1
|
da Silva Antunes JC, Sobral P, Branco V, Martins M. Uncovering layer by layer the risk of nanoplastics to the environment and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:63-121. [PMID: 39670667 DOI: 10.1080/10937404.2024.2424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nanoplastics (NPs), defined as plastic particles with dimensions less than 100 nm, have emerged as a persistent environmental contaminant with potential risk to both environment and human health. Nanoplastics might translocate across biological barriers and accumulate in vital organs, leading to inflammatory responses, oxidative stress, and genotoxicity, already reported in several organisms. Disruptions to cellular functions, hormonal balance, and immune responses were also linked to NPs exposure in in vitro assays. Further, NPs have been found to adsorb other pollutants, such as persistent organic pollutants (POPs), and leach additives potentially amplifying their advere impacts, increasing the threat to organisms greater than NPs alone. However, NPs toxic effects remain largely unexplored, requiring further research to elucidate potential risks to human health, especially their accumulation, degradation, migration, interactions with the biological systems and long-term consequences of chronic exposure to these compounds. This review provides an overview of the current state-of-art regarding NPs interactions with environmental pollutants and with biological mechanisms and toxicity within cells.
Collapse
Affiliation(s)
- Joana Cepeda da Silva Antunes
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Paula Sobral
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Martins
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| |
Collapse
|
2
|
Wu H, Cai R, Zhou C, Yang Y, Tian X, Zhao Z, Bai Q, Qiu X, Song Q, Zhang L, Bao H, Liu T. Nano-sized polystyrene plastics toxicity: Necroptosis pathway caused by autophagy blockade and lysosomal dysfunction. NANOIMPACT 2024:100537. [PMID: 39740740 DOI: 10.1016/j.impact.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/22/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025]
Abstract
The persistent detection of nano-sized plastic particles in humans, animals, and animal-derived products underscores the potential impact of these particles on living organisms. Consequently, the toxicology of such particles has emerged as a pivotal research interests in recent years. In this study, NP was synthesized successfully with an average particle size of 100 nm using a emulsion polymerization method as model particles. Following co-incubation of IEC-6 cells with NP for 24-168 h, a notable inhibition of cell viability and proliferation was observed. The significant activation of autophagy and a concomitant blockage of autophagic flux in IEC-6 cells after 24-72 h of co-incubation with NP were unveiled by transmission electron microscopy, western blotting, and double-fluorescent autophagy analysis. A significant increase in the number of lysosomes and an increase in the expression of hydrolase CTSB were detected, indicating dysregulation of lysosomal function. The subsequent transcriptomic and metabolomics analyses, coupled with the observation of activated lysosomes and the RIPK1-RIPK3-MLKL/PYGL pathway, led us to posit that the blockade of autophagy and lysosomal dysfunction, culminating in lysosomal membrane permeabilization (LMP) induced necroptosis, constitutes one of the mechanisms contributing to the cytotoxicity of NP. SYNOPSIS: The cytotoxicity and its related mechanisms of nano-plastic is still unclear. This study found that nano-plastics may induce necroptosis in cells, and autophagy blockade and lysosomal dysfunction are prodromal manifestations.
Collapse
Affiliation(s)
- Haiyan Wu
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China; NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing 100022, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Runqiu Cai
- Tibet Agricultural and Animal Husbandry College, Linzhi, China
| | - Chaoyu Zhou
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China
| | - Yifei Yang
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China
| | - Xinyuan Tian
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China
| | - Zhongling Zhao
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China
| | - Qianyu Bai
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China
| | - Xuejiao Qiu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | | | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Huihui Bao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China.
| |
Collapse
|
3
|
Zhang J, Hu G, Guo H, Yang W, Li X, Ni Y, He M, Ding P, Yu Y. Amino modifications exacerbate the developmental abnormalities of polystyrene microplastics via mitochondria-mediated apoptosis pathway in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178031. [PMID: 39689476 DOI: 10.1016/j.scitotenv.2024.178031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment and have been identified as a potential threat to ecosystems. However, the mechanisms of toxicity of modified MPs remain unknown. This study investigated the developmental toxicity of amino-modified polystyrene microplastics (PS-NH2) with environmentally relevant concentrations ranging from 0.1 to 100 μg/L in the early developmental stages of zebrafish. Adding amino functional groups resulted in significant alterations in the surface morphology and zeta potential of traditional polystyrene microplastics (PS-MPs). Zebrafish larvae exposed to PS-NH2 exhibited increased developmental toxicity compared to PS-MPs, as indicated by reduced body length, heart rate, and spontaneous movement. The expression of cat1, sod1, gstr1, nrf2a, nrf2b, and HO-1, as well as alterations in ROS, SOD, CAT, and MDA levels, all demonstrated oxidative damage caused by PS-NH2 exposure. Mitochondrial dysfunction was also induced, as evidenced by changes in the expression of cox4i1, ndufs1, and uqcrc1, as well as changes in the levels of ATP, cytochrome c, NAD, and NADH. Furthermore, PS-NH2 exposure disrupted apoptosis regulation, increasing apoptotic cells and caspase activity, along with changes in caspase-3 and bcl-2 expression. Molecular docking showed that PS-NH2 interacts with bcl-2 with high binding energy. This study contributes to understanding the toxic effects and mechanisms of charge-modified MPs in zebrafish.
Collapse
Affiliation(s)
- Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongzhi Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wenhui Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yuyang Ni
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Miao He
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
4
|
Li X, Li Y, Liu B, Sui G, Liu S, Song G. A digestive system microphysiological platform for assessment of internal-exposure risks and metabolic disease mechanisms induced by multi-size nano-plastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136865. [PMID: 39700947 DOI: 10.1016/j.jhazmat.2024.136865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/13/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Nano-plastics (NPs) are emerging hazardous environmental contaminants that pose health risks with size-dependent toxic effects and are potential risk factors for hepatocellular carcinoma (HCC) and lipid metabolism disorders including non-alcoholic fatty liver disease (NAFLD). However, their underlying molecular mechanisms remain unclear. To shed more light on the causes of these risks, we developed a digestive system microphysiological platform (DS-MPP) for simulating dynamic internal-exposure of multi-size NPs in the gastrointestinal tract and liver. Multi-omics analysis based on DS-MPP revealed hepatic cells are more sensitive to 72 μg/day NPs than gastrointestinal mucosa cells. Specifically, 50 nm NPs disrupt phospholipid metabolism, promote diacylglycerol (DG) accumulation, convert more DG to phosphatidic acid (PA) than triacylglycerol (TG), thus facilitating endocytic vesicles production. Meanwhile, it can active tumorigenesis related pathway mTOR, inducing HCC marked by CAB39. Moreover, 500 nm NPs promote NAFLD by inducing insulin resistance pathways and decreasing PLD1 expression. Our results demonstrate the mechanism of disease and metabolic disorders induced by NPs vary depending on particle size. DS-MPP is a reliable platform for evaluating risk of dynamic NPs exposure and elucidating mechanisms of related metabolic diseases. This platform provides a promising method for health risk assessment caused by environmental pollutants.
Collapse
Affiliation(s)
- Xinran Li
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China; Life Science Innovation Research Laboratory, Shanghai Yichuan High School, 101 Huayin Road, Shanghai 200065, China
| | - Yueyi Li
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Bo Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
5
|
Lu YY, Hua W, Sun Y, Lu L, Ren H, Huang Q. Proteomics reveals that nanoplastics with different sizes induce hepatocyte apoptosis in mice through distinct mechanisms involving mitophagy dysregulation and cell cycle arrest. Toxicol Res (Camb) 2024; 13:tfae188. [PMID: 39539253 PMCID: PMC11557221 DOI: 10.1093/toxres/tfae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoplastics (NPs) can penetrate the intestinal barrier of organisms and accumulate in the liver, thereby inducing hepatocyte apoptosis. However, the underlying mechanisms remain incompletely elucidated. This study examined the effects of PS-NPs exposure on hepatocyte apoptosis and revealed the role of cell cycle arrest and mitophagy. The C57BL/6 mice were administered a diet containing 100 nm and 500 nm PS-NPs at a concentration of 0.1 g/kg for 180 days, respectively. TUNEL staining confirmed that 100 nm PS-NPs induced more pronounced apoptosis compared to 500 nm PS-NPs in mouse liver. Mechanistically, proteomic analysis revealed that Pdcd2l, associated with the S phase of cell cycle and apoptosis, exhibited the highest fold changes among all detected proteins in 100 nm and 500 nm PS-NPs exposure groups. Notably, the expression of Tbc1d17, Bcl2l13, and Pgam5 involved in mitophagosome formation in mouse liver was upregulated by 100 nm PS-NPs but not by 500 nm PS-NPs; moreover, mitophagosomes were observed in HepG2 cells exposed to 100 nm PS-NPs. Additionally, 100 nm PS-NPs internalized by HepG2 cells could penetrate lysosomes. The protein levels of Igf2r and Rab7a were altered, and p62 mRNA expression was increased in mouse liver, suggesting 100 nm PS-NPs, but not 500 nm PS-NPs, impaired lysosomal function and subsequently inhibited mitophagy degradation. Collectively, 500 nm PS-NPs induced Pdcd2l-mediated cell cycle arrest, thereby exacerbating hepatocyte apoptosis; while 100 nm PS-NPs not only triggered similar levels of cell cycle arrest as 500 nm PS-NPs, but also disrupted mitophagy, which was also associated with hepatocyte apoptosis.
Collapse
Affiliation(s)
- Yan-Yang Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Weizhen Hua
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yiqiong Sun
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Lu Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Hongyun Ren
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
6
|
Kim EB, Akhtar MS, Kong I, Ameen S. Tailoring porous NiMoO 4 nanotube via MoO 3 nanorod precursor for environmental monitoring: Electrochemical detection of micro-sized polyvinylchloride. CHEMOSPHERE 2024; 369:143796. [PMID: 39580083 DOI: 10.1016/j.chemosphere.2024.143796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Globally, the hidden contaminants like microplastics (MPs) combined with other harmful substances have agglomerated in rivers and oceans that pose a threat to human health. Thus, evaluating the toxicity of MPs separately and in combination with other pollutants must be done quickly and precisely. This work reports the synthesis of porous NiMoO4 nanotubes (NTs) from the transformation of MoO3 nanorods (NRs) via two steps hydrothermal methods for the effective detection of polyvinyl chloride (PVC) MPs. Transformation of MoO3 NRs to porous NiMoO4 NTs was comprehensively deduced by evaluating the crystalline, structural, compositional and morphological properties. The hydrophobic nature of MoO3 NRs and porous NiMoO4 NTs was proven experimentally and also by DFT calculations. The electrochemical detection of PVC MPs by NiMoO4 NTs was investigated by the CV and EIS measurements. Porous NiMoO4 NTs based electrode expressed the good detection towards PVC MPs with a reasonable sensitivity of ∼1.43 × 10-4 μA/ppm.cm2, a low LOD of ∼18 ppm and R2 = ∼0.9781. EIS results revealed that porous NiMoO4 NTs electrode enabled to deliver sensing response at very low concentration of PVC MPs. Due to their easy interaction with hydrophobic PVC MPs, the hydrophobic NiMoO4 NTs controlled the sensing nature of the material and improved the electrochemical detection at the MP-NiMiO4 NTs interface.
Collapse
Affiliation(s)
- Eun-Bi Kim
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, 56212, Republic of Korea
| | - M Shaheer Akhtar
- New & Renewable Energy Material Development Center (NewREC), Jeonbuk National University, Jeonbuk, Republic of Korea; Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia.
| | - Ing Kong
- Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Sadia Ameen
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, 56212, Republic of Korea.
| |
Collapse
|
7
|
Huo C, Zhu Y, Fang X, Cui J, Ye H, Zhao H, Ye L, Zhou L. Polystyrene Microplastics Induce Injury to the Vascular Endothelial Through NLRP3-Mediated Pyroptosis. ENVIRONMENTAL TOXICOLOGY 2024; 39:5086-5098. [PMID: 39087870 DOI: 10.1002/tox.24387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/20/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
The health risks associated with microplastics have attracted widespread attention. Polystyrene microplastics (PS-MPs) can induce damage to cardiac tissue, while pyroptosis-mediated injury to the vascular endothelial plays a vital role in the pathogenesis of cardiovascular diseases. The study intended to explore the role and mechanism of NLR family pyrin domain containing 3 (NLRP3) mediated pyroptosis in PS-MPs causing the injury of vascular endothelial cells. In vivo, Wistar rats were exposed to 0.5, 5, and 50 mg/kg/d 0.5 μm PS-MPs. In vitro, the human vascular endothelial cells (HUVECs) were used for mechanistic studies. siRNA was used for silencing the NILRP3 gene. H&E staining and flow cytometry were performed to examine the vascular injury and cell membrane damage. The oxidative stress was detected by flow cytometry, immunofluorescence, and corresponding kits. ELISA were used to measure the levels of inflammatory factors. Real-time PCR and western blot were used to measure the expression of pyroptosis signaling pathway. In rats, PS-MPs could cause vascular damage, oxidative stress, and inflammatory response, and activated the pyroptosis signaling pathway. HUVECs exposure to PS-MPs, the vitality decreased in a dose-dependent manner, ROS and MDA were significantly increased while SOD was decreased. PS-MPs induced the onset of pyroptosis signaling pathway in HUVECs. Cell membrane damage and the levels of IL-Iβ and IL-18 in HUVECs significantly increased, those are symbols for the development of pyroptosis. Inhibition of NLRP3-mediated pyroptosis effectively protected HUVECs from PS-MPs-induced damage. Pyroptosis played a vital role in controlling the vascular endothelial injury caused by PS-MPs.
Collapse
Affiliation(s)
- Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaoqi Fang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Hui Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
8
|
Polo G, Lionetto F, Giordano ME, Lionetto MG. Interaction of Micro- and Nanoplastics with Enzymes: The Case of Carbonic Anhydrase. Int J Mol Sci 2024; 25:9716. [PMID: 39273668 PMCID: PMC11396312 DOI: 10.3390/ijms25179716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) have emerged as significant environmental pollutants with potential detrimental effects on ecosystems and human health. Several studies indicate their interaction with enzymes; this topic represents a multifaceted research field encompassing several areas of interest from the toxicological and ecotoxicological impact of MPs and NPs on humans and wildlife to the biodegradation of plastics by microbial enzymes. This review aims to provide a critical analysis of the state-of-the-art knowledge of the interaction of MPs and NPs on the enzyme carbonic anhydrase (CA), providing recent insights, analyzing the knowledge gaps in the field, and drawing future perspectives of the research and its application. CA is a widespread and crucial enzyme in various organisms; it is critical for various physiological processes in animals, plants, and bacteria. It catalyzes the reversible hydration of CO2, which is essential for respiration, acid-base balance, pH homeostasis, ion transport, calcification, and photosynthesis. Studies demonstrate that MPs and NPs can inhibit CA activity with mechanisms including adsorption to the enzyme surface and subsequent conformational changes. In vitro and in silico studies highlight the role of electrostatic and hydrophobic interactions in these processes. In vivo studies present mixed results, which are influenced by factors like particle type, size, concentration, and organism type. Moreover, the potentiality of the esterase activity of CA for plastic degradation is discussed. The complexity of the interaction between CA and MPs/NPs underscores the need for further research to fully understand the ecological and health impacts of MPs and NPs on CA activity and expression and glimpses of the potentiality and perspectives in this field.
Collapse
Affiliation(s)
- Gregorio Polo
- Department of Mathematics and Physics, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Elena Giordano
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
9
|
Subramanian D, Ponnusamy Manogaran G, Dharmadurai D. A systematic review on the impact of micro-nanoplastics on human health: Potential modulation of epigenetic mechanisms and identification of biomarkers. CHEMOSPHERE 2024; 363:142986. [PMID: 39094707 DOI: 10.1016/j.chemosphere.2024.142986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Epigenetic-mediated modifications, induced by adverse environmental conditions, significantly alter an organism's physiological mechanisms. Even after elimination of the stimulus, these epigenetic modifications can be inherited through mitosis, thereby triggering transgenerational epigenetics. Plastics, with their versatile properties, are indispensable in various aspects of daily life. However, due to mismanagement, plastics have become so ubiquitous in the environment that no ecosystem on Earth is free from micro-nanoplastics (MNPs). This situation has raised profound concerns regarding their potential impact on human health. Recently, both in vivo animal and in vitro human cellular models have shown the potential to identify the harmful effects of MNPs at the genome level. The emerging epigenetic impact of MNP exposure is characterized by short-term alterations in chromatin remodelling and miRNA modulation. However, to understand long-term epigenetic changes and potential transgenerational effects, substantial and more environmentally realistic exposure studies are needed. In the current review, the intricate epigenetic responses, including the NHL-2-EKL-1, NDK-1-KSR1/2, and WRT-3-ASP-2 cascades, wnt-signalling, and TGF- β signalling, established in model organisms such as C. elegans, mice, and human cell lines upon exposure to MNPs, were systematically examined. This comprehensive analysis aimed to predict human pathways by identifying human homologs using databases and algorithms. We are confident that various parallel miRNA pathways, specifically the KSR-ERK-MAPK pathway, FOXO-Insulin cascade, and GPX3-HIF-α in humans, may be influenced by MNP exposure. This influence may lead to disruptions in key metabolic and immune pathways, including glucose balance, apoptosis, cell proliferation, and angiogenesis. Therefore, we believe that these genes and pathways could serve as potential biomarkers for future studies. Additionally, this review emphasizes the origin, dispersion, and distribution of plastics, providing valuable insights into the complex relationship between plastics and human health while elaborating on the epigenetic impacts.
Collapse
Affiliation(s)
- Darshini Subramanian
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, Karnataka, India.
| | | | - Dhanasekaran Dharmadurai
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
10
|
Wang Y, Zhao X, Tang H, Wang Z, Ge X, Hu S, Li X, Guo S, Liu R. The size-dependent effects of nanoplastics in mouse primary hepatocytes from cells to molecules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124239. [PMID: 38810687 DOI: 10.1016/j.envpol.2024.124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) are easily ingested by organisms and their major accumulation organ was determined to be liver. To date, the size-dependent cytotoxicity of NPs on mammalian hepatocytes remains unclear. This study utilized mouse primary hepatocytes and catalase (CAT) as specific receptors to investigate the toxicity of NPs from cells to molecules, focusing on size-dependent effects. Results showed that the larger the particle size of NP at low doses (≤50 mg/L), the most pronounced inhibitory effect on hepatocyte viability. 20 nm NPs significantly inhibit cell viability only at high doses (100 mg/L). Larger NP particles (500 nm and 1000 nm) resulted in a massive release of lactate dehydrogenase (LDH) from the cell (cell membrane damage). Reactive oxygen species (ROS), superoxide dismutase (SOD) and CAT tests suggest that NPs disturbed the cellular antioxidant system. 20 nm NPs show great strength in oxidizing lipids and disrupting mitochondrial function compared to NPs of other particle sizes. The degree of inhibition of CAT activity by different sized NPs was coherent at the cellular and molecular levels, and NP-500 had the most impact. This suggests that the structure and microenvironment of the polypeptide chain in the vicinity of the CAT active site is more susceptible to proximity and alteration by NP-500. In addition, the smaller NPs are capable of inducing relaxation of CAT backbone, disruption of H-bonding and reduction of α-helix content, whereas the larger NPs cause contraction of CAT backbone and increase in α-helix content. All NPs induce CAT fluorescence sensitization and make the chromophore microenvironment hydrophobic. This study provides new insights for NP risk assessment and applications.
Collapse
Affiliation(s)
- Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Houquan Tang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Zaifeng Wang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Xuan Ge
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
11
|
Hu Y, Jiang S, Zhang Q, Zhou W, Liang J, Xu Y, Su W. Protective effect of Cordycepin on blood-testis barrier against pre-puberty polystyrene nanoplastics exposure in male rats. Part Fibre Toxicol 2024; 21:30. [PMID: 39118174 PMCID: PMC11312894 DOI: 10.1186/s12989-024-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Plastic pollution is an emerging environmental issue, with microplastics and nanoplastics raising health concerns due to bioaccumulation. This work explored the impact of polystyrene nanoparticle (PS-NPs) exposure during prepuberty on male reproductive function post maturation in rats. Rats were gavaged with PS-NPs (80 nm) at 0, 3, 6, 12 mg/kg/day from postnatal day 21 to 95. PS-NPs accumulated in the testes and reduced sperm quality, serum reproductive hormones, and testicular coefficients. HE staining showed impaired spermatogenesis. PS-NPs disrupted the blood-testis barrier (BTB) by decreasing junction proteins, inducing inflammation and apoptosis. Transcriptomics identified differentially expressed genes related to metabolism, lysosome, apoptosis, and TLR4 signaling. Molecular docking revealed Cordycepin could compete with polystyrene for binding to TLR4. Cordycepin alleviated oxidative stress and improved barrier function in PS-NPs treated Sertoli cells. In conclusion, prepubertal PS-NPs exposure induces long-term reproductive toxicity in male rats, likely by disrupting spermatogenesis through oxidative stress and BTB damage. Cordycepin could potentially antagonize this effect by targeting TLR4 and warrants further study as a protective agent. This study elucidates the mechanisms underlying reproductive toxicity of PS-NPs and explores therapeutic strategies.
Collapse
Affiliation(s)
- Ying Hu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
- National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Units of Medical Laboratory, The First Hospital of China Medical University, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Shuyi Jiang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Wenjie Zhou
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Jinhong Liang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China.
| | - Wenhui Su
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China.
| |
Collapse
|
12
|
Chokejaroenrat C, Hammawiboon N, Poompoung T, Weaoseng P, Laobuthee A, Techauay K, Angkaew M, Worachananant P, Sakulthaew C. Impacts of microplastic decomposition using heat-activated persulfate on antibiotic adsorption and environmental toxicity. MARINE POLLUTION BULLETIN 2024; 205:116576. [PMID: 38875969 DOI: 10.1016/j.marpolbul.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
The objective of this study was to determine microplastic-antibiotic interaction by examining how heat-activated persulfate decomposed polyamide adsorbed antibiotics and explored the environmental consequences of treated water. Sulfate radicals roughened the microplastic surfaces, significantly enhancing the adsorption capacity of polyamide. The kinetic and isotherm studies provided confirmation that electrostatic interactions were the primary mechanisms, with a minor contribution from H-bonding, highlighting that antibiotic adsorption was prone to occur, especially on the aged surface. Thermodynamic data indicated that the process was spontaneous and exothermic. The results showed significant negative effects of treated water on seed germination, copepod survival, and cell lines at only a higher concentration, due to a decrease in pH and the potential presence of polymer degradates. Our findings revealed the significant impact of decomposed polyamide on the antibiotic adsorption and offered insight into the potential harm that microplastic-treated water might cause to aquatic and marine ecosystems.
Collapse
Affiliation(s)
- C Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand.
| | - N Hammawiboon
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - T Poompoung
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - P Weaoseng
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand.
| | - A Laobuthee
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.
| | - K Techauay
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand.
| | - M Angkaew
- Center of Research and Academic Services, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - P Worachananant
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand; Center of Research and Academic Services, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - C Sakulthaew
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
13
|
Rajendran D, Kamalakannan M, Doss GP, Chandrasekaran N. Surface functionalization, particle size and pharmaceutical co-contaminant dependent impact of nanoplastics on marine crustacean - Artemia salina. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1130-1146. [PMID: 38655700 DOI: 10.1039/d4em00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Despite a significant amount of research on micronanoplastics (MNPs), there is still a gap in our understanding of their function as transporters of other environmental pollutants (known as the Trojan horse effect) and the combined effects of ingestion, bioaccumulation, and toxicity to organisms. This study examined the individual effects of polystyrene nanoplastics (PSNPs) with various surface functionalizations (plain (PS), carboxylated (PS-COOH), and aminated (PS-NH2)), particle sizes (100 nm and 500 nm), and a pharmaceutical co-contaminant (metformin hydrochloride (MH), an anti-diabetic drug) on the marine crustacean - Artemia salina. The study specifically aimed to determine if MH alters the detrimental effects of PSNPs on A. salina. The potential toxicity of these emerging pollutants was assessed by examining mortality, hatching rate, morphological changes, and biochemical changes. Smaller nanoparticles had a more significant impact than larger ones, and PS-NH2 was more harmful than PS and PS-COOH. Exposure to the nanoparticle complex with MH resulted in a decrease in hatching rate, an increase in mortality, developmental abnormalities, an increase in reactive oxygen species, catalase, and lipid peroxidase, and a decrease in total protein and superoxide dismutase, indicating a synergistic effect. There were no significant differences between the complex and the individual nanoparticles. However, accumulating these particles in organisms could contaminate the food chain. These results highlight the potential environmental risks associated with the simultaneous exposure of aquatic species to plastics, particularly smaller PS, aminated PS, and pharmaceutical complex PS.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | | | - George Priya Doss
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | |
Collapse
|
14
|
Martín-Pérez J, Villacorta A, Banaei G, Morataya-Reyes M, Tavakolpournegari A, Marcos R, Hernández A, García-Rodriguez A. Hazard assessment of nanoplastics is driven by their surface-functionalization. Effects in human-derived primary endothelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173236. [PMID: 38761522 DOI: 10.1016/j.scitotenv.2024.173236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/14/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
During plastic waste degradation into micro/nanoplastics (MNPLs) their physicochemical characteristics including surface properties (charge, functionalization, biocorona, etc.) can change, potentially affecting their biological effects. This paper focuses on the surface functionalization of MNPLs to determine if it has a direct impact on the toxicokinetic and toxicodynamic interactions in human umbilical vein endothelial cells (HUVECs), at different exposure times. Pristine polystyrene nanoplastics (PS-NPLs), as well as their carboxylated (PS-C-NPLs) and aminated (PS-A-NPLs) forms, all around 50 nm, were used in a wide battery of toxicological assays. These assays encompassed evaluations on cell viability, cell internalization, induction of intracellular reactive oxygen species (iROS), and genotoxicity. The experiments were conducted at a concentration of 100 μg/mL, chosen to ensure a high internalization rate across all treatments while maintaining a sub-toxic concentration. Our results show that all PS-NPLs are internalized by HUVECs, but the internalization dynamic depends on the particle's functionalization. PS-NPLs and PS-C-NPLs internalization modify the morphology of the cell increasing its inner complexity/granularity. Regarding cell toxicity, only PS-A-NPLs reduced cell viability. Intracellular ROS was induced by the three different PS-NPLs but at different time points. Genotoxic damage was induced by the three PS-NPLs at short exposures (2 h), but not for PS-C-NPLs at 24 h. Overall, this study suggests that the toxicological effects of PSNPLs on HUVEC cells are surface-dependent, highlighting the relevance of using human-derived primary cells as a target.
Collapse
Affiliation(s)
- Joan Martín-Pérez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Michelle Morataya-Reyes
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| | - Alba García-Rodriguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
15
|
Saraceni PR, Miccoli A, Bada A, Taddei AR, Mazzonna M, Fausto AM, Scapigliati G, Picchietti S. Polystyrene nanoplastics as an ecotoxicological hazard: cellular and transcriptomic evidences on marine and freshwater in vitro teleost models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173159. [PMID: 38761939 DOI: 10.1016/j.scitotenv.2024.173159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The contamination of marine and freshwater environments by nanoplastics is considered a global threat for aquatic biota. Taking into account the most recent concentration range estimates reported globally and recognizing a knowledge gap in polystyrene nanoplastics (PS-NPs) ecotoxicology, the present work investigated the harmful effects of 20 nm and 80 nm PS-NPs, at increasing biological complexity, on the rainbow trout Oncorhynchus mykiss RTG-2 and gilthead seabream Sparus aurata SAF-1 cell lines. Twenty nm PS-NPs exerted a greater cytotoxicity than 80 nm ones and SAF-1 were approximately 4-fold more vulnerable to PS-NPs than RTG-2. The engagement of PS-NPs with plasma membranes was accompanied by discernible uptake patterns and morphological alterations along with a nuclear translocation already within a 30-min exposure. Cells were structurally damaged only by the 20 nm PS-NPs in a time-dependent manner as indicated by distinctive features of the execution phase of the apoptotic cell death mechanism such as cell shrinkage, plasma membrane blebbing, translocation of phosphatidylserine to the outer leaflet of the cell membrane and DNA fragmentation. At last, functional analyses unveiled marked transcriptional impairment at both sublethal and lethal doses of 20 nm PS-NPs, with the latter impacting the "Steroid biosynthesis", "TGF-beta signaling pathway", "ECM-receptor interaction", "Focal adhesion", "Regulation of actin cytoskeleton" and "Protein processing in endoplasmic reticulum" pathways. Overall, a distinct ecotoxicological hazard of PS-NPs at environmentally relevant concentrations was thoroughly characterized on two piscine cell lines. The effects were demonstrated to depend on size, exposure time and model, emphasizing the need for a comparative evaluation of endpoints between freshwater and marine ecosystems.
Collapse
Affiliation(s)
- P R Saraceni
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Department of Sustainability, 00123 Rome, Italy
| | - A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125 Ancona, Italy
| | - A Bada
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - A R Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Largo dell'Università Snc, 01100 Viterbo, Italy
| | - M Mazzonna
- National Research Council, Institute for Biological Systems (ISB), 00015 Monterotondo, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
16
|
Wen Y, Deng S, Wang B, Zhang F, Luo T, Kuang H, Kuang X, Yuan Y, Huang J, Zhang D. Exposure to polystyrene nanoplastics induces hepatotoxicity involving NRF2-NLRP3 signaling pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116439. [PMID: 38728945 DOI: 10.1016/j.ecoenv.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Nanoplastic contamination has been of intense concern by virtue of the potential threat to human and ecosystem health. Animal experiments have indicated that exposure to nanoplastics (NPs) can deposit in the liver and contribute to hepatic injury. To explore the mechanisms of hepatotoxicity induced by polystyrene-NPs (PS-NPs), mice and AML-12 hepatocytes were exposed to different dosages of 20 nm PS-NPs in this study. The results illustrated that in vitro and in vivo exposure to PS-NPs triggered excessive production of reactive oxygen species and repressed nuclear factor erythroid-derived 2-like 2 (NRF2) antioxidant pathway and its downstream antioxidase expression, thus leading to hepatic oxidative stress. Moreover, PS-NPs elevated the levels of NLRP3, IL-1β and caspase-1 expression, along with an activation of NF-κB, suggesting that PS-NPs induced hepatocellular inflammatory injury. Nevertheless, the activaton of NRF2 signaling by tert-butylhydroquinone mitigated PS-NPs-caused oxidative stress and inflammation, and inbihited NLRP3 and caspase-1 expression. Conversely, the rescuing effect of NRF2 signal activation was dramatically supressed by treatment with NRF2 inhibitor brusatol. In summary, our results demonstrated that NRF2-NLRP3 pathway is involved in PS-NPs-aroused hepatotoxicity, and the activation of NRF2 signaling can protect against PS-NPs-evoked liver injury. These results provide novel insights into the hepatotoxicity elicited by NPs exposure.
Collapse
Affiliation(s)
- Yiqian Wen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shiyi Deng
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Binhui Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fan Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
| | - Haibin Kuang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xiaodong Kuang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yangyang Yuan
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, China
| | - Jian Huang
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, China
| | - Dalei Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang 330006, China.
| |
Collapse
|
17
|
Winiarska E, Jutel M, Zemelka-Wiacek M. The potential impact of nano- and microplastics on human health: Understanding human health risks. ENVIRONMENTAL RESEARCH 2024; 251:118535. [PMID: 38460665 DOI: 10.1016/j.envres.2024.118535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Plastics are used all over the world. Unfortunately, due to limited biodegradation, plastics cause a significant level of environmental pollution. The smallest recognized to date are termed nanoplastics (1 nm [nm] up to 1 μm [μm]) and microplastics (1 μm-5 mm). These nano- and microplastics can enter the human body through the respiratory system via inhalation, the digestive tract via consumption of contaminated food and water, or penetration through the skin via cosmetics and clothes contact. Bioaccumulation of plastics in the human body can potentially lead to a range of health issues, including respiratory disorders like lung cancer, asthma and hypersensitivity pneumonitis, neurological symptoms such as fatigue and dizziness, inflammatory bowel disease and even disturbances in gut microbiota. Most studies to date have confirmed that nano- and microplastics can induce apoptosis in cells and have genotoxic and cytotoxic effects. Understanding the cellular and molecular mechanisms of plastics' actions may help extrapolate the risks to humans. The article provides a comprehensive review of articles in databases regarding the impact of nano- and microplastics on human health. The review included retrospective studies and case reports of people exposed to nanoplastics and microplastics. This research highlights the need for further research to fully understand the extent of the impact of plastics on human health.
Collapse
Affiliation(s)
- Ewa Winiarska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland; ALL-MED Medical Research Institute, Wroclaw, Poland
| | | |
Collapse
|
18
|
Khoshnamvand M, You D, Xie Y, Feng Y, Sultan M, Wei X, Li J, Fu A, Pei DS. Presence of humic acid in the environment holds promise as a potential mitigating factor for the joint toxicity of polystyrene nanoplastics and herbicide atrazine to Chlorella vulgaris: 96-H acute toxicity. CHEMOSPHERE 2024; 357:142061. [PMID: 38642775 DOI: 10.1016/j.chemosphere.2024.142061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Increasing amounts of amino-functionalized polystyrene nanoplastics (PS-NH2) are entering aquatic ecosystems, raising concerns. Hence, this study investigated 96-h acute toxicity of PS-NH2 and its combination with the pesticide atrazine (ATZ) in the absence/presence of humic acid (HA) on the microalgae Chlorella vulgaris (C. vulgaris). Results showed that both PS-NH2 and PS-NH2+ATZ reduced algal growth, photosynthetic pigments, protein content, and antioxidant capacity, while increasing enzymatic activities. Gene expression related to oxidative stress was altered in C. vulgaris exposed to these treatments. Morphological and intracellular changes were also observed. The combined toxicity of PS-NH2+ATZ demonstrated a synergistic effect, but the addition of environmentally relevant concentration of HA significantly alleviated its toxicity to C. vulgaris, indicating an antagonistic effect due to the emergence of an eco-corona, and entrapment and sedimentation of PS-NH2+ATZ particles by HA. This study firstly highlights the role of HA in mitigating the toxicity of PS-NH2 when combined with other harmful compounds, enhancing our understanding of HA's presence in the environment.
Collapse
Affiliation(s)
- Mehdi Khoshnamvand
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Dongmei You
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Yafang Xie
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Yixiao Feng
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xingyi Wei
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Jingli Li
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China.
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Ramović Hamzagić A, Gazdić Janković M, Cvetković D, Nikolić D, Nikolić S, Milivojević Dimitrijević N, Kastratović N, Živanović M, Miletić Kovačević M, Ljujić B. Machine Learning Model for Prediction of Development of Cancer Stem Cell Subpopulation in Tumurs Subjected to Polystyrene Nanoparticles. TOXICS 2024; 12:354. [PMID: 38787133 PMCID: PMC11125870 DOI: 10.3390/toxics12050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Cancer stem cells (CSCs) play a key role in tumor progression, as they are often responsible for drug resistance and metastasis. Environmental pollution with polystyrene has a negative impact on human health. We investigated the effect of polystyrene nanoparticles (PSNPs) on cancer cell stemness using flow cytometric analysis of CD24, CD44, ABCG2, ALDH1 and their combinations. This study uses simultaneous in vitro cell lines and an in silico machine learning (ML) model to predict the progression of cancer stem cell (CSC) subpopulations in colon (HCT-116) and breast (MDA-MB-231) cancer cells. Our findings indicate a significant increase in cancer stemness induced by PSNPs. Exposure to polystyrene nanoparticles stimulated the development of less differentiated subpopulations of cells within the tumor, a marker of increased tumor aggressiveness. The experimental results were further used to train an ML model that accurately predicts the development of CSC markers. Machine learning, especially genetic algorithms, may be useful in predicting the development of cancer stem cells over time.
Collapse
Affiliation(s)
- Amra Ramović Hamzagić
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Gazdić Janković
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Danijela Cvetković
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dalibor Nikolić
- Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sandra Nikolić
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Nikolina Kastratović
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Živanović
- Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Miletić Kovačević
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Biljana Ljujić
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
20
|
Chen J, Qi R, Cheng Y, Wang L, Cao X. Effects of micro/nanoplastics on oxidative damage and serum biochemical parameters in rats and mice: a meta-analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:197. [PMID: 38696118 DOI: 10.1007/s10653-024-01972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 06/17/2024]
Abstract
Micro/nanoplastics (MNPs) are emerging as environmental pollutants with potential threats to human health. The accumulation of MNPs in the body can cause oxidative stress and increase the risk of cardiovascular disease (CVD). With the aim to systematically evaluate the extent of MNPs-induced oxidative damage and serum biochemical parameters in rats and mice, a total of 36 eligible articles were included in this meta-analysis study. The results reported that MNPs can significantly increase the levels of oxidants such as reactive oxygen species (ROS) and malondialdehyde (MDA) (P < 0.05), and resulted in notable increase in serum biochemical parameters including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (P < 0.05). Conversely, MNPs significantly reduced levels of antioxidants such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT) (P < 0.05). Subgroup analysis revealed that smaller MNPs with oral administration and prolonged treatment, were associated with more pronounced oxidative stress and enhanced serum biochemical parameters alteration. In addition, after affected by MNPs, the levels of ALT and AST in liver group (SMD = 2.26, 95% CI = [1.59, 2.94] and SMD = 3.10, 95% CI = [1.25, 4.94]) were higher than those in other organs. These comprehensive results provide a scientific foundation for devising strategies to prevent MNPs-induced damage, contributing to solution of this environmental and health challenge.
Collapse
Affiliation(s)
- Junliang Chen
- Department of Biological Sciences, School of Life Science, Liaoning University, Chongshan Road 66, Shenyang, 110036, People's Republic of China
| | - Ruiquan Qi
- Department of Biological Sciences, School of Life Science, Liaoning University, Chongshan Road 66, Shenyang, 110036, People's Republic of China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Chongshan Road 66, Shenyang, 110036, People's Republic of China
| | - Le Wang
- Department of Biological Sciences, School of Life Science, Liaoning University, Chongshan Road 66, Shenyang, 110036, People's Republic of China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Chongshan Road 66, Shenyang, 110036, People's Republic of China.
| |
Collapse
|
21
|
González-Caballero MC, de Alba González M, Torres-Ruiz M, Iglesias-Hernández P, Zapata V, Terrón MC, Sachse M, Morales M, Martin-Folgar R, Liste I, Cañas-Portilla AI. Internalization and toxicity of polystyrene nanoplastics on inmortalized human neural stem cells. CHEMOSPHERE 2024; 355:141815. [PMID: 38556182 DOI: 10.1016/j.chemosphere.2024.141815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Global plastic production has increased exponentially in recent decades, and a significant part of it persists in the environment, where it degrades into microplastics and nanoplastics (MPs and NPs). These can enter in humans by ingestion, inhalation, and dermal routes, and there is scientific evidence that they are able to reach the systemic circulation and penetrate and accumulate in various tissues and organs. Neurodevelopmental toxicity of NPs is one of the most worrying effects, as they can cross the blood-brain barrier. In the following study, we analyzed, by transmission electron microscopy, the in vitro uptake of 30-nm polystyrene nanoplastics (PS-NPs) into human neural stem cells (NSCs), their accumulation and subcellular localization within the cell. Furthermore, we studied the effects of different concentrations of PS-NPs on cell death, proliferation, and cell differentiation using immunocytochemistry and quantitative real time PCR for specific markers. This study demonstrated that PS-NPs were able to enter the cell, probably by endocytosis, accumulate, and aggregated in human NSCs, without being detected in the nucleus, causing cell death by apoptosis and decreased cell proliferation. This study provides new insights into the interaction and effects of PS-NPs in human NSC and supports the scientific evidence for the involvement of nanoplastic in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ma Carmen González-Caballero
- Área de Toxicología Ambiental, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2, 28220, Majadahonda, Madrid, Spain.
| | - Mercedes de Alba González
- Área de Toxicología Ambiental, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2, 28220, Majadahonda, Madrid, Spain
| | - Mónica Torres-Ruiz
- Área de Toxicología Ambiental, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2, 28220, Majadahonda, Madrid, Spain
| | - Patricia Iglesias-Hernández
- Área de Toxicología Ambiental, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2, 28220, Majadahonda, Madrid, Spain; Unidad Funcional de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, Madrid, Spain
| | - Verónica Zapata
- Unidad Funcional de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, Madrid, Spain
| | - María C Terrón
- Unidad de Microscopía Electrónica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, Madrid, Spain
| | - Martin Sachse
- Unidad de Microscopía Electrónica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, Madrid, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Avda, Esparta s/n. Ctra. de Las Rozas al Escorial Km 5, 28232, Las Rozas, Madrid, Spain
| | - Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Avda, Esparta s/n. Ctra. de Las Rozas al Escorial Km 5, 28232, Las Rozas, Madrid, Spain
| | - Isabel Liste
- Unidad Funcional de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, Madrid, Spain
| | - Ana I Cañas-Portilla
- Área de Toxicología Ambiental, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2, 28220, Majadahonda, Madrid, Spain
| |
Collapse
|
22
|
Płuciennik K, Sicińska P, Misztal W, Bukowska B. Important Factors Affecting Induction of Cell Death, Oxidative Stress and DNA Damage by Nano- and Microplastic Particles In Vitro. Cells 2024; 13:768. [PMID: 38727304 PMCID: PMC11083305 DOI: 10.3390/cells13090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
We have described the influence of selected factors that increase the toxicity of nanoplastics (NPs) and microplastics (MPs) with regard to cell viability, various types of cell death, reactive oxygen species (ROS) induction, and genotoxicity. These factors include plastic particle size (NPs/MPs), zeta potential, exposure time, concentration, functionalization, and the influence of environmental factors and cell type. Studies have unequivocally shown that smaller plastic particles are more cytotoxic, penetrate cells more easily, increase ROS formation, and induce oxidative damage to proteins, lipids, and DNA. The toxic effects also increase with concentration and incubation time. NPs with positive zeta potential are also more toxic than those with a negative zeta potential because the cells are negatively charged, inducing stronger interactions. The deleterious effects of NPs and MPs are increased by functionalization with anionic or carboxyl groups, due to greater interaction with cell membrane components. Cationic NPs/MPs are particularly toxic due to their greater cellular uptake and/or their effects on cells and lysosomal membranes. The effects of polystyrene (PS) vary from one cell type to another, and normal cells are more sensitive to NPs than cancerous ones. The toxicity of NPs/MPs can be enhanced by environmental factors, including UV radiation, as they cause the particles to shrink and change their shape, which is a particularly important consideration when working with environmentally-changed NPs/MPs. In summary, the cytotoxicity, oxidative properties, and genotoxicity of plastic particles depends on their concentration, duration of action, and cell type. Also, NPs/MPs with a smaller diameter and positive zeta potential, and those exposed to UV and functionalized with amino groups, demonstrate higher toxicity than larger, non-functionalized and environmentally-unchanged particles with a negative zeta potential.
Collapse
Affiliation(s)
| | | | | | - Bożena Bukowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska 141/143, 90-236 Lodz, Poland; (K.P.); (P.S.); (W.M.)
| |
Collapse
|
23
|
Wang Y, Xu K, Gao X, Wei Z, Han Q, Wang S, Du W, Chen M. Polystyrene nanoplastics with different functional groups and charges have different impacts on type 2 diabetes. Part Fibre Toxicol 2024; 21:21. [PMID: 38658944 PMCID: PMC11044502 DOI: 10.1186/s12989-024-00582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Increasing attention is being paid to the environmental and health impacts of nanoplastics (NPs) pollution. Exposure to nanoplastics (NPs) with different charges and functional groups may have different adverse effects after ingestion by organisms, yet the potential ramifications on mammalian blood glucose levels, and the risk of diabetes remain unexplored. RESULTS Mice were exposed to PS-NPs/COOH/NH2 at a dose of 5 mg/kg/day for nine weeks, either alone or in a T2DM model. The findings demonstrated that exposure to PS-NPs modified by different functional groups caused a notable rise in fasting blood glucose (FBG) levels, glucose intolerance, and insulin resistance in a mouse model of T2DM. Exposure to PS-NPs-NH2 alone can also lead the above effects to a certain degree. PS-NPs exposure could induce glycogen accumulation and hepatocellular edema, as well as injury to the pancreas. Comparing the effect of different functional groups or charges on T2DM, the PS-NPs-NH2 group exhibited the most significant FBG elevation, glycogen accumulation, and insulin resistance. The phosphorylation of AKT and FoxO1 was found to be inhibited by PS-NPs exposure. Treatment with SC79, the selective AKT activator was shown to effectively rescue this process and attenuate T2DM like lesions. CONCLUSIONS Exposure to PS-NPs with different functional groups (charges) induced T2DM-like lesions. Amino-modified PS-NPs cause more serious T2DM-like lesions than pristine PS-NPs or carboxyl functionalized PS-NPs. The underlying mechanisms involved the inhibition of P-AKT/P-FoxO1. This study highlights the potential risk of NPs pollution on T2DM, and provides a new perspective for evaluating the impact of plastics aging.
Collapse
Affiliation(s)
- Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Shuxin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Wanting Du
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China.
| |
Collapse
|
24
|
Gao X, Xu K, Du W, Wang S, Jiang M, Wang Y, Han Q, Chen M. Comparing the effects and mechanisms of exposure to polystyrene nanoplastics with different functional groups on the male reproductive system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171299. [PMID: 38423318 DOI: 10.1016/j.scitotenv.2024.171299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
After aging in the environment, some nanoplastics will carry different charges and functional groups, thereby altering their toxicological effects. To evaluate the potential impact of aging of nanoplastics on the mammalian reproductive system, we exposed C57BL/6 male mice to a dose of 5 mg/kg/d polystyrene nanoparticles (PS-NPs) with different functional groups (unmodified, carboxyl functionalized and amino functionalized) for 45 days for this study. The results suggest that PS-NPs with different functional groups triggered oxidative stress, a decreased in the testis index, disruption of the outer wall of the seminiferous tubules, reduction in the number of spermatogonia cells and sperm counts, and an increased in sperm malformations. We performed GO and KEGG enrichment analysis on the differentially expressed proteins, and found they were mainly enriched in protein transport, RNA splicing and mTOR signaling. We confirmed that the PI3K-AKT-mTOR pathway is over activated, which may lead to reduction of spermatogonia stem cells by over differentiation. Strikingly, PS-NPs with functional group modifications are more toxic than those of unmodified polystyrene, and that PS-NPs with positively charged amino modifications are the most toxic. This study provides a new understanding for correctly evaluating the toxicological effects of plastic aging, and of the mechanism responsible for the reproductive toxicity caused by nanoplastics.
Collapse
Affiliation(s)
- Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Wanting Du
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Shuxin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mengling Jiang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
25
|
Fan J, Liu L, Lu Y, Chen Q, Fan S, Yang Y, Long Y, Liu X. Acute exposure to polystyrene nanoparticles promotes liver injury by inducing mitochondrial ROS-dependent necroptosis and augmenting macrophage-hepatocyte crosstalk. Part Fibre Toxicol 2024; 21:20. [PMID: 38610056 PMCID: PMC11010371 DOI: 10.1186/s12989-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Li Liu
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yupeng Long
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China.
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
26
|
Ma L, Wu Z, Lu Z, Yan L, Dong X, Dai Z, Sun R, Hong P, Zhou C, Li C. Differences in toxicity induced by the various polymer types of nanoplastics on HepG2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170664. [PMID: 38311080 DOI: 10.1016/j.scitotenv.2024.170664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
The problem of microplastics (MPs) contamination in food has gradually come to the fore. MPs can be transmitted through the food chain and accumulate within various organisms, ultimately posing a threat to human health. The concentration of nanoplastics (NPs) exposed to humans may be higher than that of MPs. For the first time, we studied the differences in toxicity, and potential toxic effects of different polymer types of NPs, namely, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polystyrene (PS) on HepG2 cells. In this study, PET-NPs, PVC-NPs, and PS-NPs, which had similar particle size, surface charge, and shape, were prepared using nanoprecipitation and emulsion polymerization. The results of the CCK-8 assay showed that the PET-NPs and PVC-NPs induced a decrease in cell viability in a concentration-dependent manner, and their lowest concentrations causing significant cytotoxicity were 100 and 150 μg/mL, respectively. Moreover, the major cytotoxic effects of PET-NPs and PVC-NPs at high concentrations may be to induce an increase in intracellular ROS, which in turn induces cellular damage and other toxic effects. Notably, our study suggested that PET-NPs and PVC-NPs may induce apoptosis in HepG2 cells through the mitochondrial apoptotic pathway. However, no relevant cytotoxicity, oxidative damage, and apoptotic toxic effects were detected in HepG2 cells with exposure to PS-NPs. Furthermore, the analysis of transcriptomics data suggested that PET-NPs and PVC-NPs could significantly inhibit the expression of DNA repair-related genes in the p53 signaling pathway. Compared to PS-NPs, the expression levels of lipid metabolism-related genes were down-regulated to a greater extent by PET-NPs and PVC-NPs. In conclusion, PET-NPs and PVC-NPs were able to induce higher cytotoxic effects than PS-NPs, in which the density and chemical structure of NPs of different polymer types may be the key factors causing the differences in toxicity.
Collapse
Affiliation(s)
- Lihua Ma
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zijie Wu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zifan Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Linhong Yan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Xiaoling Dong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
27
|
Guo M, Li Y, Niu S, Zhang R, Shen X, Ma Y, Wu L, Wu T, Zhang T, Tang M, Xue Y. Oxidative stress-activated Nrf2 remitted polystyrene nanoplastic-induced mitochondrial damage and inflammatory response in HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104385. [PMID: 38340909 DOI: 10.1016/j.etap.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Generated from plastics, microplastics (MPs) and nanoplastics (NPs) are difficult to completely degrade in the natural environment, which can accumulate in almost all lives. Liver is one of the main target organs. In this study, HepG2 and L02 cells were exposed to 0-50 μg/mL polystyrene (PS)-NPs to investigate the mechanism of mitochondrial damage and inflammation. The results showed mitochondria damage and inflammatory caused by NPs, and it can be inhibited by N-acetyl-L-cysteine (NAC). In addition, reactive oxygen species (ROS) activated nuclear factor erythroid-derived factor 2-related factor (Nrf2) pathway. Nrf2 siRNA exacerbated the injury, suggesting Nrf2 plays a protective role. Moreover, p62 siRNA increased ROS and mitochondrial damage by inhibiting Nrf2, but didn't affect the inflammation. In conclusion, Nrf2 was activated by ROS and played a protective role in PS-NPs-mediated hepatotoxicity. This study supplemented the data of liver injury caused by PS-NPs, providing a basis for the safe disposal of plastics.
Collapse
Affiliation(s)
- Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yunjing Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China; Jinan Center For Disease Control and Prevention, People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Rui Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xin Shen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yu Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Liqing Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
28
|
Soto-Bielicka P, Peropadre A, Sanz-Alférez S, Hazen MJ, Fernández Freire P. Influence of polystyrene nanoparticles on the toxicity of tetrabromobisphenol A in human intestinal cell lines. Toxicology 2024; 503:153769. [PMID: 38437912 DOI: 10.1016/j.tox.2024.153769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Research and regulatory efforts in toxicology are increasingly focused on the development of suitable non-animal methodologies for human health risk assessment. In this work we used human intestinal Caco-2 and HT29/MTX cell lines to address the potential risks of mixtures of the emerging contaminants tetrabromobisphenol A (TBBPA) and commercial polystyrene nanoparticles (PSNPs). We employed different in vitro settings to evaluate basal cytotoxicity through three complementary endpoints (metabolic activity, plasmatic, and lysosomal membrane integrity) and the induction of the oxidative stress and DNA damage responses with specific endpoints. Although no clear pattern was observed, our findings highlight the predominant impact of TBBPA in the combined exposures under subcytotoxic conditions and a differential behavior of the Caco-2 and HT29/MTX co-culture system. Distinctive outcomes detected with the mixture treatments include reactive oxygen species (ROS) increases, disturbances of mitochondrial inner membrane potential, generation of alkali-sensitive sites in DNA, as well as significant changes in the expression levels of relevant DNA and oxidative stress related genes.
Collapse
Affiliation(s)
- Patricia Soto-Bielicka
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Ana Peropadre
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Soledad Sanz-Alférez
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| | - María José Hazen
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
29
|
Peng M, Félix RC, Canário AVM, Power DM. The physiological effect of polystyrene nanoplastic particles on fish and human fibroblasts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169979. [PMID: 38215851 DOI: 10.1016/j.scitotenv.2024.169979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Numerous studies have identified the detrimental effects for the biosphere of large plastic debris, the effect of microplastics (MPs) and nanoplastics (NPs) is less clear. The skin is the first point of contact with NPs, and skin fibroblasts have a vital role in maintaining skin structure and function. Here, a comparative approach is taken using three fibroblast cell lines from the zebrafish (SJD.1), human male newborn (BJ-5ta) and female adult (HDF/TERT164) and their response to polystyrene NP (PS-NPs) exposure is characterized. Cells were exposed to environmentally relevant PS-NP sizes (50, 500 and 1000 nm) and concentrations (0.001 to 10 μg/ml) and their uptake (1000 nm), and effect on cell viability, proliferation, migration, reactive oxygen species (ROS) production, apoptosis, alkaline phosphatase (ALP) and acid phosphatase (AP) determined. All fibroblasts took up PS-NPs, and a relationship between PS-NP particle size and concentration and the inhibition of proliferation and cell migration was identified. The inhibitory effect of PS-NPs on proliferation was more pronounced for human skin fibroblasts. The presence of PS-NPs negatively affected fibroblast migration in a time-, size- and concentration-dependent manner with larger PS-NPs at higher concentrations causing a more significant inhibition of cell migration, with human fibroblasts being the most affected. No major changes were detected in ROS production or apoptosis in NP challenged fibroblasts. While the ALP activity was increased in all fibroblast cell lines, only fish fibroblasts showed a significant increase in AP activity. The heterogeneous response of fibroblasts induced by PS-NPs was clearly revealed by the segregation of HDF, BJ.5ta and SJD.1 fibroblasts in principal component analysis. Our results demonstrate that PS-NP exposure adversely affected cellular processes in a cell-type and dose-specific manner in distinct fibroblast cell lines, emphasizing the need for further exploration of NP interactions with different cell types to better understand potential implications for human health.
Collapse
Affiliation(s)
- Maoxiao Peng
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rute C Félix
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Adelino V M Canário
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
30
|
Zhang Y, Jia Z, Gao X, Zhao J, Zhang H. Polystyrene nanoparticles induced mammalian intestine damage caused by blockage of BNIP3/NIX-mediated mitophagy and gut microbiota alteration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168064. [PMID: 37884137 DOI: 10.1016/j.scitotenv.2023.168064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Nanoplastics possess the capacity for cellular internalization, and consequentially disrupt mitochondrial functionality, precipitating aberrations in energy metabolism. Given this, the potential accumulation of nanoplastics in alimentary sources presents a considerable hazard to the mammalian gastrointestinal system. While mitophagy serves as a cytoprotective mechanism that sustains redox homeostasis through the targeted removal of compromised mitochondria, the regulatory implications of mitophagy in nanoplastic-induced toxicity remain an underexplored domain. In the present investigation, polystyrene (PS) nanoparticles, with a diameter of 80 nm employed as a representative model to assess their toxicological impact and propensity to instigate mitophagy in intestinal cells both in vitro and in vivo. Data indicated that PS nanoparticles elicited BNIP3/NIX-mediated mitophagy within the intestinal milieu. Strikingly, the impediment of this degradation process at elevated concentrations was correlated with exacerbated pathological ramifications. In vitro assays corroborated that high-dosage cellular uptake of PS nanoparticles obstructed the mitophagy pathway. Furthermore, treatment with PS nanoparticles engendered alterations in gut microbiota composition and manifested a proclivity to modulate nutritional metabolism. Collectively, these findings elucidate that oral exposure to PS nanoparticles culminates in the inhibition of mitophagy and induces perturbations in the intestinal microbiota. This contributes valuable insights into the toxicological repercussions of nanoplastics on mammalian gastrointestinal health.
Collapse
Affiliation(s)
- Yilun Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xianlei Gao
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Juan Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
31
|
Martin-Folgar R, González-Caballero MC, Torres-Ruiz M, Cañas-Portilla AI, de Alba González M, Liste I, Morales M. Molecular effects of polystyrene nanoplastics on human neural stem cells. PLoS One 2024; 19:e0295816. [PMID: 38170698 PMCID: PMC10763972 DOI: 10.1371/journal.pone.0295816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Nanoplastics (NPs) have been found in many ecological environments (aquatic, terrestrial, air). Currently, there is great concern about the exposition and impact on animal health, including humans, because of the effects of ingestion and accumulation of these nanomaterials (NMs) in aquatic organisms and their incorporation into the food chain. NPs´ mechanisms of action on humans are currently unknown. In this study, we evaluated the altered molecular mechanisms on human neural stem cell line (hNS1) after 4 days of exposure to 30 nm polystyrene (PS) NPs (0.5, 2.5 and 10 μg/mL). Our results showed that NPs can induce oxidative stress, cellular stress, DNA damage, alterations in inflammatory response, and apoptosis, which could lead to tissue damage and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Las Rozas (Madrid), Spain
| | - Mª Carmen González-Caballero
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mónica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Ana I. Cañas-Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mercedes de Alba González
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Isabel Liste
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Las Rozas (Madrid), Spain
| |
Collapse
|
32
|
He L, Lu Z, Zhang Y, Yan L, Ma L, Dong X, Wu Z, Dai Z, Tan B, Sun R, Sun S, Li C. The effect of polystyrene nanoplastics on arsenic-induced apoptosis in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115814. [PMID: 38100851 DOI: 10.1016/j.ecoenv.2023.115814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Microplastics are detrimental to the environment. However, the combined effects of microplastics and arsenic (As) remain unclear. In this study, we investigated the combined effects of polystyrene (PS) microplastics and As on HepG2 cells. The results showed that PS microplastics 20, 50, 200, and 500 nm in size were taken up by HepG2 cells, causing a decrease in cellular mitochondrial membrane potential. The results of lactate dehydrogenase release and flow cytometry showed that PS microplastics, especially those of 50 nm, enhanced As-induced apoptosis. In addition, transcriptome analysis revealed that TP53, AKT1, CASP3, ACTB, BCL2L1, CASP8, XIAP, MCL1, NFKBIA, and CASP7 were the top 10 hub genes for PS that enhanced the role of As in HepG2 cell apoptosis. Our results suggest that nano-PS enhances As-induced apoptosis. Furthermore, this study is important for a better understanding of the role of microplastics in As-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zifan Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Yuanyuan Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Linhong Yan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Lihua Ma
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Xiaoling Dong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Zijie Wu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Baoyi Tan
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
33
|
Li L, Lv X, He J, Zhang L, Li B, Zhang X, Liu S, Zhang Y. Chronic exposure to polystyrene nanoplastics induces intestinal mechanical and immune barrier dysfunction in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115749. [PMID: 38039854 DOI: 10.1016/j.ecoenv.2023.115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Micro(nano)plastics are prevalent in the environment, and prolonged exposure to them represents a threat to human health. The goal of this study is to assess the health risk of long-term exposure to nanoplastics (NPs) at environmental concentrations on the intestinal mechanical and immune barrier in mice. In this study, mice were provided drinking water containing polystyrene NPs (PS-NPs; 0.1, 1, and 10 mg·L-1) for 32 consecutive weeks. The levels of endocytosis proteins caveolin and clathrin and of tight junctional proteins claudin-1, occludin, and ZO-1, and morphological changes, proportion of lymphocytes B in MLNs and lymphocytes T in IELs and LPLs were determined by immunohistochemistry, hematoxylin-eosin, and flow cytometry assays in the intestinal tissues of mice at 28 weeks. The activities or concentrations of ROS, SOD, MDA, and GSH-Px and inflammatory factors (IL-1β, IL-6, and TNF-α) in the intestinal tissues of mice were measured by ELISA at 12, 16, 20, 24, and 32 weeks. Compared with the control group, oral ingested PS-NPs entered the intestinal tissues of mice and upregulated expression levels of the clathrin and caveolin. The intestinal tissue structure of mice in the PS-NPs (1 and 10 mg·L-1) exposure groups showed significant abnormalities, such as villus erosion, decreased of crypts numbers and large infiltration of inflammatory cells. Exposure to 0.1 mg·L-1 PS-NPs decreased occludin protein levels, but not claudin-1 and ZO-1 levels. The levels of these three tight junction proteins decreased significantly in the 1 and 10 mg·L-1 PS-NPs exposed groups. Exposure to PS-NPs led to a significant time- and dose-dependent increase in ROS and MDA levels, and concurrently decreased GSH-Px and SOD contents. Exposure to PS-NPs increased the proportion of B cells in MLNs, and decreased the proportion of CD8+ T cells in IELs and LPLs. The levels of pro-inflammatory cytokines IL-6, TNF-α and IL-1β were markedly elevated after PS-NPs exposure. Long-term PS-NPs exposure impaired intestinal mechanical and immune barrier, and indicate a potentially significant threat to human health.
Collapse
Affiliation(s)
- Lan Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Xin Lv
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Jing He
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Lianshuang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Xiaolin Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Sisi Liu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
34
|
Liu X, Fang L, Yan X, Gardea-Torresdey JL, Gao Y, Zhou X, Yan B. Surface functional groups and biofilm formation on microplastics: Environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166585. [PMID: 37643702 DOI: 10.1016/j.scitotenv.2023.166585] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) contamination is becoming a significant environmental issue, as the widespread omnipresence of MPs can cause many adverse consequences for both ecological systems and humans. Contrary to what is commonly thought, the toxicity-inducing MPs are not the original pristine plastics; rather, they are completely transformed through various surface functional groups and aggressive biofilm formation on MPs via aging or weathering processes. Therefore, understanding the impacts of MPs' surface functional groups and biofilm formation on biogeochemical processes, such as environmental fate, transport, and toxicity, is crucial. In this review, we present a comprehensive summary of the distinctive impact that surface functional groups and biofilm formation of MPs have on their significant biogeochemical behavior in various environmental media, as well as their toxicity and biological effects. We place emphasis on the role of surface functional groups and biofilm formation as a means of influencing the biogeochemical processes of MPs. This includes their effects on pollutant fate and element cycling, which in turn impacts the aggregation, transport, and toxicity of MPs. Ultimately, future research studies and tactics are needed to improve our understanding of the biogeochemical processes that are influenced by the surface functional groups and biofilm formation of MPs.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jorge L Gardea-Torresdey
- University of Texas at El Paso, Department of Chemistry and Biochemistry, El Paso, TX 79968, United States
| | - Yan Gao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
35
|
Wang J, Tian H, Shi Y, Yang Y, Yu F, Cao H, Gao L, Liu M. The enhancement in toxic potency of oxidized functionalized polyethylene-microplastics in mice gut and Caco-2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166057. [PMID: 37553056 DOI: 10.1016/j.scitotenv.2023.166057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Microplastics (MPs) are inevitably oxidized in the environment, however, to date, no studies have discussed the biological toxicity of oxidized polyethylene (Ox-PE) MPs. In this study, oxidized low-density polyethylene (Ox-LDPE), a representative Ox-PE, was prepared using a selective oxidation method. The difference in toxicity between LDPE-MPs and Ox-LDPE-MPs were evaluated in C57BL/6 mice and Caco-2 cells. The proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectroscopy analyses revealed that some hydrocarbon-containing groups were transformed into carboxyl and ketone groups during selective oxidation. In vivo experiment results showed that LDPE-MPs and Ox-LDPE-MPs exists in the intestinal (duodenum and colon) of mice, and Ox-LDPE-MPs caused more severe intestinal histological changes, oxidative stress, and inflammatory response. The gut microbiota data showed that the relative abundance of Lactobacillus decreased significantly in the LDPE-MP- and Ox-LDPE-MP-exposed groups (P < 0.05). The predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway suggested that exposure to LDPE-MPs or Ox-LDPE-MPs inhibited glycan biosynthesis and metabolism in the flora (P < 0.05). In vitro experiment results showed that selective oxidation to LDPE promoted its uptake by cells and aggravated adverse effects on cells, including reduced cell viability, damaged cell membrane, oxidative stress, and mitochondrial depolarization. The major mechanism of the increased toxicity of Ox-LDPE-MPs may be its easier accumulation and the ionic effect of oxygen-containing functional groups. Overall, these findings provide insights on the differences in toxicity between LDPE-MPs and Ox-LDPE-MPs. They also provide new perspectives for understanding the biohazards of MPs, which are necessary to accurately assess the potential environmental and health risks of these plastic pollutants.
Collapse
Affiliation(s)
- Ji Wang
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Huanbing Tian
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Ying Yang
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Feifei Yu
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Hanwen Cao
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Lan Gao
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
36
|
Ge Y, Yang S, Zhang T, Wan X, Zhu Y, Yang F, Yin L, Pu Y, Liang G. The hepatotoxicity assessment of micro/nanoplastics: A preliminary study to apply the adverse outcome pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165659. [PMID: 37517720 DOI: 10.1016/j.scitotenv.2023.165659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Plastic pollution has become a significant global problem over the years, leading to the continuous decomposition and accumulation of micro/nanoplastics (MNPLs) in the environment. As a result, human exposure to these MNPLs is inevitable. The liver, in particular, is highly susceptible to potential MNPL toxicity. In this study, we systematically reviewed the current literature on MNPLs-induced hepatotoxicity and collected data on toxic events occurring at different biological levels. Then, to better understand the cause-mechanism causality, we developed an Adverse Outcome Pathway (AOP) framework for MNPLs-induced hepatotoxicity. The AOP framework provided insights into the mechanism of MNPL-induced hepatotoxicity and highlighted potential health risks such as liver dysfunction and inflammation, metabolism disorders and liver fibrosis. Moreover, we discussed the potential application of emerging toxicological models in the hepatotoxicity study. Liver organoids and liver-on-chips, which can simulate the structure and function of the liver in vitro, offer a promising alternative platform for toxicity testing and risk assessment. We proposed combining the AOP framework with these emerging toxicological models to improve our understanding of the hepatotoxic effects of MNPLs. Overall, this study performed a preliminary exploration of novel toxicological methodologies to assess the hepatotoxicity of MNPLs, providing a deeper understanding of environmental toxicology.
Collapse
Affiliation(s)
- Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Yuxin Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China.
| |
Collapse
|
37
|
Peng M, Vercauteren M, Grootaert C, Rajkovic A, Boon N, Janssen C, Asselman J. Cellular and bioenergetic effects of polystyrene microplastic in function of cell type, differentiation status and post-exposure time. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122550. [PMID: 37716692 DOI: 10.1016/j.envpol.2023.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The ubiquity of microplastics (MPs) in food sources and personal care products increasingly raises concerns on human health. However, little is known about the duration of the effects of MPs and whether effects depend on cellular differentiation status. Herein, cellular and bioenergetic effects of MPs in different exposure scenarios on four types of human cell lines derived from lung (A549 and BEAS-2B), colon (Caco-2) and liver (HepG2) were investigated. These cell lines are models for the major exposure routes in the body (inhalation, ingestion and physiological transport through the liver by the portal vein). To this aim, different scenarios were implemented by exposing undifferentiated and differentiated cells to single dosing of 2-μm polystyrene (PS) (102-105 particles/mL) for 48 h and 12 days. The undifferentiated Caco-2 cells with short exposure (48 h) showed the highest uptake rate of PS yet without significant cellular and mitochondrial responses. The biological effects, with the exception of ROS production, were not influenced by differentiation states of A549 and Caco-2 cells although differentiated cells showed much weaker ability to internalize PS. However, PS had significantly long-term impacts on cellular and mitochondrial functions even after the initial exposure period. In particular, Caco-2 cells that were post-exposed for 12 days after single PS dosing suffered higher oxidative stress and exhibited mitochondrial dysfunction than that for short exposure. Correspondingly, we observed that PS particles still remained in cell membrane and even in nuclei with high retention rate by 14-d post exposure during which metabolism and exchange of internalization and release occurred in cells. This indicates PS could induce chronic stress and even harmful effects on human cells after single intake that persists for a long time. This study paves the way for assessing the influence of PS on human health at low particle concentrations and with multiple exposure scenarios.
Collapse
Affiliation(s)
- Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium.
| | - Maaike Vercauteren
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Technology and Ecology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Colin Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| |
Collapse
|
38
|
Yang S, Lee S, Lee Y, Cho JH, Kim SH, Ha ES, Jung YS, Chung HY, Kim MS, Kim HS, Chang SC, Min KJ, Lee J. Cationic nanoplastic causes mitochondrial dysfunction in neural progenitor cells and impairs hippocampal neurogenesis. Free Radic Biol Med 2023; 208:194-210. [PMID: 37553025 DOI: 10.1016/j.freeradbiomed.2023.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Nanoplastics (NPs) exposure to humans can occur through various routes, including the food chain, drinking water, skin contact, and respiration. NPs are plastics with a diameter of less than 100 nm and have the potential to accumulate in tissues, leading to toxic effects. This study aimed to investigate the neurotoxicity of polystyrene NPs on neural progenitor cells (NPCs) and hippocampal neurogenesis in a rodent model. Toxicity screening of polystyrene NPs based on their charge revealed that cationic amine-modified polystyrene (PS-NH3+) exhibited cytotoxicity, while anionic carboxylate-modified polystyrene (PS-COO-) and neutral NPs (PS) did not. NPCs treated with PS-NH3+ showed a significant reduction in growth rate due to G1 cell cycle arrest. PS-NH3+ increased the expression of cell cycle arrest markers p21 and p27, while decreasing cyclin D expression in NPCs. Interestingly, PS-NH3+ accumulated in mitochondria, leading to mitochondrial dysfunction and energy depletion, which caused G1 cell cycle arrest. Prolonged exposure to PS-NH3+ in C17.2 NPCs increased the expression of p16 and senescence-associated secretory phenotype factors, indicating cellular senescence. In vivo studies using C57BL/6 mice demonstrated impaired hippocampal neurogenesis and memory retention after 10 days of PS-NH3+ administration. This study suggests that NPs could deplete neural stem cell pools in the brain by mitochondrial dysfunction, thereby adversely affecting hippocampal neurogenesis and neurocognitive functions.
Collapse
Affiliation(s)
- Seonguk Yang
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seulah Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Yujeong Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea; Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Jung-Hyun Cho
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Sou Hyun Kim
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun-Sol Ha
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 2066, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Jaewon Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
39
|
Xing Y, Li J, Yang J, Li J, Pang W, Martin FL, Xu L. Application of spectrochemical analysis with chemometrics to profile biochemical alterations in nanoplastic-exposed HepG 2 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122309. [PMID: 37543068 DOI: 10.1016/j.envpol.2023.122309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Humans are routinely exposed to nanoplastics (NPs) in various ways, and this exposure presents a significant health risk. Nevertheless, there remain gaps in our knowledge, particularly in the mechanisms of toxicity of NPs with different surface charges at very low environmental concentrations. Herein, a spectrochemical approach was used to profile the cytotoxicity of NPs with different surface charges in HepG2 cells. It was found that all three NPs can cause some biomolecular alterations in cells, affecting cellular lipids, proteins, amino acids, and genetic material. Of these, PS and PS-COOH led to a non-linear dose-response, which may be related to a biphasic dose-response, whereas PS-NH2 led to a linear dose-response with a gradual increase in toxicity with increasing exposure concentration. In addition, the spectroscopic results showed that surface modifications led to cellular biochemical changes and caused adverse biological effects, with PS-NH2 exhibiting higher toxicity compared to PS or PS-COOH along with an inhibition of cell proliferation. Surprisingly PS-COOH, although considered the least toxic NP, appears to cause DNA damage. Overall, the toxic effects of different surface-modified NPs in cells were detected for the first time by applying spectrochemical techniques, and these findings provide important data towards understanding the emerging widespread environmental pollution of NPs and their effects on humans.
Collapse
Affiliation(s)
- Yu Xing
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junyi Li
- National University of Singapore (Suzhou) Research Institute, Suzhou, 215128, China
| | - Weiyi Pang
- School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Francis L Martin
- Biocel Ltd, Hull, HU10 7TS, UK; Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool, FY3 8NR, UK
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
40
|
Antunes J, Sobral P, Martins M, Branco V. Nanoplastics activate a TLR4/p38-mediated pro-inflammatory response in human intestinal and mouse microglia cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104298. [PMID: 37865352 DOI: 10.1016/j.etap.2023.104298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
The crescent presence of nanoplastics in the environment raises concerns regarding their potential impact on health. This study exposed human colon adenocarcinoma cells (HT29) and microglia cells (N9) to nanoplastics (25 nm, 50 nm, and 100 nm Polystyrene) to investigate their inflammatory responses, which are vital for body's defence. Although cytotoxicity remained generally low, HT29 cells exhibited a notable upregulation of p50 and p38 expression, concomitant with elevated TLR4 expression, in contrast with N9 cells that showed a less pronounced upregulation of these proteins. Additionally, nanoplastic exposure increased IL-1ß levels, partially attenuated by pre-exposure to TLR4 or p38 inhibitors. Intriguingly, N9 cells exposed to nanoplastics exhibited substantial increases in iNOS mRNA. This effect was entirely prevented by pre-exposure to TLR4 or p38 inhibitors, while TNF-α mRNA levels remained relatively stable. These findings underscore the potential of nanoplastics to activate inflammatory pathways, with response kinetics varying depending on the cell type.
Collapse
Affiliation(s)
- Joana Antunes
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Network Associated Laboratory, Department of Science and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), University NOVA of Lisbon, Caparica 2829-516, Portugal.
| | - Paula Sobral
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Network Associated Laboratory, Department of Science and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), University NOVA of Lisbon, Caparica 2829-516, Portugal
| | - Marta Martins
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Network Associated Laboratory, Department of Science and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), University NOVA of Lisbon, Caparica 2829-516, Portugal.
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal.
| |
Collapse
|
41
|
Shahzadi C, Di Serafino A, Aruffo E, Mascitelli A, Di Carlo P. A549 as an In Vitro Model to Evaluate the Impact of Microplastics in the Air. BIOLOGY 2023; 12:1243. [PMID: 37759642 PMCID: PMC10525880 DOI: 10.3390/biology12091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Airborne microplastics raise significant concerns due to their potential health impacts. Having a small size, larger surface area, and penetrative ability into the biological system, makes them hazardous to health. This review article compiles various studies investigating the mechanism of action of polystyrene micro- and nanoplastics affecting lung epithelial cells A549. These inhalable microplastics damage the respiratory system, by triggering a proinflammatory environment, genotoxicity, oxidative stress, morphological changes, and cytotoxic accumulation in A549 cells. PS-NP lung toxicity depends on various factors such as size, surface modifications, concentration, charge, and zeta potential. However, cellular uptake and cytotoxicity mechanisms depend on the cell type. For A549 cells, PS-NPs are responsible for energy imbalance by mitochondrial dysfunction, oxidative stress-mediated cytotoxicity, immunomodulation, and apoptosis. Additionally, PS-NPs have the ability to traverse the placental barrier, posing a risk to offspring. Despite the advancements, the precise mechanisms underlying how prolonged exposure to PS-NPs leads to the development and progression of lung diseases have unclear points, necessitating further investigations to unravel the root cause. This review also sheds light on data gaps, inconsistencies in PS-Nos research, and provides recommendations for further research in this field.
Collapse
Affiliation(s)
- Chman Shahzadi
- Center of Advanced Studies and Technology (CAST), University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy; (C.S.); (A.D.S.); (E.A.); (P.D.C.)
- University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy
| | - Alessandra Di Serafino
- Center of Advanced Studies and Technology (CAST), University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy; (C.S.); (A.D.S.); (E.A.); (P.D.C.)
| | - Eleonora Aruffo
- Center of Advanced Studies and Technology (CAST), University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy; (C.S.); (A.D.S.); (E.A.); (P.D.C.)
- Department of Advanced Technologies in Medicine and Dentistry, University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy
| | - Alessandra Mascitelli
- Center of Advanced Studies and Technology (CAST), University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy; (C.S.); (A.D.S.); (E.A.); (P.D.C.)
- Department of Advanced Technologies in Medicine and Dentistry, University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy
| | - Piero Di Carlo
- Center of Advanced Studies and Technology (CAST), University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy; (C.S.); (A.D.S.); (E.A.); (P.D.C.)
- Department of Advanced Technologies in Medicine and Dentistry, University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy
| |
Collapse
|
42
|
Khan MS, Buzdar SA, Hussain R, Alouffi A, Aleem MT, Farhab M, Javid MA, Akhtar RW, Khan I, Almutairi MM. Cobalt Iron Oxide (CoFe 2O 4) Nanoparticles Induced Toxicity in Rabbits. Vet Sci 2023; 10:514. [PMID: 37624302 PMCID: PMC10459303 DOI: 10.3390/vetsci10080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
The market for nanoparticles has grown significantly over the past few decades due to a number of unique qualities, including antibacterial capabilities. It is still unclear how nanoparticle toxicity works. In order to ascertain the toxicity of synthetic cobalt iron oxide (CoFe2O4) nanoparticles (CIONPs) in rabbits, this study was carried out. Sixteen rabbits in total were purchased from the neighborhood market and divided into two groups (A and B), each of which contained eight rabbits. The CIONPs were synthesized by the co-precipitation method. Crystallinity and phase identification were confirmed by X-ray diffraction (XRD). The average size of the nanoparticles (13.2 nm) was calculated by Scherrer formula (Dhkl = 0.9 λ/β cos θ) and confirmed by TEM images. The saturation magnetization, 50.1 emug-1, was measured by vibrating sample magnetometer (VSM). CIONPs were investigated as contrast agents (CA) for magnetic resonance images (MRI). The relaxivity (r = 1/T) of the MRI was also investigated at a field strength of 0.35 T (Tesla), and the ratio r2/r1 for the CIONPs contrast agent was 6.63. The CIONPs were administrated intravenously into the rabbits through the ear vein. Blood was collected at days 5 and 10 post-exposure for hematological and serum biochemistry analyses. The intensities of the signal experienced by CA with CIONPs were 1427 for the liver and 1702 for the spleen. The treated group showed significantly lower hematological parameters, but significantly higher total white blood cell counts and neutrophils. The results of the serum biochemistry analyses showed significantly higher and lower quantities of different serum biochemical parameters in the treated rabbits at day 10 of the trial. At the microscopic level, different histological ailments were observed in the visceral organs of treated rabbits, including the liver, kidneys, spleen, heart, and brain. In conclusion, the results revealed that cobalt iron oxide (CoFe2O4) nanoparticles induced toxicity via alterations in multiple tissues of rabbits.
Collapse
Affiliation(s)
- Muhammad Shahid Khan
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Saeed Ahmad Buzdar
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
| | - Muhammad Tahir Aleem
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Farhab
- Key Laboratory of Animal Genetic Engineering, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Arshad Javid
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Rana Waseem Akhtar
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan;
| | - Iahtasham Khan
- Section of Epidemiology and Public Health, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang Sub-Campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
43
|
Dorsch AD, da Silva Brito WA, Delcea M, Wende K, Bekeschus S. Lipid Corona Formation on Micro- and Nanoplastic Particles Modulates Uptake and Toxicity in A549 Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5082. [PMID: 37512356 PMCID: PMC10386368 DOI: 10.3390/ma16145082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Plastic waste is a global issue leaving no continents unaffected. In the environment, ultraviolet radiation and shear forces in water and land contribute to generating micro- and nanoplastic particles (MNPP), which organisms can easily take up. Plastic particles enter the human food chain, and the accumulation of particles within the human body is expected. Crossing epithelial barriers and cellular uptake of MNPP involves the interaction of plastic particles with lipids. To this end, we generated unilamellar vesicles from POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) and POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine) and incubated them with pristine, carboxylated, or aminated polystyrene spheres (about 1 µm in diameter) to generate lipid coronas around the particles. Lipid coronas enhanced the average particle sizes and partially changed the MNPP zeta potential and polydispersity. In addition, lipid coronas led to significantly enhanced uptake of MNPP particles but not their cytotoxicity, as determined by flow cytometry. Finally, adding proteins to lipid corona nanoparticles further modified MNPP uptake by reducing the uptake kinetics, especially in pristine and carboxylated plastic samples. In conclusion, our study demonstrates for the first time the impact of different types of lipids on differently charged MNPP particles and the biological consequences of such modifications to better understand the potential hazards of plastic exposure.
Collapse
Affiliation(s)
- Anna Daniela Dorsch
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Walison Augusto da Silva Brito
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86057-970, Brazil
| | - Mihaela Delcea
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
44
|
He Y, Shen A, Salam M, Liu M, Wei Y, Yang Y, Li H. Microcystins-Loaded Aged Nanoplastics Provoke a Metabolic Shift in Human Liver Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449315 DOI: 10.1021/acs.est.3c00990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Studies concerning the toxicity of pollutant-loaded nanoplastics (NPs) toward humans are still in their infancy. Here, we evaluated the adsorption of microcystins (MCs) by pristine and aged polystyrene nanoplastics (PSNPs), prepared MCs-loaded aged PSNPS (1, 5, 10, 15, and 19 μg/mg), and systematically mapped the key molecular changes induced by aged and MCs-loaded PSNPs to human hepatoblastoma (HepG2) cells. According to the results, MC-LR adsorption is increased 2.64-fold by aging, and PSNP accumulation is detected in HepG2 cells. The cytotoxicity of the MC-LR-loaded aged PSNPs showed a positive relationship with the MC-LR amount, as the cell viability in the 19 μg/mg loading treatment (aPS-MC19) was 10.84% lower than aged PSNPs; meanwhile, more severe oxidative damage was observed. Primary approaches involved stressing the endoplasmic reticulum and reducing protein synthesis that the aged PSNPs posed for HepG2 cells, while the aggravated cytotoxicity in aPS-MC19 treatment was a combined result of the metabolic energy disorder, oxidative damage, endoplasmic reticulum stress, and downregulation of the MC-LR target protein. Our results confirm that the aged PSNPs could bring more MC-LR into the HepG2 cells, significantly interfere with biological processes, and provide new insight into deciphering the risk of NPs to humans.
Collapse
Affiliation(s)
- Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Ai Shen
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing 400045, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| |
Collapse
|
45
|
Bazeli J, Banikazemi Z, Hamblin MR, Sharafati Chaleshtori R. Could probiotics protect against human toxicity caused by polystyrene nanoplastics and microplastics? Front Nutr 2023; 10:1186724. [PMID: 37492595 PMCID: PMC10363603 DOI: 10.3389/fnut.2023.1186724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Nanoplastics (NPs) and microplastics (MPs) made of polystyrene (PS) can be toxic to humans, especially by ingestion of plastic particles. These substances are often introduced into the gastrointestinal tract, where they can cause several adverse effects, including disturbances in intestinal flora, mutagenicity, cytotoxicity, reproductive toxicity, neurotoxicity, and exacerbated oxidative stress. Although there are widespread reports of the protective effects of probiotics on the harm caused by chemical contaminants, limited information is available on how these organisms may protect against PS toxicity in either humans or animals. The protective effects of probiotics can be seen in organs, such as the gastrointestinal tract, reproductive tract, and even the brain. It has been shown that both MPs and NPs could induce microbial dysbiosis in the gut, nose and lungs, and probiotic bacteria could be considered for both prevention and treatment. Furthermore, the improvement in gut dysbiosis and intestinal leakage after probiotics consumption may reduce inflammatory biomarkers and avoid unnecessary activation of the immune system. Herein, we show probiotics may overcome the toxicity of polystyrene nanoplastics and microplastics in humans, although some studies are required before any clinical recommendations can be made.
Collapse
Affiliation(s)
- Javad Bazeli
- Department of Medical Emergencies, School of Nursing, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
46
|
Liu M, Liu J, Xiong F, Xu K, Pu Y, Huang J, Zhang J, Pu Y, Sun R, Cheng K. Research advances of microplastics and potential health risks of microplastics on terrestrial higher mammals: a bibliometric analysis and literature review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2803-2838. [PMID: 36598611 PMCID: PMC9811881 DOI: 10.1007/s10653-022-01458-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/14/2022] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) have become increasingly serious global problems due to their wide distribution and complicated impacts on living organisms. To obtain a comprehensive overview of the latest research progress on MPs, we conducted a bibliometric analysis combined with a literature review. The results showed that the number of studies on MPs has grown exponentially since 2010. Recently, the hotspot on MPs has shifted to terrestrial ecosystems and biological health risks, including human health risks. In addition, the toxic effects, identification and quantification of MPs are relatively new research hotspots. We subsequently provide a review of MPs studies related to health risks to terrestrial higher mammals and, in particular, to humans, including detection methods and potential toxicities based on current studies. Currently, MPs have been found existing in human feces, blood, colon, placenta and lung, but it is still unclear whether this is associated with related systemic diseases. In vivo and in vitro studies have demonstrated that MPs cause intestinal toxicity, metabolic disruption, reproductive toxicity, neurotoxicity, immunotoxicity through oxidative stress, apoptosis and specific pathways, etc. Notably, in terms of combined effects with pollutants and neurotoxicity, the effects of MPs are still controversial. Future attention should be paid to the detection and quantification of MPs in human tissues, exploring the combined effects and related mechanisms of MPs with other pollutants and clarifying the association between MPs and the development of pre-existing diseases. Our work enhances further understanding of the potential health risks of MPs to terrestrial higher mammals.
Collapse
Affiliation(s)
- Manman Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Keping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
47
|
Akhtar S, Pranay K, Kumari K. Personal protective equipment and micro-nano plastics: A review of an unavoidable interrelation for a global well-being hazard. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100055. [PMID: 37102160 PMCID: PMC10089666 DOI: 10.1016/j.heha.2023.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
The usage and the demand for personal protective equipments (PPEs) for our day-to-day survival in this pandemic period of COVID-19 have seen a steep rise which has consequently led to improper disposal and littering. Fragmentation of these PPE units has eventually given way to micro-nano plastics (MNPs) emission in the various environmental matrices and exposure of living organisms to these MNPs has proven to be severely toxic. Numerous factors contribute to the toxicity imparted by these MNPs that mainly include their shape, size, functional groups and their chemical diversity. Even though multiple studies on the impacts of MNPs toxicity are available for other organisms, human cell line studies for various plastic polymers, other than the most common ones namely polyethylene (PE), polystyrene (PS) and polypropylene (PP), are still at their nascent stage and need to be explored more. In this article, we cover a concise review of the literature on the impact of these MNPs in biotic and human systems focusing on the constituents of the PPE units and the additives that are essentially used for their manufacturing. This review will subsequently identify the need to gather scientific evidence at the smaller level to help combat this microplastic pollution and induce a more in-depth understanding of its adverse effect on our existence.
Collapse
Affiliation(s)
- Shaheen Akhtar
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata 700107, West Bengal, India
| | - Kumar Pranay
- Department of Biochemistry, Indira Gandhi Institute of Medical Sciences (IGIMS), Patna 800014, Bihar, India
| | - Kanchan Kumari
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata 700107, West Bengal, India
| |
Collapse
|
48
|
Dolce A, Della Torre S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients 2023; 15:nu15102335. [PMID: 37242221 DOI: 10.3390/nu15102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and represents an increasing public health issue given the limited treatment options and its association with several other metabolic and inflammatory disorders. The epidemic, still growing prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that occurred in the last few decades, nor from their association with genetic and epigenetic risk factors. It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors, may contribute to the spreading of this pathology due to their ability to enter the food chain and be ingested through contaminated food and water. Given the strict interplay between nutrients and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental during gestation, when endocrine-disrupting chemicals may interfere with the programming of liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review summarizes cause-effect evidence between environmental pollutants and increased incidence of NAFLD and emphasizes the need for further studies in this field.
Collapse
Affiliation(s)
- Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
49
|
Cheng S, Hu J, Guo C, Ye Z, Shang Y, Lian C, Liu H. The effects of size and surface functionalization of polystyrene nanoplastics on stratum corneum model membranes: An experimental and computational study. J Colloid Interface Sci 2023; 638:778-787. [PMID: 36791476 DOI: 10.1016/j.jcis.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Nanoplastics are mainly generated from the decomposition of plastic waste and artificial production and have attracted much attention due to their wide distribution in the environment and the potential risk for humans. As the largest organ of the human body, the skin is inevitably in contact with nanoplastics. Stratum corneum is the first barrier when the skin is exposed to nanoplastics. However, little is known about the interactions between nanoplastics and stratum corneum. Here, the effects of particle size and surface functionalization (amino-modified and carboxy-modified) of polystyrene nanoplastics on the stratum corneum models were studied by Langmuir monolayer and molecular dynamics simulations. An equimolar mixture of ceramide/cholesterol/free fatty acid was used to mimic stratum corneum intercellular lipids. The Langmuir monolayer studies demonstrated that the larger size and surface functionalization of polystyrene nanoplastics significantly reduced the stability of stratum corneum lipid monolayer in a concentration-dependent fashion. Simulation results elucidated that functionalized polystyrene oligomers had a stronger interaction with lipid components of the stratum corneum model membrane. The cell experiments also indicated that functionalized polystyrene nanoplastics, especially for amino-modified polystyrene nanoplastics, had significant cytotoxicity on normal human dermal fibroblast cells. Our results provide fundamental information and the basis for a deeper understanding of the health risks of nanoplastics to humans.
Collapse
Affiliation(s)
- Shiqiang Cheng
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajie Hu
- Zhejiang Xianju Pharmaceutical Co., Ltd., Taizhou 318000, China
| | - Chen Guo
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cheng Lian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
50
|
Cui M, He Q, Wang Z, Yu Y, Gao H, Liu Z, Peng H, Wang H, Zhang X, Li D, Chen L, Xing X, Xiao Y, Chen W, Wang Q. Mucin2 regulated by Ho1/p38/IL-10 axis plays a protective role in polystyrene nanoplastics-mediated intestinal toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121808. [PMID: 37182580 DOI: 10.1016/j.envpol.2023.121808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Micro/nano-plastics (MPs/NPs) are a newly discovered environmental pollutant that can be ingested by humans through food and drinking water. In this study we evaluated the impact of MPs/NPs on the intestinal barrier and its mechanism. Doses of MPs/NPs were used to treat Caco-2/HT29-MTX in-vitro model and in-vivo model. In in-vitro model, 20 nm polystyrene nanoplastics (PS-NPs) had higher cytotoxicity than larger particles (200 nm and 2000 nm), and led to the increase of the permeability along with the decreased expression of tight junction proteins. Intriguingly, 20 nm PS-NPs elevated the expression of MUC2 simultaneously. Further studies revealed that PS-NPs increased the expression of HO1 through ROS generation, and then activated p38 to elevate IL-10 secretion in Caco-2 cell. The IL-10 secreted by Caco-2 cell promoted the expression of MUC2 in HT29-MTX cell through STAT1/3. Elevated MUC2 expression alleviates the cytotoxicity of PS-NPs. Besides, increased intestinal permeability and up-regulation of MUC2 through Ho1/p38/IL-10 pathway was also observed in 20 nm PS-NPs treated mouse model. In conclusion, PS-NPs can induce the intestinal toxicity and result in the increased adaptive expression of MUC2 to resist this adverse effect. People with inadequate mucin expression need to pay more attention to the toxicity of PS-NPs. This study provided a valuable insight for clarifying the mechanism and potential risk of intestinal toxicity induced by nanoplastics.
Collapse
Affiliation(s)
- Mengxing Cui
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qianmei He
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziwei Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongjiang Yu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huan Gao
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Honghao Peng
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Han Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xue Zhang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|