1
|
Wang D, Wang J, Lang Y, Huang M, Hu S, Liu H, Sun B, Long Y, Wu J, Dong W. Interactions between food matrices and odorants: A review. Food Chem 2025; 466:142086. [PMID: 39612859 DOI: 10.1016/j.foodchem.2024.142086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/20/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Currently, although odorants of various foods have been thoroughly studied, the regulation of food aromas is still difficult due to the interaction between odorants and food matrices. These complex matrices in food may interact with odorants to change the volatility of odorants, which in turn affect food aroma. Clarifying the interaction between them are promising for predicting food aroma formation, which will provide valuable support for a high-efficiency food industry. Herein, the research progresses on interactions between food matrices and odorants are reviewed. First, the analysis methods and their advantages and disadvantages are introduced and discussed emphatically, including sensory-analysis methods, characterization methods of the volatility changes of odorants, and the research methods of interaction mechanism. Further, the research advances of interactions among proteins, carbohydrates, lipids, and polyphenols with odorants are summarized briefly. Finally, the existing problems are discussed and the research prospects are proposed.
Collapse
Affiliation(s)
- Danqing Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Juan Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Ying Lang
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Mingquan Huang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Shenglan Hu
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Hongqin Liu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Yao Long
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Jihong Wu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Wei Dong
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|
2
|
Ren Y, Wang Y, Wang Y, Ning X, Li G, Sang N. Exposure to oxygenated polycyclic aromatic hydrocarbons and endocrine dysfunction: Multi-level study based on hormone receptor responses. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136855. [PMID: 39700954 DOI: 10.1016/j.jhazmat.2024.136855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of emerging environmental contaminants that exhibit high toxicity compared to parent PAHs. In addition to carcinogenic, teratogenic and mutagenic effects, recent studies show their potential to cause endocrine disruption, but the reports are controversial. In this study, we employed hormone receptors (ERα/AR/GRα/TRβ)-mediated dual luciferase reporter gene assay and molecular docking, and found that five typical OPAHs exhibited agonistic activity towards hormone receptors, and hydrogen bonding and hydrophobic interactions were the primary binding forces involved in OPAHs-receptor interactions. Then, we developed a weighted scoring system coupled with computerized screening and clarified that 1,2-benzanthraquinone (BAQ) had the strongest hormonal effects, while anthraquinone (AQ) exhibited the weakest effects. Using the in vivo exposure model, we clarified that BAQ induced hormone receptor-coupled developmental toxicity in zebrafish larvae, evidenced by increased expression of androgen receptors and key genes involved in hormone synthesis, pericardial edema and reduced body length. Importantly, we successfully constructed androgen response element-enhanced green fluorescent protein (ARE-EGFP) transient transfection zebrafish embryos, and confirmed the androgenic potency of BAQ, but not AQ. These findings highlight the endocrine-disrupting effects in the risk management of OPAHs.
Collapse
Affiliation(s)
- Ying Ren
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yue Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Taiyuan, Shanxi 030600, PR China
| | - Yang Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xia Ning
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Taiyuan, Shanxi 030600, PR China
| |
Collapse
|
3
|
Li W, Sun L, Yang X, Peng C, Hua R, Zhu M. Enantioselective effects of chiral profenofos on the conformation for human serum albumin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106159. [PMID: 39477612 DOI: 10.1016/j.pestbp.2024.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 11/07/2024]
Abstract
Profenofos, as a typical chiral organophosphorus pesticide, can cause various environmental problems and even endanger human health when used in excess. The toxicity of chiral profenofos was investigated through multispectral analysis, molecular docking, and density functional theory (DFT), employing human serum albumin (HSA) as the model protein. Fluorescence titration and lifetime measurements demonstrated that the interaction between chiral profenofos and HSA involves static quenching. Chiral profenofos forms a 1:1 complex with HSA at site II (subdomain IIIA), primarily driven by hydrophobic interactions and hydrogen bonds. Notably, the binding efficacy diminishes as temperature increases. Spectroscopic analyses confirm that chiral profenofos alters the microenvironment and structure of HSA, with the R-enantiomer exerting a greater impact than the S-enantiomer. Consequently, the toxicological implications of the R-profenofos is significantly more pronounced. Investigating the molecular-level toxic effects of chiral pesticides enhances the thoroughness of pesticide assessments, aids in understanding their distribution, metabolism, and associated risks, and facilitates the development of mitigation strategies.
Collapse
Affiliation(s)
- Wenze Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
4
|
Zhang J, Wang H, Liao Y, Li Y. The combined effects of bisphenol S and hexavalent chromium on alpha-glucosidase: Intermolecular interaction, structural and functional changes. Int J Biol Macromol 2024; 280:136120. [PMID: 39343258 DOI: 10.1016/j.ijbiomac.2024.136120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The co-contamination of heavy metal ions and organic pollutants has posed a threat to human health. Herein, this study investigated the intermolecular interactions of bisphenol S (BPS) and hexavalent chromium (Cr(VI)) under both individual and coexisting conditions, with alpha-glucosidase (AG), a key enzyme in carbohydrate metabolism, and the corresponding effects on the structure and function of AG. Multiple spectroscopic and molecular docking methods were employed to conduct the investigation in vitro and in silico. The results indicated that both BPS and Cr(VI) quenched the fluorescence of AG via a combined static and dynamic quenching processes. At 310 K, the binding constants of AG with BPS in the AG-BPS and (AG-Cr(VI))-BPS systems were 1.84 × 104 and 2.03 × 104 L mol-1, and the binding constants of AG with Cr(VI) in the AG-Cr(VI) and (AG-BPS)-Cr(VI) systems were 6.14 × 103 and 4.35 × 103 L mol-1. Cr(VI) could significantly affect the binding site of BPS in AG, while BPS had a minimal impact on the binding site of Cr(VI) in AG. BPS and Cr(VI) caused varied structural alterations of AG, and the impact of their coexistence on the structure of AG was related to the order in which they were added. Both BPS and Cr(VI) had a concentration-related effect on AG activity. This study provides valuable insights into the molecular mechanisms underlying the combined toxic effects of BPS and Cr(VI) on AG, highlighting the potential health risks associated with their environmental co-exposure.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China.
| | - Honghui Wang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Yingmin Liao
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Yan Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| |
Collapse
|
5
|
Liu M, Ning Z, Cheng Y, Zheng Z, Yang X, Zheng T, Li N, Wu JL. The key to 2,6-dichloro-1,4-benzoquinone reproductive toxicity and green tea detoxification: Covalent binding and competitive binding. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117239. [PMID: 39454356 DOI: 10.1016/j.ecoenv.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/24/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Halobenzoquinones (HBQs) are ubiquitous disinfection by-products (DBPs) in chlorinated drinking water with various health risks including reproductive toxicity, while the potential mechanisms are still unclear. Although green tea exhibits common detoxifying properties, its ability to mitigate the toxicity of HBQs still needs to be further deepened and explored. This study attempted to investigate the possible mechanism of the most common HBQ, 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) induced reproductive toxicity and elucidate the protective effect of green tea using a series of liquid chromatography-tandem mass spectrometry (LC-MS) approaches. Firstly, in vivo experiments showed that 2,6-DCBQ could induce testicular damage in male rats via significantly decreasing sperm-associated Leydig cells and seminiferous tubules. Then, in vitro incubation of 2,6-DCBQ with amino acids suggested that 2,6-DCBQ could bind to proteins via residues of cysteine or lysine and provided five additional modification patterns. Following, proteomics analysis revealed that at least 42 proteins were modified by 2,6-DCBQ, which were mainly enriched in the reproductive system. These results highlighted the significance of covalent protein modification in 2,6-DCBQ reproductive toxicity. Fortunately, we found that catechins (a class of major components of green tea) could competitively bind to 2,6-DCBQ in vivo and in vitro, reducing the amount and type of 2,6-DCBQ-protein adducts, thereby attenuating the reproductive system damage caused by 2,6-DCBQ. This study provides new insights into 2,6-DCBQ-induced reproductive system damage and reveals a new mechanism of green tea detoxification. Moreover, these findings offer potential strategies for alleviating the harmful impacts of environmental toxicants on human health.
Collapse
Affiliation(s)
- Meixian Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China; BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhiyuan Ning
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313300, China
| | - Zhiyuan Zheng
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China; Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoxue Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China
| | - Ting Zheng
- Multi-omics Mass Spectrometry Core, Biomedical Research Core Facilities, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China.
| |
Collapse
|
6
|
Qin RX, Cao X, Zhang SY, Li H, Tang B, Liao QL, Cai FS, Peng XZ, Zheng J. Decontamination promotes the release of incorporated organic contaminants in hair: Novel insights into non-invasive biomonitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124696. [PMID: 39122174 DOI: 10.1016/j.envpol.2024.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Human hair is increasingly employed as a non-invasive biomonitoring matrix for exposure to organic contaminants (OCs). Decontamination procedures are generally needed to remove external contamination from hair prior to analysis of OCs. Despite various existing decontamination protocols, their impacts on internally incorporated (endogenous) OCs in hair remain poorly understood. This study aims to quantitatively assess the impact of decontamination procedures on endogenous OCs in hair, and investigate optimal decontamination processes and factors influencing the removal of endogenous OCs. In this study, guinea pig was exposed to 6 OCs (triphenyl phosphate (TPHP), tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and tri-n-butyl phosphate (TNBP), bisphenol A (BPA), perfluorooctanoic acid (PFOA), and phenanthrene (PHE)), and 6 decontamination procedures with different solvents (methanol, n-hexane, acetone, ultrapure water, Triton X-100, and sodium dodecyl sulfate) were used to rinse exposed guinea pig hair. All OCs and three metabolites (diphenyl phosphate (DPHP), dibutyl phosphate (DBP), and bis(1,3-dichloro-2-propyl) phosphate (BDCPP)) were detected in the majority of washing solutions. The decontamination procedures apparently resulted in the release of endogenous OCs from hair. The percentages of residual OCs in hair exhibited a linear or exponential decrease with more washing cycles. Furthermore, the residuals of OCs in hair washed with organic and aqueous solvents showed negative correlations with molecular weight, polarizability, and their initial concentrations. Although these findings need to be validated with a broader range of OCs, the results obtained in this study provide compelling evidence that current hair decontamination procedures have significant impacts on the analysis of endogenous OCs in hair. Therefore, it is important to interpret quantitative data on hair OC concentrations with caution and to thoroughly consider each decontamination procedure during analysis.
Collapse
Affiliation(s)
- Rui-Xin Qin
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; School of Public Health, China Medical University, Liaoning, 110122, PR China
| | - Shi-Yi Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health and Wellness, Guizhou Medical University, Guiyang, 550025, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Qi-Long Liao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Xian-Zhi Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China.
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health and Wellness, Guizhou Medical University, Guiyang, 550025, PR China.
| |
Collapse
|
7
|
Singh NS, Mukherjee I. Investigating PCB degradation by indigenous fungal strains isolated from the transformer oil-contaminated site: degradation kinetics, Bayesian network, artificial neural networks, QSAR with DFT, molecular docking, and molecular dynamics simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55676-55694. [PMID: 39240431 DOI: 10.1007/s11356-024-34902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
The widespread prevalence of polychlorinated biphenyls (PCBs) in the environment has raised major concerns due to the associated risks to human health, wildlife, and ecological systems. Here, we investigated the degradation kinetics, Bayesian network (BN), quantitative structure-activity relationship-density functional theory (QSAR-DFT), artificial neural network (ANN), molecular docking (MD), and molecular dynamics stimulation (MS) of PCB biodegradation, i.e., PCB-10, PCB-28, PCB-52, PCB-138, PCB-153, and PCB-180 in the soil system using fungi isolated from the transformer oil-contaminated sites. Results revealed that the efficacy of PCB biodegradation best fits the first-order kinetics (R2 ≥ 0.93). The consortium treatment (29.44-74.49%) exhibited more efficient degradation of PCBs than those of Aspergillus tamarii sp. MN69 (27.09-71.25%), Corynespora cassiicola sp. MN69 (23.76-57.37%), and Corynespora cassiicola sp. MN70 (23.09-54.98%). 3'-Methoxy-2, 4, 4'-trichloro-biphenyl as an intermediate derivative was detected in the fungal consortium treatment. The BN analysis predicted that the biodegradation efficiency of PCBs ranged from 11.6 to 72.9%. The ANN approach showed the importance of chemical descriptors in decreasing order, i.e., LUMO > MW > IP > polarity no. > no. of chlorine > Wiener index > Zagreb index > HOMU > Pogliani index > APE in PCB removal. Furthermore, the QSAR-DFT model between the chemical descriptors and rate constant (log K) exhibited a high fit and good robustness of R2 = 99.12% in predicting ability. The MD and MS analyses showed the lowest binding energy through normal mode analysis (NMA), implying stability in the interactions of the docked complexes. These findings provide crucial insights for devising strategies focused on natural attenuation, holding substantial potential for mitigating PCB contamination within the environment.
Collapse
Affiliation(s)
- Ningthoujam Samarendra Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| | - Irani Mukherjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India.
| |
Collapse
|
8
|
Ling X, Lu G, Zhang L, Zhang J, Fu H, Yan Z. Cotransport of nanoplastics and plastic additive bisphenol AF (BPAF) in unsaturated hyporheic zone: Coupling effects of surface functionalization and protein corona. WATER RESEARCH 2024; 256:121574. [PMID: 38593606 DOI: 10.1016/j.watres.2024.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The ecological risk of combined pollution from microplastics (MPs) and associated contaminants usually depends on their interactions and environmental behavior, which was also disturbed by varying surface modifications of MPs. In this study, the significance of surface functionalization and protein-corona on the cotransport of nanoplastics (NPs; 100 nm) and the related additive bisphenol AF (BPAF) was examined in simulated unsaturated hyporheic zone (quartz sand; 250-425 μm). The electronegative bovine serum albumin (BSA) and electropositive trypsin were chosen as representative proteins, while pristine (PNPs), amino-modified (ANPs), and carboxyl-modified NPs (CNPs) were representative NPs with different charges. The presence of BPAF inhibited the mobility of PNPs/CNPs, but enhanced the release of ANPs in hyporheic zone, which was mainly related to their hydrophobicity changes and electrostatic interactions. Meanwhile, the NPs with high mobility and strong affinity to BPAF became effective carriers, promoting the cotransport of BPAF by 16.4 %-26.4 %. The formation of protein-coronas altered the mobility of NPs alone and their cotransport with BPAF, exhibiting a coupling effect with functional groups. BSA-corona promoted the transport of PNPs/CNPs, but this promoting effect was weakened by the presence of BPAF via increasing particle aggregation and hydrophobicity. Inversely, trypsin-corona aggravated the deposition of PNPs/CNPs, but competition deposition sites and increased energy barrier caused by coexisting BPAF reversed this effect, facilitating the cotransport of trypsin-PNPs/CNPs in hyporheic zone. However, BPAF and protein-coronas synergistically promoted the mobility of ANPs, owing to competition deposition sites and decreased electrostatic attraction. Although all of the NPs with two protein-coronas reduced dissolved BPAF in the effluents via providing deposition sites, the cotransport of total BPAF was improved by the NPs with high mobility (BSA-PNPs/CNPs) or high affinity to BPAF (BSA/trypsin-ANPs). However, the trypsin-PNPs/CNPs inhibited the transport of BPAF due to their weak mobility and adsorption with BPAF. The results provide new insights into the role of varying surface modifications on NPs in the vertical cotransport of NPs and associated contaminants in unsaturated hyporheic zone.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Heyun Fu
- School of the Environment, Nanjing University, Nanjing 210046, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
9
|
Erkmen C, Celik I. Interaction mechanism of a pesticide, Azoxystrobin with bovine serum albumin: Assessments through fluorescence, UV-Vis absorption, electrochemical and molecular docking simulation techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123719. [PMID: 38064964 DOI: 10.1016/j.saa.2023.123719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
The current study's objective was to investigate how an antifungal pesticide Azoxystrobin (AZO) interacts with bovine serum albumin (BSA) under conditions that simulate a physiological medium (pH 7.4). This investigation was carried out using various experimental (UV-Vis absorption, steady-state fluorescence and 3-D fluorescence spectroscopies, and electrochemical) and theoretical (molecular docking and molecular dynamics simulations) methods. The fluorescence quenching data demonstrated that AZO caused fluorescence quenching in BSA, and this quenching process was attributed to the static quenching mechanism. By examining the fluorescence quenching of BSA at three different temperatures, it was determined that the binding constants for the AZO-BSA complexes were approximately 104 M-1 in magnitude, while the same magnitude of the binding constant was found by the electrochemical method. This indicates that the interaction between AZO and BSA was of moderate strength. This was further validated by the changes observed in the UV-Vis spectrum of BSA following the addition of AZO. The thermodynamic information, including ΔH and ΔS, revealed that the interaction forces primarily involved van der Waals forces as well as hydrogen bonds. The negative Gibbs free energy indicated that the reaction is spontaneous. In the theoretical investigation, the comparison highlights a remarkable consistency in how AZO interacts with the BSA active site over various time points. Hydrogen bonding and hydrophobic interactions consistently play a role in ensuring the stable and specific binding of the ligand. Moreover, the 3-D fluorescence spectral findings revealed alterations in the surrounding microenvironment of protein fluorophores when AZO binds. Upon analyzing the electrochemical data, it was observed that there was a consistent decrease in the peak currents of AZO when BSA was added to solutions containing AZO. The primary cause of this decrease in the peak currents was the reduction in the equilibrium concentration of AZO due to the addition of BSA. Furthermore, the formation of a non-electroactive complex between BSA and AZO, which impedes electron transport between AZO and the working electrode, accounts for these decreases. As a result, it can be said that the understanding of how AZO binds to BSA offers valuable insights that can be applied in the food, human health, and environment sectors.
Collapse
Affiliation(s)
- Cem Erkmen
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara 06800, Türkiye.
| | - Ismail Celik
- Erciyes University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kayseri 38039, Türkiye.
| |
Collapse
|
10
|
Wu J, Lv J, Zhao L, Zhao R, Gao T, Xu Q, Liu D, Yu Q, Ma F. Exploring the role of microbial proteins in controlling environmental pollutants based on molecular simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167028. [PMID: 37704131 DOI: 10.1016/j.scitotenv.2023.167028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Molecular simulation has been widely used to study microbial proteins' structural composition and dynamic properties, such as volatility, flexibility, and stability at the microscopic scale. Herein, this review describes the key elements of molecular docking and molecular dynamics (MD) simulations in molecular simulation; reviews the techniques combined with molecular simulation, such as crystallography, spectroscopy, molecular biology, and machine learning, to validate simulation results and bridge information gaps in the structure, microenvironmental changes, expression mechanisms, and intensity quantification; illustrates the application of molecular simulation, in characterizing the molecular mechanisms of interaction of microbial proteins with four different types of contaminants, namely heavy metals (HMs), pesticides, dyes and emerging contaminants (ECs). Finally, the review outlines the important role of molecular simulations in the study of microbial proteins for controlling environmental contamination and provides ideas for the application of molecular simulation in screening microbial proteins and incorporating targeted mutagenesis to obtain more effective contaminant control proteins.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ruofan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tian Gao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, China
| | - Qi Xu
- PetroChina Fushun Petrochemical Company, Fushun 113000, China
| | - Dongbo Liu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Qiqi Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Zhang C, Li H, Yang Y, Zhou X, Zhuang D, Liu W, Wang K, Wang P, Zhang W, Bai Y, Ma H, Gao B, Wang R. Induced mechanism of phosphatase hormesis by Cd ions and rhizosphere metabolites of Trifolium repens L. CHEMOSPHERE 2023; 344:140219. [PMID: 37741368 DOI: 10.1016/j.chemosphere.2023.140219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Rhizosphere phosphatases can exhibit hormetic effects in response to cadmium (Cd) ion stimulation. However, understanding the mechanisms underlying hormesis effects on soil ecosystems is challenging as studies on hormesis are usually specific to an organism, cell, or organ. To comprehensively investigate the mechanism of phosphatase hormesis, this study utilized in situ zymography and metabolomics to analyze the rhizosphere of Trifolium repens L. (white clover). Zymograms showed that rhizosphere phosphatase displayed a hormetic effect in 10 mg kg-1 Cd contaminated soil, with a hotspot area 1.8 times larger than non-Cd contaminated soil and a slight increase in enzyme activity. Nevertheless, the phosphatase activity was substantially suppressed upon elevating the Cd concentration in the soil to 50 mg kg-1. Differential metabolite identification and KEEG pathway enrichment analysis revealed that both rhizosphere organic acids and amino acid compounds positively affected phosphatase activity, and both were able to stabilize complexation with Cd ions via carboxyl groups. Besides, molecular docking models suggested that Cd ions act as cofactors to induce the formation of hydrogen bonds between amino acids/organic acids and phosphatase residues to form a triplet complex with a more stable structure, thereby improving phosphatase activity. The results indicated that amino acids and organic acids are heavily enriched in the rhizosphere of white clover and form a particular structure with soil Cd ions and phosphatase, which is essential for inducing the phosphatase hormesis as a detoxification mechanism in the rhizosphere micro-ecosystem.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; Ministry of Education Key Laboratory of Eco-Restoration of Regional Contaminated Environment, Shenyang University, China.
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xulun Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Damiao Zhuang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Wengang Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Pengkai Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Wenxin Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yaran Bai
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haotian Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Bingqian Gao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Rui Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
12
|
Peng M, Wang Y, Wu C, Cai X, Wu Y, Du E, Zheng L, Fu J. Investigating sulfonamides - Human serum albumin interactions: A comprehensive approach using multi-spectroscopy, DFT calculations, and molecular docking. Biochem Biophys Res Commun 2023; 683:149108. [PMID: 37862782 DOI: 10.1016/j.bbrc.2023.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
The environmental and health risks associated with sulfonamide antibiotics (SAs) are receiving increasing attention. Through multi-spectroscopy, density functional theory (DFT), and molecular docking, this study investigated the interaction features and mechanisms between six representative SAs and human serum albumin (HSA). Multi-spectroscopy analysis showed that the six SAs had significant binding capabilities with HSA. The order of binding constants at 298 K was as follows: sulfadoxine (SDX): 7.18 × 105 L mol-1 > sulfamethizole (SMT): 6.28 × 105 L mol-1 > sulfamerazine (SMR): 2.70 × 104 L mol-1 > sulfamonomethoxine (SMM): 2.54 × 104 L mol-1 > sulfamethazine (SMZ): 3.06 × 104 L mol-1 > sulfadimethoxine (SDM): 2.50 × 104 L mol-1. During the molecular docking process of the six SAs with HSA, the binding affinity range is from -7.4 kcal mol-1 to -8.6 kcal mol-1. Notably, the docking result of HSA-SDX reached the maximum of -8.6 kcal mol-1, indicating that SDX may possess the highest binding capacity to HSA. HSA-SDX binding, identified as a static quenching and exothermic process, is primarily driven by hydrogen bonds (H bonds) or van der Waals (vdW) interactions. The quenching processes of SMR/SMZ/SMM/SDX/SMT to HSA are a combination of dynamic and static quenching, indicating an endothermic reaction. Hydrophobic interactions are primarily accountable for SMR/SMZ/SMM/SDX/SMT and HSA binding. Competition binding results revealed that the primary HSA-SAs binding sites are in the subdomain IB of the HAS structure, consistent with the results of molecule docking. The correlation analysis based on DFT calculations revealed an inherent relationship between the structural chemical features of SAs and the binding performance of HSA-SAs. The dual descriptor (DD) and the electrophilic Fukui function were found to have a significant relationship (0.71 and -0.71, respectively) with the binding constants of HSA-SAs, predicting the binding performance of SAs and HSA. These insights have substantial scientific value for evaluating the environmental risks of SAs as well as understanding their impact on biological life activities.
Collapse
Affiliation(s)
- Mingguo Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Yicui Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Chunge Wu
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Xuewen Cai
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yao Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou, 213164, China.
| | - Lu Zheng
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
13
|
Huang CY, Lin FY, Lu CH, Chen JK. Ultrafast absorption mechanism of oil-emulsified micelles onto ferrous absorbents with dielectrophoresis force in the presence of polarization. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132436. [PMID: 37699264 DOI: 10.1016/j.jhazmat.2023.132436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Absorption and desorption rates were generally dependent on the concentration gradient from bulk to absorbents. A novel methodology based on a capacitor with an alternating electric field (AEF) is developed to accelerate the absorption and desorption rates with the frequency manipulation. Ferrous polystyrene microspheres (PISMs) are synthesized as absorbents, which could enhance the complex permittivities as well as dielectric properties. Theoretically, the attractive force and viscous force predominately determine the particle and micelles movement in the medium under an AEF. Oil-emulsified micelles (OEM) with various viscosities were selected as absorbates. Both the OEM and microspherical absorbents assembled through the external attractive force in the presence of the AEF. When the attractive force is equal to viscous force in the medium at the characteristic frequency, the optimal absorption rate could be obtained. The absorption rate constants of pseudo-first-order for OEMs under the polarization at 50 V and 120 kHz of frequency are ca. 10 times higher than that in absence of the polarization. The desorption rate as well as recycling efficiency could be also improved at 800 kHz. The ferrous PISMs with high complex permittivity prevented the damage from the AEF, which could be recycled 10 times of absorption and desorption with frequency manipulation under the AEF. Our methodology provides novel insights for ultrafast wastewater treatment.
Collapse
Affiliation(s)
- Chun-Yao Huang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 106, Taiwan, ROC; Taipei Heart Institute, 250 Wu-Hsing Street, Taipei Medical University, Taipei 110, Taiwan ROC; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, 252, Wu-Hsing Street, Taipei 110, Taiwan ROC; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250, Wu-Hsing Street, Taipei 110, Taiwan ROC; Department of Biomedical Sciences and Engineering, National Central University, 300, Zhongda Road, Taoyuan City 320317, Taiwan ROC
| | - Feng-Yen Lin
- Taipei Heart Institute, 250 Wu-Hsing Street, Taipei Medical University, Taipei 110, Taiwan ROC; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, 252, Wu-Hsing Street, Taipei 110, Taiwan ROC
| | - Chien-Hsing Lu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan, ROC; Ph.D. Program in Translational Medicine, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC.
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 106, Taiwan, ROC.
| |
Collapse
|
14
|
Yan S, Ren X, Zheng L, Wang X, Liu T. A systematic analysis of residue and risk of cyantraniliprole in the water-sediment system: Does metabolism reduce its environmental risk? ENVIRONMENT INTERNATIONAL 2023; 179:108185. [PMID: 37688810 DOI: 10.1016/j.envint.2023.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
As a representative variety of diamide insecticides, cyantraniliprole has broad application prospects. In this study, the fate and risk of cyantraniliprole and its main metabolite J9Z38 in a water-sediment system were investigated. The present result showed that more J9Z38 was adsorbed in the sediment at the end of exposure. However, the bioaccumulation capacity of cyantraniliprole in zebrafish was higher than that of J9Z38. Cyantraniliprole had stronger influence on the antioxidant system and detoxification system of zebrafish than J9Z38. Moreover, cyantraniliprole induced more significant oxidative stress effect and more differentially expressed genes (DEGs) in zebrafish. Cyantraniliprole had significantly influence on the expression of RyR-receptor-related genes, which was confirmed by resolving their binding modes with key receptor proteins using AlphaFold2 and molecular docking techniques. In the sediment, both cyantraniliprole and J9Z38 had inhibitory effects on microbial community structure diversity and metabolic function, especially cyantraniliprole. The methane metabolism pathway, mediated by methanogens such as Methanolinea, Methanoregula, and Methanosaeta, may be the main pathway of degradation of cyantraniliprole and J9Z38 in sediments. The present results demonstrated that metabolism can reduce the environmental risk of cyantraniliprole in water-sediment system to a certain extent.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangyu Ren
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lei Zheng
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Center for Environmental Protection, Beijing 100029, China.
| | - Xiuguo Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Tong Liu
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
15
|
Wang Z, Ma J, Wang T, Qin C, Hu X, Mosa A, Ling W. Environmental health risks induced by interaction between phthalic acid esters (PAEs) and biological macromolecules: A review. CHEMOSPHERE 2023; 328:138578. [PMID: 37023900 DOI: 10.1016/j.chemosphere.2023.138578] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
As a kind of compounds abused in industry productions, phthalic acid esters (PAEs) cause serious problems in natural environment. PAEs pollution has penetrated into environmental media and human food chain. This review consolidates the updated information to assess the occurrence and distribution of PAEs in each transmission section. It is found that micrograms per kilogram of PAEs are exposed to humans through daily diets. After entering the human body, PAEs often undergo the metabolic process of hydrolysis to monoesters phthalates and conjugation process. Unfortunately, in the process of systemic circulation, PAEs will interact with biological macromolecules in vivo under the action of non-covalent binding, which is also the essence of biological toxicity. The interactions usually operate in the following pathways: (a) competitive binding; (b) functional interference; and (c) abnormal signal transduction. While the non-covalent binding forces mainly contain hydrophobic interaction, hydrogen bond, electrostatic interaction, and π interaction. As a typical endocrine disruptor, the health risks of PAEs often start with endocrine disorder, further leading to metabolic disruption, reproductive disorders, and nerve injury. Besides, genotoxicity and carcinogenicity are also attributed to the interaction between PAEs and genetic materials. This review also pointed out that the molecular mechanism study on biological toxicity of PAEs are deficient. Future toxicological research should pay more attention to the intermolecular interactions. This will be beneficial for evaluating and predicting the biological toxicity of pollutants at molecular scale.
Collapse
Affiliation(s)
- Zeming Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
16
|
Nagar N, Saxena H, Pathak A, Mishra A, Poluri KM. A review on structural mechanisms of protein-persistent organic pollutant (POP) interactions. CHEMOSPHERE 2023; 332:138877. [PMID: 37164191 DOI: 10.1016/j.chemosphere.2023.138877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
With the advent of the industrial revolution, the accumulation of persistent organic pollutants (POPs) in the environment has become ubiquitous. POPs are halogen-containing organic molecules that accumulate, and remain in the environment for a long time, thus causing toxic effects in living organisms. POPs exhibit a high affinity towards biological macromolecules such as nucleic acids, proteins and lipids, causing genotoxicity and impairment of homeostasis in living organisms. Proteins are essential members of the biological assembly, as they stipulate all necessary processes for the survival of an organism. Owing to their stereochemical features, POPs and their metabolites form energetically favourable complexes with proteins, as supported by biological and dose-dependent toxicological studies. Although individual studies have reported the biological aspects of protein-POP interactions, no comprehensive study summarizing the structural mechanisms, thermodynamics and kinetics of protein-POP complexes is available. The current review identifies and classifies protein-POP interaction according to the structural and functional basis of proteins into five major protein targets, including digestive and other enzymes, serum proteins, transcription factors, transporters, and G-protein coupled receptors. Further, analysis detailing the molecular interactions and structural mechanism evidenced that H-bonds, van der Waals, and hydrophobic interactions essentially mediate the formation of protein-POP complexes. Moreover, interaction of POPs alters the protein conformation through kinetic and thermodynamic processes like competitive inhibition and allostery to modulate the cellular signalling processes, resulting in various pathological conditions such as cancers and inflammations. In summary, the review provides a comprehensive insight into the critical structural/molecular aspects of protein-POP interactions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harshi Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
17
|
Li W, Chen S, Hong X, Fang M, Zong W, Li X, Wang J. The molecular interaction of three haloacetic acids with bovine serum albumin and the underlying mechanisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
18
|
Lv X, Wu Y, Chen G, Yu L, Zhou Y, Yu Y, Lan S, Hu J. The strategy for estrogen receptor mediated-risk assessment in environmental water: A combination of species sensitivity distributions and in silico approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119763. [PMID: 35841995 DOI: 10.1016/j.envpol.2022.119763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Risk assessment for molecular toxicity endpoints of environmental matrices may be a pressing issue. Here, we combined chemical analysis with species sensitivity distributions (SSD) and in silico docking for multi-species estrogen receptor mediated-risk assessment in water from Dongjiang River, China. The water contains high levels of phenolic endocrine-disrupting chemicals (PEDCs) and phthalic acid esters (PAEs). The concentration of ∑4PEDCs and ∑6PAEs ranged from 2202 to 3404 ng/L and 834-4368 ng/L, with an average of 3241 and 2215 ng/L, respectively. The SSD approach showed that 4-NP, BPA, E2 of PEDCs, and DBP, DOP, and DEHP could severely threaten the aquatic ecosystems, while most other target compounds posed low-to-medium risks. Moreover, binding affinities from molecular docking among PEDCs, PAEs, and estrogen receptors (ERα, Erβ, and GPER) were applied as toxic equivalency factors. Estrogen receptor-mediated risk suggested that PEDCs were the main contributors, containing 53.37-69.79% of total risk. They potentially pose more severe estrogen-receptor toxicity to zebrafish, turtles, and frogs. ERβ was the major contributor, followed by ERα and GPER. This study is the first attempt to assess the estrogen receptor-mediated risk of river water in multiple aquatic organisms. The in silico simulation approach could complement toxic effect evaluations in molecular endpoints.
Collapse
Affiliation(s)
- Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Yicong Wu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Guilian Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Lili Yu
- Shenzhen People's Hospital, The 2nd Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Yi Zhou
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Yingxin Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shanhong Lan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
19
|
Li MS, Zhang J, Zhu YX, Zhang Y. Interactions between hydroxylated polycyclic aromatic hydrocarbons and serum albumins: Multispectral and molecular docking analyses. LUMINESCENCE 2022; 37:1972-1981. [PMID: 36098937 DOI: 10.1002/bio.4384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022]
Abstract
Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) can bind to serum albumin and influence their distribution and elimination in organisms. Herein, multispectral analysis and molecular docking methods were used to investigate the binding mechanism of two OH-PAHs, 1-hydroxyphenanthrene (1-OHPhe) and 9-hydroxyphenanthrene (9-OHPhe), with two homologous serum albumins, human serum albumin (HSA) and bovine serum albumin (BSA). The quenching constants of HSA with 1-OHPhe and 9-OHPhe were much larger than those for BSA. Energy transfer from the tryptophan (Trp) residues in HSA to 1-OHPhe and 9-OHPhe was more probable than from Trp in BSA. The interactions of 1-OHPhe and 9-OHPhe with Trp in HSA and BSA altered the microenvironment of Trp. Molecular docking results revealed that the binding modes and binding forces of 1-OHPhe and 9-OHPhe with HSA and BSA were different. The two OH-PAHs were used as fluorescent probes to analyze the microenvironmental hydrophobicities of HSA and BSA, which were distinctly different. The structural difference between HSA and BSA induced significant variations in their binding behavior with 1-OHPhe and 9-OHPhe. Moreover, HSA was more susceptible to 1-OHPhe and 9-OHPhe than BSA. This work suggests that the differences between the two serum albumins should be considered in related studies.
Collapse
Affiliation(s)
- Meng-Shuo Li
- State Key Laboratory of Marine Environmental Sciences of China, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Zhang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou, China
| | - Ya-Xian Zhu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Sciences of China, College of Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Hu X, Wu JL, Miao W, Long F, Pan H, Peng T, Yao X, Li N. Covalent Protein Modification: An Unignorable Factor for Bisphenol A-Induced Hepatotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9536-9545. [PMID: 35593067 DOI: 10.1021/acs.est.2c01307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Covalent modification of proteins by reactive pollutants/metabolites might trigger various toxicities resulting from the disruption of protein structures and/or functions, which is critical for understanding the mechanism of pollutants-induced toxicity. However, this mechanism has rarely been touched on due to the lack of a methodology. In this research, the protein modification of bisphenol A (BPA) in rats was characterized using a series of liquid chromatography-tandem mass spectrometry (LC-MS) approaches. BPA-modified cysteine (Cys1) was first released from proteins via enzymatic hydrolysis and identified using LC-MS. Moreover, the positive correlation between Cys1 and hepatotoxicity indicated the involvement of protein modification in BPA toxicity. Then, in vitro incubation of BPA with amino acids and protein confirmed that BPA could specifically modify cysteine residues of proteins after bioactivation and provided four additional modification patterns. Finally, 24 BPA-modified proteins were identified from the liver of BPA-exposed rats using proteomic analysis, and they were mainly enriched in oxidative stress-related pathways. The modification on superoxide dismutases, catalase, and glutathione S-transferases disrupted their enzymatic functions, leading to oxidative damage. These results revealed that the covalent protein modification is an unignorable factor for BPA hepatotoxicity. Moreover, the workflow can be applied to identify protein adducts of other emerging contaminants and possible risk.
Collapse
Affiliation(s)
- Xiaolan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Wen Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Fei Long
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510180, China
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Tao Peng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| |
Collapse
|
21
|
Lv X, Jiang Z, Zeng G, Zhao S, Li N, Chen F, Huang X, Yao J, Tuo X. Comprehensive insights into the interactions of dicyclohexyl phthalate and its metabolite to human serum albumin. Food Chem Toxicol 2021; 155:112407. [PMID: 34273427 DOI: 10.1016/j.fct.2021.112407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/15/2021] [Accepted: 07/09/2021] [Indexed: 01/28/2023]
Abstract
Phthalate esters (PAEs) are a type of persistent organic pollutants and have received widespread concerns due to their adverse effects on human health. Dicyclohexyl phthalate (DCHP) and its metabolite monocyclohexyl phthalate (MCHP) were selected to explore the mechanism for interaction of PAEs with human serum albumin (HSA) through molecular docking and several spectroscopic techniques. The results showed that DCHP/MCHP can spontaneously occupy site I to form a binary complex with HSA, and DCHP exhibited higher binding affinity to HSA than MCHP. At 298 K, the binding constants (Kb) of DCHP and MCHP to HSA were 24.82 × 104 and 1.04 × 104 M-1, respectively. Hydrogen bonds and van der Waals forces were the major driving forces in DCHP/MCHP-HSA complex. The presence of DCHP/MCHP induced the secondary structure changes in HSA, and the pi electrons of the benzene ring skeleton of DCHP/MCHP played a key role in this binding processes. Exposure of DCHP/MCHP to TM4 cells revealed that interactions between PAEs and serum albumin can affect their cytotoxicity; DCHP showed higher toxicity than MCHP. The binding affinity of PAEs with HSA may be a valuable parameter for rapid assessment of their toxicity to organisms.
Collapse
Affiliation(s)
- Xiaolan Lv
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zheng Jiang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Guofang Zeng
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Na Li
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Fengping Chen
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaojian Huang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jia Yao
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
22
|
Xiao Z, Zhang Y, Niu Y, Ke Q, Kou X. Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydr Polym 2021; 269:118292. [PMID: 34294318 DOI: 10.1016/j.carbpol.2021.118292] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are edible and biocompatible natural cyclic compounds that can encapsulate essential oils, flavours, volatile aroma compounds, and other substances. Complexation with CD-based materials improves the solubility and stability of volatile compounds and protects the bioactivity of the core materials. Therefore, the development of CD/volatile compound nanosystems is a key research area in the food, cosmetic, and pharmaceutical industries. This review briefly introduces the main types of natural CD; preparation methods of CD-based materials as carriers for aromatic substances or essential oils; characterisation methods used to calculate the interaction between CDs and volatile aroma compounds; molecular docking and simulation methods; and the application of CD-based nanosystems in different industries. The review aims to provide guidance for relevant practitioners in selecting appropriate CD materials and characterisation methods.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yaqi Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|