1
|
Wang Y, Wang J, Long Z, Sun Z, Lv L, Liang J, Zhang G, Wang P, Gao W. MnCe-based catalysts for removal of organic pollutants in urban wastewater by advanced oxidation processes - A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122773. [PMID: 39388818 DOI: 10.1016/j.jenvman.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
With Advanced oxidation processes (AOPs) widely promoted, MnCe-based catalysts have received extensive attention under the advantages of high efficiency, stability and economy for refractory organic pollutants present in urban wastewater. Driven by multiple factors such as environmental pollution, technological development, and policy promotion, a systematic review of MnCe-based catalysts is urgently needed in the current research situation. This research provides a critical review of MnCe-based catalysts for removal of organic pollutants in urban wastewater by AOPs. It is found that co-precipitation and sol-gel methods are more appropriate methods for catalyst preparation. Among a host of influence factors, catalyst composition and pH are crucial in the catalytic oxidation processes. The synergistic effect of the free radical pathway and surface catalysis results in better pollutants degradation. It is more valuable to utilize multiple systems for oxidation (e.g., photo-Fenton technology) to improve the catalytic efficiency. This review provides theoretical guidance for MnCe-based catalysts and offers a reference direction for future research in the AOPs of organic pollutants removal from urban wastewater.
Collapse
Affiliation(s)
- Yuting Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiaqing Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zeqing Long
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Zhi Sun
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
2
|
Lu H, Wang X, Cong Q, Chen X, Li Q, Li X, Zhong S, Deng H, Yan B. Research Progress on the Degradation of Organic Pollutants in Water by Activated Persulfate Using Biochar-Loaded Nano Zero-Valent Iron. Molecules 2024; 29:1130. [PMID: 38474642 DOI: 10.3390/molecules29051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Biochar (BC) is a new type of carbon material with a high specific surface area, porous structure, and good adsorption capacity, which can effectively adsorb and enrich organic pollutants. Meanwhile, nano zero-valent iron (nZVI) has excellent catalytic activity and can rapidly degrade organic pollutants through reduction and oxidation reactions. The combined utilization of BC and nZVI can not only give full play to their advantages in the adsorption and catalytic degradation of organic pollutants, but also help to reduce the agglomeration of nZVI, thus improving its efficiency in water treatment and providing strong technical support for water resources protection and environmental quality improvement. This article provides a detailed introduction to the preparation method and characterization technology, reaction mechanism, influencing factors, and specific applications of BC and nZVI, and elaborates on the research progress of BC-nZVI in activating persulfate (PS) to degrade organic pollutants in water. It has been proven experimentally that BC-nZVI can effectively remove phenols, dyes, pesticides, and other organic pollutants. Meanwhile, in response to the existing problems in current research, this article proposes future research directions and challenges, and summarizes the application prospects and development trends of BC-nZVI in water treatment. In summary, BC-nZVI-activated PS is an efficient technology for degrading organic pollutants in water, providing an effective solution for protecting water resources and improving environmental quality, and has significant application value.
Collapse
Affiliation(s)
- Hai Lu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xiaoyan Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Qiao Cong
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xinglin Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Qingpo Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xueqi Li
- Urban Construction College, Changchun University of Architecture, Changchun 130607, China
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Huan Deng
- College of Visual Arts, Changchun Sci-Tech University, Changchun 130600, China
| | - Bojiao Yan
- College of Visual Arts, Changchun Sci-Tech University, Changchun 130600, China
| |
Collapse
|
3
|
Zhang L, Cui W, Zhai H, Cheng S, Wu W. Performance of public drinking water purifiers in control of trihalomethanes, antibiotics and antibiotic resistance genes. CHEMOSPHERE 2024; 352:141459. [PMID: 38360417 DOI: 10.1016/j.chemosphere.2024.141459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Point-of-use water purifiers are widely applied as a terminal treatment device to produce drinking water with high quality. However, concerns are raised regarding low efficiency in eliminating emerging organic pollutants. To enhance our understanding of the reliability and potential risks of water purifiers, the removal of trihalomethanes, antibiotics, and antibiotic resistance genes (ARGs) in four public water purifiers was investigated. In the four public water purifiers in October and November, the removal efficiencies of trichloromethane (TCM) and bromodichloromethane (BDCM) were 15%-69% (averagely 37%) and 6%-44% (averagely 23%). The levels of TCM and BDCM were lowered by all water purifiers in October and November, but accelerated in effluent compared to the influent in one public water purifier in December. The removal efficiencies of twelve antibiotics greatly varied with species and time. Out of twelve sampling cases, the removal efficiencies of total antibiotics were 25%-75% in ten cases. In the other two cases, very low removal efficiency (6%) or higher levels of antibiotics present in effluent compared to the influent were observed. Two public water purifiers effectively remove ARGs from water, with log removal rates of 0.45 log-3.89 log. However, in the other two public water purifiers, the ARG abundance accidently increased in the effluents. Overall, public water purifiers were more effective in removing antibiotics and ARGs compared to household water purifiers, but less or equally effective in removing trihalomethanes. Both public and household water purifiers could be contaminated and release the accumulated micro-pollutants or biofilm-related pollutants into effluent. The production frequency and standing time of water within water purifiers can impact the internal contamination and purification efficacy.
Collapse
Affiliation(s)
- Liangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Wenjie Cui
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Shengzi Cheng
- Tianjin LVYIN Landscape & Ecology Construction Co. Ltd., Kaihua Road 20, Hi-Tech, Tianjin, 300110, China
| | - Wenling Wu
- China Construction Industrial Engineering and Technology Research Academy Co. Ltd., Beijing, 101399, China
| |
Collapse
|
4
|
Vinayagam V, Palani KN, Ganesh S, Rajesh S, Akula VV, Avoodaiappan R, Kushwaha OS, Pugazhendhi A. Recent developments on advanced oxidation processes for degradation of pollutants from wastewater with focus on antibiotics and organic dyes. ENVIRONMENTAL RESEARCH 2024; 240:117500. [PMID: 37914013 DOI: 10.1016/j.envres.2023.117500] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The existence of various pollutants in water environment contributes to global pollution and poses significant threats to humans, wildlife, and other living beings. The emergence of an effective, realistic, cost-effective, and environmentally acceptable technique to treat wastewater generated from different sectors is critical for reducing pollutant accumulation in the environment. The electrochemical advanced oxidation method is a productive technology for treating hazardous effluents because of its potential benefits such as lack of secondary pollutant and high oxidation efficiency. Recent researches on advanced oxidation processes (AOPs) in the period of 2018-2022 are highlighted in this paper. This review emphasizes on recent advances in electro-oxidation (EO), ozone oxidation, sonolysis, radiation, electro-Fenton (EF), photolysis and photocatalysis targeted at treating pharmaceuticals, dyes and pesticides polluted effluents. In the first half of the review, the concept of the AOPs are discussed briefly. Later, the influence of increasing current density, pH, electrode, electrolyte and initial concentration of effluents on degradation are discussed. Lastly, previously reported designs of electrochemical reactors, as well as data on intermediates generated and energy consumption during the electro oxidation and Fenton processes are discussed. According to the literature study, the electro-oxidation technique is more appropriate for organic compounds, whilst the electro-Fenton technique appear to be more appropriate for more complex molecules.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | | | - Sudha Ganesh
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Siddharth Rajesh
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Vedha Varshini Akula
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Ramapriyan Avoodaiappan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
5
|
Dong H, Aziz MT, Richardson SD. Transformation of Algal Toxins during the Oxidation/Disinfection Processes of Drinking Water: From Structure to Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12944-12957. [PMID: 37603687 DOI: 10.1021/acs.est.3c01912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
With the increase of algal blooms worldwide, drinking water resources are threatened by the release of various algal toxins, which can be hepatotoxic, cytotoxic, or neurotoxic. Because of their ubiquitous occurrence in global waters and incomplete removal in conventional drinking water treatment, oxidation/disinfection processes have become promising alternative treatment options to destroy both the structures and toxicity of algal toxins. This Review first summarizes the occurrence and regulation of algal toxins in source water and drinking water. Then, the transformation kinetics, disinfection byproducts (DBPs)/transformation products (TPs), pathways, and toxicity of algal toxins in water oxidation/disinfection processes, including treatment by ozonation, chlorination, chloramination, ultraviolet-based advanced oxidation process, and permanganate, are reviewed. For most algal toxins, hydroxyl radicals (HO•) exhibit the highest oxidation rate, followed by ozone and free chlorine. Under practical applications, ozone and chlorine can degrade most algal toxins to meet water quality standards. However, the transformation of the parent structures of algal toxins by oxidation/disinfection processes does not guarantee a reduction in toxicity, and the formation of toxic TPs should also be considered, especially during chlorination. Notably, the toxicity variation of algal toxins is associated with the chemical moiety responsible for toxicity (e.g., Adda moiety in microcystin-LR and uracil moiety in cylindrospermopsin). Moreover, the formation of known halogenated DBPs after chlorination indicates that toxicity in drinking water may shift from toxicity contributed by algal toxins to toxicity contributed by DBPs. To achieve the simultaneous toxicity reduction of algal toxins and their TPs, optimized oxidation/disinfection processes are warranted in future research, not only for meeting water quality standards but also for effective reduction of toxicity of algal toxins.
Collapse
Affiliation(s)
- Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Md Tareq Aziz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
6
|
Bouazzi D, Mehri A, Kaaroud K, Touati H, Karouia F, Clacens J, Laghzizil A, Badraoui B. Beneficial effect of in-situ citrate-grafting of hydroxyapatite surface for water treatment. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Cai H, Shen C, Xu H, Qian H, Pei S, Cai P, Song J, Zhang Y. Seasonal variability, predictive modeling and health risks of N-nitrosamines in drinking water of Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159530. [PMID: 36270378 DOI: 10.1016/j.scitotenv.2022.159530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of carcinogenic N-nitrosamines in drinking water is of significant concern. In the present study, eight N-nitrosamines from three representative drinking water treatment plants (DWTPs) in Shanghai, China were monitored for an entire year to evaluate their seasonal variability, probabilistic cancer risk and the resulting disease burden. The possibility of employing routinely monitored water quality parameters as predictors of N-nitrosamines was also examined. The results showed that the Taipu River-fed reservoir suffered more serious N-nitrosamine contamination than the Yangtze River-fed reservoirs. Winter witnessed higher levels of N-nitrosamines in both source and finished water. N-nitrosamine concentrations increased from source water to finished water in autumn or winter, but no spatial variations were observed in summer. The total lifetime cancer risk (LCR) posed by N-nitrosamines in finished water was within the acceptable range (1.00 × 10-6 to 1.00 × 10-4), with N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) being the main contributors. Winter and autumn were found to have higher total LCR values. The average individual disability-adjusted life years (DALYs) lost was 4.43 × 10-6 per person-year (ppy), exceeding the reference risk level (1.00 × 10-6 ppy). Liver cancer accounted for 97.1 % of the total disease burden, while bladder and esophagus cancers made a little contribution (2.9 %). A multiple regression model was developed to estimate the total N-nitrosamines in finished water as a function of water quality parameters, and the R2 value was 0.735. This study not only provides fundamental data for public health policy development, but also reveals the necessity to incorporate a seasonal control strategy in DWTPs to minimize the associated health risks induced by N-nitrosamines.
Collapse
Affiliation(s)
- Hongquan Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Chaoye Shen
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Huihui Xu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Hailei Qian
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Saifeng Pei
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Ping Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Jun Song
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Yun Zhang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China.
| |
Collapse
|
8
|
Saravanan A, Deivayanai VC, Kumar PS, Rangasamy G, Hemavathy RV, Harshana T, Gayathri N, Alagumalai K. A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. CHEMOSPHERE 2022; 308:136524. [PMID: 36165838 DOI: 10.1016/j.chemosphere.2022.136524] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The presence of several contaminants in waterbodies raises global pollution and creates major risks to mankind, wildlife, as well as other living organisms. Development of an effective, feasible, cost-effective and eco-friendly approach for treating wastewater that is discharged from various industries is important for bringing down the deposition of contaminants into environment. Advanced oxidation process is an efficient technique for treating wastewater owing to its advantages such as high oxidation efficacy and does not produce any secondary pollutants. Advanced oxidation process can be performed through various methods such as ozone, Fenton, electrochemical, photolysis, sonolysis, etc. These methods have been widely utilized for degradation of emerging pollutants that cannot be destroyed using conventional approaches. This review focuses on wastewater treatment using advanced oxidation process. A brief discussion on mechanism involved is provided. In addition, various types of advanced oxidation process and their mechanism are explained in detail. Challenges faced during wastewater treatment process using oxidation, electrochemical, Fenton, photocatalysis and sonolysis are discussed elaborately. Advanced oxidation process can be viewed as potential approach for treating wastewater with certain modifications and solving challenges.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - V C Deivayanai
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - T Harshana
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - N Gayathri
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | | |
Collapse
|
9
|
Elsayed I, Madduri S, El-Giar EM, Hassan EB. Effective removal of anionic dyes from aqueous solutions by novel polyethylenimine-ozone oxidized hydrochar (PEI-OzHC) adsorbent. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
10
|
Hu J, Qi D, Chen Q, Sun W. Comparison and prioritization of antibiotics in a reservoir and its inflow rivers of Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25209-25221. [PMID: 34837609 DOI: 10.1007/s11356-021-17723-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of antibiotics in drinking water resources, like reservoirs, is of considerable concern due to their potential risks to ecosystem, human health, and antimicrobial resistance development. Here, we quantified 83 antibiotics in water and sediments of wet and dry seasons from the Miyun reservoir and its inflow rivers in Beijing, China. Twenty-four antibiotics were detected in water with concentrations of ND-11.6 ng/L and 19 antibiotics were observed in sediments with concentrations of ND-6.50 ng/g. Sulfonamides (SAs) were the dominated antibiotics in water in two seasons. SAs and quinolones (QNs) in wet season and macrolides (MLs) and QNs in dry season predominated in sediments. The reservoir and inflow rivers showed significant differences in antibiotic concentrations and compositions in water and sediments. As an important input source of reservoir, the river water showed significantly higher total antibiotic concentrations than those in the reservoir. In contrast, the reservoir sediments are the sink of antibiotics, and had higher total antibiotic concentrations compared with rivers. A prioritization approach based on the overall risk scores and detection frequencies of antibiotics was developed, and 3 (sulfaguanidine, anhydroerythromycin, and sulfamethoxazole) and 5 (doxycycline, sulfadiazine, clarithromycin, roxithromycin, and flumequine) antibiotics with high and moderate priority, respectively, were screened. The study provides a comprehensive insight of antibiotics in the Miyun Reservoir and its inflow rivers, and is significant for future monitoring and pollution mitigation of antibiotics.
Collapse
Affiliation(s)
- Jingrun Hu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Dianqing Qi
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China.
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
11
|
Truzsi A, Elek J, Fábián I. Sulfur(IV) assisted oxidative removal of organic pollutants from source water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118625. [PMID: 34864105 DOI: 10.1016/j.envpol.2021.118625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
The removal of organic pollutants presents a major challenge for drinking water treatment plants. The chemical oxygen demand (COD) is essentially the measure of oxidizable organic matter in source waters. In this study, we report that COD can efficiently be decreased by adding Fe(II)/Fe(III) and sulfite ion to the source water while purging it with air. In this process, oxygen is activated to oxidize the main constituents of COD, i.e. organic substrates, via the generation of reactive inorganic oxysulfur radical ions. In the end, the total amount of sulfur(IV) is converted to the non-toxic sulfate ion. It has been explored how the COD removal efficiency depends on the concentration of S(IV), the total concentration of iron species, the concentration ratio of Fe(II) and Fe(III), the purging rate and the contact time by using source water from a specific location (Királyhegyes, Hungary). The process has been optimized by applying the Response Surface Methodology (RSM). Under optimum conditions, the predicted and experimentally found COD removal efficiencies are in excellent agreement: 85.4% and 87.5%, respectively. The robustness of the process was tested by varying the optimum values of the parameters by ± 20%. It was demonstrated that the method is universally applicable because a remarkable decrease was achieved in COD, 62.0-88.5%, with source waters of various compositions acquired from 9 wells at other locations using the same conditions as in the case of Királyhegyes.
Collapse
Affiliation(s)
- Alexandra Truzsi
- Department of Environmental Engineering, University of Debrecen, Ótemető u. 2-4., Debrecen, H-4028, Hungary; Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
| | - János Elek
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary; MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms, Research Group, Egyetem tér 1., Debrecen, H-4032, Hungary.
| |
Collapse
|
12
|
Lu M, Zhang H. Preparation and decontamination performance of a flexible self-standing hydrogel photocatalytic membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Ighalo JO, Rangabhashiyam S, Adeyanju CA, Ogunniyi S, Adeniyi AG, Igwegbe CA. Zeolitic Imidazolate Frameworks (ZIFs) for aqueous phase adsorption – A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Li Z, Fantke P. Toward harmonizing global pesticide regulations for surface freshwaters in support of protecting human health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113909. [PMID: 34624580 DOI: 10.1016/j.jenvman.2021.113909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
To promote international collaboration on environmental pollution management and human health protection, we conducted a global-level study on the management of pesticides for surface freshwater quality. Prior to actions being taken in terms of water treatment or remediation, it is essential that clear and definite regulations be disseminated. In our study, 3094 surface freshwater quality standards for 184 different pesticides were recorded from 53 countries and categorized according to pesticide types and standard types, as well as diverse use of freshwater by humans, and compared water quality standards related to human health. Our results indicate large variations in pesticide regulations, standard types (i.e., long- or short-term water quality standards), and related numerical values. With regard to the protection of human health, the 10 most frequently regulated pesticides account for approximately 47% of the total number of standards across 184 considered pesticides. The average occurrence-weighted variations of standard values (i.e., numerical values provided in a standard in terms of residue limits of a given pesticide in water) for the 20 most regulated persistent organic pollutants (POPs) and other phase-out pesticides (i.e., pesticides not currently-approved for use in agriculture across various countries) are 4.1 and 2.6 orders of magnitude, respectively, with human-exposure related standard values for some pesticides varying with over 3 orders of magnitude (e.g., lindane). In addition, variations in water quality standard values occurred across standard types (e.g., maximum and average), water use types (e.g., unspecified waters and human consumption), and standard values (e.g., pesticide individuals and groups). We conclude that regulatory inconsistencies emphasize the need for international collaboration on domestic water treatment, environmental management as well as specific water quality standards for the wider range of current-use pesticides, thereby improving global harmonization in support of protecting human health.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Engineering, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark
| |
Collapse
|
15
|
Suquet J, Godo-Pla L, Valentí M, Ferràndez L, Verdaguer M, Poch M, Martín MJ, Monclús H. Assessing the effect of catchment characteristics to enhanced coagulation in drinking water treatment: RSM models and sensitivity analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149398. [PMID: 34375875 DOI: 10.1016/j.scitotenv.2021.149398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Coagulation is the main process for removing natural organic matter (NOM), considered to be the major disinfection by-products (DBPs) precursor in drinking water production. In this work, k-means clusters analysis were used to classify influent waters from two different surface drinking water treatment plants (DWTPs) located in the Mediterranean region. From this, enhanced coagulation models based on response surface methodology (RSM) were then developed to optimise coagulation at two water catchments (river and reservoir). The cluster analysis classified the water quality of the raw waters into two groups related to baseline and peak organic loads. The developed enhanced coagulation models were based on the turbidity, total organic carbon (TOC) and UV254 removals. Sensitivity analysis applied to the models (after predictors selection) determined the factors relative individual contributions for each DWTP scenario. Then, profile plots for enhanced coagulation were studied to identify the optimal levels for each case. Models mean R2 were 0.85 and 0.86 in baseline and 0.85 and 0.84 in peak scenario for river and reservoir catchments, respectively. Results of this study indicate that the surface water quality variation in river DWTP is seasonal and is expressed by an increase of turbidity, while in the reservoir DWTP is related to extreme weather events showing high levels of dissolved organic load (TOC and UV254). During baseline cases, where raw waters present low levels of organics, the three factors optimal adjustment should be ensured to optimise coagulation. Then, during peak scenarios, where influent waters present high organics, the optimal for enhanced coagulation relies on the correct adjustment of Cd. The presented work provides models for drinking water production aimed to propose the optimum conditions for enhanced coagulation, considering the influent water characteristics under different weather conditions.
Collapse
Affiliation(s)
- J Suquet
- LEQUIA, Institute of the Environment, Universitat de Girona. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Ll Godo-Pla
- LEQUIA, Institute of the Environment, Universitat de Girona. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - M Valentí
- LEQUIA, Institute of the Environment, Universitat de Girona. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - L Ferràndez
- LEQUIA, Institute of the Environment, Universitat de Girona. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - M Verdaguer
- LEQUIA, Institute of the Environment, Universitat de Girona. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - M Poch
- LEQUIA, Institute of the Environment, Universitat de Girona. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - M J Martín
- LEQUIA, Institute of the Environment, Universitat de Girona. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - H Monclús
- LEQUIA, Institute of the Environment, Universitat de Girona. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain.
| |
Collapse
|
16
|
Xue P, Zhao Y, Zhao D, Chi M, Yin Y, Xuan Y, Wang X. Mutagenicity, health risk, and disease burden of exposure to organic micropollutants in water from a drinking water treatment plant in the Yangtze River Delta, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112421. [PMID: 34147865 DOI: 10.1016/j.ecoenv.2021.112421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
A wide variety of organic micropollutants in drinking water pose a serious threat to human health. This study was aimed to reveal the characteristics of organic micropollution profiles in water from a drinking water treatment plant (DWTP) in the Yangtze River Delta, China and investigate the mutagenicity, health risk and disease burden through mixed exposure to micropollutants in water. The presence of organic micropollutants in seven categories in organic extracts (OEs) of water from the DWTP was determined, and Ames test was conducted to test the mutagenic effect of OEs. Meanwhile, health risk of exposure to organic micropollutants in finished water through three exposure routes (ingestion, dermal absorption and inhalation) was assessed with the method proposed by U.S. EPA, and disability-adjusted life years (DALYs) were combined to estimate the disease burden of cancer based on the carcinogenic risk (CR) assessment. The results showed that 28 organic micropollutants were detected in the raw and finished water at total concentrations of 967.28 ng/L and 1073.45 ng/L, respectively, of which phthalate esters (PAEs) were the dominant category (95.79% in the raw water and 96.61% in the finished water). Although the results of the Ames test for OEs were negative and the non-carcinogenic hazard index of the organic micropollutants in the finished water was less than 1 in all age groups, the total CR was 2.17 × 10-5, higher than the negligible risk level (1.00 × 10-6). The total DALYs caused by the organic micropollutants in the finished water was 2945.59 person-years, and the average individual DALYs was 2.21 × 10-6 per person-year (ppy), which was 2.21 times the reference risk level (1.00 × 10-6 ppy) defined by the WHO. Exposure to nitrosamines (NAms) was the major contributor to the total CR (92.06%) and average individual DALYs (94.58%). This study demonstrated that despite the negative result of the mutagenicity test with TA98 and TA100 strains, the health risk of exposure to organic micropollutants in drinking water should not be neglected.
Collapse
Affiliation(s)
- Panqi Xue
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yameng Zhao
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Disease Control and Prevention of Minhang District, Shanghai 201101, China
| | - Danyang Zhao
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Meina Chi
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai 200041, China
| | - Yuanyuan Yin
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanan Xuan
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xia Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
The Role of Catalytic Ozonation Processes on the Elimination of DBPs and Their Precursors in Drinking Water Treatment. Catalysts 2021. [DOI: 10.3390/catal11040521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Formation of disinfection byproducts (DBPs) in drinking water treatment (DWT) as a result of pathogen removal has always been an issue of special attention in the preparation of safe water. DBPs are formed by the action of oxidant-disinfectant chemicals, mainly chlorine derivatives (chlorine, hypochlorous acid, chloramines, etc.), that react with natural organic matter (NOM), mainly humic substances. DBPs are usually refractory to oxidation, mainly due to the presence of halogen compounds so that advanced oxidation processes (AOPs) are a recommended option to deal with their removal. In this work, the application of catalytic ozonation processes (with and without the simultaneous presence of radiation), moderately recent AOPs, for the removal of humic substances (NOM), also called DBPs precursors, and DBPs themselves is reviewed. First, a short history about the use of disinfectants in DWT, DBPs formation discovery and alternative oxidants used is presented. Then, sections are dedicated to conventional AOPs applied to remove DBPs and their precursors to finalize with the description of principal research achievements found in the literature about application of catalytic ozonation processes. In this sense, aspects such as operating conditions, reactors used, radiation sources applied in their case, kinetics and mechanisms are reviewed.
Collapse
|
18
|
Gu X, Zhai H, Cheng S. Fate of antibiotics and antibiotic resistance genes in home water purification systems. WATER RESEARCH 2021; 190:116762. [PMID: 33387948 DOI: 10.1016/j.watres.2020.116762] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/29/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Home water purification systems (HWPSs) are utilized worldwide to obtain clean drinking water. However, the reliability of HWPSs in providing safe water is unknown or not well-proven. In this study, the occurrences of antibiotics and antibiotic resistance genes (ARGs) in tap water, effluents, and filters of HWPSs were investigated in twenty-six houses and one laboratory. The levels of antibiotics and ARGs were between less than the limit of detection (LOD) and 7.9 ng/L and between less than LOD and 3.45 × 105 copies/L, respectively, in tap water. HWPSs with fresh filters had a high efficiency in removing antibiotics and ARGs, with removal rates of 91-92% and 0.46-2.43 log, respectively. However, after long-term operation (e.g., more than three months), some HWPSs had low removal rates of antibiotics and ARGs (3-79% and 0.03-0.15 log, respectively) and some HWPSs released antibiotics and ARGs into the effluents leading to higher levels of antibiotics and ARGs in the effluents than those in the influents. Biofilms were observed on many filters of the investigated HWPSs. ARGs were detected on the filters with relative abundances (the ratio of the abundance of ARGs to the abundance of 16S rRNA) of 2.56 × 10-8-2.89 × 10-2. High-throughput sequencing analysis showed that Proteobacteria, Acidobacteria, Chloroflexi, and Bacteroidetes were the dominant phyla, and Alphaproteobacteria and Gammaproteobacteria were the dominant classes. The abundances of Cyanobacteria, Patescibacteria, Bacteroidetes, and Proteobacteria were significantly positively correlated with the abundances of ARGs. Microbial growth and enrichment commonly observed in HWPSs can accelerate the exposure risk posed by antibiotics and ARGs to the consumers of water from these appliances.
Collapse
Affiliation(s)
- Xin Gu
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Shengzi Cheng
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
19
|
Omri A, Benzina M. Degradation of Alizarin Red S by Heterogeneous Fenton-Like Oxidation Over Copper-Containing Sand Catalysts. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-020-09321-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|