1
|
Meade RD, Notley SR, Kirby NV, Kenny GP. A critical review of the effectiveness of electric fans as a personal cooling intervention in hot weather and heatwaves. Lancet Planet Health 2024; 8:e256-e269. [PMID: 38580427 DOI: 10.1016/s2542-5196(24)00030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 04/07/2024]
Abstract
Health agencies worldwide have historically cautioned that electric fans accelerate body-heat gain during hot weather and heatwaves (typically in air temperatures ≥35°C). However, guidance published since 2021 has suggested that fans can still cool the body in air temperatures up to 40°C by facilitating sweat evaporation, and therefore are an inexpensive yet sustainable alternative to air conditioning. In a critical analysis of the reports cited to support this claim, we found that although fan use improves sweat evaporation, these benefits are of insufficient magnitude to exert meaningful reductions in body core temperature in air temperatures exceeding 35°C. Health agencies should continue to advise against fan use in air temperatures higher than 35°C, especially for people with compromised sweating capacity (eg, adults aged 65 years or older). Improving access to ambient cooling strategies (eg, air conditioning or evaporative coolers) and minimising their economic and environmental costs through policy initiatives, efficient cooling technology, and combined use of low-cost personal interventions (eg, skin wetting or fan use) are crucial for climate adaptation.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada; Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Bin Maideen MF, Jay O, Bongers C, Nanan R, Smallcombe JW. Optimal low-cost cooling strategies for infant strollers during hot weather. ERGONOMICS 2023; 66:1935-1949. [PMID: 36688597 DOI: 10.1080/00140139.2023.2172212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The current study aimed to identity the optimal low-cost stroller cooling strategies for use in hot and moderately humid summer weather. A commercially available stroller was instrumented to assess the key parameters of the thermal environment. The cooling efficacy of eight different stroller configurations was examined in a counterbalanced order across 16 hot summer days (air temperature (Ta) = 33.3 ± 4.1 °C; relative humidity = 36.7 ± 15%; black globe temperature = 43.9 ± 4.6 °C). Compared with a standard-practice stroller configuration, combining a moist muslin draping with a battery-operated clip-on fan provided optimal in-stroller cooling, reducing the end-trial air temperature by 4.7 °C and the wet bulb globe temperature (WBGT) by 1.4 °C. In contrast, in-stroller temperatures were substantially increased by draping a dry muslin (Ta = +2.6 °C; WBGT = +0.9 °C) or flannelette (Ta = +3.7 °C; WBGT = +1.4 °C) cloth over the stroller carriage. These findings provide empirical evidence which may inform guidance aimed at protecting infants during hot weather.Practitioner summary: This study examined the efficacy of traditional and novel stroller cooling strategies for use in hot and moderately humid weather. Covering the carriage with a dry muslin cloth substantially increased stroller temperatures and should be avoided. Evaporative cooling methods reduced in-stroller temperatures. A moist muslin cloth draping combined with a fan provided optimal stroller cooling.
Collapse
Affiliation(s)
- Mohammad Fauzan Bin Maideen
- Thermal Ergonomics Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Heat and Health Research Incubator, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Coen Bongers
- Thermal Ergonomics Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Neonatal Intensive Care Unit, Nepean Hospital, Penrith, Australia
- Sydney Medical School Nepean, University of Sydney, Australia
| | - James W Smallcombe
- Thermal Ergonomics Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Heat and Health Research Incubator, The University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
McGarr GW, Meade RD, Kenny GP. Indoor overheating influences self-reported symptoms and mood-state in older adults during a simulated heatwave: Effects of mid-day cooling centre use. Physiol Behav 2023; 271:114335. [PMID: 37607601 DOI: 10.1016/j.physbeh.2023.114335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Public health agencies recommend that older adults without home air-conditioning visit cooling centres to mitigate physiological strain from high ambient temperatures during heat waves. However, there is little evidence regarding their influence on self-reported environmental symptoms and mood-state after returning to the heat. METHODS Forty adults (64-79 years) underwent a daylong laboratory-based indoor overheating simulation (9-hours, heat index: 37 °C) with (cooling, n = 20) or without (control, n = 20) a 2-hour air-conditioning intervention (hours 5-6). Mean skin and core temperature areas under the curve (AUC, hours 0-9) were used to assess cumulative thermal strain. Group differences in total symptom scores and subjective heat illness (68-item environmental symptoms questionnaire) as well as total mood disturbance and energy index (40-item profile of mood states questionnaire) were evaluated at end-heating (adjusted for pre-exposure scores). RESULTS Cooling reduced mean skin and core temperature AUCs by 4.0 [0.1, 0.8] and 1.6 [0.4, 2.8] °C·hour compared to control (both p < 0.048). However, at end-heating neither mean skin nor core temperatures differed between groups (both p > 0.999). Total symptom scores and subjective heat illness were 0.58-fold [0.44, 0.77] and 0.56-fold [0.40, 0.78] lower in the cooling compared to control group (both p < 0.001). Mood disturbance was 0.91-fold [0.83, 0.99] lower for cooling than control (p = 0.036), although energy index was not different between groups (p = 0.141). CONCLUSION Cooling centres can have sustained positive effects on perceived thermal strain and mood-state in older adults after returning to the heat. However, continued vigilance and use of appropriate countermeasures to mitigate physiological strain from indoor overheating should be encouraged as body temperatures can rapidly return to pre-cooling levels.
Collapse
Affiliation(s)
- Gregory W McGarr
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada; Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
4
|
Wang H, Lei TH, Schlader ZJ, Mündel T, Amano T, Fujii N, Nishiyasu T, Kondo N. Effect of voluntary electric fan use on autonomic and perceptual responses to lower leg passive heating in humans. J Therm Biol 2023; 118:103724. [PMID: 39491300 DOI: 10.1016/j.jtherbio.2023.103724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2024]
Abstract
This study investigated the efficacy of voluntary fan utilization on autonomic thermoeffector responses and thermal perceptions during passive heating by lower leg immersion (42 °C) in a 27 °C ambient temperature, 50% relative humidity. Fourteen young healthy adults (8 females) were recruited for this study where they underwent two trials with (Fan) and without an electric fan (No fan) during 50 min of passive heat stress. The skin temperature on forearm and abdomen was lower in Fan than in No fan (all p < 0.02), and the local skin temperature on the chest, and mean skin temperature were significantly lower in Fan than in No fan in the final 20 min (mean value of mean skin temperature: 34.77(0.15) °C vs 35.11(0.12) °C, respectively, all p < 0.03), whilst the rectal temperature was not different between trials (37.11(0.23) °C vs 37.08(0.27) °C, p = 0.78). The sensitivity of local sweat rate (LSR) with the increase of mean body temperature on the chest and forearm was significantly lower in Fan than No fan trials (all p < 0.02). The sum value of thermal sensation was lower and wetness was higher in Fan than in No fan in the final 25 min (thermal sensation: 7.50 (1.25) vs 5.00 (3.06), wetness: -6.57 (2.31) vs -5.21 (2.46), all p<0.03) whilst thermal discomfort did not differ significantly between trials (p = 0.12). The voluntary use of an electric fan attenuates the autonomic thermoeffector response, such as sweating, and influences thermal sensation and wetness but did not affect core temperature and thermal discomfort during lower leg immersion.
Collapse
Affiliation(s)
- Hui Wang
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Tatsuro Amano
- Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan.
| |
Collapse
|
5
|
Tetzlaff EJ, Goulet N, Gorman M, Richardson GRA, Kenny GP. The Intersection of the COVID-19 Pandemic and the 2021 Heat Dome in Canadian Digital News Media: A Content Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6674. [PMID: 37681814 PMCID: PMC10488163 DOI: 10.3390/ijerph20176674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
During the 2021 Heat Dome, 619 people in British Columbia died due to the heat. This public health disaster was made worse by the ongoing COVID-19 pandemic. Few studies have explored the intersection of heat with COVID-19, and none in Canada. Considering that climate change is expected to increase the frequency of extreme heat events, it is important to improve our understanding of intersecting public health crises. Thus, this study aimed to explore media-based public health communication in Canada during the COVID-19 pandemic and the 2021 Heat Dome. A qualitative content analysis was conducted on a subset of media articles (n = 520) related to the COVID-19 pandemic which were identified through a previous media analysis on the 2021 Heat Dome (n = 2909). Many of the articles provided conflicting health messages that may have confused the public about which health protective actions to take. The articles also showed how the COVID-19 pandemic may have exacerbated the health impacts of the 2021 Heat Dome, as pandemic-related public health measures may have deterred people away from protecting themselves from heat. This study, which provides novel insight into the prioritization of public health messaging when an extreme heat event occurs concurrently with a pandemic, supports the need for consistent heat health guidance.
Collapse
Affiliation(s)
- Emily J. Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.J.T.); (G.P.K.)
- Heat Division, Climate Change and Innovation Bureau, Healthy Environment and Consumer Safety Branch, Safe Environments Directorate, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.J.T.); (G.P.K.)
- Heat Division, Climate Change and Innovation Bureau, Healthy Environment and Consumer Safety Branch, Safe Environments Directorate, Health Canada, Ottawa, ON K1A 0K9, Canada;
- Behavioural and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Melissa Gorman
- Heat Division, Climate Change and Innovation Bureau, Healthy Environment and Consumer Safety Branch, Safe Environments Directorate, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Gregory R. A. Richardson
- Heat Division, Climate Change and Innovation Bureau, Healthy Environment and Consumer Safety Branch, Safe Environments Directorate, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.J.T.); (G.P.K.)
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
6
|
Bröde P, Kampmann B. Temperature-Humidity-Dependent Wind Effects on Physiological Heat Strain of Moderately Exercising Individuals Reproduced by the Universal Thermal Climate Index (UTCI). BIOLOGY 2023; 12:802. [PMID: 37372087 DOI: 10.3390/biology12060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Increasing wind speed alleviates physiological heat strain; however, health policies have advised against using ventilators or fans under heat wave conditions with air temperatures above the typical skin temperature of 35 °C. Recent research, mostly with sedentary participants, suggests mitigating the effects of wind at even higher temperatures, depending on the humidity level. Our study aimed at exploring and quantifying whether such results are transferable to moderate exercise levels, and whether the Universal Thermal Climate Index (UTCI) reproduces those effects. We measured heart rates, core and skin temperatures, and sweat rates in 198 laboratory experiments completed by five young, semi-nude, heat-acclimated, moderately exercising males walking the treadmill at 4 km/h on the level for three hours under widely varying temperature-humidity combinations and two wind conditions. We quantified the cooling effect of increasing the wind speed from 0.3 to 2 m/s by fitting generalized additive models predicting the physiological heat stress responses depending on ambient temperature, humidity, and wind speed. We then compared the observed wind effects to the assessment performed by the UTCI. Increasing the wind speed lowered the physiological heat strain for air temperatures below 35 °C, but also for higher temperatures with humidity levels above 2 kPa water vapor pressure concerning heart rate and core temperature, and 3 kPa concerning skin temperature and sweat rate, respectively. The UTCI assessment of wind effects correlated positively with the observed changes in physiological responses, showing the closest agreement (r = 0.9) for skin temperature and sweat rate, where wind is known for elevating the relevant convective and evaporative heat transfer. These results demonstrate the potential of the UTCI for adequately assessing sustainable strategies for heat stress mitigation involving fans or ventilators, depending on temperature and humidity, for moderately exercising individuals.
Collapse
Affiliation(s)
- Peter Bröde
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, D-44139 Dortmund, Germany
| | - Bernhard Kampmann
- Department of Occupational Health Science, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany
| |
Collapse
|
7
|
Foster J, Smallcombe JW, Hodder S, Jay O, Flouris AD, Havenith G. Quantifying the impact of heat on human physical work capacity; part II: the observed interaction of air velocity with temperature, humidity, sweat rate, and clothing is not captured by most heat stress indices. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:507-520. [PMID: 34743228 PMCID: PMC8850241 DOI: 10.1007/s00484-021-02212-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 05/20/2023]
Abstract
Increasing air movement can alleviate or exacerbate occupational heat strain, but the impact is not well defined across a wide range of hot environments, with different clothing levels. Therefore, we combined a large empirical study with a physical model of human heat transfer to determine the climates where increased air movement (with electric fans) provides effective body cooling. The model allowed us to generate practical advice using a high-resolution matrix of temperature and humidity. The empirical study involved a total of 300 1-h work trials in a variety of environments (35, 40, 45, and 50 °C, with 20 up to 80% relative humidity) with and without simulated wind (3.5 vs 0.2 m∙s-1), and wearing either minimal clothing or a full body work coverall. Our data provides compelling evidence that the impact of fans is strongly determined by air temperature and humidity. When air temperature is ≥ 35 °C, fans are ineffective and potentially harmful when relative humidity is below 50%. Our simulated data also show the climates where high wind/fans are beneficial or harmful, considering heat acclimation, age, and wind speed. Using unified weather indices, the impact of air movement is well captured by the universal thermal climate index, but not by wet-bulb globe temperature and aspirated wet-bulb temperature. Overall, the data from this study can inform new guidance for major public and occupational health agencies, potentially maintaining health and productivity in a warming climate.
Collapse
Affiliation(s)
- Josh Foster
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, LE11 3TU, UK
| | - James W Smallcombe
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, LE11 3TU, UK
| | - Simon Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, LE11 3TU, UK
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
8
|
Mitra P, Shaw R, Sukhwani V, Mitra BK, Rahman MA, Deshkar S, Sharma D. Urban-Rural Partnership Framework to Enhance Food-Energy-Water Security in the Post-COVID-19 Era. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312493. [PMID: 34886218 PMCID: PMC8657157 DOI: 10.3390/ijerph182312493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Food, energy, and water (collectively referred to as 'FEW') security forms the key to human survival as well as socioeconomic development. However, the security of these basic resources is increasingly threatened due to growing demand. Beyond the widespread implications on public health, Coronavirus disease (COVID-19) has further raised additional challenges for FEW security, particularly for urban populations, as they mainly outsource their FEW demands from rural areas outside their physical boundaries. In light of that, this study reviews existing literature on FEW security to highlight the growing relevance of urban-rural linkages for realizing FEW security, especially against the backdrop of the COVID-19 pandemic. To achieve this, relevant research documents have been identified through Elsevier's Scopus database and other sources (by applying search equations). The authors have accordingly underlined the necessity of shifting the conventional urban-centric approach to city region-centric development planning for the post-COVID-19 era. To this end, a framework has been suggested for translating physical urban-rural linkages to a partnership enhancing a collective response. The major elements of this framework are the conceptualization of national-level policies to support urban-rural linkages. The framework can play the role of a science-policy-action interface to redesign the FEW system in city regions.
Collapse
Affiliation(s)
- Priyanka Mitra
- Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa Shi 252-0882, Kanagawa, Japan; (P.M.); (V.S.)
| | - Rajib Shaw
- Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa Shi 252-0882, Kanagawa, Japan; (P.M.); (V.S.)
- Correspondence: ; Tel.: +81-466-49-3641
| | - Vibhas Sukhwani
- Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa Shi 252-0882, Kanagawa, Japan; (P.M.); (V.S.)
| | - Bijon Kumer Mitra
- Institute for Global Environmental Strategies (IGES), 2108-11 Kamiyamaguchi, Hayama 240-0115, Kanagawa, Japan;
| | - Md Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur 1706, Bangladesh;
| | - Sameer Deshkar
- Department of Architecture and Planning, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010, Maharashtra, India;
| | - Devesh Sharma
- Department of Atmospheric Science, School of Earth Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305817, Rajasthan, India;
| |
Collapse
|
9
|
Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, Kennard H, Lampard P, Solano Rodriguez B, Arnell N, Ayeb-Karlsson S, Belesova K, Cai W, Campbell-Lendrum D, Capstick S, Chambers J, Chu L, Ciampi L, Dalin C, Dasandi N, Dasgupta S, Davies M, Dominguez-Salas P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Escobar LE, Georgeson L, Grace D, Graham H, Gunther SH, Hartinger S, He K, Heaviside C, Hess J, Hsu SC, Jankin S, Jimenez MP, Kelman I, Kiesewetter G, Kinney PL, Kjellstrom T, Kniveton D, Lee JKW, Lemke B, Liu Y, Liu Z, Lott M, Lowe R, Martinez-Urtaza J, Maslin M, McAllister L, McMichael C, Mi Z, Milner J, Minor K, Mohajeri N, Moradi-Lakeh M, Morrissey K, Munzert S, Murray KA, Neville T, Nilsson M, Obradovich N, Sewe MO, Oreszczyn T, Otto M, Owfi F, Pearman O, Pencheon D, Rabbaniha M, Robinson E, Rocklöv J, Salas RN, Semenza JC, Sherman J, Shi L, Springmann M, Tabatabaei M, Taylor J, Trinanes J, Shumake-Guillemot J, Vu B, Wagner F, Wilkinson P, Winning M, Yglesias M, Zhang S, Gong P, Montgomery H, Costello A, Hamilton I. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet 2021; 398:1619-1662. [PMID: 34687662 PMCID: PMC7616807 DOI: 10.1016/s0140-6736(21)01787-6] [Citation(s) in RCA: 494] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 01/19/2023]
Abstract
The Lancet Countdown is an international collaboration that independently monitors the health consequences of a changing climate. Publishing updated, new, and improved indicators each year, the Lancet Countdown represents the consensus of leading researchers from 43 academic institutions and UN agencies. The 44 indicators of this report expose an unabated rise in the health impacts of climate change and the current health consequences of the delayed and inconsistent response of countries around the globe—providing a clear imperative for accelerated action that puts the health of people and planet above all else. The 2021 report coincides with the UN Framework Convention on Climate Change 26th Conference of the Parties (COP26), at which countries are facing pressure to realise the ambition of the Paris Agreement to keep the global average temperature rise to 1·5°C and to mobilise the financial resources required for all countries to have an effective climate response. These negotiations unfold in the context of the COVID-19 pandemic—a global health crisis that has claimed millions of lives, affected livelihoods and communities around the globe, and exposed deep fissures and inequities in the world’s capacity to cope with, and respond to, health emergencies. Yet, in its response to both crises, the world is faced with an unprecedented opportunity to ensure a healthy future for all.
Collapse
Affiliation(s)
- Marina Romanello
- Institute for Global Health, University College London, London, UK
| | - Alice McGushin
- Institute for Global Health, University College London, London, UK
| | - Claudia Di Napoli
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Paul Drummond
- Institute for Sustainable Resources, University College London, London, UK
| | - Nick Hughes
- Institute for Sustainable Resources, University College London, London, UK
| | - Louis Jamart
- Institute for Global Health, University College London, London, UK
| | - Harry Kennard
- UCL Energy Institute, University College London, London, UK
| | - Pete Lampard
- Department of Health Sciences, University of York, York, UK
| | | | - Nigel Arnell
- Department of Meteorology, University of Reading, Reading, UK
| | - Sonja Ayeb-Karlsson
- Institute for Environment and Human Security, United Nations University, Bonn, Germany
| | - Kristine Belesova
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Wenjia Cai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Diarmid Campbell-Lendrum
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Stuart Capstick
- Centre for Climate Change and Social Transformations, School of Psychology, Cardiff University, Cardiff, UK
| | - Jonathan Chambers
- Institute for Environmental Sciences, World Health Organization, Geneva, Switzerland
| | - Lingzhi Chu
- Yale Center on Climate Change and Health, Yale University, New Haven, CT, USA
| | - Luisa Ciampi
- The Walker Institute, University of Reading, Reading, UK
| | - Carole Dalin
- Institute for Sustainable Resources, University College London, London, UK
| | - Niheer Dasandi
- School of Government, University of Birmingham, Birmingham, UK
| | - Shouro Dasgupta
- Economic analysis of Climate Impacts and Policy, Centro Euro-Mediterraneo sui Cambiamenti Climatici, Venice, Italy
| | - Michael Davies
- Institute for Environmental Design and Engineering, University College London, London, UK
| | | | - Robert Dubrow
- Yale Center on Climate Change and Health, Yale University, New Haven, CT, USA
| | - Kristie L Ebi
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Matthew Eckelman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Paul Ekins
- Institute for Sustainable Resources, University College London, London, UK
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Delia Grace
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Hilary Graham
- Department of Health Sciences, University of York, York, UK
| | - Samuel H Gunther
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Stella Hartinger
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kehan He
- The Bartlett School of Sustainable Construction, University College London, London, UK
| | - Clare Heaviside
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Jeremy Hess
- Centre for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Shih-Che Hsu
- UCL Energy Institute, University College London, London, UK
| | - Slava Jankin
- Data Science Lab, Hertie School, Berlin, Germany
| | - Marcia P Jimenez
- Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Ilan Kelman
- Institute for Global Health, University College London, London, UK
| | - Gregor Kiesewetter
- Air Quality and Greenhouse Gases Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Patrick L Kinney
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | - Tord Kjellstrom
- Health and Environment International Trust, Nelson, New Zealand
| | | | - Jason K W Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Bruno Lemke
- School of Health, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Zhao Liu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Melissa Lott
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mark Maslin
- Department of Geography, University College London, London, UK
| | - Lucy McAllister
- Center for Energy Markets, Technical University of Munich, Munich, Germany
| | - Celia McMichael
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Zhifu Mi
- The Bartlett School of Sustainable Construction, University College London, London, UK
| | - James Milner
- Department of Public Health, Environments, and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Kelton Minor
- Copenhagen Center for Social Data Science, University of Copenhagen, Copenhagen, Denmark
| | - Nahid Mohajeri
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Maziar Moradi-Lakeh
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Karyn Morrissey
- Department of Technology, Management and Economics, Technical University of Denmark, Copenhagen, Denmark
| | | | - Kris A Murray
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK; MRC Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Tara Neville
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Maria Nilsson
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Nick Obradovich
- Centre for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany
| | - Maquins Odhiambo Sewe
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Tadj Oreszczyn
- UCL Energy Institute, University College London, London, UK
| | - Matthias Otto
- Department of Arts, Media & Digital Technologies, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Fereidoon Owfi
- Iranian Fisheries Science Research Institute, Agricultural Research, Education, and Extension Organisation, Tehran, Iran
| | - Olivia Pearman
- Cooperative Institute of Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - David Pencheon
- College of Medicine and Health, Exeter University, Exeter, UK
| | - Mahnaz Rabbaniha
- Iranian Fisheries Science Research Institute, Agricultural Research, Education, and Extension Organisation, Tehran, Iran
| | - Elizabeth Robinson
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Joacim Rocklöv
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Renee N Salas
- Harvard Medical School, Harvard University, Boston, MA, USA
| | | | - Jodi Sherman
- Department of Anesthesiology, Yale University, New Haven, CT, USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Meisam Tabatabaei
- Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Tampere, Finland
| | - Joaquin Trinanes
- Department of Electronics and Computer Science, Universidade de Santiago de Compostela, Santiago, Spain
| | | | - Bryan Vu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Fabian Wagner
- Air Quality and Greenhouse Gases Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Paul Wilkinson
- Department of Public Health, Environments, and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Matthew Winning
- Institute for Sustainable Resources, University College London, London, UK
| | - Marisol Yglesias
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Shihui Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Peng Gong
- Department of Geography, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hugh Montgomery
- Centre for Human Health and Performance, University College London, London, UK
| | - Anthony Costello
- Institute for Global Health, University College London, London, UK
| | - Ian Hamilton
- UCL Energy Institute, University College London, London, UK.
| |
Collapse
|
10
|
Morrissey MC, Casa DJ, Brewer GJ, Adams WM, Hosokawa Y, Benjamin CL, Grundstein AJ, Hostler D, McDermott BP, McQuerry ML, Stearns RL, Filep EM, DeGroot DW, Fulcher J, Flouris AD, Huggins RA, Jacklitsch BL, Jardine JF, Lopez RM, McCarthy RB, Pitisladis Y, Pryor RR, Schlader ZJ, Smith CJ, Smith DL, Spector JT, Vanos JK, Williams WJ, Vargas NT, Yeargin SW. Heat Safety in the Workplace: Modified Delphi Consensus to Establish Strategies and Resources to Protect the US Workers. GEOHEALTH 2021; 5:e2021GH000443. [PMID: 34471788 PMCID: PMC8388206 DOI: 10.1029/2021gh000443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 06/04/2023]
Abstract
The purpose of this consensus document was to develop feasible, evidence-based occupational heat safety recommendations to protect the US workers that experience heat stress. Heat safety recommendations were created to protect worker health and to avoid productivity losses associated with occupational heat stress. Recommendations were tailored to be utilized by safety managers, industrial hygienists, and the employers who bear responsibility for implementing heat safety plans. An interdisciplinary roundtable comprised of 51 experts was assembled to create a narrative review summarizing current data and gaps in knowledge within eight heat safety topics: (a) heat hygiene, (b) hydration, (c) heat acclimatization, (d) environmental monitoring, (e) physiological monitoring, (f) body cooling, (g) textiles and personal protective gear, and (h) emergency action plan implementation. The consensus-based recommendations for each topic were created using the Delphi method and evaluated based on scientific evidence, feasibility, and clarity. The current document presents 40 occupational heat safety recommendations across all eight topics. Establishing these recommendations will help organizations and employers create effective heat safety plans for their workplaces, address factors that limit the implementation of heat safety best-practices and protect worker health and productivity.
Collapse
Affiliation(s)
- Margaret C. Morrissey
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Douglas J. Casa
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Gabrielle J. Brewer
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - William M. Adams
- Department of KinesiologyUniversity of North Carolina at GreensboroGreensboroNCUSA
| | - Yuri Hosokawa
- Faculty of Sports SciencesWaseda UniversitySaitamaJapan
| | | | | | - David Hostler
- Department of Exercise and Nutrition SciencesCenter for Research and Education in Special EnvironmentsBuffaloNYUSA
| | - Brendon P. McDermott
- Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleARUSA
| | | | - Rebecca L. Stearns
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Erica M. Filep
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - David W. DeGroot
- Fort Benning Heat CenterMartin Army Community HospitalFort BenningGAUSA
| | | | - Andreas D. Flouris
- Department of Exercise ScienceFAME LaboratoryUniversity of ThessalyTrikalaGreece
| | - Robert A. Huggins
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | | | - John F. Jardine
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Rebecca M. Lopez
- School of Physical Therapy & Rehabilitation SciencesMorsani College of MedicineUniversity of South FloridaTampaFLUSA
| | | | - Yannis Pitisladis
- Collaborating Centre of Sports MedicineUniversity of BrightonBrightonUK
| | - Riana R. Pryor
- Department of Exercise and Nutrition SciencesCenter for Research and Education in Special EnvironmentsBuffaloNYUSA
| | - Zachary J. Schlader
- Department of KinesiologySchool of Public HealthIndiana UniversityBloomingtonIAUSA
| | - Caroline J. Smith
- Department of Health and Exercise ScienceAppalachian State UniversityBooneNCUSA
| | - Denise L. Smith
- Department of Health and Human Physiological SciencesFirst Responder Health and Safety LaboratorySkidmore CollegeSaratoga SpringsNYUSA
| | - June T. Spector
- Department of Environmental and Occupational Health SciencesSchool of Public HealthUniversity of WashingtonSeattleWAUSA
| | | | - W. Jon Williams
- Centers for Disease Control and Prevention (CDC)National Personal Protective Technology Laboratory (NPPTL)National Institute for Occupational Safety and Health (NIOSH)PittsburghPAUSA
| | - Nicole T. Vargas
- Faculty of Health SciencesUniversity of SydneySydneyNSWAustralia
| | - Susan W. Yeargin
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| |
Collapse
|
11
|
Al-Saidi M, Hussein H. The water-energy-food nexus and COVID-19: Towards a systematization of impacts and responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146529. [PMID: 34030272 PMCID: PMC9752562 DOI: 10.1016/j.scitotenv.2021.146529] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 05/22/2023]
Abstract
The COVID-19 pandemic offers an opportunity to examine the impacts of system-wide crises on key supply sectors such as water, energy and food. These sectors are becoming increasingly interlinked in environmental policy-making and with regard to achieving supply security. There is a pressing need for a systematization of impacts and responses beyond individual disruptions. This paper provides a holistic assessment of the implications of COVID-19 on the water-energy-food (WEF) nexus. First, it integrates the academic literature related to single cases and disruptions to provide a broader view of COVID-19 demand- and supply-side disruptions and immediate effects. Then, the major, long-term impact categories of medicalization/hygienization, (re)localization of production, and demand fluctuations are highlighted. These impacts result in priority cross-links such as irrigation, energy requirements for local food production, energy use for water and wastewater treatment, or water for energy use. Finally, sector-level insights on impacts and responses are provided, drawing from illustrative cases. The analysis of impacts of COVID-19 on the WEF nexus reflects heterogeneous experiences of short-term adaptations, and highlights the revaluation of the water-food-trade nexus. Revived debates on food sufficiency can benefit from green applications to minimize expected trade-offs. The current crisis also reveals some gaps in the WEF nexus debates with regard to the lack of risk-based perspectives and the need for a better consideration of spatial aspects in resource integration. Regarding resource-security issues in the WEF nexus, the COVID-19 stress test boosts debates concerning the adequacy of the production value chains (e.g., contingency and storage, diversification, and self-sufficiency) and the value of cross-border integration (e.g., trade, globalization, and aid).
Collapse
Affiliation(s)
- Mohammad Al-Saidi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Hussam Hussein
- Department of Politics and International Relations (DPIR), University of Oxford, Manor Road, OX1 3UQ Oxford, UK
| |
Collapse
|
12
|
Hospers L, Smallcombe JW, Morris NB, Jay O. Reply to the "Letter to the editor, regarding : Electric fans: A potential stay-at-home cooling strategy during the COVID-19 pandemic this summer?". THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145227. [PMID: 33558041 DOI: 10.1016/j.scitotenv.2021.145227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Lily Hospers
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - James W Smallcombe
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Nathan B Morris
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ollie Jay
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Charles Perkins Centre, The University of Sydney, Sydney, Australia.
| |
Collapse
|
13
|
Wang F. Letter to the editor regarding Hospers et al. (2020): Electric fans: A potential stay-at-home cooling strategy during the COVID-19 pandemic this summer? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145226. [PMID: 33482553 PMCID: PMC9754072 DOI: 10.1016/j.scitotenv.2021.145226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Faming Wang
- School of Architecture and Art, Central South University, Changsha, China.
| |
Collapse
|
14
|
Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Beagley J, Belesova K, Boykoff M, Byass P, Cai W, Campbell-Lendrum D, Capstick S, Chambers J, Coleman S, Dalin C, Daly M, Dasandi N, Dasgupta S, Davies M, Di Napoli C, Dominguez-Salas P, Drummond P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Escobar LE, Georgeson L, Golder S, Grace D, Graham H, Haggar P, Hamilton I, Hartinger S, Hess J, Hsu SC, Hughes N, Jankin Mikhaylov S, Jimenez MP, Kelman I, Kennard H, Kiesewetter G, Kinney PL, Kjellstrom T, Kniveton D, Lampard P, Lemke B, Liu Y, Liu Z, Lott M, Lowe R, Martinez-Urtaza J, Maslin M, McAllister L, McGushin A, McMichael C, Milner J, Moradi-Lakeh M, Morrissey K, Munzert S, Murray KA, Neville T, Nilsson M, Sewe MO, Oreszczyn T, Otto M, Owfi F, Pearman O, Pencheon D, Quinn R, Rabbaniha M, Robinson E, Rocklöv J, Romanello M, Semenza JC, Sherman J, Shi L, Springmann M, Tabatabaei M, Taylor J, Triñanes J, Shumake-Guillemot J, Vu B, Wilkinson P, Winning M, Gong P, Montgomery H, Costello A. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet 2021; 397:129-170. [PMID: 33278353 PMCID: PMC7616803 DOI: 10.1016/s0140-6736(20)32290-x] [Citation(s) in RCA: 755] [Impact Index Per Article: 188.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/18/2023]
Abstract
TRANSLATIONS For the Chinese, French, German, and Spanish translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Nick Watts
- Institute for Global Health, University College London, London, UK.
| | - Markus Amann
- Air Quality and Greenhouse Gases Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Nigel Arnell
- Department of Meteorology, University of Reading, Reading, UK
| | - Sonja Ayeb-Karlsson
- Institute for Environment and Human Security, United Nations University, Bonn, Germany
| | - Jessica Beagley
- Institute for Global Health, University College London, London, UK
| | - Kristine Belesova
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Maxwell Boykoff
- Environmental Studies Program, University of Colorado Boulder, Boulder, CO, USA
| | - Peter Byass
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Wenjia Cai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Diarmid Campbell-Lendrum
- Environment, Climate Change and Health Department, World Health Organization, Geneva, Switzerland
| | | | - Jonathan Chambers
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Samantha Coleman
- Institute for Global Health, University College London, London, UK
| | - Carole Dalin
- Institute for Sustainable Resources, University College London, London, UK
| | - Meaghan Daly
- Department of Environmental Studies, University of New England, Biddeford, ME, USA
| | - Niheer Dasandi
- School of Government, University of Birmingham, Birmingham, UK
| | - Shouro Dasgupta
- Centro Euro-Mediterraneo sui Cambiamenti Climatici, Venice, Italy
| | - Michael Davies
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Claudia Di Napoli
- School of Agriculture, Policy, and Development, University of Reading, Reading, UK
| | - Paula Dominguez-Salas
- Department of Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Paul Drummond
- Institute for Sustainable Resources, University College London, London, UK
| | - Robert Dubrow
- Yale Center on Climate Change and Health, Yale University, New Haven, CT, USA
| | - Kristie L Ebi
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Matthew Eckelman
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Paul Ekins
- Institute for Sustainable Resources, University College London, London, UK
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Su Golder
- Department of Health Sciences, University of York, York, UK
| | - Delia Grace
- CGIAR Research Program on Agriculture for Human Nutrition and Health, International Livestock Research Institute, Nairobi, Kenya
| | - Hilary Graham
- Department of Environmental Studies, University of New England, Biddeford, ME, USA
| | - Paul Haggar
- School of Psychology, Cardiff University, Cardiff, UK
| | - Ian Hamilton
- Energy Institute, University College London, London, UK
| | - Stella Hartinger
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeremy Hess
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Shih-Che Hsu
- Energy Institute, University College London, London, UK
| | - Nick Hughes
- Institute for Sustainable Resources, University College London, London, UK
| | | | - Marcia P Jimenez
- Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ilan Kelman
- Institute for Global Health, University College London, London, UK
| | - Harry Kennard
- Energy Institute, University College London, London, UK
| | - Gregor Kiesewetter
- Air Quality and Greenhouse Gases Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Patrick L Kinney
- Department of Environmental Health, Boston University, Boston, MA, USA
| | - Tord Kjellstrom
- Health and Environment International Trust, Nelson, New Zealand
| | | | - Pete Lampard
- Department of Health Sciences, University of York, York, UK
| | - Bruno Lemke
- School of Health, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Yang Liu
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Zhao Liu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Melissa Lott
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mark Maslin
- Department of Geography, University College London, London, UK
| | - Lucy McAllister
- Center for Energy Markets, Technical University of Munich, Munich, Germany
| | - Alice McGushin
- Institute for Global Health, University College London, London, UK
| | - Celia McMichael
- School of Geography, University of Melbourne, Melbourne, VIC, Australia
| | - James Milner
- Department of Public Health, Environments, and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Maziar Moradi-Lakeh
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Karyn Morrissey
- European Centre for Environment and Human Health, University of Exeter, Exeter, UK
| | | | - Kris A Murray
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Bakau, The Gambia
| | - Tara Neville
- Environment, Climate Change and Health Department, World Health Organization, Geneva, Switzerland
| | - Maria Nilsson
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | | | | | - Matthias Otto
- Department of Arts, Media and Digital Technologies, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Fereidoon Owfi
- Iranian Fisheries Science Research Institute, Agricultural Research, Education, and Extension Organisation, Tehran, Iran
| | - Olivia Pearman
- Environmental Studies Program, University of Colorado Boulder, Boulder, CO, USA
| | - David Pencheon
- Medical and Health School, University of Exeter, Exeter, UK
| | - Ruth Quinn
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - Mahnaz Rabbaniha
- Iranian Fisheries Science Research Institute, Agricultural Research, Education, and Extension Organisation, Tehran, Iran
| | - Elizabeth Robinson
- School of Agriculture, Policy, and Development, University of Reading, Reading, UK
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Marina Romanello
- Institute for Global Health, University College London, London, UK
| | - Jan C Semenza
- Scientific Assessment Section, European Centre for Disease Prevention and Control, Solna, Sweden
| | - Jodi Sherman
- Department of Anesthesiology, Yale University, New Haven, CT, USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | | | - Meisam Tabatabaei
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Tampere, Finland
| | - Joaquin Triñanes
- Department of Electronics and Computer Science, CRETUS Institute, Universidade de Santiago de Compostela, Santiago, Spain
| | | | - Bryan Vu
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Paul Wilkinson
- Department of Public Health, Environments, and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Matthew Winning
- Institute for Sustainable Resources, University College London, London, UK
| | - Peng Gong
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Hugh Montgomery
- Institute for Human Health and Performance, University College London, London, UK
| | - Anthony Costello
- Office of the Vice Provost for Research, University College London, London, UK
| |
Collapse
|