- Graduate Program in Ecology, Universidade Regional Integrada do Alto Uruguai e das Missões-Erechim, Avenida Sete de Setembro, Erechim, RS 1621 Brazil
| | - Edy Sousa de Brito
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita 2270, Fortaleza, CE Brazil
| |
Collapse
|
13
|
Yang W, Shang J, Nan X, Du T, Han C. Unveiling the effect of O 2 on the photochemical reaction of NO 2 with polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119838-119846. [PMID: 37930566 DOI: 10.1007/s11356-023-30289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The photochemical reaction of NO2 with organics may be a source of atmospheric HONO during the daytime. Here, the conversion of NO2 to HONO on polycyclic aromatic hydrocarbons (PAHs) under solar irradiation under aerobic and anaerobic conditions was investigated using a flow tube reactor coupled to a NOx analyzer. O2 played an inhibition role in NO2 uptake and HONO formation on PAHs, as shown by 7%-45% and 15%-52% decrease in NO2 uptake coefficient (γ) and HONO yield (YHONO), respectively. The negative effect of O2 on the reaction between NO2 and PAHs should be attributed to three reasons. First, O2 could compete with NO2 for the available sites on PAHs. Second, the quenching of the triple excited state of PAHs (3PAHs*) by O2 inhibited the NO2 uptake. Third, NO3- formed under aerobic conditions reduced the conversion efficiency of NO2 to HONO. The environmental implications suggested that the NO2 uptake on PAHs could contribute to a HONO source strength of 10-120 ppt h-1 in the atmosphere.
Collapse
Affiliation(s)
- Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Jiaqi Shang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Xiangli Nan
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Tao Du
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
14
|
Qi A, Wang P, Lv J, Zhao T, Huang Q, Wang Y, Zhang X, Wang M, Xiao Y, Yang L, Ji Y, Wang W. Distributions of PAHs, NPAHs, OPAHs, BrPAHs, and ClPAHs in air, bulk deposition, soil, and water in the Shandong Peninsula, China: Urban-rural gradient, interface exchange, and long-range transport. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115494. [PMID: 37742577 DOI: 10.1016/j.ecoenv.2023.115494] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
A systematic study of the movement of PAHs (Polycyclic aromatic hydrocarbons) and their derivatives through air, soil, and water is key to understanding the exchange and transport mechanisms of these pollutants in the environment and for ultimately improving environmental quality. PAHs and their derivatives, such as nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), brominated PAHs (BrPAHs) and chlorinated PAHs (ClPAHs), were analyzed in air, bulk deposition, soil, and water samples collected from urban, rural, field, and background sites on the eastern coast of China. The goal was to investigate and discuss their spatiotemporal variations, exchange fluxes, and transport potential. The concentrations of PAHs and their derivatives in the air and bulk deposition displayed distinct seasonal patterns, with higher concentrations observed during the winter and spring and lower concentrations during the summer and autumn. NPAHs exhibited the opposite trend. Significant urban-rural gradients were observed for most of the PAHs and their derivatives. According to the air-soil fugacity calculations, 2-3 ring PAHs, BrPAHs, and ClPAHs were found to volatilize from the soil into the air, while 4-7 ring PAHs, OPAHs, and NPAHs deposited from the air into the soil. The air-water fugacity of the PAHs and their derivatives indicated that surface water was an important source for the ambient atmosphere in Qingdao. The characteristic travel distances (CTDs) and persistence (Pov) for atmospheric transport were much lower than that for the water samples, which may be due to the longer half-lives of PAHs and their derivatives in water. NPAHs and ClPAHs with long transport distances and strong persistence in water could lead to a significant impact on marine pollution.
Collapse
Affiliation(s)
- Anan Qi
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianhua Lv
- Qingdao Research Academy of Environmental Sciences, Qingdao 266003, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, China; Qingdao Research Academy of Environmental Sciences, Qingdao 266003, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yiming Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Miao Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yang Xiao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu, 210023, China.
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
15
|
Liu J, Deng S, Tong H, Yang Y, Tuheti A. Emission profiles, source identifications, and health risk of polycyclic aromatic hydrocarbons (PAHs) in a road tunnel located in Xi'an, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85125-85138. [PMID: 37380852 DOI: 10.1007/s11356-023-27996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Understanding the sources and characteristics of PM2.5-bound PAHs from traffic-related pollution can provide valuable data for mitigating air contamination from traffic in local urban regions. However, little information on PAHs is available regarding the typical arterial highway-Qinling Mountains No.1 tunnel in Xi'an. We estimated the profiles, sources, and emission factors of PM2.5-bound PAHs in this tunnel. The total PAH concentrations were 22.78 ng·m-3 and 52.80 ng·m-3 at the tunnel middle and exit, which were 1.09 and 3.84 times higher than that at the tunnel entrance. Pyr, Flt, Phe, Chr, BaP, and BbF were the dominant PAH species (representing approximately 78.01% of total PAHs). The four rings PAHs were dominant (58%) among the total PAH concentrations in PM2.5. The results demonstrated that diesel and gasoline vehicles exhaust emissions contributed 56.81% and 22.60% to the PAHs, respectively, while the corresponding value for together brakes, tyre wear, and road dust was 20.59%. The emission factors of total PAHs were 29.35 μg·veh-1·km-1, and emission factors of 4 rings PAHs were significantly higher than those of the other PAHs. The sum of ILCR was estimated to be 1.41×10-4, which accorded with acceptable level of cancer risk (10-6-10-4), PAHs should not ignored as they still affect the public health of inhabitants. This study shed light on PAH profiles and traffic-related sources in the tunnel, thereby facilitating the assessment of control measures targeting PAHs in local areas.
Collapse
Affiliation(s)
- Jiayao Liu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Shunxi Deng
- School of Water and Environment, Chang'an University, Xi'an, 710064, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China.
| | - Hui Tong
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300072, China
| | - Yan Yang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Abula Tuheti
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
16
|
Wang D, Wu S, Gong X, Ding T, Lei Y, Sun J, Shen Z. Characterization and Risk Assessment of PM 2.5-Bound Polycyclic Aromatic Hydrocarbons and their Derivatives Emitted from a Typical Pesticide Factory in China. TOXICS 2023; 11:637. [PMID: 37505602 PMCID: PMC10385953 DOI: 10.3390/toxics11070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their derivatives have received extensive attention due to their negative effects on the environment and on human health. However, few studies have performed comprehensive assessments of PAHs emitted from pesticide factories. This study assessed the concentration, composition, and health risk of 52 PM2.5-bound PAHs during the daytime and nighttime in the vicinity of a typical pesticide factory. The total concentration of 52 PAHs (Σ52PAHs) ranged from 53.04 to 663.55 ng/m3. No significant differences were observed between daytime and nighttime PAH concentrations. The average concentrations of twenty-two parent PAHs, seven alkylated PAHs, ten oxygenated PAHs, and twelve nitrated PAHs were 112.55 ± 89.69, 18.05 ± 13.76, 66.13 ± 54.79, and 3.90 ± 2.24 ng/m3, respectively. A higher proportion of high-molecular-weight (4-5 rings) PAHs than low-molecular-weight (2-3 rings) PAHs was observed. This was likely due to the high-temperature combustion of fuels. Analysis of diagnostic ratios indicated that the PAHs were likely derived from coal combustion and mixed sources. The total carcinogenic equivalent toxicity ranged from 15.93 to 181.27 ng/m3. The incremental lifetime cancer risk from inhalation, ingestion, and dermal contact with the PAHs was 2.33 × 10-3 for men and 2.53 × 10-3 for women, and the loss of life expectancy due to the PAHs was 11,915 min (about 0.023 year) for men and 12,952 min (about 0.025 year) for women. These results suggest that long-term exposure to PM2.5 emissions from a pesticide factory has significant adverse effects on health. The study results support implementing the characterization of PAH emissions from pesticide factories and provides a scientific basis for optimizing the living environment around pesticide factories.
Collapse
Affiliation(s)
- Diwei Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The State Key Laboratory of Environmental Assessment and Pollution Control of Pesticides for Environmental Protection, Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing 210042, China
| | - Shengmin Wu
- The State Key Laboratory of Environmental Assessment and Pollution Control of Pesticides for Environmental Protection, Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing 210042, China
| | - Xuesong Gong
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Tao Ding
- The State Key Laboratory of Environmental Assessment and Pollution Control of Pesticides for Environmental Protection, Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing 210042, China
| | - Yali Lei
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
17
|
Ma T, Kong J, Li W, Cheng X, Zhang Y, Kong D, Yang S, Li S, Zhang L, He H. Inventory, source and health risk assessment of nitrated and parent PAHs in agricultural soils over a rural river in Southeast China. CHEMOSPHERE 2023; 329:138688. [PMID: 37059199 DOI: 10.1016/j.chemosphere.2023.138688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (NPAHs) have become a concerning topic because of their widespread occurrence and carcinogenicity. However, studies on NPAHs in soils, especially in agricultural soils, are still limited. In this study, a systematic monitoring campaign of 15 NPAHs and 16 polycyclic aromatic hydrocarbons (PAHs) was performed in agricultural soils from the Taige Canal basin in 2018, which is a typical agricultural activity area of the Yangtze River Delta. The total concentration of NPAHs and PAHs ranged from 14.4 to 85.5 ng g-1 and 118-1108 ng g-1, respectively. Among the target analytes, 1,8-dinitropyrene and fluoranthene were the most predominant congeners accounting for 35.0% of ∑15NPAHs and 17.2% of ∑16PAHs, respectively. Four-ring NPAHs and PAHs were predominant, followed by three-ring NPAHs and PAHs. NPAHs and PAHs had a similar spatial distribution pattern with high concentrations in the northeastern Taige Canal basin. The soil mass inventory of ∑16PAHs and ∑15NPAHs was evaluated to be 31.7 and 2.55 metric tons, respectively. Total organic carbon had a significant impact on the distribution of PAHs in soils. The correlation between PAH congeners in agricultural soils was higher than that between NPAH congeners. Based on diagnostic ratios and principal component analysis-multiple linear regression model, vehicle exhaust emission, coal combustion, and biomass combustion were the predominant sources of these NPAHs and PAHs. According to the lifetime incremental carcinogenic risk model, the health risk posed by NPAHs and PAHs in agricultural soils of the Taige Canal basin was virtually negligible. The total health risk in soils of the Taige Canal basin to adults was slightly higher than that to children.
Collapse
Affiliation(s)
- Tao Ma
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing, 210042, PR China; School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Jijie Kong
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Weidi Li
- Jiangsu Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yueqing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing, 210042, PR China
| | - Deyang Kong
- Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing, 210042, PR China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| |
Collapse
|
18
|
Zhang X, Qi A, Wang P, Huang Q, Zhao T, Yan C, Yang L, Wang W. Spatial Distribution, Sources, Air-Soil Exchange, and Health Risks of Parent PAHs and Derivative-Alkylated PAHs in Different Functional Areas of an Oilfield Area in the Yellow River Delta, North China. TOXICS 2023; 11:540. [PMID: 37368640 DOI: 10.3390/toxics11060540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
The knowledge of the spatial distribution, sources, and air-soil exchange of polycyclic aromatic compounds (PACs) in an oilfield area is essential to the development of effective control practices of PAC pollution. In this study, 48 passive air samples and 24 soil samples were collected during 2018-2019 in seven functional areas (e.g., urban, oil field, suburban, industrial, agricultural, near pump units, and background) in the Yellow River Delta (YRD) where the Shengli Oilfield is located, and 18 parent polycyclic aromatic hydrocarbons (PAHs) and five alkylated-PAHs (APAHs) were analyzed from all the air and soil samples. The ΣPAHs in the air and soil ranged from 2.26 to 135.83 ng/m3 and 33.96 to 408.94 ng/g, while the ΣAPAHs in the atmosphere and soil ranged from 0.04 to 16.31 ng/m3 and 6.39 to 211.86 ng/g, respectively. There was a downward trend of atmospheric ΣPAH concentrations with increasing the distance from the urban area, while both ΣPAH and ΣAPAH concentrations in the soil decreased with distance from the oilfield area. PMF analyses show that for atmospheric PACs, coal/biomass combustion was the main contributor in urban, suburban, and agricultural areas, while crude production and processing source contributes more in the industrial and oilfield area. For PACs in soil, densely populated areas (industrial, urban, and suburban) are more affected by traffic sources, while oilfield and near-pump unit areas are under the impact of oil spills. The fugacity fraction (ff) results indicated that the soil generally emitted low-molecular-weight PAHs and APAHs and act as a sink for high-molecular-weight PAHs. The incremental lifetime cancer risk (ILCR) of Σ(PAH+APAH) in both the air and soil, were below the threshold (≤10-6) set by the US EPA.
Collapse
Affiliation(s)
- Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Anan Qi
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
- Jiangsu Collaborative Innovation Center for Climate Change, Nanjing 210093, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
19
|
Sakin AE, Mert C, Tasdemir Y. PAHs, PCBs and OCPs in olive oil during the fruit ripening period of olive fruits. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1739-1755. [PMID: 35635681 DOI: 10.1007/s10653-022-01297-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Because of their possible carcinogenic effects, it is crucial to determine levels of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in olive oils. However, there are a few studies about these pollutants' levels in olive oils and no other studies reported PAHs, PCBs and OCPs at the same time and during the ripening period of olives in olive oils. A modified clean-up technique was successfully applied for eliminating lipidic components. Additionally, this study does not just report the concentrations of these pollutants but also inspects the sources depending on the actual sampling site. Also, PCBs and OCPs carcinogenic risks in olive oil were reported for the first time in the literature. This study aims to present levels, carcinogenic risks, sources and concentration changes during the ripening period of these pollutants in olive oil. For this purpose, fruit samples for oil extraction were collected between the beginning of the fruit ripening and harvest period. Obtained olive oils from the fruits were extracted and cleaned up using the QuEChERS method. GC-MS and GC-ECD were used for the quantitative analysis of the targeted pollutants. The average concentrations for ∑16PAHs, ∑37PCBs and ∑10OCPs were 222.48 ± 133.76 μg/kg, 58.26 ± 21.64 μg/kg and 25.48 ± 19.55 μg/kg, respectively. During the harvest period, the concentrations were in a decreasing trend. Calculated carcinogenic risks were above acceptable limits for all groups and traffic, wood-coal burning, atmospheric transport and previous uses were the main sources. Results of the source determination indicated that some possible sources could be prevented with regulations and precautions.
Collapse
Affiliation(s)
- A Egemen Sakin
- Science and Technology Application and Research Centre BITUAM, Bursa Uludag University, 16059, Nilufer, Bursa, Turkey
| | - Cevriye Mert
- Department of Horticulture, Faculty of Agriculture, Bursa Uludag University, 16059, Nilufer, Bursa, Turkey
| | - Yücel Tasdemir
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilufer, Bursa, Turkey.
| |
Collapse
|
20
|
Wei L, Yu Z, Zhu C, Chen Y, Pei Z, Li Y, Yang R, Zhang Q, Jiang G. An evaluation of the impact of traffic on the distribution of PAHs and oxygenated PAHs in the soils and moss of the southeast Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160938. [PMID: 36526168 DOI: 10.1016/j.scitotenv.2022.160938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Contaminants in high-altitude mountains such as the Tibetan Plateau (TP) have attracted extensive attention due to their potential impact on fragile ecosystems. Rapid development of the economy and society has promoted pollution caused by local traffic emissions in the TP. Among the pollutants emitted by traffic, polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) are of particular concern due to their high toxicity. The TP provides an environment to explore the degree and range of contribution for traffic-induced PAHs and OPAHs. In this study, soils and moss were collected at different altitudes and distances from the G318 highway in the southeast TP. The total concentrations of PAHs (∑16PAHs) and OPAHs (∑6OPAHs) in soils were in the range of 3.29-119 ng/g dry weight (dw) and 0.54-9.65 ng/g dw, respectively. ∑16PAH and ∑6OPAH concentrations decreased logarithmically with increasing distance from traffic. A significantly positive correlation between ∑16PAHs and altitude was found at sampling points closest to traffic. Dominant PAHs constituents in soil and moss included chrysene (CHR), benzo[g,h,i]perylene (BghiP), and benzo[b]fluoranthene (BbF); prevalent OPAH compounds were 9-fluorenone (9-FO) and 9,10-anthraquinone (ATQ). These compounds were related to characteristics of traffic emissions. The multiple diagnosis ratio and correlation analysis showed that exhaust emissions were the main source of the PAHs and OPAHs in the studied environment. PMF modeling quantification of the relative contribution of traffic emissions to PAHs in roadside soils was 45 % on average. The present study characterized the extent and range of traffic-induced PAH and OPAH emissions, providing valuable information for understanding the environmental behaviors and potential risks of traffic-related contaminants in high-altitude areas.
Collapse
Affiliation(s)
- Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhigang Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chengcheng Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Singh BP, Zughaibi TA, Alharthy SA, Al-Asmari AI, Rahman S. Statistical analysis, source apportionment, and toxicity of particulate- and gaseous-phase PAHs in the urban atmosphere. Front Public Health 2023; 10:1070663. [PMID: 36703843 PMCID: PMC9871548 DOI: 10.3389/fpubh.2022.1070663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The concentrations of particulate and gaseous Polycyclic Hydrocarbons Carbon (PAHs) were determined in the urban atmosphere of Delhi in different seasons (winter, summer, and monsoon). Methodology The samples were collected using instrument air metric (particulate phase) and charcoal tube (gaseous phase) and analyzed through Gas chromatography. The principal component and correlation were used to identify the sources of particulate and gaseous PAHs during different seasons. Results and discussion The mean concentration of the sum of total PAHs (TPAHs) for particulate and gaseous phases at all the sites were found to be higher in the winter season (165.14 ± 50.44 ng/m3 and 65.73 ± 16.84 ng/m3) than in the summer season (134.08 ± 35.0 ng/m3 and 43.43 ± 9.59 ng/m3), whereas in the monsoon season the concentration was least (68.15 ± 18.25 ng/m3 and 37.63 1 13.62 ng/m3). The principal component analysis (PCA) results revealed that seasonal variations of PAHs accounted for over 86.9%, 84.5%, and 94.5% for the summer, monsoon, and winter seasons, respectively. The strong and positive correlation coefficients were observed between B(ghi)P and DahA (0.922), B(a)P and IcdP (0.857), and B(a)P and DahA (0.821), which indicated the common source emissions of PAHs. In addition to this, the correlation between Nap and Flu, Flu and Flt, B(a)P, and IcdP showed moderate to high correlation ranging from 0.68 to 0.75 for the particulate phase PAHs. The carcinogenic health risk values for gaseous and particulate phase PAHs at all sites were calculated to be 4.53 × 10-6, 2.36 × 10-5 for children, and 1.22 × 10-5, 6.35 × 10-5 for adults, respectively. The carcinogenic health risk for current results was found to be relatively higher than the prescribed standard of the Central Pollution Control Board, India (1.0 × 10-6).
Collapse
Affiliation(s)
- Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbadhu College, University of Delhi, New Delhi, India
- Delhi School of Climate Change and Sustainability, Institute of Eminence, University of Delhi, New Delhi, India
| | - Torki A. Zughaibi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saif A. Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed I. Al-Asmari
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Laboratory Department, Ministry of Health, King Aziz Hospital, Jeddah, Saudi Arabia
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, New Delhi, India
| |
Collapse
|
22
|
Bai X, Wei J, Ren Y, Gao R, Chai F, Li H, Xu F, Kong Y. Pollution characteristics and health risk assessment of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons during heating season in Beijing. J Environ Sci (China) 2023; 123:169-182. [PMID: 36521982 DOI: 10.1016/j.jes.2022.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (NPAHs) attract continuous attention due to their outstanding carcinogenicity and mutagenicity. In order to investigate the diurnal variations, sources, formation mechanism, and health risk assessment of them in heating season, particulate matter (PM) were collected in Beijing urban area from December 26, 2017 to January 17, 2018. PAHs and NPAHs in PM were quantitatively analyzed via gas chromatography-mass spectrometry (GC-MS) . Average daily concentrations of PAHs and NPAHs were (78 ± 54) ng/m3 and (783 ± 684) pg/m3, respectively. The concentrations of them were significantly higher at nighttime than at daytime, and NPAHs concentrations were 1-2 orders of magnitude lower than PAHs concentrations. In the heating season, the dominant species of PAHs include benzo[b]fluoranthene, fluoranthene, pyrene, and chrysene, while 9-nitroanthracene, 2+3-nitrofluoranthene, and 2-nitropyrene were dominant species for NPAHs. NPAHs were found to have a single peak during heating and to be primarily distributed in the 0.4-0.7 µm particle size. Primary emissions such as biomass burning, coal combustion, and traffic emissions were the major sources of PAHs. NPAHs were produced by the primary source of vehicle emissions and the secondary reaction triggered by OH radicals, as well as biomass burning during daytime. According to the health risk assessment, the total carcinogenic risk was higher in adults than in children. While upon oral ingestion, the carcinogenic risk in children was higher than that of adults, but the risk of adults was higher than children through skin contact and respiratory inhalation.
Collapse
Affiliation(s)
- Xurong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Shandong University, Environment Research Institute, Qingdao 266237, China
| | - Jie Wei
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanqin Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fahe Chai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Xu
- Shandong University, Environment Research Institute, Qingdao 266237, China
| | - Yuxue Kong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
23
|
Mohammed R, Zhang ZF, Hu YH, Jiang C, He ZQ, Wang WJ, Li YF. Temporal-spatial variation, source forensics of PAHs and their derivatives in sediment from Songhua River, Northeastern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4031-4043. [PMID: 34820731 DOI: 10.1007/s10653-021-01106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The distribution patterns and health risk assessment of nitrated polycyclic aromatic hydrocarbons (NPAHs), hydroxy polycyclic aromatic hydrocarbons (OH-PAHs), and regular 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediment from the Songhua River in northeastern China were investigated in this research. During dry seasons, concentrations of 16 USEPA priority PAHs, OH-PAHs, and NPAHs were extremely high, with average values of 1220 ± 288, 317 ± 641, 2.54 ± 3.98, and 12.2 ± 22.1 ng/g (dry weight, dw). The dry period level was confirmed to be 4 times greater than the wet period concentration. Modeling with positive matrix factorization (PMF) and estimation of diagnostic isomeric ratios were applied for identifying sources, according to the positive matrix factorization model: vehicle emissions (38.1%), biomass burning (25%), petroleum source (23.4%), and diesel engines source (13.5%) in wet season as well as wood combustion (44.1%), vehicle source (40.2%), coke oven (10.8%), and biomass burning (4.9%) in the dry season. The greatest seasonal variability was attributed to high molecular weight compounds (HMW PAHs). BaP was confirmed to be 81% carcinogenic in this study, which offers convincing proof of the escalating health issues.
Collapse
Affiliation(s)
- Rashid Mohammed
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Harbin Institute of Technology, Polar Academy, Harbin, 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Zi-Feng Zhang
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Harbin Institute of Technology, Polar Academy, Harbin, 150090, China.
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China.
| | - Ying-Hua Hu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases, Harbin, 150028, China
| | - Chao Jiang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases, Harbin, 150028, China
| | - Zhi-Qiang He
- Heilongjiang Pony Testing Technical Co.,Ltd, Harbin, 150028, Heilongjiang, China
| | - Wen-Juan Wang
- Heilongjiang Pony Testing Technical Co.,Ltd, Harbin, 150028, Heilongjiang, China
| | - Yi-Fan Li
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Harbin Institute of Technology, Polar Academy, Harbin, 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| |
Collapse
|
24
|
Chen YP, Zeng Y, Guan YF, Huang YQ, Liu Z, Xiang K, Sun YX, Chen SJ. Particle size-resolved emission characteristics of complex polycyclic aromatic hydrocarbon (PAH) mixtures from various combustion sources. ENVIRONMENTAL RESEARCH 2022; 214:113840. [PMID: 35810804 DOI: 10.1016/j.envres.2022.113840] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Combustion of domestic solid fuels is a significant source of polycyclic aromatic hydrocarbons (PAHs). Some oxygenated PAHs (o-PAHs) and PAHs with molecular weight of 302 (MW302 PAHs) are more toxic than the traditional 16 priority PAHs, whereas their emissions were much less elucidated. This study characterized the size-dependent emissions of parent PAHs (p-PAHs), o-PAHs, and MW302 PAHs from various combustion sources. The estimated emission factors (eEFs) from biomass burning sources were highest for most of the PAHs (391-8928 μg/kg), much higher than that of anthracite coal combustion (43.0-145 μg/kg), both which were operated in an indoor stove. Cigarette smoking had a high eEF of o-PAHs (240 ng/g). MW302 PAHs were not found in the emissions of smoking, cooking, and vehicular exhausts. Particle-size distributions of PAHs were compound- and source-dependent, and the tendency to associate with smaller particles was observed especially in biomass burning and cigarette smoking sources. Furthermore, the inter-source differences in PAH eEFs were associated with their dominance in fine particles. PAH composition profiles also varied with the particle size, showing increasing contributions of large-molecule PAHs with decreasing sizes in most cases. The size distributions of p-PAHs are much more significantly dependent on their n-octanol/air partition coefficients and vapor pressures than those of o-PAHs, suggesting differences in mechanisms governing their distributions. Several molecular diagnostic ratios (MDRs), including two based on MW302 PAHs, specific to these combustion scenarios were identified. However, the MDRs within some sources are also strongly size-dependent, providing a new explanation for the uncertainty in their application for source identification of PAHs. This work also highlights the necessity for understanding the size-resolved atmospheric behaviors and fate of PAHs after their emission.
Collapse
Affiliation(s)
- Yu-Ping Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yu-Feng Guan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yu-Qi Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Zheng Liu
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Kai Xiang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yu-Xin Sun
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Zhang R, Li S, Fu X, Pei C, Wang J, Wu Z, Xiao S, Huang X, Zeng J, Song W, Zhang Y, Bi X, Wang X. Emissions and light absorption of PM 2.5-bound nitrated aromatic compounds from on-road vehicle fleets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120070. [PMID: 36058316 DOI: 10.1016/j.envpol.2022.120070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Vehicle emissions are an important source of nitrated aromatic compounds (NACs) in particulate size smaller 2.5 μm (PM2.5), which adversely affect human health and biodiversity, especially in urban areas. In this study, filter-based PM2.5 samples were collected during October 14-19, 2019, in a busy urban tunnel (approximately 35,000 vehicles per day) in south China to identify PM2.5-bound NACs. Among them, 2,8-dinitrodibenzothiophene, 3-nitrodibenzofuran and 2-nitrodibenzothiophene were the most abundant nitrated polycyclic aromatic hydrocarbons (NPAHs), while 2-methyl-4-nitrophenol, 2,4-dinitrophenol, 3-methyl-4-nitrophenol and 4-nitrophenol were the most abundant nitrophenols (NPs). The observed mean fleet emission factors (EFs) of NPAHs and NPs were 2.2 ± 2.1 and 7.7 ± 4.1 μg km-1, and were 2.9 ± 2.7 and 10.2 ± 5.4 μg km-1 if excluding electric and liquefied petroleum gas vehicles, respectively. Regression analysis revealed that diesel vehicles (DVs) had NPAH-EFs (55.3 ± 5.3 μg km-1) approximately 180 times higher than gasoline vehicles (GVs) (0.3 ± 0.2 μg km-1), and NP-EFs (120.6 ± 25.8 μg km-1) approximately 30 times higher than GVs (4.1 ± 0.2 μg km-1), and thus 89% NPAH emissions and 56% NP emissions from the onroad fleets were contributed by DVs although DVs only accounted for 3.3% in the fleets. Methanol solution-based light absorption measurements demonstrated that the mean incremental light absorption for methanol-soluble brown carbon at 365 nm was 6.8 ± 2.2 Mm-1, of which the 44 detected NACs only contributed about 1%. The mean EF of the 7 toxic NACs was approximately 3% that of the 16 priority PAHs; However, their benzo(a)pyrene toxic equivalence quotients (TEQBaP) could reach over 25% that of the PAHs. Moreover, 6-nitrochrysene mainly from DVs contributed 93% of the total TEQBaP of the NACs. This study demonstrated that enhancing DV emission control in urban areas could benefit the reduction of exposure to air toxins such as 6-nitrochrysene.
Collapse
Affiliation(s)
- Runqi Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuewei Fu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenglei Pei
- University of Chinese Academy of Sciences, Beijing, 100049, China; Guangzhou Environmental Monitoring Center, Guangzhou, 510030, China
| | - Jun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenfeng Wu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoxuan Xiao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqing Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiang Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Xing W, Yang L, Zhang H, Zhang X, Wang Y, Bai P, Zhang L, Hayakawa K, Nagao S, Tang N. Variations in traffic-related polycyclic aromatic hydrocarbons in PM 2.5 in Kanazawa, Japan, after the implementation of a new vehicle emission regulation. J Environ Sci (China) 2022; 121:38-47. [PMID: 35654514 DOI: 10.1016/j.jes.2021.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 06/15/2023]
Abstract
A three-year sampling campaign was conducted at a roadside air pollution monitoring station in the urban area of Kanazawa, Japan. Due to a new emission regulation, PAHs levels decreased over the sampling campaign, exhibiting values of 706 ± 413 pg/m3 in 2017, 559 ± 384 pg/m3 in 2018, and 473 ± 234 pg/m3 in 2019. In each year, similar seasonal variations in PAHs levels were observed, with higher levels observed in winter and lower levels in summer. Among the PAHs isomer ratios, we observed that the ratio of benzo[b]fluoranthene (BbF) and benzo[k]fluoranthene (BkF), [BbF]/([BbF] + [BkF]), and the ratio of indeno[1,2,3-cd]pyrene (IDP) and benzo[ghi]perylene (BgPe), [IDP]/([BgPe] + [IDP]), showed stability over the sampling campaign and were less affected by the new emission regulation, seasonal variations, and regional characteristics. When using the combined ratio ranges of 0.66 - 0.80 ([BbF]/([BbF] + [BkF]) and 0.26-0.49 ([IDP]/([BgPe] + [IDP]), traffic emissions were clearly distinguished from other PAHs emission sources. Principal component analysis (PCA) and positive matrix factorization (PMF) were also performed to further analyse the characteristics of traffic-related PAHs. Overall, this study affirmed the effectiveness of the new emission regulation in the reduction of PAHs emissions and provided a combined range for identifying PAHs traffic emission sources.
Collapse
Affiliation(s)
- Wanli Xing
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Lu Yang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Lulu Zhang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Seiya Nagao
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
27
|
Li X, Liu Y, Wang T, Wang L. A simple device for simulating skin adsorption of polycyclic aromatic hydrocarbons: design and application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71208-71216. [PMID: 35597829 DOI: 10.1007/s11356-022-20851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Dermal exposure is one of the main ways of human body exposure to atmospheric contaminants such as polycyclic aromatic hydrocarbons (PAHs). The skin type significantly affects the skin adsorption of contaminants. However, this is commonly ignored in assessing the dermal exposure based on the atmospheric concentrations of contaminants. In this study, a simulation device suitable for human dermal pollutant exposure assessment was established, which used polyethylene balloons coated with different doses of glycerol trioleate to simulate oily skin, neutral skin, and dry skin type. The sampling effectiveness of the device was verified, and the device was applied to the skin exposure assessment of atmospheric PAHs at different scenarios. Kinetic experiments indicated a linear adsorption within 6 h. The adsorption kinetic constants (k) of PAHs on the oily surface of the balloon were significantly higher than those on the dry surface, especially for PAHs with high ring numbers. Compared with the calculated skin adsorption based on atmospheric concentrations, the results of this simulation device can better simulate the skin adsorption of atmospheric contaminants on different skin types and in different scenarios. Based on the result of balloon sampling, the dermal exposure of PAH3 rings by oily skin inside the tunnel is up to 5.668 ng/cm2/day, indicating a non-negligible health risk.
Collapse
Affiliation(s)
- Xinxin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Tianjin, 300350, China
| | - Yinzuo Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Tianjin, 300350, China
| | - Ting Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Tianjin, 300350, China.
| |
Collapse
|
28
|
Wang Y, Wang Z, Wang J, Wang R, Ding X, Donahue NM, Dong Z, Ma G, Han Y, Cao J. Assessment of the inhalation exposure and incremental lifetime cancer risk of PM 2.5 bounded polycyclic aromatic hydrocarbons (PAHs) by different toxic equivalent factors and occupancy probability, in the case of Xi'an. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76378-76393. [PMID: 35668257 DOI: 10.1007/s11356-022-21061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread toxic pollutants in the atmosphere and have attracted much attention for decades. In this study, we compared the health risks of PAHs based on different toxic equivalent factors (TEFs) in a heavily polluted area during heating and non-heating periods. We also pay attention to occupancy probability (OP) in different polluted areas. The results showed that there were big differences for calculations by different TEFs, and also by OP or not. Age groups except adults were all lower calculated by OP than not. The sensitivity analysis results on the incremental lifetime cancer risks (ILCR) for population groups by Monte Carlo simulation identified that the cancer slope factor extremely affected the health risk assessment in heating periods, followed by daily inhalation exposure levels. However, daily inhalation exposure levels have dominated the effect on the inhalation ILCR and then followed by the cancer slope factor in non-heating periods. The big differences by different calculations investigated that it is important to set up the correlations between the pollution level and health risks, especially for the longtime health assessment.
Collapse
Affiliation(s)
- Yumeng Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Zedong Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Jingzhi Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China.
- Center for Atmospheric Particles Studies, Carnegie Mellon University, Pittsburgh, PA, USA.
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
- Guangdong Provincial Key Laboratory of Utilization and Protection of Environmental Resource, State Key Laboratory of Organic Geochemmistry, Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou, China.
| | - Runyu Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Xinxin Ding
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Neil McPherson Donahue
- Center for Atmospheric Particles Studies, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhibao Dong
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Ge Ma
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Yongming Han
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Mellado D, Giuliani D, Demetrio PM, Sanchez EY, Porta A, Lerner JEC. Influence of vehicular emissions on the levels of polycyclic aromatic hydrocarbons (PAHs) in urban and industrial areas of La Plata, Argentina. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:822. [PMID: 36149534 DOI: 10.1007/s10661-022-10496-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered potentially toxic, even carcinogenic, because of their affection to public health and the environment. It is necessary to know their ambient levels and the origin of these pollutants in order to mitigate them. A concerning scenario is the one in which commercial/administrative, industrial, and residential activities coexist. In this context, Gran La Plata (Argentina) presents such characteristics, in addition to the presence of one of the most important petrochemical complexes in the country and intense vehicular traffic. The source apportionment of PAH emission in the region, associated to 10-µm and 2.5-µm particulate matter fractions, was studied. First, different missing value imputation methods were evaluated for PAH databases. GSimp presented a better performance, with mean concentrations of ∑PAHs of 65.8 ± 40.2 ng m-3 in PM10 and 39.5 ± 18.0 ng m-3 in PM2.5. For both fractions, it was found that the highest contribution was associated with low molecular weight PAHs (3 rings), with higher concentrations of anthracene. Emission sources were identified by using principal component analysis (PCA) together with multiple linear regression (MLR) and diagnostic ratios of PAHs. The results showed that the main emission source is associated with vehicular traffic in both fractions. Classification by discriminant analysis showed that emissions can be identified by region and that fluoranthene, benzo(a)anthracene, and anthracene in PM10 and anthracene and phenanthrene in PM2.5 are a characteristic of emissions from the petrochemical complex.
Collapse
Affiliation(s)
- Daniela Mellado
- Centro de Investigaciones del Medioambiente (CIM), CONICET CCT La Plata, Universidad Nacional de La Plata, Bv. 120 N° 1489, La Plata, Argentina
| | - Daniela Giuliani
- Centro de Investigaciones del Medioambiente (CIM), CONICET CCT La Plata, Universidad Nacional de La Plata, Bv. 120 N° 1489, La Plata, Argentina.
| | - Pablo Martin Demetrio
- Centro de Investigaciones del Medioambiente (CIM), CONICET CCT La Plata, Universidad Nacional de La Plata, Bv. 120 N° 1489, La Plata, Argentina
| | - Erica Yanina Sanchez
- Centro de Investigaciones del Medioambiente (CIM), CONICET CCT La Plata, Universidad Nacional de La Plata, Bv. 120 N° 1489, La Plata, Argentina
| | - Andrés Porta
- Centro de Investigaciones del Medioambiente (CIM), CONICET CCT La Plata, Universidad Nacional de La Plata, Bv. 120 N° 1489, La Plata, Argentina
| | - Jorge Esteban Colman Lerner
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" (CINDECA), CONICET CCT La Plata, UNLP, 47 N° 257, 1900, La Plata, Argentina
| |
Collapse
|
30
|
Li Y, Bai X, Ren Y, Gao R, Ji Y, Wang Y, Li H. PAHs and nitro-PAHs in urban Beijing from 2017 to 2018: Characteristics, sources, transformation mechanism and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129143. [PMID: 35594669 DOI: 10.1016/j.jhazmat.2022.129143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (NPAHs) attract continuous attention due to their distinct carcinogenicity and mutagenicity. To investigate the characteristics, sources, formation mechanism and health risk assessment of PAHs and NPAHs, PM2.5 were collected at an urban site in Beijing from 2017 to 2018. The highest PAHs and NPAHs concentrations were 77.92 ± 54.62 ng/m3 and 963.71 ± 695.06 pg/m3 in the winter campaign, which were several times larger than those in other seasonal campaigns. Distinct diurnal variations of nocturnal levels higher than daytime levels were shown for PAHs and NPAHs. Source analysis indicated that besides vehicle exhaust, biomass burning and coal combustion were important sources of PAHs and NPAHs in the fall and winter campaigns. Secondary formation in atmosphere was another source of NPAHs especially in the spring and summer campaigns. NO2 and RH could positively influence the heterogeneous formation of NPAHs when RH was less than 60%. Quantum calculation results confirmed the formation pathway of 2N-FLA from the OH/NO3-initiated oxidation of FLA. The results of health risk assessment showed the potential health risks for the residents, especially in the winter campaign. These results indicated that PAHs and NPAHs still deserve attention following with the decrease concentrations of particulate matter.
Collapse
Affiliation(s)
- Yunfeng Li
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xurong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yanqin Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yuanyuan Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yafei Wang
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
31
|
Shi F, Ju J, Zhang X, Zheng R, Xiong F, Liu J. Evaluating the inhalation bioaccessibility of traffic-impacted particulate matter-bound PAHs in a road tunnel by simulated lung fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155046. [PMID: 35390378 DOI: 10.1016/j.scitotenv.2022.155046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the most highly concerned pollutants bound on traffic-impacted particulate matter (TIPM). The inhaled TIPM-bound PAHs risk has attracted much attention, whereas the inhalation bioaccessibility, a method to refine the exposure risk assessment, has not yet been extensively introduced in the exposure risk assessment. Thus, in vitro assays using artificial lung fluids including artificial lysosomal fluid (ALF), Gamble's solution (GS), and modified GS (MGS) were conducted to assess the inhalation bioaccessibility of USEPA 16 PAHs in TIPM collected from an expressway tunnel, the influence factors of PAHs' inhalation bioaccessibility were explored, and the exposure risk of TIPM-bound PAHs was estimated based on inhalation bioaccessibility. Results showed that the average PAHs concentrations were 30.5 ± 12.9 ng/m3, 36.2 ± 5.19 ng/m3, and 39.9 ± 4.31 ng/m3 in the tunnel inlet PM2.5, TSP, and tunnel center PM2.5, respectively. Phe, Flt, Pyr, Nap, Chr, BbF, and BkF were found as the dominant species in TSP and PM2.5, indicating a dominant contribution of PAHs from diesel-fueled vehicular emissions. The bioaccessible fractions measured for different PAH species in tunnel PM2.5 and TSP were highly variable, which can be attributed to PAHs' physicochemical properties, size, and carbonaceous materials of TIPM. The addition of Tenax into SLF as an "adsorption sink" can greatly increase PAHs' inhalation bioaccessibility, but DPPC has a limited effect on tunnel PM-bound PAHs' bioaccessibility. The incremental lifetime carcinogenic risk (ILCR) of tunnel inlet PM2.5-bound PAHs evaluated according to their total mass concentration exceeded the threshold (1.0 × 10-6) set by the USEPA, whereas the ILCRs estimated based on the inhalation bioaccessibility were far below the threshold. Hence, it is vitally important to take into consideration of pollutant's bioaccessibility to refine health risk assessment.
Collapse
Affiliation(s)
- Fengqiong Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingxue Ju
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Public Health, Hebei University, Baoding 071002, China
| | - Xian Zhang
- College of Public Health, Hebei University, Baoding 071002, China
| | - Ronggang Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Xiong
- JiangXi Gannan Highway Survey and Design Institute, Ganzhou 341000, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
32
|
Wang P, Qi A, Huang Q, Wang Y, Tuo X, Zhao T, Duan S, Gao H, Zhang W, Xu P, Zhang T, Zhang X, Wang W, Yang L. Spatial and temporal variation, source identification, and toxicity evaluation of brominated/chlorinated/nitrated/oxygenated-PAHs at a heavily industrialized area in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153542. [PMID: 35101518 DOI: 10.1016/j.scitotenv.2022.153542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Some derivatives of polycyclic aromatic hydrocarbons (PAHs) such as chlorinated and brominated PAHs (Cl/BrPAHs), nitrated and oxygenated PAHs (N/OPAHs) have attracted significant concern due to their high toxicity. Knowledge of the profiles, formation mechanisms, and potential sources of these toxic chemicals near the industrial complexes is essential for their pollution control and management. In this study, we monitored Cl/BrPAHs, N/OPAHs, and PAHs at 24 sampling sites near a heavily industrialized area (steel, chemical, and rubber plants) using passive air samplers during the heating period (7 December 2019 to 15 April 2020) and the non-heating period (2 June 2020 to 4 October 2020). The total average concentrations of 16 BrPAHs, 8 ClPAHs, 17 NPAHs, 6 OPAHs, and 18 PAHs during both sampling periods were 471 pg/m3, 229 pg/m3, 312 pg/m3, 2120 pg/m3, and 63.1 ng/m3, respectively. Except for NPAHs, BrPAHs, ClPAHs, OPAHs, and PAHs all showed higher levels during the heating period. The spatial distributions of Cl/BrPAHs, N/OPAHs, and PAHs exhibited a similar pattern, with the highest concentrations detected in the vicinity of the steel industry. Congener profiles of PAH derivatives indicated that mono-substituted low molecular weight compounds (2-3 rings) were dominant. The major formation mechanisms of halogenated PAHs were discussed by correlation analysis and relative Gibbs free energies, and direct bromination of parent PAHs could be the major formation mechanism of BrPAHs in this study. Diagnostic ratios showed that NPAHs were mainly derived from primary emissions, but the contribution of secondary formation was increased at heavily contaminated sites. The positive matrix factorization model extracted four Cl/BrPAHs, three N/OPAHs, and four PAHs factors, and the result showed that PAHs and their derivatives mainly derived from industrial and combustion sources, photochemical reactions, vehicle emissions, and crude oil volatilization, etc.
Collapse
Affiliation(s)
- Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Anan Qi
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Yiming Wang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiong Tuo
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Shengfei Duan
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Hongliang Gao
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Wan Zhang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Peng Xu
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Tianqi Zhang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
33
|
Qiao M, Qi W, Liu H, Qu J. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources. ENVIRONMENT INTERNATIONAL 2022; 163:107232. [PMID: 35427839 DOI: 10.1016/j.envint.2022.107232] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) have been ubiquitously detected in atmospheric, soil, sediment, and water environments, some of which show higher concentrations and toxicities than the parent polycyclic aromatic hydrocarbons (PAHs). The occurrence, source, fate, risks and methods of analysis for OPAHs in the atmosphere, soil, and the whole environment (comprising the atmosphere, soil, water, and biota) have been reviewed, but reviews focusing on OPAHs in the water environment have been lacking. Due to the higher polarity and water solubility of OPAHs than PAHs, OPAHs exist preferentially in water environments. In this review, the occurrence, ecological toxicity and source of OPAHs in surface water environments are investigated in detail. Most OPAHs show higher concentrations than the corresponding PAHs in surface water environments. OPAHs pose non-ignorable ecological risks to surface water ecosystems. Wastewater treatment plant effluent, atmospheric deposition, surface runoff, photochemical and microbiological transformation, and sediment release are possible sources for OPAHs in surface water. This review will fill important knowledge gaps on the migration and transformation of typical OPAHs in multiple media and their environmental impact on surface water environments. Further studies on OPAHs in the surface environment, including their ecotoxicity with the co-existing PAHs and mass flows of OPAHs from atmospheric deposition, surface runoff, transformation from PAHs, and sediment release, are also encouraged.
Collapse
Affiliation(s)
- Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Wang Y, Qi A, Wang P, Tuo X, Huang Q, Zhang Y, Xu P, Zhang T, Zhang X, Zhao T, Wang W, Yang L. Temporal profiles, source analysis, and health risk assessments of parent polycyclic aromatic hydrocarbons (PPAHs) and their derivatives (NPAHs, OPAHs, ClPAHs, and BrPAHs) in PM 2.5 and PM 1.0 from the eastern coastal region of China: Urban coastal area versus coastal background area. CHEMOSPHERE 2022; 292:133341. [PMID: 34929283 DOI: 10.1016/j.chemosphere.2021.133341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The eastern coastal region of China is the area with the highest emission of PAHs in China. Therefore, understanding the sources and health risk of parent polycyclic aromatic hydrocarbons (PPAHs) and their derivatives in eastern coastal cities of China is the main basis for air pollution control. In this study, we measured the concentrations of 18 parent PAHs, 17 nitrated PAHs, 7 oxygenated PAHs, 8 chlorinated PAHs, and 13 brominated PAHs in PM1.0 and PM2.5 samples collected at an urban coastal city site and a coastal background site in 2019. We analyzed the temporal distribution, molecular composition, and sources and performed health risk assessments for both winter and summer samples. The average concentration of the PPAHs and their derivatives (all 63 compounds combined) in the PM1.0 samples accounted for 75.57% of the PAHs concentration in PM2.5 samples. The average concentration of PM2.5- and PM1.0- bound PPAHs in winter was 114.70 times higher than in summer, and their derivatives was 27.51 times. Both the combined concentrations of the 18 PPAHs and the combined concentrations of the 45 derivatives were higher in the coastal city compared to the background site during the winter (1.90 and 1.48 times, respectively), but they were comparable during the summer. The positive matrix factorization analysis indicated that the compounds mainly originated from coal/biomass combustion, industrial sources, vehicle emissions, and secondary formation. In addition, the concentration-weighted trajectories model revealed that the PAHs were mainly emitted locally in Shandong Province and surrounding areas, such as Hebei Province, Henan Province, and Bohai Sea. The compounds 1-NPYR, 2+9-BrPHE, 9,10-Cl2PHE, and 1-ClPYR dominantly contributed to the derivatives of TEQ during the winter due to their high concentrations or the high TEFs of these compounds.
Collapse
Affiliation(s)
- Yiming Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Anan Qi
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiong Tuo
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yan Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Peng Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Tianqi Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao, 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
35
|
Li X, Feng J, Li Y, Zhao P, Pan X, Huang Z. Size-fractionated nonpolar organic compounds of traffic aerosol emissions in a highway tunnel. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118501. [PMID: 34785283 DOI: 10.1016/j.envpol.2021.118501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Size-fractionated aerosol samples (PM0.25, PM0.25-1, PM1-2.5, and PM2.5-10) were collected in a highway tunnel in Shanghai, China. The concentrations of nonpolar organic compounds (NPOCs), i.e., n-alkanes, polycyclic aromatic hydrocarbons (PAHs) and hopanes in the aerosol samples at the tunnel inlet and outlet, emission factors (EFs) of individual NPOCs in PM10, and EFs of size-fractionated individual NPOCs were analyzed comprehensively. NPOC concentrations in this tunnel were lower than the earlier tunnel results, which might be attributed to the tunnel configuration effect on the pollution dilution along the tunnel, in addition to the improvement of engine technology and fuel quality during past decades. n-Alkane homologs for C14-C35 exhibited a smooth hump-like distribution pattern with the most abundance at C22 and 1-2 carbon number shifts of Cmax in comparison to those in other tunnels due to different fleet and fuel compositions. The most abundant PAHs from diesel (e.g., Nap, Phe, Flu and Pyr) and gasoline (e.g., BghiF, BbkF, BeP, DBA and BghiP) vehicle emissions presented concentration increases of 1.8-5.8 times from the tunnel inlet to outlet. The individual n-alkane and PAH distributions exhibited obvious size dependence, while it was expected that the relative abundances and homolog distributions of hopanes were very similar for different size stages. Several diagnostic ratios, e.g., fossil/plant n-alkanes and LMW/HMW PAHs, were evidently size dependent, indicating different sources of size-fractionated n-alkanes and PAHs.
Collapse
Affiliation(s)
- Xinling Li
- Key Laboratory for Power Machinery and Engineering of M.O.E, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Eco-Chongming (IEC), Shanghai, 202162, China.
| | - Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yingjie Li
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Pengcheng Zhao
- Key Laboratory for Power Machinery and Engineering of M.O.E, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoxuan Pan
- Key Laboratory for Power Machinery and Engineering of M.O.E, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen Huang
- Key Laboratory for Power Machinery and Engineering of M.O.E, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
36
|
Dos Santos PRS, Moreira LFF, Moraes EP, de Farias MF, Domingos YS. Traffic-related polycyclic aromatic hydrocarbons (PAHs) occurrence in a tropical environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4577-4587. [PMID: 33903994 DOI: 10.1007/s10653-021-00947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Traffic-related PAH emissions over the urban area of Natal, Brazil, have shown a significant increase because of automobile usage and have become a major concern due to their potential effects on human health and the environment. Therefore, this research measured PAH contamination on major roads and river compartments in a tropical catchment (Pitimbu River) over an expanding urban area. Road PAH concentrations spanned from 692 to 2098 ng g-1 and suggest the predominance of heavy (diesel-powered) and light-duty (gasoline plus alcohol-powered) vehicle emission sources. High concentrations of naphthalene (515 ng g-1) and acenaphthylene (145 ng g-1) were found in river sediments, indicating oil-related spillage and low-temperature combustion sources. Diagnostic ratios indicated the prevalence of biomass, coal and petroleum combustion processes and refined oil products. The ecological risk assessment indicated an ecological contamination risk ranging between low and moderate because of naphthalene and acenaphthylene concentrations higher than ERL threshold values. Toxicity risks caused by PAHs were assessed by using the BaP-equivalent carcinogenic power (BaPE). Results indicated that both RDS and riverbed sediment samples are at low toxicity risk.
Collapse
Affiliation(s)
| | - Lucio Flavio Ferreira Moreira
- Sanitation Engineering Post-graduation Program, Department of Civil Engineering, Federal University of Rio Grande do Norte, UFRN, Natal, RN, 59078-970, Brazil.
| | - Edgar Perin Moraes
- Chemometrics and Biological Chemistry Group (CBC), Institute of Chemistry, UFRN, Natal, RN, 59078-970, Brazil
| | | | | |
Collapse
|
37
|
Yao H, Niu G, Zhang Q, Jiang Q, Lu W, Liu H, Ni T. Observations on the particle pollution of the cities in China in the Coronavirus 2019 closure: Characteristics and lessons for environmental management. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1014-1024. [PMID: 33565701 PMCID: PMC8014718 DOI: 10.1002/ieam.4399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 05/06/2023]
Abstract
Particulate matter in the air seriously affects human health and has been a hot topic of discussion. Because of the coronavirus disease 2019 (COVID-19) lockdown in cities in China, sources of particulate matter, including gasoline-burning vehicles, dust-producing building sites, and coal-fired factories, almost all ceased at the end of January 2020. It was not until early April that outdoor activities recovered. Ten cities were selected as observation sites during the period from 19 December 2019 to 30 April 2020, covering the periods of preclosure, closure, and gradual resumption. A total of 11 720 groups of data were obtained, and 4 indicators were used to assess the characteristics of the particle pollution in the period. The quality of the atmospheric environment was visibly influenced by human activities in those 5 mo. The concentrations of particulate matter with particle sizes below 10 µm (PM10) decreased slightly in February and March and then began to increase slowly after April with the gradual recovery of production. The concentrations of particulate matter with particle sizes below 2.5 µm (PM2.5) decreased greatly in most regions, especially in northern cities, during closure and maintained a relatively stable level in the following 3 mo. The trends of PM10 and PM2.5 indicated that the reduced human activities during the COVID-19 lockdown decreased the concentrations of particulate matter in the air, and the difference between the PM10 and PM2.5 trends might be due to the different sources of the 2 particles and their different aerodynamics. However, during closure, the particulate matter pollution in the cities remained at a high level, which indicated that some ignored factors other than outdoor production activities, automobile exhaust, and construction site dust might have contributed greatly to the PM10 and PM2.5 concentrations, and the tracing of the particulate matter should be given further attention in environmental management. Integr Environ Assess Manag 2021;17:1014-1024. © 2021 SETAC.
Collapse
Affiliation(s)
- Hong Yao
- School of GeographyNantong UniversityNantongChina
- Jiangsu Yangtze River Economic Belt Research InstituteNantongChina
| | - Guangyuan Niu
- School of GeographyNantong UniversityNantongChina
- Jiangsu Yangtze River Economic Belt Research InstituteNantongChina
| | - Qingxiang Zhang
- School of GeographyNantong UniversityNantongChina
- Jiangsu Yangtze River Economic Belt Research InstituteNantongChina
| | - Qinyu Jiang
- School of GeographyNantong UniversityNantongChina
- Jiangsu Yangtze River Economic Belt Research InstituteNantongChina
| | - Wei Lu
- School of GeographyNantong UniversityNantongChina
- Jiangsu Yangtze River Economic Belt Research InstituteNantongChina
| | - Huan Liu
- School of GeographyNantong UniversityNantongChina
- Jiangsu Yangtze River Economic Belt Research InstituteNantongChina
| | - Tianhua Ni
- School of Geographic and Oceanographic ScienceNanjing UniversityNanjingChina
| |
Collapse
|
38
|
Wu Y, Zhang N, Wang Y, Ren Y, Yuan Z, Li N. Concentrations of polycyclic aromatic hydrocarbons in street dust from bus stops in Qingyang city: Estimates of lifetime cancer risk and sources of exposure for daily commuters in Northwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115222. [PMID: 32822923 DOI: 10.1016/j.envpol.2020.115222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Lifetime cancer risk and exposure of daily commuters to polycyclic aromatic hydrocarbons (PAHs) in cities of Northwest China were determined from a study of street dust samples obtained from bus stops in Qingyang city. The sum of 16 priority PAHs (Σ16 PAHs) concentrations in the dust samples ranged from 0.8 to 18.3 mg kg-1 (mean 3.0 mg kg-1) and the distribution of individual, carcinogenic, combustion specific, low (2-3 rings) and high molecular weight (4-6 rings) PAHs was determined. The benzo[a]pyrene toxic equivalents of Σ16 PAHs ranged from 0.01 to 12.2 mg kg-1 (mean 0.8 mg kg-1). Incremental lifetime cancer risk from exposure to PAHs in dust at bus stops in Qingyang city was estimated at 1.9 × 10-6 for adults and 3.5 × 10-6 for children (confidence limit ≥ 95%). Emission source analysis of PAHs in bus stop dust showed that they were mainly derived from residential coal, oil and biomass combustion, e.g. from boilers, traffic vehicles, and Kang heaters. Higher concentrations of PAHs were obtained at bus stops near transport hubs, commercial districts, and administrative institutions.
Collapse
Affiliation(s)
- Yongfu Wu
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang, PR China.
| | - Ning Zhang
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang, PR China
| | - Yingqiang Wang
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang, PR China
| | - Yibin Ren
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang, PR China
| | - Zhongyu Yuan
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang, PR China
| | - Ni Li
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang, PR China
| |
Collapse
|