1
|
Wang Z, Zhang CM, Li YF. Influence of suspended particles and dissolved organic matters on virus enrichment in reclaimed water by two-step tangential flow ultrafiltration: Phenomena and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134494. [PMID: 38703688 DOI: 10.1016/j.jhazmat.2024.134494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Enteric virus concentration in large-volume water samples is crucial for detection and essential for assessing water safety. Certain dissolution and suspension components can affect the enrichment process. In this study, tangential flow ultrafiltration (TFUF) was used as an enrichment method for recovering enteric virus in water samples. Interestingly, the bacteriophage MS2 recovery in reclaimed water and the reclaimed water without particles were higher than that in ultrapure water. The simulated reclaimed water experiments showed that humic acid (HA) (92.16% ± 4.32%) and tryptophan (Try) (81.50 ± 7.71%) enhanced MS2 recovery, while the presence of kaolin (Kaolin) inhibited MS2 recovery with an efficiency of 63.13% ± 11.17%. Furthermore, Atomic force microscopy (AFM) revealed that the MS2-HA cluster and the MS2-Try cluster had larger roughness values on the membrane surface, making it difficult to be eluted, whereas MS2-Kaolin cluster had compact surfaces making it difficult to be eluted. Additionally, the MS2-HA cluster is bound to the membrane by single hydrogen bond with SO, whereas both the MS2-Try cluster and the MS2-Kaolin cluster are bound to the membrane by two hydrogen bonds, making eluting MS2 challenging. These findings have potential implications for validating standardized methods for virus enrichment in water samples.
Collapse
Affiliation(s)
- Zhen Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yong-Fu Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Zhu H, Wang G, Liu X, Wu W, Yu T, Zhang W, Liu X, Cheng G, Wei L, Ni L, Peng Z, Li X, Xu D, Qian P, Chen P. Establishment and application of a quadruplex real-time RT-qPCR assay for differentiation of TGEV, PEDV, PDCoV, and PoRVA. Microb Pathog 2024; 191:106646. [PMID: 38631414 DOI: 10.1016/j.micpath.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/μL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.
Collapse
Affiliation(s)
- Hechao Zhu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Geng Wang
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Xiangzu Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenqing Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Teng Yu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | | | - Xiangdong Liu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guofu Cheng
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liuqing Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lumei Ni
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Zhong Peng
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiangmin Li
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dequan Xu
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pin Chen
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
3
|
Fuzzen M, Harper NBJ, Dhiyebi HA, Srikanthan N, Hayat S, Bragg LM, Peterson SW, Yang I, Sun JX, Edwards EA, Giesy JP, Mangat CS, Graber TE, Delatolla R, Servos MR. An improved method for determining frequency of multiple variants of SARS-CoV-2 in wastewater using qPCR assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163292. [PMID: 37030387 PMCID: PMC10079313 DOI: 10.1016/j.scitotenv.2023.163292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 06/01/2023]
Abstract
Wastewater-based surveillance has become an effective tool around the globe for indirect monitoring of COVID-19 in communities. Variants of Concern (VOCs) have been detected in wastewater by use of reverse transcription polymerase chain reaction (RT-PCR) or whole genome sequencing (WGS). Rapid, reliable RT-PCR assays continue to be needed to determine the relative frequencies of VOCs and sub-lineages in wastewater-based surveillance programs. The presence of multiple mutations in a single region of the N-gene allowed for the design of a single amplicon, multiple probe assay, that can distinguish among several VOCs in wastewater RNA extracts. This approach which multiplexes probes designed to target mutations associated with specific VOC's along with an intra-amplicon universal probe (non-mutated region) was validated in singleplex and multiplex. The prevalence of each mutation (i.e. VOC) is estimated by comparing the abundance of the targeted mutation with a non-mutated and highly conserved region within the same amplicon. This is advantageous for the accurate and rapid estimation of variant frequencies in wastewater. The N200 assay was applied to monitor frequencies of VOCs in wastewater extracts from several communities in Ontario, Canada in near real time from November 28, 2021 to January 4, 2022. This includes the period of the rapid replacement of the Delta variant with the introduction of the Omicron variant in these Ontario communities in early December 2021. The frequency estimates using this assay were highly reflective of clinical WGS estimates for the same communities. This style of qPCR assay, which simultaneously measures signal from a non-mutated comparator probe and multiple mutation-specific probes contained within a single qPCR amplicon, can be applied to future assay development for rapid and accurate estimations of variant frequencies.
Collapse
Affiliation(s)
- Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | | | - Hadi A Dhiyebi
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Nivetha Srikanthan
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Samina Hayat
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Shelley W Peterson
- One-Health Division, Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3M4, Canada
| | - Ivy Yang
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - J X Sun
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Elizabeth A Edwards
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Chand S Mangat
- One-Health Division, Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3M4, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
4
|
Mare R, Mare C, Hadarean A, Hotupan A, Rus T. COVID-19 and Water Variables: Review and Scientometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:957. [PMID: 36673718 PMCID: PMC9859563 DOI: 10.3390/ijerph20020957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 has changed the world since 2020, and the field of water specifically, boosting scientific productivity (in terms of published articles). This paper focuses on the influence of COVID-19 on scientific productivity with respect to four water variables: (i) wastewater, (ii) renewable water resources, (iii) freshwater withdrawal, and (iv) access to improved and safe drinking water. The field's literature was firstly reviewed, and then the maps were built, emphasizing the strong connections between COVID-19 and water-related variables. A total of 94 countries with publications that assess COVID-19 vs. water were considered and evaluated for how they clustered. The final step of the research shows that, on average, scientific productivity on the water topic was mostly conducted in countries with lower COVID-19 infection rates but higher development levels as represented by gross domestic product (GDP) per capita and the human development index (HDI). According to the statistical analysis, the water-related variables are highly significant, with positive coefficients. This validates that countries with higher water-related values conducted more research on the relationship with COVID-19. Wastewater and freshwater withdrawal had the highest impact on the scientific productivity with respect to COVID-19. Access to safe drinking water becomes insignificant in the presence of the development parameters.
Collapse
Affiliation(s)
- Roxana Mare
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Codruța Mare
- Department of Statistics-Forecasts-Mathematics, Faculty of Economics and Business Administration, Babes-Bolyai University, 58-60 Teodor Mihali Str., 400591 Cluj-Napoca, Romania
- Interdisciplinary Centre for Data Science, Babes-Bolyai University, 68 Avram Iancu Str., 4th Floor, 400083 Cluj-Napoca, Romania
| | - Adriana Hadarean
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Anca Hotupan
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Tania Rus
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Fonseca MS, Machado BAS, Rolo CDA, Hodel KVS, Almeida EDS, de Andrade JB. Evaluation of SARS-CoV-2 concentrations in wastewater and river water samples. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100214. [PMID: 37520921 PMCID: PMC9055419 DOI: 10.1016/j.cscee.2022.100214] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/02/2023]
Abstract
There are only a few established methods to determine the concentration of encapsulated viruses, such as SARS-CoV-2, in water matrices, limiting the application of wastewater-based epidemiology (WBE)-an important tool for public health research. The present study compared four methods that are commonly used to concentrate non-encapsulated enteric viruses for determining SARS-CoV-2 concentration in wastewater and wastewater-enriched river water samples. The four methods tested were electronegative membrane with Mg+2 addition, aluminum hydroxide-based precipitation, polyethylene glycol (PEG) 8000 precipitation, and ultrafiltration (with porosity of 10 and 50 kDa). Prior to the concentration step, filtration or centrifugation was performed to remove suspended particles from the samples (pretreatment). To evaluate the recovery efficiency (%), samples of SARS-CoV-2 from nasopharyngeal swabs obtained from RT-qPCR-positive patients were used as spiked samples. The second part of the analysis involved the quantification of the SARS-CoV-2 copy number in analytes without SARS-CoV-2-spiked samples. Among the tested methods, pretreatment via centrifugation followed by ultrafiltration with a 50-kDa cut-off was found the most efficient method for wastewater samples with spiked samples (54.3 or 113.01% efficiency). For the wastewater-enriched river samples with spiked samples, pretreatment via centrifugation followed by filtration using an electronegative membrane was the most efficient method (110.8% and 95.9% for N1 and N2 markers, respectively). However, ultrafiltration of the raw river water samples using 10 or 50 kDa cut-off filters and PEG 8000 precipitation showed the best concentration efficiency based on copy number, regardless of the pretreatment approach or sample type (values ranging from 3 × 105 to 6.7 × 103). The effectiveness of the concentration method can vary depending on the type of sample and concentration method. We consider that this study will contribute to more widespread use of WBE for the environmental surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Maísa Santos Fonseca
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Edna Dos Santos Almeida
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Jailson Bittencourt de Andrade
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Federal University of Bahia, Salvador, 40170-115, Brazil
| |
Collapse
|
6
|
Yu L, Tian Z, Joshi DR, Yuan L, Tuladhar R, Zhang Y, Yang M. Detection of SARS-CoV-2 and Other Viruses in Wastewater: Optimization and Automation of an Aluminum Hydroxide Adsorption-Precipitation Method for Virus Concentration. ACS ES&T WATER 2022; 2:2175-2184. [PMID: 37552732 PMCID: PMC9115887 DOI: 10.1021/acsestwater.2c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/18/2023]
Abstract
This study aimed to provide a low-cost technique for virus detection in wastewater by improving an aluminum hydroxide adsorption-precipitation method. The releasing efficiency of viruses trapped by the aluminum hydroxide precipitates was improved by adding ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) to dissolve the precipitates at a Na2EDTA·2H2O:AlCl3 molar ratio of 1.8-3.6. The recovery rates of the improved method for seven viruses, including SARS-CoV-2-abEN pseudovirus and six animal viruses, were 5.9-22.3% in tap water and 4.9-35.1% in wastewater. Rotavirus A (9.0-4.5 × 103 copies/mL), porcine circovirus type 2 (5.8-6.4 × 105 copies/mL), and porcine parvovirus (5.6-2.7 × 104 copies/mL) were detected in China's pig farm wastewater, while rotavirus A (2.0 × 103 copies/mL) was detected in hospital wastewater. SARS-CoV-2 was detected in hospital wastewater (8.4 × 102 to 1.4 × 104 copies/mL), sewage (6.4 × 10 to 2.3 × 103 copies/mL), and river water (6.6 × 10 to 9.3 × 10 copies/mL) in Nepal. The method was automized, with a rate of recovery of 4.8 ± 1.4% at a virus concentration of 102 copies/mL. Thus, the established method could be used for wastewater-based epidemiology with sufficient sensitivity in coping with the COVID-19 epidemic and other virus epidemics.
Collapse
Affiliation(s)
- Lina Yu
- State Key Laboratory of Environmental Aquatic
Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Sino-Danish College, University of
Chinese Academy of Sciences, Beijing 100190,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic
Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| | - Dev Raj Joshi
- Central Department of Microbiology,
Tribhuvan University, GPO 44613 Kirtipur, Kathmandu,
Nepal
| | - Lin Yuan
- Beijing Sino-science Gene Technology
Company, Ltd., Beijing 102629, China
| | - Reshma Tuladhar
- Central Department of Microbiology,
Tribhuvan University, GPO 44613 Kirtipur, Kathmandu,
Nepal
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic
Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Sino-Danish College, University of
Chinese Academy of Sciences, Beijing 100190,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Min Yang
- Sino-Danish College, University of
Chinese Academy of Sciences, Beijing 100190,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
- Key Laboratory of Drinking Water Science and Technology,
Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Tesauro M, Terraneo M, Consonni M, Fappani C, Colzani D, Stevanin C, Amendola A, Masseroni D, Tanzi E. A Methodological Approach to Water Concentration to Investigate the Presence of SARS-CoV-2 RNA in Surface Freshwaters. Pathogens 2022; 11:845. [PMID: 36014966 PMCID: PMC9415985 DOI: 10.3390/pathogens11080845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
During the COVID-19 public health emergency, an increasing number of studies reported the occurrence of SARS-CoV-2 in wastewaters worldwide, but little is known about the presence of the virus in surface freshwaters. The aim of the current study was to develop and validate an appropriate and scalable methodological approach for the concentration and detection of SARS-CoV-2 from surface freshwater samples, collected within the Milan rural network subjected to flood spillways activity. Overall, both surface water and distilled water samples spiked with inactivated SARS-CoV-2 were used to validate the concentration method for pathogens determination. Two pre-filtration systems, filter paper and Sartolab® P20 (Sartorius, Germany) and two concentration methods, two-phase (PEG-dextran method) separation and tangential flow ultrafiltration (UF), were compared. The effects of pre-filtration and concentration on viral nucleic acid recovery were assessed through real time RT-PCR targeting SARS-CoV-2 and the internal viral control PMMoV (Pepper Mild Mottle Virus). Our results showed that UF is more sensitive than the PEG-dextran method in viral acid nucleic recovery from surface water samples. Better results were obtained pre-filtering samples with Sartolab® P20 and extracting the nucleic acids with undiluted silica, rather than diluted as required by the standard protocol. The proposed method will be used for the monitoring of surface waters in the Milan area.
Collapse
Affiliation(s)
- Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy;
- Coordinated Research Center “EpiSoMI”, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (A.A.); (E.T.)
| | - Mara Terraneo
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy;
| | - Clara Fappani
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122 Milan, Italy
| | - Daniela Colzani
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
| | - Caterina Stevanin
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
| | - Antonella Amendola
- Coordinated Research Center “EpiSoMI”, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (A.A.); (E.T.)
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
| | - Daniele Masseroni
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Elisabetta Tanzi
- Coordinated Research Center “EpiSoMI”, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (A.A.); (E.T.)
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
| |
Collapse
|
8
|
Girón-Navarro R, Linares-Hernández I, Castillo-Suárez LA. The impact of coronavirus SARS-CoV-2 (COVID-19) in water: potential risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52651-52674. [PMID: 34453253 PMCID: PMC8397333 DOI: 10.1007/s11356-021-16024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/14/2021] [Indexed: 06/02/2023]
Abstract
This review summarizes research data on SARS-CoV-2 in water environments. A literature survey was conducted using the electronic databases Science Direct, Scopus, and Springer. This complete research included and discussed relevant studies that involve the (1) introduction, (2) definition and features of coronavirus, (2.1) structure and classification, (3) effects on public health, (4) transmission, (5) detection methods, (6) impact of COVID-19 on the water sector (drinking water, cycle water, surface water, wastewater), (6.5) wastewater treatment, and (7) future trends. The results show contamination of clean water sources, and community drinking water is vulnerable. Additionally, there is evidence that sputum, feces, and urine contain SARS-CoV-2, which can maintain its viability in sewage and the urban-rural water cycle to move towards seawater or freshwater; thus, the risk associated with contracting COVID-19 from contact with untreated water or inadequately treated wastewater is high. Moreover, viral loads have been detected in surface water, although the risk is lower for countries that efficiently treat their wastewater. Further investigation is immediately required to determine the persistence and mobility of SARS-CoV-2 in polluted water and sewage as well as the possible potential of disease transmission via drinking water. Conventional wastewater treatment systems have been shown to be effective in removing the virus, which plays an important role in pandemic control. Monitoring of this virus in water is extremely important as it can provide information on the prevalence and distribution of the COVID-19 pandemic in different communities as well as possible infection dynamics to prevent future outbreaks.
Collapse
Affiliation(s)
- Rocío Girón-Navarro
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico.
| | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico.
- Consejo Mexiquense de Ciencia y Tecnología - COMECYT, Diagonal Alfredo del Mazo 198 y 103, Guadalupe y Club Jardín, C.P. 50010, Toluca de Lerdo, Estado de México, México.
| |
Collapse
|
9
|
Kabdaşlı I, Tünay O. Concentration techniques tailored for the detection of SARS-CoV-2 genetic material in domestic wastewater and treatment plant sludge: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106296. [PMID: 34485054 PMCID: PMC8405238 DOI: 10.1016/j.jece.2021.106296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 05/06/2023]
Abstract
Upon the outbreak of COVID-19 pandemic, detection and quantification of SARS-CoV-2 genetic material in domestic wastewater have led to an increase in the efforts to define and implement the wastewater-based epidemiology (WBE). This application provides valuable information to define local contamination monitoring, emergence of COVID-19 and its variants and many other aspects to cope with and control the pandemic. WBE surveillance, however, requires several consecutive steps such as sampling, pretreatment and concentration of samples, and detection and quantification of SARS-CoV-2 genetic material in wastewater. In this review paper, the literature regarding to all these applications reviewed considering their advantages, disadvantages as well as their applicability. A specific emphasis was placed on the last step, detection and quantification since it covers the most critical procedure for concentrating the virus before measurement. Evaluation of the existing data indicating ultrafiltration, polyethylene glycol (PEG) precipitation and electronegative membrane filtration (ENMF) were the most promising techniques for concentration. The ongoing studies are proposed to be continued within the context of standard methods. Future research needs are delineated and suggestions are made for details.
Collapse
Affiliation(s)
- Işık Kabdaşlı
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, Sarıyer, İstanbul 34469, Republic of Turkey
| | - Olcay Tünay
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, Sarıyer, İstanbul 34469, Republic of Turkey
| |
Collapse
|
10
|
Khan K, Tighe SW, Badireddy AR. Factors influencing recovery of SARS-CoV-2 RNA in raw sewage and wastewater sludge using polyethylene glycol-based concentration method. J Biomol Tech 2021; 32:172-179. [PMID: 35027874 PMCID: PMC8730514 DOI: 10.7171/jbt.21-3203-012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Wastewater surveillance for monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important epidemiologic tool for the assessment of population-wide coronavirus disease 2019 (COVID-19). This tool can be successfully implemented only if SARS-CoV-2 RNA in wastewater can be accurately recovered and quantified. The lack of standardized procedure for wastewater virus analysis has resulted in varying SARS-CoV-2 concentrations for the same sample. This study reports the effect of 4 key factors-sample volume, percentage polyethylene glycol (PEG)-NaCl, incubation period, and storage duration at 4°C-on the recovery of spiked noninfectious SARS-CoV-2 RNA in raw sewage and sludge samples. N1 and N2 genes of SARS-CoV-2 were quantified using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and digital droplet PCR (RT-ddPCR) techniques. Results indicate that 1) for raw sewage, 50-ml sample volume, 30% PEG-NaCl addition, 6-h incubation, and sample analysis within 24 h of collection can result in much better RNA recovery (RT-qPCR: 72% for N1 and 82% for N2; RT-ddPCR: 55% for N1 and 85% for N2) when compared with commonly used PEG-based method; 2) for sludge, the sample analysis using raw sewage protocol and all other variations of each factor mostly resulted in false negatives for both N1 and N2. The absence of N1 and N2 suggests that sludge samples probably need a pretreatment step that releases RNA entrapped in sludge solids back into bulk solution. In conclusion, our modified PEG-based concentration method can cut down the analysis time at least by half, which in turn helps to implement early detection system for SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- Kamruzzaman Khan
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, Vermont, USA
| | - Scott W. Tighe
- Advanced Genomics Lab, Vermont Integrative Genomics Resources, University of Vermont, Burlington, Vermont, USA
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
11
|
Flood MT, D'Souza N, Rose JB, Aw TG. Methods Evaluation for Rapid Concentration and Quantification of SARS-CoV-2 in Raw Wastewater Using Droplet Digital and Quantitative RT-PCR. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:303-315. [PMID: 34296387 PMCID: PMC8297606 DOI: 10.1007/s12560-021-09488-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/13/2021] [Indexed: 05/20/2023]
Abstract
Wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging public health tool to understand the spread of Coronavirus Disease 2019 (COVID-19) in communities. The performance of different virus concentration methods and PCR methods needs to be evaluated to ascertain their suitability for use in the detection of SARS-CoV-2 in wastewater. We evaluated ultrafiltration and polyethylene glycol (PEG) precipitation methods to concentrate SARS-CoV-2 from sewage in wastewater treatment plants and upstream in the wastewater network (e.g., manholes, lift stations). Recovery of viruses by different concentration methods was determined using Phi6 bacteriophage as a surrogate for enveloped viruses. Additionally, the presence of SARS-CoV-2 in all wastewater samples was determined using reverse transcription quantitative PCR (RT-qPCR) and reverse transcription droplet digital PCR (RT-ddPCR), targeting three genetic markers (N1, N2 and E). Using spiked samples, the Phi6 recoveries were estimated at 2.6-11.6% using ultrafiltration-based methods and 22.2-51.5% using PEG precipitation. There was no significant difference in recovery efficiencies (p < 0.05) between the PEG procedure with and without a 16 h overnight incubation, demonstrating the feasibility of obtaining same day results. The SARS-CoV-2 genetic markers were more often detected by RT-ddPCR than RT-qPCR with higher sensitivity and precision. While all three SARS-CoV-2 genetic markers were detected using RT-ddPCR, the levels of E gene were almost below the limit of detection using RT-qPCR. Collectively, our study suggested PEG precipitation is an effective low-cost procedure which allows a large number of samples to be processed simultaneously in a routine wastewater monitoring for SARS-CoV-2. RT-ddPCR can be implemented for the absolute quantification of SARS-CoV-2 genetic markers in different wastewater matrices.
Collapse
Affiliation(s)
- Matthew T Flood
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Nishita D'Souza
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Cuevas-Ferrando E, Allende A, Pérez-Cataluña A, Truchado P, Hernández N, Gil MI, Sánchez G. Occurrence and Accumulation of Human Enteric Viruses and Phages in Process Water from the Fresh Produce Industry. Foods 2021; 10:foods10081853. [PMID: 34441630 PMCID: PMC8391481 DOI: 10.3390/foods10081853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
The virological quality of process water (PW) used by the produce industry has received limited attention. As a first step to overcoming technical limitations in monitoring viruses in PW, the analytical performance of ultrafiltration was assessed to concentrate viral particles from 20 L of spiked PW. The selected method used for sample concentration of PW was carefully validated, thus enabling the accurate quantification and estimation of viral titers of human enteric viruses and phages. PW from the produce industry was collected periodically from the washing tanks of commercial facilities. The analysis of coliphages was performed by plaque assay, while the occurrence of enteric viruses and crAssphage was determined by molecular techniques. Significant differences in the physicochemical composition of PW, mostly due to the different nature of fresh produce types and differences in the sanitizer used in commercial operation, were observed. Accumulation of crAssphage and coliphages was observed in PW, but correlation with human enteric viruses was not possible due to the low prevalence of these pathogens in the PW analyzed. The obtained results showed that depending on the type of product washed, the product/water ratio and the residual concentrations of the sanitizers, the prevalence and concentration of bacteriophages changed significantly.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (E.C.-F.); (A.P.-C.)
| | - Ana Allende
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (E.C.-F.); (A.P.-C.)
| | - Pilar Truchado
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Natalia Hernández
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Maria Isabel Gil
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (E.C.-F.); (A.P.-C.)
- Correspondence:
| |
Collapse
|
13
|
Korajkic A, McMinn BR, Herrmann MP, Pemberton AC, Kelleher J, Oshima K, Villegas EN. Performance evaluation of a dead-end hollowfiber ultrafiltration method for enumeration of somatic and F+ coliphage from recreational waters. J Virol Methods 2021; 296:114245. [PMID: 34310974 PMCID: PMC8982549 DOI: 10.1016/j.jviromet.2021.114245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022]
Abstract
Dead-end hollow fiber ultrafiltration combined with a single agar layer assay (D-HFUF-SAL) has potential use in the assessment of sanitary quality of recreational waters through enumeration of coliphage counts as measures of fecal contamination. However, information on applicability across a broad range of sites and water types is limited. Here, we tested the performance of D-HFUF-SAL on 49 marine and freshwater samples. Effect of method used to titer the spiking suspension (SAL versus double agar layer [DAL]) on percent recovery was also evaluated. Average somatic coliphage recovery (72 % ± 27) was significantly higher (p < 0.0001) compared to F+ (53 % ± 19). This was more pronounced for marine (p ≤ 0.0001) compared to freshwaters (p = 0.0134). Neither method affected somatic coliphage, but DAL (28 % ± 12) significantly (p < 0.0001) underestimated F + coliphage recoveries compared to SAL (53 % ± 19). Overall, results indicate that, while D-HFUF-SAL performed well over a wide variety of water types, F + coliphage recoveries were significantly reduced for marine waters suggesting that some components unique to this habitat may interfere with the assay performance. More importantly, our findings indicate that choice of spike titer method merits careful consideration since it may under-estimate method percent recovery.
Collapse
Affiliation(s)
- Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, USA.
| | - Brian R McMinn
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Michael P Herrmann
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Adin C Pemberton
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Julie Kelleher
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Kevin Oshima
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Eric N Villegas
- United States Environmental Protection Agency, Office of Research and Development, USA
| |
Collapse
|
14
|
McMinn BR, Korajkic A, Kelleher J, Herrmann MP, Pemberton AC, Ahmed W, Villegas EN, Oshima K. Development of a large volume concentration method for recovery of coronavirus from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145727. [PMID: 33607441 PMCID: PMC7870434 DOI: 10.1016/j.scitotenv.2021.145727] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 04/15/2023]
Abstract
Levels of severe acute respiratory coronavirus type 2 (SARS CoV 2) RNA in wastewater could act as an effective means to monitor coronavirus disease 2019 (COVID-19) within communities. However, current methods used to detect SARS CoV 2 RNA in wastewater are limited in their ability to process sufficient volumes of source material, inhibiting our ability to assess viral load. Typically, viruses are concentrated from large liquid volumes using two stage concentration, primary and secondary. Here, we evaluated a dead-end hollow fiber ultrafilter (D-HFUF) for primary concentration, followed by the CP Select™ for secondary concentration from 2 L volumes of primary treated wastewater. Various amendments to each concentration procedure were investigated to optimally recover seeded OC43 (betacoronavirus) from wastewater. During primary concentration, the D-HFUF recovered 69 ± 18% (n = 29) of spiked OC43 from 2 L of wastewater. For secondary concentration, the CP Select™ system using the Wastewater Application settings was capable of processing 100 mL volumes of primary filter eluates in <25 min. A hand-driven syringe elution proved to be significantly superior (p = 0.0299) to the CP Select™ elution for recovering OC43 from filter eluates, 48 ± 2% compared to 31 ± 3%, respectively. For the complete method (primary and secondary concentration combined), the D-HFUF and CP select/syringe elution achieved overall 22 ± 4% recovery of spiked OC43 through (n = 8) replicate filters. Given the lack of available standardized methodology confounded by the inherent limitations of relying on viral RNA for wastewater surveillance of SARS CoV 2, it is important to acknowledge these challenges when interpreting this data to estimate community infection rates. However, the development of methods that can substantially increase sample volumes will likely allow for reporting of quantifiable viral data for wastewater surveillance, equipping public health officials with information necessary to better estimate community infection rates.
Collapse
Affiliation(s)
- Brian R McMinn
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States.
| | - Asja Korajkic
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Michael P Herrmann
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Adin C Pemberton
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Eric N Villegas
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Kevin Oshima
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| |
Collapse
|