1
|
Geiwitz M, Page OR, Marello T, Nichols ME, Kumar N, Hummel S, Belosevich V, Ma Q, van Opijnen T, Batten B, Meyer MM, Burch KS. Graphene Multiplexed Sensor for Point-of-Need Viral Wastewater-Based Epidemiology. ACS APPLIED BIO MATERIALS 2024; 7:4622-4632. [PMID: 38954405 DOI: 10.1021/acsabm.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Wastewater-based epidemiology (WBE) can help mitigate the spread of respiratory infections through the early detection of viruses, pathogens, and other biomarkers in human waste. The need for sample collection, shipping, and testing facilities drives up the cost of WBE and hinders its use for rapid detection and isolation in environments with small populations and in low-resource settings. Given the ubiquitousness and regular outbreaks of respiratory syncytial virus, SARS-CoV-2, and various influenza strains, there is a rising need for a low-cost and easy-to-use biosensing platform to detect these viruses locally before outbreaks can occur and monitor their progression. To this end, we have developed an easy-to-use, cost-effective, multiplexed platform able to detect viral loads in wastewater with several orders of magnitude lower limit of detection than that of mass spectrometry. This is enabled by wafer-scale production and aptamers preattached with linker molecules, producing 44 chips at once. Each chip can simultaneously detect four target analytes using 20 transistors segregated into four sets of five for each analyte to allow for immediate statistical analysis. We show our platform's ability to rapidly detect three virus proteins (SARS-CoV-2, RSV, and Influenza A) and a population normalization molecule (caffeine) in wastewater. Going forward, turning these devices into hand-held systems would enable wastewater epidemiology in low-resource settings and be instrumental for rapid, local outbreak prevention.
Collapse
Affiliation(s)
- Michael Geiwitz
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Owen Rivers Page
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tio Marello
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Marina E Nichols
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Narendra Kumar
- GRIP Molecular Technologies, Inc., 1000 Westgate Drive, Saint Paul, Minnesota 55114, United States
| | - Stephen Hummel
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Vsevolod Belosevich
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Qiong Ma
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bruce Batten
- GRIP Molecular Technologies, Inc., 1000 Westgate Drive, Saint Paul, Minnesota 55114, United States
| | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kenneth S Burch
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Inson JGM, Malla B, Amalin DM, Carvajal TM, Enriquez MLD, Hirai S, Raya S, Rahmani AF, Angga MS, Sthapit N, Shrestha S, Ruti AA, Takeda T, Kitajima M, Alam ZF, Haramoto E. Detection of SARS-CoV-2 and Omicron variant RNA in wastewater samples from Manila, Philippines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170921. [PMID: 38350577 DOI: 10.1016/j.scitotenv.2024.170921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/15/2024]
Abstract
Manila, a highly urbanized city, is listed as one of the top cities with the highest recorded number of coronavirus disease 2019 (COVID-19) cases in the Philippines. This study aimed to detect and quantify the RNA of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the Omicron variant in 51 wastewater samples collected from three locations in Manila, namely Estero de Santa Clara, Estero de Pandacan, which are open drainages, and a sewage treatment plant (STP) at De La Salle University-Manila, between July 2022 and February 2023. Using one-step reverse transcription-quantitative polymerase chain reaction, SARS-CoV-2 and Omicron variant RNA were detected in 78 % (40/51; 4.9 ± 0.5 log10 copies/L) and 60 % (24/40; 4.4 ± 0.3 log10 copies/L) of wastewater samples collected from all sampling sites, respectively. SARS-CoV-2 RNA was detected frequently at Estero de Santa Clara (88 %, 15/17); its highest concentration was at the STP (6.3 log10 copies/L). The Omicron variant RNA was present in the samples collected (4.4 ± 0.3 log10 copies/L) from all sampling sites, with the highest concentration at the STP (4.9 log10 copies/L). Regardless of normalization, using concentrations of pepper mild mottle virus RNA, SARS-CoV-2 RNA concentrations exhibited the highest positive correlation with COVID-19 reported cases in Manila 5 days after the clinical report. These findings revealed that wastewater-based epidemiology may aid in identifying and monitoring of the presence of pathogens in open drainages and STPs in the Philippines. This paper provides the first documentation on SARS-CoV-2 and the Omicron variant in wastewater from Manila.
Collapse
Affiliation(s)
- Jessamine Gail M Inson
- Department of Biology, De La Salle University, Manila 1004, Philippines; Environmental Biomonitoring Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, Manila 1004, Philippines.
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Divina M Amalin
- Department of Biology, De La Salle University, Manila 1004, Philippines; Biological Control Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, Manila 1004, Philippines.
| | - Thaddeus M Carvajal
- Department of Biology, De La Salle University, Manila 1004, Philippines; Biological Control Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, Manila 1004, Philippines.
| | | | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Tomoko Takeda
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.
| | - Zeba F Alam
- Department of Biology, De La Salle University, Manila 1004, Philippines; Environmental Biomonitoring Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, Manila 1004, Philippines.
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
3
|
Gwenzi W, Adelodun B, Kumar P, Ajibade FO, Silva LFO, Choi KS, Selvarajan R, Abia ALK, Gholipour S, Mohammadi F, Nikaeen M. Human viral pathogens in the wastewater-source water-drinking water continuum: Evidence, health risks, and lessons for future outbreaks in low-income settings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170214. [PMID: 38278242 DOI: 10.1016/j.scitotenv.2024.170214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Human viral pathogens, including SARS-CoV-2 continue to attract public and research attention due to their disruption of society, global health, and the economy. Several earlier reviews have investigated the occurrence and fate of SARS-CoV-2 in wastewater, and the potential to use such data in wastewater-based epidemiology. However, comprehensive reviews tracking SARS-CoV-2 and other viral pathogens in the wastewater-water-drinking water continuum and the associated risk assessment are still lacking. Therefore, to address this gap, the present paper makes the following contributions: (1) critically examines the early empirical results to highlight the occurrence and stability of SARS-CoV-2 in the wastewater-source water-drinking water continuum, (2) discusses the anthropogenic and hydro(geo)logical processes controlling the circulation of SARS-CoV-2 in the wastewater-source water-drinking water continuum, (3) discusses the risky behaviour, drivers and high-risk settings in the wastewater-source water-drinking water continuum, (4) uses the available empirical data on SARS-CoV-2 occurrence in the wastewater-source water-drinking water continuum to discuss human health risks from multiple exposure pathways, gendered aspects of SARS-CoV-2 transmission via shared on-site sanitation systems, and (5) develops and risk mitigation strategy based on the available empirical evidence and quantitative human risk assessment data. Finally, it presents a comprehensive research agenda on SARS-CoV-2/COVID-19 to guide the mitigation of future similar outbreaks in low-income settings.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Westgate, Harare, Zimbabwe; Currently Alexander von Humboldt Fellow and Guest/Visiting Professor at: Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469, Potsdam, Germany.
| | - Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin 240003, Nigeria; Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar 249404, India; Research and Development Division, Society for AgroEnvironmental Sustainability, Dehradun 248007, India.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, 340001, Nigeria.
| | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlàntico, Colombia.
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences, University of South Africa, Florida branch, Johannesburg, South Africa
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Environmental Research Foundation, Westville 3630, Kwazulu-Natal, South Africa
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Gogoi G, Singh SD, Kalyan E, Koch D, Gogoi P, Kshattry S, Mahanta HJ, Imran M, Pandey R, Bharali P. An interpretative review of the wastewater-based surveillance of the SARS-CoV-2: where do we stand on its presence and concern? Front Microbiol 2024; 15:1338100. [PMID: 38318336 PMCID: PMC10839012 DOI: 10.3389/fmicb.2024.1338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has been used for monitoring infectious diseases like polio, hepatitis, etc. since the 1940s. It is also being used for tracking the SARS-CoV-2 at the population level. This article aims to compile and assess the information for the qualitative and quantitative detection of the SARS-CoV-2 in wastewater. Based on the globally published studies, we highlight the importance of monitoring SARS-CoV-2 presence/detection in the wastewater and concurrently emphasize the development of early surveillance techniques. SARS-CoV-2 RNA sheds in the human feces, saliva, sputum and mucus that ultimately reaches to the wastewater and brings viral RNA into it. For the detection of the virus in the wastewater, different detection techniques have been optimized and are in use. These are based on serological, biosensor, targeted PCR, and next generation sequencing for whole genome sequencing or targeted amplicon sequencing. The presence of the SARS-CoV-2 RNA in wastewater could be used as a potential tool for early detection and devising the strategies for eradication of the virus before it is spread in the community. Additionally, with the right and timely understanding of viral behavior in the environment, an accurate and instructive model that leverages WBE-derived data may be created. This might help with the creation of technological tools and doable plans of action to lessen the negative effects of current viral epidemics or future potential outbreaks on public health and the economy. Further work toward whether presence of viral load correlates with its ability to induce infection, still needs evidence. The current increasing incidences of JN.1 variant is a case in point for continued early detection and surveillance, including wastewater.
Collapse
Affiliation(s)
- Gayatri Gogoi
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sarangthem Dinamani Singh
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Emon Kalyan
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Devpratim Koch
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pronami Gogoi
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Suman Kshattry
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Hridoy Jyoti Mahanta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Md Imran
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Rajesh Pandey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Pankaj Bharali
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Amin N, Haque R, Rahman MZ, Rahman MZ, Mahmud ZH, Hasan R, Islam MT, Sarker P, Sarker S, Adnan SD, Akter N, Johnston D, Rahman M, Liu P, Wang Y, Shirin T, Rahman M, Bhattacharya P. Dependency of sanitation infrastructure on the discharge of faecal coliform and SARS-CoV-2 viral RNA in wastewater from COVID and non-COVID hospitals in Dhaka, Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161424. [PMID: 36623655 PMCID: PMC9822545 DOI: 10.1016/j.scitotenv.2023.161424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 05/25/2023]
Abstract
The detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA in wastewater can be used as an indicator of the presence of SARS-CoV-2 infection in specific catchment areas. We conducted a hospital-based study to explore wastewater management in healthcare facilities and analyzed SARS-CoV-2 RNA in the hospital wastewater in Dhaka city during the Coronavirus disease (COVID-19) outbreak between September 2020-January 2021. We selected three COVID-hospitals, two non-COVID-hospitals, and one non-COVID-hospital with COVID wards, conducted spot-checks of the sanitation systems (i.e., toilets, drainage, and septic-tank), and collected 90 untreated wastewater effluent samples (68 from COVID and 22 from non-COVID hospitals). E. coli was detected using a membrane filtration technique and reported as colony forming unit (CFU). SARS-CoV-2 RNA was detected using the iTaq Universal Probes One-Step kit for RT-qPCR amplification of the SARS-CoV-2 ORF1ab and N gene targets and quantified for SARS-CoV-2 genome equivalent copies (GEC) per mL of sample. None of the six hospitals had a primary wastewater treatment facility; two COVID hospitals had functional septic tanks, and the rest of the hospitals had either broken onsite systems or no containment of wastewater. Overall, 100 % of wastewater samples were positive with a high concentration of E. coli (mean = 7.0 log10 CFU/100 mL). Overall, 67 % (60/90) samples were positive for SARS-CoV-2. The highest SARS-CoV-2 concentrations (median: 141 GEC/mL; range: 13-18,214) were detected in wastewater from COVID-hospitals, and in non-COVID-hospitals, the median SARS-CoV-2 concentration was 108 GEC/mL (range: 30-1829). Our results indicate that high concentrations of E. coli and SARS-CoV-2 were discharged through the hospital wastewater (both COVID and non-COVID) without treatment into the ambient water bodies. Although there is no evidence for transmission of SARS-CoV-2 via wastewater, this study highlights the significant risk posed by wastewater from health care facilities in Dhaka for the many other diseases that are spread via faecal oral route. Hospitals in low-income settings could function as sentinel sites to monitor outbreaks through wastewater-based epidemiological surveillance systems. Hospitals should aim to adopt the appropriate wastewater treatment technologies to reduce the discharge of pathogens into the environment and mitigate environmental exposures.
Collapse
Affiliation(s)
- Nuhu Amin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW, 2007, Australia.
| | - Rehnuma Haque
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; School of Medicine, Stanford University, Stanford, CA, USA
| | - Md Ziaur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammed Ziaur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Zahid Hayat Mahmud
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rezaul Hasan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Tahmidul Islam
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden; WaterAid, Bangladesh
| | - Protim Sarker
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Supriya Sarker
- Directorate General of Health Services (DGHS), Bangladesh
| | | | - Nargis Akter
- Water, Sanitation & Hygiene (WASH) section, UNICEF, Bangladesh
| | - Dara Johnston
- Water, Sanitation & Hygiene (WASH) section, UNICEF, Bangladesh
| | - Mahbubur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh
| | - Pengbo Liu
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, USA
| | - Yuke Wang
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, USA
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh
| | - Mahbubur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden
| |
Collapse
|
6
|
Sangsanont J, Rattanakul S, Makkaew P, Precha N, Rukthanapitak P, Sresung M, Siri Y, Kitajima M, Takeda T, Haramoto E, Puenpa J, Wanlapakorn N, Poovorawan Y, Mongkolsuk S, Sirikanchana K. Wastewater monitoring in tourist cities as potential sentinel sites for near real-time dynamics of imported SARS-CoV-2 variants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160317. [PMID: 36436629 PMCID: PMC9691270 DOI: 10.1016/j.scitotenv.2022.160317] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology (WBE) complements the clinical surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants' distribution in populations. Many developed nations have established national and regional WBE systems; however, governance and budget constraints could be obstacles for low- and middle-income countries. An urgent need thus exists to identify hotspots to serve as sentinel sites for WBE. We hypothesized that representative wastewater treatment plants (WWTPs) in two international gateway cities, Bangkok and Phuket, Thailand, could be sentineled for SARS-CoV-2 and its variants to reflect the clinical distribution patterns at city level and serve as early indicators of new variants entering the country. Municipal wastewater samples (n = 132) were collected from eight representative municipal WWTPs in Bangkok and Phuket during 19 sampling events from October 2021 to March 2022, which were tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using the US CDC N1 and N2 multiplex and variant (Alpha, Delta, and Omicron BA.1 and BA.2) singleplex assays. The variant detection ratios from Bangkok and Phuket followed similar trends to the national clinical testing data, and each variant's viral loads agreed with the daily new cases (3-d moving average). Omicron BA.1 was detected in Phuket wastewater prior to Bangkok, possibly due to Phuket's WWTPs serving tourist communities. We found that the Omicron BA.1 and BA.2 viral loads predominantly drove the SARS-CoV-2 resurgence. We also noted a shifting pattern in the Bangkok WBE from a 22-d early warning in early 2021 to a near real-time pattern in late 2021. The potential application of tourist hotspots for WBE to indicate the arrival of new variants and re-emerging or unprecedented infectious agents could support tourism-dependent economies by complementing the reduced clinical regulations while maintaining public health protection via wastewater surveillance.
Collapse
Affiliation(s)
- Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Pratchaya Rukthanapitak
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Hokkaido 060-8628, Japan
| | - Tomoko Takeda
- Department of Earth and Planetary Science, The University of Tokyo, 113-0033, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand.
| |
Collapse
|
7
|
Bhattacharya S, Abhishek K, Samiksha S, Sharma P. Occurrence and transport of SARS-CoV-2 in wastewater streams and its detection and remediation by chemical-biological methods. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100221. [PMID: 36818681 PMCID: PMC9762044 DOI: 10.1016/j.hazadv.2022.100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
This paper explains the transmission of SARS-CoV and influences of several environmental factors in the transmission process. The article highlighted several methods of collection, sampling and monitoring/estimation as well as surveillance tool for detecting SARS-CoV in wastewater streams. In this context, WBE (Wastewater based epidemiology) is found to be the most effective surveillance tool. Several methods of genomic sequencing are discussed in the paper, which are applied in WBE, like qPCR-based wastewater testing, metagenomics-based analysis, next generation sequencing etc. Additionally, several types of biosensors (colorimetric biosensor, mobile phone-based biosensors, and nanomaterials-based biosensors) showed promising results in sensing SARS-CoV in wastewater. Further, this review paper outlined the gaps in assessing the factors responsible for transmission and challenges in detection and monitoring along with the remediation and disinfection methods of this virus in wastewater. Various methods of disinfection of SARS-CoV-2 in wastewater are discussed (primary, secondary, and tertiary phases) and it is found that a suite of disinfection methods can be used for complete disinfection/removal of the virus. Application of ultraviolet light, ozone and chlorine-based disinfectants are also discussed in the context of treatment methods. This study calls for continuous efforts to gather more information about the virus through continuous monitoring and analyses and to address the existing gaps and identification of the most effective tool/ strategy to prevent SARS-CoV-2 transmission. Wastewater surveillance can be very useful in effective surveillance of future pandemics and epidemics caused by viruses, especially after development of new technologies in detecting and disinfecting viral pathogens more effectively.
Collapse
Affiliation(s)
- Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Kumar Abhishek
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
- Department of Environment Forest and Climate Change, Government of Bihar, Patna, 800015, Bihar, India
| | - Shilpi Samiksha
- Bihar State Pollution Control Board, Patna, 800015, Bihar, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| |
Collapse
|
8
|
Han J, Yin J, Wu X, Wang D, Li C. Environment and COVID-19 incidence: A critical review. J Environ Sci (China) 2023; 124:933-951. [PMID: 36182196 PMCID: PMC8858699 DOI: 10.1016/j.jes.2022.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 05/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an unprecedented worldwide health crisis. Many previous research studies have found and investigated its links with one or some natural or human environmental factors. However, a review on the relationship between COVID-19 incidence and both the natural and human environment is still lacking. This review summarizes the inter-correlation between COVID-19 incidence and environmental factors. Based on keyword searching, we reviewed 100 relevant peer-reviewed articles and other research literature published since January 2020. This review is focused on three main findings. One, we found that individual environmental factors have impacts on COVID-19 incidence, but with spatial heterogeneity and uncertainty. Two, environmental factors exert interactive effects on COVID-19 incidence. In particular, the interactions of natural factors can affect COVID-19 transmission in micro- and macro- ways by impacting SARS-CoV-2 survival, as well as human mobility and behaviors. Three, the impact of COVID-19 incidence on the environment lies in the fact that COVID-19-induced lockdowns caused air quality improvement, wildlife shifts and socio-economic depression. The additional value of this review is that we recommend future research perspectives and adaptation strategies regarding the interactions of the environment and COVID-19. Future research should be extended to cover both the effects of the environment on the COVID-19 pandemic and COVID-19-induced impacts on the environment. Future adaptation strategies should focus on sustainable environmental and public policy responses.
Collapse
Affiliation(s)
- Jiatong Han
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Jie Yin
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Danyang Wang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Chenlu Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Martín-Blanco C, Zamorano M, Lizárraga C, Molina-Moreno V. The Impact of COVID-19 on the Sustainable Development Goals: Achievements and Expectations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16266. [PMID: 36498340 PMCID: PMC9739062 DOI: 10.3390/ijerph192316266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic has had a significant impact on almost all the Sustainable Development Goals (SDGs), leaving no country unaffected. It has caused a shift in political agendas, but also in lines of research. At the same time, the world is trying to make the transition to a more sustainable economic model. The research objectives of this paper are to explore the impact of COVID-19 on the fulfilment of the SDGs with regard to the research of the scientific community, and to analyze the presence of the Circular Economy (CE) in the literature. To this end, this research applies bibliometric analysis and a systematic review of the literature, using VOSviewer for data visualization. Five clusters were detected and grouped according to the three dimensions of sustainability. The extent of the effects of the health, economic and social crisis resulting from the pandemic, in addition to the climate crisis, is still uncertain, but it seems clear that the main issues are inefficient waste management, supply chain issues, adaptation to online education and energy concerns. The CE has been part of the solution to this crisis, and it is seen as an ideal model to be promoted based on the opportunities detected.
Collapse
Affiliation(s)
| | - Montserrat Zamorano
- Department of Civil Engineering, University of Granada, 18011 Granada, Spain
| | - Carmen Lizárraga
- Department of Applied Economics, University of Granada, 18011 Granada, Spain
| | | |
Collapse
|
10
|
Gonçalves J, Torres-Franco A, Rodriguéz E, Diaz I, Koritnik T, Silva PGD, Mesquita JR, Trkov M, Paragi M, Muñoz R, García-Encina PA. Centralized and decentralized wastewater-based epidemiology to infer COVID-19 transmission - A brief review. One Health 2022; 15:100405. [PMID: 35664497 PMCID: PMC9150914 DOI: 10.1016/j.onehlt.2022.100405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
Wastewater-based epidemiology has shown to be a promising and innovative approach to measure a wide variety of illicit drugs that are consumed in the communities. In the same way as for illicit drugs, wastewater-based epidemiology is a promising approach to understand the prevalence of viruses in a community-level. The ongoing coronavirus disease 2019 (COVID-19) pandemic created an unprecedented burden on public health and diagnostic laboratories all over the world because of the need for massive laboratory testing. Many studies have shown the applicability of a centralized wastewater-based epidemiology (WBE) approach, where samples are collected at WWTPs. A more recent concept is a decentralized approach for WBE where samples are collected at different points of the sewer system and at polluted water bodies. The second being particularly important in countries where there are insufficient connections from houses to municipal sewage pipelines and thus untreated wastewater is discharged directly in environmental waters. A decentralized approach can be used to focus the value of diagnostic tests in what we call targeted-WBE, by monitoring wastewater in parts of the population where an outbreak is likely to happen, such as student dorms, retirement homes and hospitals. A combination of centralized and decentralized WBE should be considered for an affordable, sustainable, and successful WBE implementation in high-, middle- and low-income countries.
Collapse
Affiliation(s)
- José Gonçalves
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Andrés Torres-Franco
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Elisa Rodriguéz
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Israel Diaz
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Tom Koritnik
- Department for Public Health Microbiology, National Laboratory of Health, Environment and Food, Ljubljana, Slovenia
| | - Priscilla Gomes da Silva
- ICBAS – School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - João R. Mesquita
- ICBAS – School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
| | - Marija Trkov
- Department for Public Health Microbiology, National Laboratory of Health, Environment and Food, Ljubljana, Slovenia
| | - Metka Paragi
- Department for Public Health Microbiology, National Laboratory of Health, Environment and Food, Ljubljana, Slovenia
| | - Raúl Muñoz
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Pedro A. García-Encina
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| |
Collapse
|
11
|
Adelodun B, Kumar P, Odey G, Ajibade FO, Ibrahim RG, Alamri SAM, Alrumman SA, Eid EM, Kumar V, Adeyemi KA, Arya AK, Bachheti A, Oliveira MLS, Choi KS. A safe haven of SARS-CoV-2 in the environment: Prevalence and potential transmission risks in the effluent, sludge, and biosolids. GEOSCIENCE FRONTIERS 2022; 13:101373. [PMID: 37521134 PMCID: PMC8861126 DOI: 10.1016/j.gsf.2022.101373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 05/11/2023]
Abstract
The novel coronavirus, SARS-CoV-2, which has caused millions of death globally is recognized to be unstable and recalcitrant in the environment, especially in the way it has been evolving to form new and highly transmissible variants. Of particular concerns are human-environment interactions and the handling and reusing the environmental materials, such as effluents, sludge, or biosolids laden with the SARS-CoV-2 without adequate treatments, thereby suggesting potential transmission and health risks. This study assesses the prevalence of SARS-CoV-2 RNA in effluents, sludge, and biosolids. Further, we evaluate the environmental, ecological, and health risks of reusing these environmental materials by wastewater/sludge workers and farmers. A systematic review of literature from the Scopus database resulted in a total of 21 articles (11 for effluents, 8 for sludge, and 2 for biosolids) that met the criteria for meta-analysis, which are then subdivided into 30 meta-analyzed studies. The prevalence of SAR-CoV-2 RNA in effluent and sludge based on random-effect models are 27.51 and 1012.25, respectively, with a 95% CI between 6.14 and 48.89 for the effluent, and 104.78 and 1019.71 for the sludge. However, the prevalence of SARS-CoV-2 RNA in the biosolids based on the fixed-effect model is 30.59, with a 95% CI between 10.10 and 51.08. The prevalence of SARS-CoV-2 RNA in environmental materials indicates the inefficiency in some of the treatment systems currently deployed to inactivate and remove the novel virus, which could be a potential health risk concern to vulnerable wastewater workers in particular, and the environmental and ecological issues for the population at large. This timely review portends the associated risks in handling and reusing environmental materials without proper and adequate treatments.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin 240003, Nigeria
| | - Pankaj Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria
- Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Saad A M Alamri
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
| | - Sulaiman A Alrumman
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
| | - Ebrahem M Eid
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Vinod Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Khalid Adeola Adeyemi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Ashish Kumar Arya
- Department of Environmental Science, Graphic Era (Deemed to be University) Deharadun, 248002 Uttarakhand, India
| | - Archana Bachheti
- Department of Environmental Science, Graphic Era (Deemed to be University) Deharadun, 248002 Uttarakhand, India
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
- Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu 41566, South Korea
| |
Collapse
|
12
|
Zahmatkesh S, Amesho KT, Sillanpaa M, Wang C. Integration of renewable energy in wastewater treatment during COVID-19 pandemic: Challenges, opportunities, and progressive research trends. CLEANER CHEMICAL ENGINEERING 2022. [PMCID: PMC9176107 DOI: 10.1016/j.clce.2022.100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 has aroused drastic effects on the global economy and public health. In response to this, personal protective equipment, hand hygiene, and social distancing have been considered the most important ways to prevent the direct spread of the virus. SARS-CoV-2 would be possible survive in wastewater for a few days, leading to secondary transmission via contact with water and wastewater. Thus, the most economical and practical approaches for decentralized wastewater treatment are renewable energies such as the solar energy disinfestation process. However, as freshwater requirements increase and fossil fuels become unsustainable, renewable energy becomes more attractive for desalination applications. Solar photovoltaic, membrane-based, and electricity desalination technologies are becoming increasingly popular due to their lower energy requirements. Several aquatic environments could be benefitted from solar energy wastewater disinfection. Besides, utilizing solar energy during the day can inactivate SARS-CoV-2 to nearly 90%. However, conventional membrane-based desalination practices have also been integrated, including reverse osmosis (RO) and electrodialysis (ED). Several exciting membrane processes have been developed recently, including membrane distillation (MD), pressure-reduced osmosis (PRO), and reverse electrodialysis (RED). Such operations can produce clean and sustainable electricity from brine and impaired water, generally considered hazardous to the environment. As a result, neither PRO nor RED can produce electricity without mixing a high salinity solution (such as seawater or brine and wastewater, respectively) with a low salinity solution. Herein, we critically review the progress in applying renewable energy such as solar energy and geothermal energy for generating electricity from wastewater treatment and uniquely discuss the effects of these two types of renewable energy on SARS-CoV-2 in air and wastewater treatment. We also highlight the significant process made on the membrane processes utilizing renewable energy and research gaps from the standpoint of producing clean and sustainable energy. The significant points of this review are: (1) among various types of renewable energy, solar energy and geothermal energy have been predominantly studied for wastewater treatment, (2) effects of these two types of renewable energy on SARS-CoV-2 in air and wastewater treatment are critically analyzed, and (3) the knowledge gaps and anticipated future research outlook have been consequently proposed thereof.
Collapse
|
13
|
Anand U, Adelodun B, Cabreros C, Kumar P, Suresh S, Dey A, Ballesteros F, Bontempi E. Occurrence, transformation, bioaccumulation, risk and analysis of pharmaceutical and personal care products from wastewater: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:3883-3904. [PMID: 35996725 PMCID: PMC9385088 DOI: 10.1007/s10311-022-01498-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/22/2022] [Indexed: 05/02/2023]
Abstract
Almost all aspects of society from food security to disease control and prevention have benefited from pharmaceutical and personal care products, yet these products are a major source of contamination that ends up in wastewater and ecosystems. This issue has been sharply accentuated during the coronavirus disease pandemic 2019 (COVID-19) due to the higher use of disinfectants and other products. Here we review pharmaceutical and personal care products with focus on their occurrence in the environment, detection, risk, and removal. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01498-7.
Collapse
Affiliation(s)
- Uttpal Anand
- Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Bashir Adelodun
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Carlo Cabreros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, Uttarakhand 249404 India
| | - S. Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462 003 India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
14
|
Mahmoudi T, Naghdi T, Morales-Narváez E, Golmohammadi H. Toward smart diagnosis of pandemic infectious diseases using wastewater-based epidemiology. Trends Analyt Chem 2022; 153:116635. [PMID: 35440833 PMCID: PMC9010328 DOI: 10.1016/j.trac.2022.116635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
COVID-19 outbreak revealed fundamental weaknesses of current diagnostic systems, particularly in prediction and subsequently prevention of pandemic infectious diseases (PIDs). Among PIDs detection methods, wastewater-based epidemiology (WBE) has been demonstrated to be a favorable mean for estimation of community-wide health. Besides, by going beyond purely sensing usages of WBE, it can be efficiently exploited in Healthcare 4.0/5.0 for surveillance, monitoring, control, and above all prediction and prevention, thereby, resulting in smart sensing and management of potential outbreaks/epidemics/pandemics. Herein, an overview of WBE sensors for PIDs is presented. The philosophy behind the smart diagnosis of PIDs using WBE with the help of digital technologies is then discussed, as well as their characteristics to be met. Analytical techniques that are pushing the frontiers of smart sensing and have a high potential to be used in the smart diagnosis of PIDs via WBE are surveyed. In this context, we underscore key challenges ahead and provide recommendations for implementing and moving faster toward smart diagnostics.
Collapse
Affiliation(s)
- Tohid Mahmoudi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Lomas del Campestre, 37150, León, Guanajuato, Mexico
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| |
Collapse
|
15
|
A Review on SARS-CoV-2 Genome in the Aquatic Environment of Africa: Prevalence, Persistence and the Future Prospects. WATER 2022. [DOI: 10.3390/w14132020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic (Coronavirus disease 2019) remains problematic in all its manifestations on the global stage where countless events of human-to-human exposure have led to fatal cases; thus, the aftermath being an unprecedented public health concern, with inaccessible health care and the instability of economies and financial institutions. These pose massive obstacles that can insatiably devour existing human resources causing negative impacts, especially in developing countries. Tracking the origin, dissemination and mutating strains of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) on population-wide scales is a somewhat overwhelming task, with the urgent need to map the dissemination and magnitude of SARS-CoV-2 in near real-time. This review paper focuses on the poor sanitation of some waterbodies and wastewater management policies in low-income African countries, highlighting how these contribute to the COVID-19 pandemic on the continent. Since the outbreak of the novel coronavirus pandemic, there has been an upsurge in scientific literature and studies concerning SARS-CoV-2 with different opinions and findings. The current paper highlights the challenges and also summarizes the environmental aspects related to the monitoring and fate of the SARS-CoV-2 genomes in the aquatic milieu of Sub-Saharan Africa.
Collapse
|
16
|
Zamhuri SA, Soon CF, Nordin AN, Ab Rahim R, Sultana N, Khan MA, Lim GP, Tee KS. A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. SENSING AND BIO-SENSING RESEARCH 2022; 36:100482. [PMID: 35251937 PMCID: PMC8889793 DOI: 10.1016/j.sbsr.2022.100482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The discovery of SARS-CoV-2 virus in the water bodies has been reported, and the risk of virus transmission to human via the water route due to poor wastewater management cannot be disregarded. The main source of the virus in water bodies is the sewage network systems which connects to the surface water. Wastewater-based epidemiology has been applied as an early surveillance tool to sense SARS-CoV-2 virus in the sewage network. This review discussed possible transmission routes of the SARS-CoV-2 virus and the challenges of the existing method in detecting the virus in wastewater. One significant challenge for the detection of the virus is that the high virus loading is diluted by the sheer volume of the wastewater. Hence, virus preconcentration from water samples prior to the application of virus assay is essential to accurately detect traceable virus loading. The preparation time, materials and conditions, virus type, recovery percentage, and various virus recovery techniques are comprehensively discussed in this review. The practicability of molecular methods such as Polymer-Chain-Reaction (PCR) for the detection of SARS-CoV-2 in wastewater will be revealed. The conventional virus detection techniques have several shortcomings and the potential of biosensors as an alternative is also considered. Biosensing techniques have also been proposed as an alternative to PCR and have reported detection limits of 10 pg/μl. This review serves to guide the reader on the future designs and development of highly sensitive, robust and, cost effective SARS-CoV-2 lab-on-a-chip biosensors for use in complex wastewater.
Collapse
Affiliation(s)
- Siti Adibah Zamhuri
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | - Rosminazuin Ab Rahim
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | | | - Muhammad Arif Khan
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Gim Pao Lim
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
17
|
Polo G, Soler-Tovar D, Villamil Jimenez LC, Benavides-Ortiz E, Mera Acosta C. Bayesian spatial modeling of COVID-19 case-fatality rate inequalities. Spat Spatiotemporal Epidemiol 2022; 41:100494. [PMID: 35691638 PMCID: PMC8956344 DOI: 10.1016/j.sste.2022.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/04/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
The ongoing outbreak of COVID-19 challenges the health systems and epidemiological responses of all countries worldwide. Although preventive measures have been globally considered, the spatial heterogeneity of its effectiveness is evident, underscoring global health inequalities. Using Bayesian-based Markov chain Monte Carlo simulations, we identify the spatial association of socioeconomic factors and the risk for dying from COVID-19 in Colombia. We confirm that from March 16 to October 04, 2020, the COVID-19 case-fatality rate and the multidimensional poverty index have a heterogeneous spatial distribution. Spatial analysis reveals that the risk of dying from COVID-19 increases in regions with a higher proportion of poor people with dwelling (RR 1.74 95%CI = 1.54–9.75), educational (RR 1.69 95%CI = 1.36–5.94), childhood/youth (RR 1.35 95%CI = 1.08–4.03), and health (RR 1.16 95%CI = 1.06–2.04) deprivations. These findings evidence the vulnerability of most disadvantaged members of society to dying in a pandemic and assist the spatial planning of preventive strategies focused on vulnerable communities.
Collapse
|
18
|
Gwenzi W. Wastewater, waste, and water-based epidemiology (WWW-BE): A novel hypothesis and decision-support tool to unravel COVID-19 in low-income settings? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150680. [PMID: 34599955 PMCID: PMC8481624 DOI: 10.1016/j.scitotenv.2021.150680] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 05/02/2023]
Abstract
Traditional wastewater-based epidemiology (W-BE) relying on SARS-CoV-2 RNA detection in wastewater is attractive for understanding COVID-19. Yet traditional W-BE based on centralized wastewaters excludes putative SARS-CoV-2 reservoirs such as: (i) wastewaters from shared on-site sanitation facilities, (ii) solid waste including faecal sludge from non-flushing on-site sanitation systems, and COVID-19 personal protective equipment (PPE), (iii) raw/untreated water, and (iv) drinking water supply systems in low-income countries (LICs). A novel hypothesis and decision-support tool based on Wastewater (on-site sanitation, municipal sewer systems), solid Waste, and raw/untreated and drinking Water-based epidemiology (WWW-BE) is proposed for understanding COVID-19 in LICs. The WWW-BE conceptual framework, including components and principles is presented. Evidence on the presence of SARS-CoV-2 and its proxies in wastewaters, solid materials/waste (papers, metals, fabric, plastics), and raw/untreated surface water, groundwater and drinking water is discussed. Taken together, wastewaters from municipal sewer and on-site sanitation systems, solid waste such as faecal sludge and COVID-19 PPE, raw/untreated surface water and groundwater, and drinking water systems in LICs act as potential reservoirs that receive and harbour SARS-CoV-2, and then transmit it to humans. Hence, WWW-BE could serve a dual function in estimating the prevalence and potential transmission of COVID-19. Several applications of WWW-BE as a hypothesis and decision support tool in LICs are discussed. WWW-BE aggregates data from various infected persons in a spatial unit, hence, putatively requires less resources (analytical kits, personnel) than individual diagnostic testing, making it an ideal decision-support tool for LICs. The novelty, and a critique of WWW-BE versus traditional W-BE are presented. Potential challenges of WWW-BE include: (i) biohazards and biosafety risks, (ii) lack of expertise, analytical equipment, and accredited laboratories, and (iii) high uncertainties in estimates of COVID-19 cases. Future perspectives and research directions including key knowledge gaps and the application of novel and emerging technologies in WWW-BE are discussed.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Environment and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
19
|
Anand U, Li X, Sunita K, Lokhandwala S, Gautam P, Suresh S, Sarma H, Vellingiri B, Dey A, Bontempi E, Jiang G. SARS-CoV-2 and other pathogens in municipal wastewater, landfill leachate, and solid waste: A review about virus surveillance, infectivity, and inactivation. ENVIRONMENTAL RESEARCH 2022; 203:111839. [PMID: 34358502 PMCID: PMC8332740 DOI: 10.1016/j.envres.2021.111839] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 05/18/2023]
Abstract
This review discusses the techniques available for detecting and inactivating of pathogens in municipal wastewater, landfill leachate, and solid waste. In view of the current COVID-19 pandemic, SARS-CoV-2 is being given special attention, with a thorough examination of all possible transmission pathways linked to the selected waste matrices. Despite the lack of works focused on landfill leachate, a systematic review method, based on cluster analysis, allows to analyze the available papers devoted to sewage sludge and wastewater, allowing to focalize the work on technologies able to detect and treat pathogens. In this work, great attention is also devoted to infectivity and transmission mechanisms of SARS-CoV-2. Moreover, the literature analysis shows that sewage sludge and landfill leachate seem to have a remote chance to act as a virus transmission route (pollution-to-human transmission) due to improper collection and treatment of municipal wastewater and solid waste. However due to the incertitude about virus infectivity, these possibilities cannot be excluded and need further investigation. As a conclusion, this paper shows that additional research is required not only on the coronavirus-specific disinfection, but also the regular surveillance or monitoring of viral loads in sewage sludge, wastewater, and landfill leachate. The disinfection strategies need to be optimized in terms of dosage and potential adverse impacts like antimicrobial resistance, among many other factors. Finally, the presence of SARS-CoV-2 and other pathogenic microorganisms in sewage sludge, wastewater, and landfill leachate can hamper the possibility to ensure safe water and public health in economically marginalized countries and hinder the realization of the United Nations' sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Snehal Lokhandwala
- Department of Environmental Science & Technology, Shroff S.R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, Gujarat, 393135, India
| | - Pratibha Gautam
- Department of Environmental Science & Technology, Shroff S.R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, Gujarat, 393135, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Hemen Sarma
- Department of Botany, Nanda Nath Saikia College, Dhodar Ali, Titabar, 785630, Assam, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641-046, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
20
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
21
|
Afroj S, Britnell L, Hasan T, Andreeva DV, Novoselov KS, Karim N. Graphene-Based Technologies for Tackling COVID-19 and Future Pandemics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2107407. [PMID: 34899114 PMCID: PMC8646295 DOI: 10.1002/adfm.202107407] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Indexed: 05/06/2023]
Abstract
The COVID-19 pandemic highlighted the need for rapid tools and technologies to combat highly infectious viruses. The excellent electrical, mechanical and other functional properties of graphene and graphene-like 2D materials (2DM) can be utilized to develop novel and innovative devices to tackle COVID-19 and future pandemics. Here, the authors outline how graphene and other 2DM-based technologies can be used for the detection, protection, and continuous monitoring of infectious diseases including COVID-19. The authors highlight the potential of 2DM-based biosensors in rapid testing and tracing of viruses to enable isolation of infected patients, and stop the spread of viruses. The possibilities of graphene-based wearable devices are discussed for continuous monitoring of COVID-19 symptoms. The authors also provide an overview of the personal protective equipment, and potential filtration mechanisms to separate, destroy or degrade highly infectious viruses, and the potential of graphene and other 2DM to increase their efficiency, and enhance functional and mechanical properties. Graphene and other 2DM could not only play a vital role for tackling the ongoing COVID-19 pandemic but also provide technology platforms and tools for the protection, detection and monitoring of future viral diseases.
Collapse
Affiliation(s)
- Shaila Afroj
- Centre for Print Research The University of West of EnglandBristolBS16 1QYUK
| | - Liam Britnell
- Graphene Engineering and Innovation Centre (GEIC)The University of ManchesterManchesterM13 9PLUK
| | - Tahmid Hasan
- Department of Environmental Science and EngineeringBangladesh University of TextilesTejgaonDhaka 1208Bangladesh
| | - Daria V. Andreeva
- Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingaporeSingapore
| | - Kostya S. Novoselov
- Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingaporeSingapore
- Chongqing 2D Materials InstituteLiangjiang New AreaChongqing400714China
| | - Nazmul Karim
- Centre for Print Research The University of West of EnglandBristolBS16 1QYUK
| |
Collapse
|
22
|
Adebisi YA, Rabe A, Lucero-Prisno III DE. COVID-19 surveillance systems in African countries. Health Promot Perspect 2021; 11:382-392. [PMID: 35079582 PMCID: PMC8767077 DOI: 10.34172/hpp.2021.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Surveillance forms the basis for response to disease outbreaks, including COVID-19. Herein, we identified the COVID-19 surveillance systems and the associated challenges in 13 African countries. Methods: We conducted a comprehensive narrative review of peer-reviewed literature published between January 2020 and April 2021 in PubMed, Medline, PubMed Central, and Google Scholar using predetermined search terms. Relevant studies from the search and other data sources on COVID-19 surveillance strategies and associated challenges in 13 African countries (Mauritius, Algeria, Nigeria, Angola, Cote d'Ivoire, the Democratic Republic of the Congo, Ghana, Ethiopia, South Africa, Kenya, Zambia, Tanzania, and Uganda) were identified and reviewed. Results: Our findings revealed that the selected African countries have ramped up COVID-19 surveillance ranging from immediate case notification, virological surveillance, hospital-based surveillance to mortality surveillance among others. Despite this, there exist variations in the level of implementation of the surveillance systems across countries. Integrated Disease Surveillance and Response (IDSR) strategy is also being leveraged in some African countries, but the implementation across countries remains uneven. Our study also revealed various challenges facing surveillance which included shortage of skilled human resources resulting in poor data management, weak health systems, complexities of ethical considerations, diagnostic insufficiency, the burden of co-epidemic surveillance, and geographical barriers, among others. Conclusion: With the variations in the level of implementation of COVID-19 surveillance strategies seen across countries, it is pertinent to ensure proper coordination of the surveillance activities in the African countries and address all the challenges facing COVID-19 surveillance using tailored strategies.
Collapse
Affiliation(s)
- Yusuff Adebayo Adebisi
- Global Health Focus Africa, Nigeria
- African Young Leaders for Global Health, Abuja, Nigeria
- Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Adrian Rabe
- Global Health Focus Africa, Nigeria
- Faculty of Medicine, School of Public Health, Imperial College London, UK
| | - Don Eliseo Lucero-Prisno III
- Global Health Focus Africa, Nigeria
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, UK
| |
Collapse
|
23
|
Mainardi PH, Bidoia ED. Challenges and emerging perspectives of an international SARS-CoV-2 epidemiological surveillance in wastewater. AN ACAD BRAS CIENC 2021; 93:e20210163. [PMID: 34878048 DOI: 10.1590/0001-3765202120210163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/23/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is a new type of coronavirus capable to infect humans and cause the severe acute respiratory syndrome COVID-19, a disease that has been causing huge impacts across the Earth. COVID-19 patients, including mild, pre-symptomatic and asymptomatic cases, were often seen to contain infectious fragments of SARS-CoV-2 in feces and urine samples. Therefore, studies to detect the new coronavirus in wastewater, which collect and concentrate human excreta, have been extremely useful as a viral tracking tool in communities. This type of monitoring, in addition to serve as a non-invasive early warning of COVID-19 outbreaks, would provide better predictions about the SARS-CoV-2 spread and strongly contribute to maintenance the global health. Although current methods to detect viruses in wastewater, based on molecular RT-PCR and RT-qPCR techniques, were considered as reliable and provided accurate qualitative and quantitative results, they have been facing considerable challenges concerning the SARS-CoV-2 surveillance. In this review, the methods used to detect the SARS-CoV-2 in wastewater and the challenges to implement an international viral monitoring network were described. The article also addressed the emerging perspectives associated with the SARS-CoV-2 epidemiological surveillance in this environment and the importance of a worldwide collaboration to generate and disseminate the detection results.
Collapse
Affiliation(s)
- Pedro H Mainardi
- Universidade Estadual Paulista Júlio de Mesquita Filho /UNESP, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Av. 24A, 1515, Bela Vista, 13506900 Rio Claro, SP, Brazil
| | - Ederio D Bidoia
- Universidade Estadual Paulista Júlio de Mesquita Filho /UNESP, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Av. 24A, 1515, Bela Vista, 13506900 Rio Claro, SP, Brazil
| |
Collapse
|
24
|
Asif M, Xu Y, Xiao F, Sun Y. Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 423:130189. [PMID: 33994842 PMCID: PMC8103773 DOI: 10.1016/j.cej.2021.130189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 05/18/2023]
Abstract
Coronavirus diseases-2019 (COVID-19) is becoming increasing serious and major threat to public health concerns. As a matter of fact, timely testing enhances the life-saving judgments on treatment and isolation of COVID-19 infected individuals at possible earliest stage which ultimately suppresses spread of infectious diseases. Many government and private research institutes and manufacturing companies are striving to develop reliable tests for prompt quantification of SARS-CoV-2. In this review, we summarize existing diagnostic methods as manual laboratory-based nucleic acid assays for COVID-19 and their limitations. Moreover, vitality of rapid and point of care serological tests together with emerging biosensing technologies has been discussed in details. Point of care tests with characteristics of rapidity, accurateness, portability, low cost and requiring non-specific devices possess great suitability in COVID-19 diagnosis and detection. Besides, this review also sheds light on several preventive measures to track and manage disease spread in current and future outbreaks of diseases.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun Xu
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430205, China
| | - Fei Xiao
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430205, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
25
|
Impacts of COVID-19 on the Aquatic Environment and Implications on Aquatic Food Production. SUSTAINABILITY 2021. [DOI: 10.3390/su132011281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in ecological changes of aquatic ecosystems, affected the aquatic food supply chain, and disrupted the socio-economy of global populations. Due to reduced human activities during the pandemic, the aquatic environment was reported to improve its water quality, wild fishery stocks, and biodiversity. However, the sudden surge of plastics and biomedical wastes during the COVID-19 pandemic masked the positive impacts and increased the risks of aquatic pollution, especially microplastics, pharmaceuticals, and disinfectants. The transmission of SARS-CoV-2 from wastewater treatment plants to natural water bodies could have serious impacts on the environment and human health, especially in developing countries with poor waste treatment facilities. The presence and persistence of SARS-CoV-2 in human excreta, wastewaters, and sludge and its transmission to aquatic ecosystems could have negative impacts on fisheries and aquaculture industries, which have direct implications on food safety and security. COVID-19 pandemic-related environmental pollution showed a high risk to aquatic food security and human health. This paper reviews the impacts of COVID-19, both positive and negative, and assesses the causes and consequences of anthropogenic activities that can be managed through effective regulation and management of eco-resources for the revival of biodiversity, ecosystem health, and sustainable aquatic food production.
Collapse
|
26
|
Girón-Navarro R, Linares-Hernández I, Castillo-Suárez LA. The impact of coronavirus SARS-CoV-2 (COVID-19) in water: potential risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52651-52674. [PMID: 34453253 PMCID: PMC8397333 DOI: 10.1007/s11356-021-16024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/14/2021] [Indexed: 06/02/2023]
Abstract
This review summarizes research data on SARS-CoV-2 in water environments. A literature survey was conducted using the electronic databases Science Direct, Scopus, and Springer. This complete research included and discussed relevant studies that involve the (1) introduction, (2) definition and features of coronavirus, (2.1) structure and classification, (3) effects on public health, (4) transmission, (5) detection methods, (6) impact of COVID-19 on the water sector (drinking water, cycle water, surface water, wastewater), (6.5) wastewater treatment, and (7) future trends. The results show contamination of clean water sources, and community drinking water is vulnerable. Additionally, there is evidence that sputum, feces, and urine contain SARS-CoV-2, which can maintain its viability in sewage and the urban-rural water cycle to move towards seawater or freshwater; thus, the risk associated with contracting COVID-19 from contact with untreated water or inadequately treated wastewater is high. Moreover, viral loads have been detected in surface water, although the risk is lower for countries that efficiently treat their wastewater. Further investigation is immediately required to determine the persistence and mobility of SARS-CoV-2 in polluted water and sewage as well as the possible potential of disease transmission via drinking water. Conventional wastewater treatment systems have been shown to be effective in removing the virus, which plays an important role in pandemic control. Monitoring of this virus in water is extremely important as it can provide information on the prevalence and distribution of the COVID-19 pandemic in different communities as well as possible infection dynamics to prevent future outbreaks.
Collapse
Affiliation(s)
- Rocío Girón-Navarro
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico.
| | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico.
- Consejo Mexiquense de Ciencia y Tecnología - COMECYT, Diagonal Alfredo del Mazo 198 y 103, Guadalupe y Club Jardín, C.P. 50010, Toluca de Lerdo, Estado de México, México.
| |
Collapse
|
27
|
Sanchez-Galan JE, Ureña G, Escovar LF, Fabrega-Duque JR, Coles A, Kurt Z. Challenges to detect SARS-CoV-2 on environmental media, the need and strategies to implement the detection methodologies in wastewaters. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:105881. [PMID: 34221893 PMCID: PMC8239206 DOI: 10.1016/j.jece.2021.105881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/15/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Understanding risks, putting in place preventative methods to seamlessly continue daily activities are essential tools to fight a pandemic. All social, commercial and leisure activities have an impact on the environmental media. Therefore, to accurately predict the fate and behavior of viruses in the environment, it is necessary to understand and analyze available detection methods, possible transmission pathways and preventative techniques. The aim of this review is to critically analyze and summarize the research done regarding SARS-COV-2 virus detection, focusing on sampling and laboratory detection methods in environmental media. Special attention will be given to wastewater and sewage sludge. This review has summarized the survival of the virus on surfaces to estimate the risk carried by different environmental media (water, wastewater, air and soil) in order to explain which communities are under higher risk. The critical analysis concludes that the detection of SARS-CoV-2 with current technologies and sampling strategies would reveal the presence of the virus. This information could be used to design systematic sampling points throughout the sewage systems when available, taking into account peak flows and more importantly economic factors on when to sample. Such approaches will provide clues for potential future viral outbreak, saving financial resources by reducing testing necessities for viral detection, hence contributing for more appropriate confinement policies by governments and could be further used to define more precisely post-pandemic or additional waves measures if/ when needed.
Collapse
Affiliation(s)
- Javier E Sanchez-Galan
- Facultad de Ingeniería de Sistemas Computacionales (FISC), Universidad Tecnológica de Panamá, Panama
- Grupo de Investigación en Biotecnología, Bioinformática y Biología de Sistemas (GIBBS), Universidad Tecnológica de Panamá, Panama
- Institute of Scientific Research and High Technology Services, Panama City, Panama
| | - Grimaldo Ureña
- Grupo de Investigación en Biotecnología, Bioinformática y Biología de Sistemas (GIBBS), Universidad Tecnológica de Panamá, Panama
- Theoretical Evolutionary Genetics Laboratory, University of Houston, Houston, TX, USA
| | | | - Jose R Fabrega-Duque
- Centro de Investigaciones Hidráulicas e Hidrotécnicas (CIHH), Universidad Tecnologica de Panama, Panama
| | - Alexander Coles
- Centro de Investigaciones Hidráulicas e Hidrotécnicas (CIHH), Universidad Tecnologica de Panama, Panama
| | - Zohre Kurt
- Grupo de Investigación en Biotecnología, Bioinformática y Biología de Sistemas (GIBBS), Universidad Tecnológica de Panamá, Panama
- Urban Risk Center, Florida State University-Panama, Panama
- Institute of Scientific Research and High Technology Services, Panama City, Panama
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
28
|
Krivoňáková N, Šoltýsová A, Tamáš M, Takáč Z, Krahulec J, Ficek A, Gál M, Gall M, Fehér M, Krivjanská A, Horáková I, Belišová N, Bímová P, Škulcová AB, Mackuľak T. Mathematical modeling based on RT-qPCR analysis of SARS-CoV-2 in wastewater as a tool for epidemiology. Sci Rep 2021; 11:19456. [PMID: 34593871 PMCID: PMC8484274 DOI: 10.1038/s41598-021-98653-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerges to scientific research and monitoring of wastewaters to predict the spread of the virus in the community. Our study investigated the COVID-19 disease in Bratislava, based on wastewater monitoring from September 2020 until March 2021. Samples were analyzed from two wastewater treatment plants of the city with reaching 0.6 million monitored inhabitants. Obtained results from the wastewater analysis suggest significant statistical dependence. High correlations between the number of viral particles in wastewater and the number of reported positive nasopharyngeal RT-qPCR tests of infected individuals with a time lag of 2 weeks/12 days (R2 = 83.78%/R2 = 52.65%) as well as with a reported number of death cases with a time lag of 4 weeks/27 days (R2 = 83.21%/R2 = 61.89%) was observed. The obtained results and subsequent mathematical modeling will serve in the future as an early warning system for the occurrence of a local site of infection and, at the same time, predict the load on the health system up to two weeks in advance.
Collapse
Affiliation(s)
- Naďa Krivoňáková
- Institute of Information Engineering, Automation, and Mathematics, Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Andrea Šoltýsová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravska Cesta 9, 84505, Bratislava, Slovakia
| | - Michal Tamáš
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic.
| | - Zdenko Takáč
- Institute of Information Engineering, Automation, and Mathematics, Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Ján Krahulec
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Andrej Ficek
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Miroslav Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Marián Gall
- Institute of Information Engineering, Automation, and Mathematics, Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Miroslav Fehér
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Anna Krivjanská
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Ivana Horáková
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Noemi Belišová
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Paula Bímová
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Andrea Butor Škulcová
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Tomáš Mackuľak
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| |
Collapse
|
29
|
Revilla Pacheco C, Terán Hilares R, Colina Andrade G, Mogrovejo-Valdivia A, Pacheco Tanaka DA. Emerging contaminants, SARS-COV-2 and wastewater treatment plants, new challenges to confront: A short review. BIORESOURCE TECHNOLOGY REPORTS 2021; 15:100731. [PMID: 34124614 PMCID: PMC8183098 DOI: 10.1016/j.biteb.2021.100731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
The current pandemic caused by SARS-CoV-2 has put public health at risk, being wastewater-based epidemiology (WBE) a potential tool in the detection, prevention, and treatment of present and possible future outbreaks, since this virus enters wastewater through various sources such as feces, vomit, and sputum. Thus, advanced technologies such as advanced oxidation processes (AOP), membrane technology (MT) are identified through a systematic literature review as an alternative option for the destruction and removal of emerging contaminants (drugs and personal care products) released mainly by infected patients. The objectives of this review are to know the implications that the new COVID-19 outbreak is generating and will generate in water compartments, as well as the new challenges faced by wastewater treatment plants due to the change in a load of contaminants and the solutions proposed based on the aforementioned technologies to be applied to preserve public health and the environment.
Collapse
Affiliation(s)
- Claudia Revilla Pacheco
- Laboratorio de Tecnología de Membranas, Universidad Católica de Santa María - UCSM, Urb. San José, San José S/N, Yanahuara, Arequipa, Peru
| | - Ruly Terán Hilares
- Laboratorio de Tecnología de Membranas, Universidad Católica de Santa María - UCSM, Urb. San José, San José S/N, Yanahuara, Arequipa, Peru
| | - Gilberto Colina Andrade
- Laboratorio de Tecnología de Membranas, Universidad Católica de Santa María - UCSM, Urb. San José, San José S/N, Yanahuara, Arequipa, Peru
| | - Alejandra Mogrovejo-Valdivia
- Laboratorio de Tecnología de Membranas, Universidad Católica de Santa María - UCSM, Urb. San José, San José S/N, Yanahuara, Arequipa, Peru
| | - David Alfredo Pacheco Tanaka
- Laboratorio de Tecnología de Membranas, Universidad Católica de Santa María - UCSM, Urb. San José, San José S/N, Yanahuara, Arequipa, Peru
| |
Collapse
|
30
|
Adelodun B, Ajibade FO, Tiamiyu AO, Nwogwu NA, Ibrahim RG, Kumar P, Kumar V, Odey G, Yadav KK, Khan AH, Cabral-Pinto MMS, Kareem KY, Bakare HO, Ajibade TF, Naveed QN, Islam S, Fadare OO, Choi KS. Monitoring the presence and persistence of SARS-CoV-2 in water-food-environmental compartments: State of the knowledge and research needs. ENVIRONMENTAL RESEARCH 2021; 200:111373. [PMID: 34033834 PMCID: PMC8142028 DOI: 10.1016/j.envres.2021.111373] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 05/18/2023]
Abstract
The recent spread of severe acute respiratory syndrome coronavirus (SAR-CoV-2) and the accompanied coronavirus disease 2019 (COVID-19) has continued ceaselessly despite the implementations of popular measures, which include social distancing and outdoor face masking as recommended by the World Health Organization. Due to the unstable nature of the virus, leading to the emergence of new variants that are claimed to be more and rapidly transmissible, there is a need for further consideration of the alternative potential pathways of the virus transmissions to provide the needed and effective control measures. This review aims to address this important issue by examining the transmission pathways of SARS-CoV-2 via indirect contacts such as fomites and aerosols, extending to water, food, and other environmental compartments. This is essentially required to shed more light regarding the speculation of the virus spread through these media as the available information regarding this is fragmented in the literature. The existing state of the information on the presence and persistence of SARS-CoV-2 in water-food-environmental compartments is essential for cause-and-effect relationships of human interactions and environmental samples to safeguard the possible transmission and associated risks through these media. Furthermore, the integration of effective remedial measures previously used to tackle the viral outbreaks and pandemics, and the development of new sustainable measures targeting at monitoring and curbing the spread of SARS-CoV-2 were emphasized. This study concluded that alternative transmission pathways via human interactions with environmental samples should not be ignored due to the evolving of more infectious and transmissible SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, 41566, South Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, 240103, Nigeria.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | | | - Nathaniel Azubuike Nwogwu
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Department of Agricultural and Bioresources Engineering, Federal University of Technology Owerri, PMB 1526, Nigeria; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | | | - Pankaj Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Vinod Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, 114, Jazan, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Kola Yusuff Kareem
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, 240103, Nigeria
| | | | - Temitope Fausat Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | | | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, 61413, Asir, Saudi Arabia
| | - Oluniyi Olatunji Fadare
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Division of Environmental and Earth Sciences, Centre for Energy Research and Development, Obafemi Awolowo University, Ile Ife, 220001, Nigeria
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, 41566, South Korea; Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu, 41566, South Korea.
| |
Collapse
|
31
|
Kolarević S, Micsinai A, Szántó-Egész R, Lukács A, Kračun-Kolarević M, Lundy L, Kirschner AKT, Farnleitner AH, Djukic A, Čolić J, Nenin T, Sunjog K, Paunović M. Detection of SARS-CoV-2 RNA in the Danube River in Serbia associated with the discharge of untreated wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146967. [PMID: 33865136 PMCID: PMC9754897 DOI: 10.1016/j.scitotenv.2021.146967] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 05/17/2023]
Abstract
In Serbia less than 13% of collected municipal wastewaters is being treated before their release in the environment. This includes all municipal wastewater discharges from Belgrade (capital city of Serbia; population 1,700,000). Previous research has identified the impacts of raw wastewater discharges from Belgrade on the Danube River, and this study investigated if such discharges also provided a pathway for SARS-CoV-2 RNA material. Samples were collected during the most critical circumstances that occurred so far within the COVID-19 pandemics in Serbia. Grab and composite samples were collected in December 2020, during the peak of the third wave (in terms of reported cases) at the site which receives the wastewater loads in Belgrade. Grab samples collected upstream and downstream of Belgrade were also analyzed. RNA was quantified using RT-qPCR with primer sets targeting nucleocapsid (N1 and N2) and envelope (E) protein genes. SARS-CoV-2 RNA (5.97 × 103 to 1.32 × 104 copies/L) was detected only in samples collected at the site strongly impacted by the wastewaters where all three applied primer sets gave positive signals. Determined concentrations correspond to those reported in wastewater influents sampled at treatment plants in other countries indicating an epidemiological indicator function of used approach for rivers with high pollution loads in countries with poor wastewater treatment.
Collapse
Affiliation(s)
- Stoimir Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia.
| | - Adrienn Micsinai
- WESSLING Hungary Ltd., H-1045 Budapest, Anonymus str 6., Hungary
| | | | - Alena Lukács
- Biomi Ltd., H-2100 Gödöllő, Szent-Györgyi Albert str 4., Hungary
| | - Margareta Kračun-Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Lian Lundy
- DRIZZLE Centre of Excellence, Luleå University of Technology, VA-Teknik, 971 87 Luleå, Sweden; Middlesex University, The Burroughs, London NW4 4BT, UK
| | - Alexander K T Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology - Water Microbiology, Kinderspitalgasse 15, Vienna, Austria; Interuniversity Cooperation Center Water and Health (ICC), Austria; Karl Landsteiner University of Health Sciences, Division Water Quality & Health, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems, Austria
| | - Andreas H Farnleitner
- Interuniversity Cooperation Center Water and Health (ICC), Austria; Karl Landsteiner University of Health Sciences, Division Water Quality & Health, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems, Austria; Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Group for Environmental Microbiology and Molecular Diagnostics, Gumpendorferstraße 1a, A-1060 Vienna, Austria
| | - Aleksandar Djukic
- Faculty of Civil Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia
| | - Jasna Čolić
- Jaroslav Černi Water Institute, Jaroslava Černog 80, 11226 Belgrade, Serbia
| | - Tanja Nenin
- Jaroslav Černi Water Institute, Jaroslava Černog 80, 11226 Belgrade, Serbia
| | - Karolina Sunjog
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Momir Paunović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
32
|
Chowdhury RB, Khan A, Mahiat T, Dutta H, Tasmeea T, Binth Arman AB, Fardu F, Roy BB, Hossain MM, Khan NA, Amin ATMN, Sujauddin M. Environmental externalities of the COVID-19 lockdown: Insights for sustainability planning in the Anthropocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147015. [PMID: 34088121 PMCID: PMC9616981 DOI: 10.1016/j.scitotenv.2021.147015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic has abruptly halted the Anthropocene's ever-expanding reign for the time being. The resulting global human confinement, dubbed as the Anthropause, has created an unprecedented opportunity for us to evaluate the environmental consequences of large-scale changes in anthropogenic activities. Based on a methodical and in-depth review of related literature, this study critically evaluates the positive and negative externalities of COVID-19 induced lockdown on environmental components including air, water, noise, waste, forest, wildlife, and biodiversity. Among adverse impacts of the lockdown, increased amount of healthcare waste (300-400%), increased level of atmospheric ozone (30-300%), elevated levels of illicit felling in forests and wildlife poaching were prominent. Compared to the negative impacts, significant positive changes in various quality parameters related to key environmental components were evident. Positive impacts on air quality, water quality, noise level, waste generation, and wildlife were apparent in varying degrees as evaluated in this study. By presenting a critical overview of the recommendations given in the major literature in light of these documented impacts, this paper alludes to potential policy reforms as a guideline for future sustainable environmental management planning. Some of the key recommendations are e.g., enhance remote working facilities, cleaner design, use of internet of things, automation, systematic lockdown, and inclusion of hazardous waste management in disaster planning. The summarized lessons of this review, pertinent to the dynamic relationship between anthropogenic activities and environmental degradation, amply bring home the need for policy reforms and prioritization of Sustainable Development Goals in the context of the planetary boundaries to the environmental sustainability for a new post-pandemic world.
Collapse
Affiliation(s)
| | - Ayushi Khan
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, Bangladesh
| | - Tashfia Mahiat
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, Bangladesh
| | | | - Tahana Tasmeea
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, Bangladesh
| | - Afra Bashira Binth Arman
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, Bangladesh
| | - Farzin Fardu
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, Bangladesh
| | - Bidhan Bhuson Roy
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, Bangladesh; Department of Wood Science, Faculty of Forestry, The University of British Columbia, Canada
| | | | - Niaz Ahmed Khan
- Department of Development Studies, University of Dhaka, Dhaka, Bangladesh; Independent University, Bangladesh (IUB), Bashundhara, Dhaka, Bangladesh
| | - A T M Nurul Amin
- Department of Economics and Social Sciences, BRAC University, Dhaka, Bangladesh
| | - Mohammad Sujauddin
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, Bangladesh.
| |
Collapse
|
33
|
Elsaid K, Olabi V, Sayed ET, Wilberforce T, Abdelkareem MA. Effects of COVID-19 on the environment: An overview on air, water, wastewater, and solid waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112694. [PMID: 33990012 PMCID: PMC8086829 DOI: 10.1016/j.jenvman.2021.112694] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic has hit the world hardly as of the beginning of 2020 and quickly spread worldwide from its first-reported point in early Dec. 2019. By mid-March 2021, the COVID-19 almost hit all countries worldwide, with about 122 and 2.7 million confirmed cases and deaths, respectively. As a strong measure to stop the infection spread and deaths, many countries have enforced quarantine and lockdown of many activities. The shutdown of these activities has resulted in large economic losses. However, it has been widely reported that these measures have resulted in improved air quality, more specifically in highly polluted areas characterized by massive population and industrial activities. The reduced levels of carbon, nitrogen, sulfur, and particulate matter emissions have been reported and confirmed worldwide in association with lockdown periods. On the other hand, ozone levels in ambient air have been found to increase, mainly in response to the reduced nitrogen emissions. In addition, improved water quality in natural water resources has been reported as well. Wastewater facilities have reported a higher level of organic load with persistent chemicals due to the increased use of sanitizers, disinfectants, and antibiotics. The solid waste generated due to the COVID-19 pandemic was found to increase both qualitatively and quantitatively. This work presents and summarizes the observed environmental effects of COVID-19 as reported in the literature for different countries worldwide. The work provides a distinct overview considering the effects imposed by COVID-19 on the air, water, wastewater, and solid waste as critical elements of the environment.
Collapse
Affiliation(s)
- Khaled Elsaid
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. 23874, Doha, Qatar.
| | - Valentina Olabi
- College of Social Sciences, University of Glasgow, Scotland, UK
| | - Enas Taha Sayed
- Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt; Center for Advanced Materials Research, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Tabbi Wilberforce
- Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK
| | - Mohammad Ali Abdelkareem
- Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt; Center for Advanced Materials Research, University of Sharjah, 27272, Sharjah, United Arab Emirates; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
34
|
Adelodun B, Ajibade FO, Ibrahim RG, Ighalo JO, Bakare HO, Kumar P, Eid EM, Kumar V, Odey G, Choi KS. Insights into hazardous solid waste generation during COVID-19 pandemic and sustainable management approaches for developing countries. JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT 2021; 23:2077-2086. [PMID: 35194403 PMCID: PMC8343211 DOI: 10.1007/s10163-021-01281-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/30/2021] [Indexed: 05/09/2023]
Abstract
The recent emergence of the COVID-19 pandemic has contributed to the drastic production and use of healthcare and personal protective equipment, leading to the release of a huge quantity of hazardous medical and solid wastes in the environment. Meanwhile, these solid wastes may contribute to the spread of the SARS-CoV-2 viral particles when disposed of without proper treatment and care. Since SARS-CoV-2 could persist on different material surfaces including plastic, steel, paper, cardboard, cloth, and wood, proper management of these hazardous solid wastes has become a challenging task during the COVID-19 pandemic. In this paper, an overview of the consumption of COVID-19-related healthcare and personal protective equipment along with the production of hazardous solid waste is presented. The efficient management of these wastes is necessary to prevent the entering of SARS-CoV-2 in various environmental compartments. Therefore, some preventive measures including the use of biodegradable materials for manufacturing personal protective equipment, minimizing the use of non-biodegradable materials, efficient pre- and-post planning, careful segregation, and disposal are, therefore, proposed for their sustainable management. The findings reported in this paper contribute to tackling the problems associated with hazardous solid waste management, particularly for low- and middle-income countries.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, Korea
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria
- Key Laboratory for Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | | | - Joshua O. Ighalo
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Ilorin, PMB 1515, Ilorin, Nigeria
- Department of Chemical Engineering, Nnamdi Azikiwe University, PMB. 5025, Awka, Nigeria
| | - Hashim Olalekan Bakare
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed To Be University), Haridwar, 249404 Uttarakhand India
| | - Ebrahem M. Eid
- Biology Department, College of Science, King Khalid University, Abha, 61321 Saudi Arabia
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Vinod Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed To Be University), Haridwar, 249404 Uttarakhand India
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, Korea
| | - Kyung-Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, Korea
- Institute of Agricultural Science and Technology, Kyungpook, National University, Daegu, Korea
| |
Collapse
|
35
|
Buonerba A, Corpuz MVA, Ballesteros F, Choo KH, Hasan SW, Korshin GV, Belgiorno V, Barceló D, Naddeo V. Coronavirus in water media: Analysis, fate, disinfection and epidemiological applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125580. [PMID: 33735767 PMCID: PMC7932854 DOI: 10.1016/j.jhazmat.2021.125580] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 05/03/2023]
Abstract
Considerable attention has been recently given to possible transmission of SARS-CoV-2 via water media. This review addresses this issue and examines the fate of coronaviruses (CoVs) in water systems, with particular attention to the recently available information on the novel SARS-CoV-2. The methods for the determination of viable virus particles and quantification of CoVs and, in particular, of SARS-CoV-2 in water and wastewater are discussed with particular regard to the methods of concentration and to the emerging methods of detection. The analysis of the environmental stability of CoVs, with particular regard of SARS-CoV-2, and the efficacy of the disinfection methods are extensively reviewed as well. This information provides a broad view of the state-of-the-art for researchers involved in the investigation of CoVs in aquatic systems, and poses the basis for further analyses and discussions on the risk associated to the presence of SARS-CoV-2 in water media. The examined data indicates that detection of the virus in wastewater and natural water bodies provides a potentially powerful tool for quantitative microbiological risk assessment (QMRA) and for wastewater-based epidemiology (WBE) for the evaluation of the level of circulation of the virus in a population. Assays of the viable virions in water media provide information on the integrity, capability of replication (in suitable host species) and on the potential infectivity. Challenges and critical issues relevant to the detection of coronaviruses in different water matrixes with both direct and surrogate methods as well as in the implementation of epidemiological tools are presented and critically discussed.
Collapse
Affiliation(s)
- Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy; Inter-University Centre for Prediction and Prevention of Relevant Hazards (Centro Universitario per la Previsione e Prevenzione Grandi Rischi, C.U.G.RI.), Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University (KNU), 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98105-2700, United States
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Damià Barceló
- Catalan Institute for Water Research (ICR-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy.
| |
Collapse
|
36
|
Al-Saidi M, Hussein H. The water-energy-food nexus and COVID-19: Towards a systematization of impacts and responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146529. [PMID: 34030272 PMCID: PMC9752562 DOI: 10.1016/j.scitotenv.2021.146529] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 05/22/2023]
Abstract
The COVID-19 pandemic offers an opportunity to examine the impacts of system-wide crises on key supply sectors such as water, energy and food. These sectors are becoming increasingly interlinked in environmental policy-making and with regard to achieving supply security. There is a pressing need for a systematization of impacts and responses beyond individual disruptions. This paper provides a holistic assessment of the implications of COVID-19 on the water-energy-food (WEF) nexus. First, it integrates the academic literature related to single cases and disruptions to provide a broader view of COVID-19 demand- and supply-side disruptions and immediate effects. Then, the major, long-term impact categories of medicalization/hygienization, (re)localization of production, and demand fluctuations are highlighted. These impacts result in priority cross-links such as irrigation, energy requirements for local food production, energy use for water and wastewater treatment, or water for energy use. Finally, sector-level insights on impacts and responses are provided, drawing from illustrative cases. The analysis of impacts of COVID-19 on the WEF nexus reflects heterogeneous experiences of short-term adaptations, and highlights the revaluation of the water-food-trade nexus. Revived debates on food sufficiency can benefit from green applications to minimize expected trade-offs. The current crisis also reveals some gaps in the WEF nexus debates with regard to the lack of risk-based perspectives and the need for a better consideration of spatial aspects in resource integration. Regarding resource-security issues in the WEF nexus, the COVID-19 stress test boosts debates concerning the adequacy of the production value chains (e.g., contingency and storage, diversification, and self-sufficiency) and the value of cross-border integration (e.g., trade, globalization, and aid).
Collapse
Affiliation(s)
- Mohammad Al-Saidi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Hussam Hussein
- Department of Politics and International Relations (DPIR), University of Oxford, Manor Road, OX1 3UQ Oxford, UK
| |
Collapse
|
37
|
Thakur AK, Sathyamurthy R, Velraj R, Lynch I, Saidur R, Pandey AK, Sharshir SW, Kabeel AE, Hwang JY, GaneshKumar P. Secondary transmission of SARS-CoV-2 through wastewater: Concerns and tactics for treatment to effectively control the pandemic. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112668. [PMID: 33895445 PMCID: PMC8055200 DOI: 10.1016/j.jenvman.2021.112668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 05/03/2023]
Abstract
The SARS-CoV-2 virus has spread globally and has severely impacted public health and the economy. Hand hygiene, social distancing, and the usage of personal protective equipment are considered the most vital tools in controlling the primary transmission of the virus. Converging evidence indicated the presence of SARS-CoV-2 in wastewater and its persistence over several days, which may create secondary transmission of the virus via waterborne and wastewater pathways. Although, researchers have started focusing on this mode of virus transmission, limited knowledge and societal unawareness of the transmission through wastewater may lead to significant increases in the number of positive cases. To emphasize the severe issue of virus transmission through wastewater and create societal awareness, we present a state of the art critical review on transmission of SARS-CoV-2 in wastewater and the potential remedial strategies to effectively control the viral spread and safeguard society. For low-income countries with high population densities, it is suggested to identify the virus in large scale municipal wastewater plants before following up with one-to-one testing for effective control of the secondary transmission. Ultrafiltration is an effective method for wastewater treatment and usually more than 4 logs of virus removal are achieved while safeguarding good protein permeability. Decentralized wastewater treatment facilities using solar-assisted disinfestation methods are most economical and can be effectively used in hospitals, isolation wards, and medical centers for reducing the risk of transmission from high local concentration sites, especially in tropical countries with abundant solar energy. Disinfection with chlorine, sodium hypochlorite, benzalkonium chloride, and peracetic acid have shown potential in terms of virucidal properties. Biological wastewater treatment using micro-algae will be highly effective in removal of virus and can be incorporated into membrane bio-reaction to achieve excellent virus removal rate. Though promising results have been shown by initial research for inactivation of SARS-CoV-2 in wastewater using physical, chemical and biological based treatment methods, there is a pressing need for extensive investigation of COVID-19 specific disinfectants with appropriate concentrations, their environmental implications, and regular monitoring of transmission. Effective wastewater treatment methods with high virus removal capacity and low treatment costs should be selected to control the virus spread and safeguard society from this deadly virus.
Collapse
Affiliation(s)
- Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu, 641407, India.
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu, 641407, India.
| | - R Velraj
- Institute for Energy Studies, Anna University, Chennai-600025, Tamil Nadu, India
| | - I Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - R Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia
| | - A K Pandey
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abd Elnaby Kabeel
- Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Egypt; Faculty of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Jang-Yeon Hwang
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - P GaneshKumar
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea
| |
Collapse
|
38
|
Anand U, Bianco F, Suresh S, Tripathi V, Núñez-Delgado A, Race M. SARS-CoV-2 and other viruses in soil: An environmental outlook. ENVIRONMENTAL RESEARCH 2021; 198:111297. [PMID: 33971130 PMCID: PMC8102436 DOI: 10.1016/j.envres.2021.111297] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 05/15/2023]
Abstract
In the present review, the authors shed light on the SARS-CoV-2 impact, persistence, and monitoring in the soil environment. With this purpose, several aspects have been deepened: i) viruses in soil ecosystems; ii) direct and indirect impact on the soil before and after the pandemic, and iii) methods for quantification of viruses and SARS-CoV-2 monitoring in soil. Viruses are present in soil (i.e. up to 417 × 107 viruses per g TS-1 in wetlands) and can affect the behavior and ecology of other life forms (e.g. bacteria), which are remarkably important for maintaining environmental equilibrium. Also, SARS-CoV-2 can be found in soil (i.e. up to 550 copies·g-1). Considering that the SARS-CoV-2 is very recent, poor knowledge is available in the literature on persistence in the soil and reference has been made to coronaviruses and other families of viruses. For instance, the survival of enveloped viruses (e.g. SARS-CoV) can reach 90 days in soils with 10% of moisture content at ambient. In such a context, the possible spread of the SARS-CoV-2 in the soil was evaluated by analyzing the possible contamination routes.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, Univ. Santiago de Compostela, 27002, Spain
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| |
Collapse
|
39
|
Bandala ER, Kruger BR, Cesarino I, Leao AL, Wijesiri B, Goonetilleke A. Impacts of COVID-19 pandemic on the wastewater pathway into surface water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145586. [PMID: 33607440 PMCID: PMC7862925 DOI: 10.1016/j.scitotenv.2021.145586] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 05/16/2023]
Abstract
With global number of cases 106 million and death toll surpassing 2.3 million as of mid-February 2021, the COVID-19 pandemic is certainly one of the major threats that humankind have faced in modern history. As the scientific community navigates through the overwhelming avalanche of information on the multiple health impacts caused by the pandemic, new reports start to emerge on significant ancillary effects associated with the treatment of the virus. Besides the evident health impacts, other emerging impacts related to the COVID-19 pandemic, such as water-related impacts, merits in-depth investigation. This includes strategies for the identification of these impacts and technologies to mitigate them, and to prevent further impacts not only in water ecosystems, but also in relation to human health. This paper has critically reviewed currently available knowledge on the most significant potential impacts of the COVID-19 pandemic on the wastewater pathway into surface water, as well as technologies that may serve to counteract the major threats posed, key perspectives and challenges. Additionally, current knowledge gaps and potential directions for further research and development are identified. While the COVID-19 pandemic is an ongoing and rapidly evolving situation, compiling current knowledge of potential links between wastewater and surface water pathways as related to environmental impacts and relevant associated technologies, as presented in this review, is a critical step to guide future research in this area.
Collapse
Affiliation(s)
- Erick R Bandala
- Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV 89119, USA.
| | - Brittany R Kruger
- Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV 89119, USA
| | - Ivana Cesarino
- São Paulo State University (UNESP), School of Agriculture, Botucatu, Brazil
| | - Alcides L Leao
- São Paulo State University (UNESP), School of Agriculture, Botucatu, Brazil
| | - Buddhi Wijesiri
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| | - Ashantha Goonetilleke
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
40
|
Giacobbo A, Rodrigues MAS, Zoppas Ferreira J, Bernardes AM, de Pinho MN. A critical review on SARS-CoV-2 infectivity in water and wastewater. What do we know? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145721. [PMID: 33610994 PMCID: PMC7870439 DOI: 10.1016/j.scitotenv.2021.145721] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 04/14/2023]
Abstract
The COVID-19 outbreak circulating the world is far from being controlled, and possible contamination routes are still being studied. There are no confirmed cases yet, but little is known about the infection possibility via contact with sewage or contaminated water as well as with aerosols generated during the pumping and treatment of these aqueous matrices. Therefore, this article presents a literature review on the detection of SARS-CoV-2 in human excreta and its pathways through the sewer system and wastewater treatment plants until it reaches the water bodies, highlighting their occurrence and infectivity in sewage and natural water. Research lines are still indicated, which we believe are important for improving the detection, quantification, and mainly the infectivity analyzes of SARS-CoV-2 and other enveloped viruses in sewage and natural water. In fact, up till now, no case of transmission via contact with sewage or contaminated water has been reported and the few studies conducted with these aqueous matrices have not detected infectious viruses. On the other hand, studies are showing that SARS-CoV-2 can remain viable, i.e., infectious, for up to 4.3 and 6 days in sewage and water, respectively, and that other species of coronavirus may remain viable in these aqueous matrices for more than one year, depending on the sample conditions. These are strong pieces of evidence that the contamination mediated by contact with sewage or contaminated water cannot be ruled out, even because other more resistant and infectious mutations of SARS-CoV-2 may appear.
Collapse
Affiliation(s)
- Alexandre Giacobbo
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil; Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal.
| | - Marco Antônio Siqueira Rodrigues
- Post-Graduation Program in Materials Technology and Industrial Processes, Pure Sciences and Technology Institute, Feevale University, Rodovia RS-239, n. 2755, Vila Nova, Novo Hamburgo, RS 93525-075, Brazil.
| | - Jane Zoppas Ferreira
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil.
| | - Andréa Moura Bernardes
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil.
| | - Maria Norberta de Pinho
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal; Chemical Engineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal.
| |
Collapse
|
41
|
Ji B, Zhao Y, Esteve-Núñez A, Liu R, Yang Y, Nzihou A, Tai Y, Wei T, Shen C, Yang Y, Ren B, Wang X, Wang Y. Where do we stand to oversee the coronaviruses in aqueous and aerosol environment? Characteristics of transmission and possible curb strategies. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 413:127522. [PMID: 33132743 PMCID: PMC7590645 DOI: 10.1016/j.cej.2020.127522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 05/08/2023]
Abstract
By 17 October 2020, the severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused confirmed infection of more than 39,000,000 people in 217 countries and territories globally and still continues to grow. As environmental professionals, understanding how SARS-CoV-2 can be transmitted via water and air environment is a concern. We have to be ready for focusing our attention to the prompt diagnosis and potential infection control procedures of the virus in integrated water and air system. This paper reviews the state-of-the-art information from available sources of published papers, newsletters and large number of scientific websites aimed to provide a comprehensive profile on the transmission characteristics of the coronaviruses in water, sludge, and air environment, especially the water and wastewater treatment systems. The review also focused on proposing the possible curb strategies to monitor and eventually cut off the coronaviruses under the authors' knowledge and understanding.
Collapse
Affiliation(s)
- Bin Ji
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Ranbin Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Yang Yang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Ange Nzihou
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS, UMR-5302, Jarlard, Albi 81013 Cedex 09, France
| | - Yiping Tai
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Ting Wei
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- Chemical Engineering Department, University of Alcalá, Madrid, Spain
| | - Cheng Shen
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- School of Environment and Natural Resources, Zhejiang University Sci. & Technol./Zhejiang Prov, Key Lab. of Recycling & Ecotreatment Waste, Hangzhou 310023, Zhejiang, PR China
| | - Yan Yang
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Baimimng Ren
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS, UMR-5302, Jarlard, Albi 81013 Cedex 09, France
- School of Water and Environment, Chang'an University, Xi'an 710061, PR China
| | - Xingxing Wang
- Xi'an Hospital of Traditional Chinese Medicine, Xi 'an 710021, PR China
| | - Ya'e Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| |
Collapse
|
42
|
Mohan M, Rue HA, Bajaj S, Galgamuwa GAP, Adrah E, Aghai MM, Broadbent EN, Khadamkar O, Sasmito SD, Roise J, Doaemo W, Cardil A. Afforestation, reforestation and new challenges from COVID-19: Thirty-three recommendations to support civil society organizations (CSOs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112277. [PMID: 33756214 PMCID: PMC8809530 DOI: 10.1016/j.jenvman.2021.112277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Afforestation/reforestation (A/R) programs spearheaded by Civil Society Organizations (CSOs) play a significant role in reaching global climate policy targets and helping low-income nations meet the United Nations (UN) Sustainable Development Goals (SDGs). However, these organizations face unprecedented challenges due to the COVID-19 pandemic. Consequently, these challenges affect their ability to address issues associated with deforestation and forest degradation in a timely manner. We discuss the influence COVID-19 can have on previous, present and future A/R initiatives, in particular, the ones led by International Non-governmental Organizations (INGOs). We provide thirty-three recommendations for exploring underlying deforestation patterns and optimizing forest policy reforms to support forest cover expansion during the pandemic. The recommendations are classified into four groups - i) curbing deforestation and improving A/R, ii) protecting the environment and mitigating climate change, iii) enhancing socio-economic conditions, and iv) amending policy and law enforcement practices.
Collapse
Affiliation(s)
- Midhun Mohan
- Department of Geography, University of California-Berkeley, Berkeley, CA, 94709, USA; United Nations Volunteering Program, Morobe Development Foundation, Lae, 00411, Papua New Guinea.
| | - Hayden A Rue
- United Nations Volunteering Program, Morobe Development Foundation, Lae, 00411, Papua New Guinea; Grow Non-profit, Kathmandu, Nepal.
| | - Shaurya Bajaj
- United Nations Volunteering Program, Morobe Development Foundation, Lae, 00411, Papua New Guinea.
| | - G A Pabodha Galgamuwa
- United Nations Volunteering Program, Morobe Development Foundation, Lae, 00411, Papua New Guinea; The Nature Conservancy, Maryland/DC Chapter, Cumberland, MD, 21502, USA.
| | - Esmaeel Adrah
- United Nations Volunteering Program, Morobe Development Foundation, Lae, 00411, Papua New Guinea.
| | | | - Eben North Broadbent
- Spatial Ecology and Conservation Lab, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA.
| | - Omkar Khadamkar
- United Nations Volunteering Program, Morobe Development Foundation, Lae, 00411, Papua New Guinea.
| | - Sigit D Sasmito
- NUS Environmental Research Institute (NERI), National University of Singapore, 21 Lower Kent Ridge Road, 19 Singapore, 119077, Singapore; Department of Geography, National University of Singapore, 1 Arts Link, Singapore, 117570, Singapore.
| | - Joseph Roise
- Department of Forestry and Environmental Resources, North Carolina State University, 2820 Faucette Dr., Campus Box 8001, 27695, Raleigh, NC, United States.
| | - Willie Doaemo
- United Nations Volunteering Program, Morobe Development Foundation, Lae, 00411, Papua New Guinea; Morobe Development Foundation, Doyle Street, Trish Avenue-Eriku, Lae, 00411, Papua New Guinea; Department of Civil Engineering, Papua New Guinea University of Technology, Lae, 00411, Papua New Guinea.
| | - Adrian Cardil
- Tecnosylva, Parque Tecnológico de León, 24009, León, Spain; Forest Science and Technology Centre of Catalonia (CTFC), Ctra. Sant Llorenç de Morunys, Km 2, 25280, Solsona, Lleida, Spain; School of Agrifood and Forestry Science and Engineering, University of Lleida, Av. de l'Alcalde Rovira Roure, 191, 25198, Solsona, Lleida, Spain.
| |
Collapse
|
43
|
Ranjbari M, Shams Esfandabadi Z, Zanetti MC, Scagnelli SD, Siebers PO, Aghbashlo M, Peng W, Quatraro F, Tabatabaei M. Three pillars of sustainability in the wake of COVID-19: A systematic review and future research agenda for sustainable development. JOURNAL OF CLEANER PRODUCTION 2021; 297:126660. [PMID: 34785869 PMCID: PMC8580193 DOI: 10.1016/j.jclepro.2021.126660] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic has immensely impacted the economic, social, and environmental pillars of sustainability in human lives. Due to the scholars' increasing interest in responding to the urgent call for action against the pandemic, the literature of sustainability research considering COVID-19 consequences is very fragmented. Therefore, a comprehensive review of the COVID-19 implications for sustainability practices is still lacking. This research aims to analyze the effects of COVID-19 on the triple bottom line (TBL) of sustainability to support the future sustainable development agenda. To achieve that, the following research questions are addressed by conducting a systematic literature review: (i) what is the current status of research on the TBL of sustainability considering COVID-19 implications? (ii) how does COVID-19 affect the TBL of sustainability? and (iii) what are the potential research gaps and future research avenues for sustainable development post COVID-19? The results manifest the major implications of the COVID-19 outbreak for the triple sustainability pillars and the sustainable development agenda from the economic, social, and environmental points of view. The key findings provide inclusive insights for governments, authorities, practitioners, and policy-makers to alleviate the pandemic's negative impacts on sustainable development and to realize the sustainability transition opportunities post COVID-19. Finally, five research directions for sustainable development corresponding to the United Nations' sustainable development goals (SDGs) post COVID-19 are provided, as follows: (1) sustainability action plan considering COVID-19 implications: refining sustainability goals and targets and developing measurement framework; (2) making the most of sustainability transition opportunities in the wake of COVID-19: focus on SDG 12 and SDG 9; (3) innovative solutions for economic resilience towards sustainability post COVID-19: focus on SDG 1, SDG 8, and SDG 17; (4) in-depth analysis of the COVID-19 long-term effects on social sustainability: focus on SDG 4, SDG 5, and SDG 10; and (5) expanding quantitative research to harmonize the COVID-19-related sustainability research.
Collapse
Affiliation(s)
- Meisam Ranjbari
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
- Department of Economics and Statistics "Cognetti de Martiis", University of Turin, Lungo Dora Siena 100 A, 10153, Torino, Italy
| | - Zahra Shams Esfandabadi
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
- Energy Center Lab, Politecnico di Torino, Via Paolo Borsellino 38/16, 10138, Torino, Italy
| | - Maria Chiara Zanetti
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | | | - Peer-Olaf Siebers
- School of Computer Science, University of Nottingham, Jubilee Campus, NG8 1BB, Nottingham, UK
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Wanxi Peng
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Francesco Quatraro
- Department of Economics and Statistics "Cognetti de Martiis", University of Turin, Lungo Dora Siena 100 A, 10153, Torino, Italy
- BRICK, Collegio Carlo Alberto, Piazza Arbarello 8, 10123, Torino, Italy
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
- Biofuel Research Team (BRTeam), Terengganu, Malaysia
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Extension, and Education Organization (AREEO), Karaj, Iran
| |
Collapse
|
44
|
Ahmed W, Bibby K, D'Aoust PM, Delatolla R, Gerba CP, Haas CN, Hamilton KA, Hewitt J, Julian TR, Kaya D, Monis P, Moulin L, Naughton C, Noble RT, Shrestha A, Tiwari A, Simpson SL, Wurtzer S, Bivins A. Differentiating between the possibility and probability of SARS-CoV-2 transmission associated with wastewater: empirical evidence is needed to substantiate risk. FEMS MICROBES 2021; 2:xtab007. [PMID: 38626275 PMCID: PMC8135732 DOI: 10.1093/femsmc/xtab007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Charles P Gerba
- Department of Environmental Science, Water and Energy Sustainable Technology Center, University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA
| | | | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and the Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand
| | - Timothy R Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St #116, Corvallis, OR 97331, USA
| | - Paul Monis
- South Australian Water Corporation, Adelaide, Australia
| | - Laurent Moulin
- Eau de Paris R&D Laboratory. 33 Av. Jean Jaures 94200 Ivry/seine, France
| | - Colleen Naughton
- University of California Merced Department of Civil and Environmental Engineering, 5200 N, Lake Rd. Merced, CA 95343, USA
| | - Rachel T Noble
- University of North Carolina Institute of Marine Sciences, Morehead City, NC, USA
| | - Abhilasha Shrestha
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Ananda Tiwari
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland
| | | | - Sebastien Wurtzer
- Eau de Paris R&D Laboratory. 33 Av. Jean Jaures 94200 Ivry/seine, France
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
45
|
Anand U, Adelodun B, Pivato A, Suresh S, Indari O, Jakhmola S, Jha HC, Jha PK, Tripathi V, Di Maria F. A review of the presence of SARS-CoV-2 RNA in wastewater and airborne particulates and its use for virus spreading surveillance. ENVIRONMENTAL RESEARCH 2021; 196:110929. [PMID: 33640498 PMCID: PMC7906514 DOI: 10.1016/j.envres.2021.110929] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 05/08/2023]
Abstract
According to the WHO, on October 16, 2020, the spreading of the SARS-CoV-2, responsible for the COVID-19 pandemic, reached 235 countries and territories, and resulting in more than 39 million confirmed cases and 1.09 million deaths globally. Monitoring of the virus outbreak is one of the main activities pursued to limiting the number of infected people and decreasing the number of deaths that have caused high pressure on the health care, social, and economic systems of different countries. Wastewater based epidemiology (WBE), already adopted for the surveillance of life style and health conditions of communities, shows interesting features for the monitoring of the COVID-19 diffusion. Together with wastewater, the analysis of airborne particles has been recently suggested as another useful tool for detecting the presence of SARS-CoV-2 in given areas. The present review reports the status of research currently performed concerning the monitoring of SARS-CoV-2 spreading by WBE and airborne particles. The former have been more investigated, whereas the latter is still at a very early stage, with a limited number of very recent studies. Nevertheless, the main results highlights in both cases necessitate more research activity for better understating and defining the biomarkers and the related sampling and analysis procedures to be used for this important aim.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Bashir Adelodun
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Omkar Indari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Shweta Jakhmola
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Hem Chandra Jha
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Pawan Kumar Jha
- Centre for Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India.
| | - Francesco Di Maria
- LAR(5) Laboratory - Dipartimento di Ingegneria - University of Perugia, via G. Duranti 93, 06125, Perugia, Italy.
| |
Collapse
|
46
|
Liu L, Hu J, Hou Y, Tao Z, Chen Z, Chen K. Pit latrines may be a potential risk in rural China and low-income countries when dealing with COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143283. [PMID: 33162149 PMCID: PMC7598438 DOI: 10.1016/j.scitotenv.2020.143283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 05/17/2023]
Abstract
According to the latest reports, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused coronavirus disease 2019 (COVID-19), was successfully isolated from the excreta (stool and urine) of COVID-19 patients, suggesting SARS-CoV-2 could be transmitted through excreta contaminated water. As pit latrines and the use of untreated excreta as fertilizer were common in rural China, we surveyed 27 villages of Jiangxi and Hubei provinces and found that pit latrines could be a potential source of SARS-CoV-2 water pollution. Recently, bats have been widely recognized as the source of SARS-CoV-2. There were many possible intermediate hosts of SARS-CoV-2, including pangolin, snake, bird and fish, but which one was still not clear exactly. Here, we proposed a hypothesis to illustrate the mechanism that SARS-CoV-2 might spread from the excreta of infected humans in pit latrines to potential animal hosts, thus becoming a sustainable source of infection in rural China. Therefore, we believe that abolishing pit latrines and banning the use of untreated excreta as fertilizer can improve the local living environment and effectively prevent COVID-19 and other potential waterborne diseases that could emanate from the excreta of infected persons. Although this study focused on rural areas in China, the results could also be applied to low-income countries, especially in Africa.
Collapse
Affiliation(s)
- Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Hu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Tao
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer institute & Hospital, Tianjin, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
47
|
Maipas S, Panayiotides IG, Tsiodras S, Kavantzas N. COVID-19 Pandemic and Environmental Health: Effects and the Immediate Need for a Concise Risk Analysis. ENVIRONMENTAL HEALTH INSIGHTS 2021; 15:1178630221996352. [PMID: 33642862 PMCID: PMC7894687 DOI: 10.1177/1178630221996352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 05/12/2023]
Abstract
COVID-19 pandemic, as another disease emerging in the interface between animals and humans, has revealed the importance of interdisciplinary collaborations such as the One Health initiative. Environmental Health, whose role in the One Health concept is well established, has been associated with COVID-19 pandemic via various direct and indirect pathways. Modern lifestyle, climate change, environmental degradation, exposure to chemicals such as endocrine disruptors, and exposure to psychological stress factors impact human health negatively. As a result, many people are in the disadvantageous position to face the pandemic with an already impaired immune system due to their exposure to environmental health hazards. Moreover, the ongoing pandemic has been associated with outdoor and indoor air pollution, water and noise pollution, food security, and plastic pollution issues. Also, the inadequate infrastructure, the lack of proper waste and wastewater management, and the unequal social vulnerability reveal more linkages between Environmental Health and COVID-19 pandemic. The significant emerging ecological risk and its subsequent health implications require immediate risk analysis and risk communication strategies.
Collapse
Affiliation(s)
- Sotirios Maipas
- Master Program “Environment and Health. Management of Environmental Health Effects,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens General Hospital “Laikon,” Athens, Greece
| | - Ioannis G Panayiotides
- Master Program “Environment and Health. Management of Environmental Health Effects,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kavantzas
- Master Program “Environment and Health. Management of Environmental Health Effects,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens General Hospital “Laikon,” Athens, Greece
| |
Collapse
|
48
|
Bernardino Jr G, Domondon KO, Layao J, Magwilang JO, Eckman H. Methods and resources needed in treating SARS-CoV-2 in wastewater. POPULATION MEDICINE 2021. [DOI: 10.18332/popmed/132470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Ihsanullah I, Bilal M, Naushad M. Coronavirus 2 (SARS-CoV-2) in water environments: Current status, challenges and research opportunities. JOURNAL OF WATER PROCESS ENGINEERING 2021; 39:101735. [PMID: 38620601 PMCID: PMC7566827 DOI: 10.1016/j.jwpe.2020.101735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 05/02/2023]
Abstract
The outbreak of COVID-19 has posed enormous health, social, environmental and economic challenges to the entire human population. Nevertheless, it provides an opportunity for extensive research in various fields to evaluate the fate of the crisis and combat it. The apparent need for imperative research in the biological and medical field is the focus of researchers and scientists worldwide. However, there are some new challenges and research opportunities in the field of water and wastewater treatment concerning the novel coronavirus 2 (SARS-CoV-2). This article briefly summarizes the latest literature reporting the presence of SARS-CoV-2 in water and wastewater/sewage. Furthermore, it highlights the challenges, potential opportunities and research directions in the water and wastewater treatment field. Some of the significant challenges and research opportunities are the development of standard techniques for the detection and quantification of SARS-CoV-2 in the water phase, assessment of favorable environments for its survival and decay in water; and development of effective strategies for elimination of the novel virus from water. Advancement in research in this domain will help to protect the environment, human health, and managing this type of pandemic in the future.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Abbas HSM, Xu X, Sun C, Ullah A, Gillani S, Raza MAA. Impact of COVID-19 pandemic on sustainability determinants: A global trend. Heliyon 2021; 7:e05912. [PMID: 33458434 PMCID: PMC7796670 DOI: 10.1016/j.heliyon.2021.e05912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
For the last six months till today, the world had had no luck in defeating COVID-19. This study examined the impact of the COVID-19 Pandemic on sustainability determinants, with the time arisen from December 27, 2019, through June 30, 2020. This study considers quantitative COVID-19 dashboard data with sustainable determinants; old age group, people exposed to air pollution, and countries with the most international travelers. Applying linear regression examines that COVID-19 behavior concerning the aging population and countries host the most international travelers, more positively significant than people exposed to PM2.5% air pollution, respectively. This study made a novel contribution by analyzing two variables' interaction; first, the aging population and the countries that host the most international travelers. Secondly, the aging population and people exposed to air pollution are vulnerable to COVID-19 globally, a novel concept comprehensively. Results show that countries with aging populations are more exposed to COVID-19, and its interaction term host the most international travelers. It also analyses that the aging population and its interaction with people exposed to air pollution are also vulnerable to COVID-19 but marginally lesser than the former. However, their behavior varies from country to country, making room for future study to analyze a more in-depth analysis. It gives a different dimension to consider other risk factors of COVID-19 by bearing in mind its unique contagious characteristics, which will help policymakers draft a sound epidemic preparedness policy to tackle the unforeseen crisis. It gives a thought of provoking to policy practitioners for the risk characteristics of COVID-19, which needs a reassessment to epidemic risk management to deal with this, and future unforeseen crisis by considering Sustainable Development Goals.
Collapse
Affiliation(s)
- Hafiz Syed Mohsin Abbas
- College of Public Administration, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xiaodong Xu
- College of Public Administration, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chunxia Sun
- College of Public Administration, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Atta Ullah
- School of Management, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Samreen Gillani
- School of Economics, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Ahsan Ali Raza
- School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| |
Collapse
|