1
|
Cupples AM, Dang H, Foss K, Bernstein A, Thelusmond JR. An investigation of soil and groundwater metagenomes for genes encoding soluble and particulate methane monooxygenase, toluene-4-monoxygenase, propane monooxygenase and phenol hydroxylase. Arch Microbiol 2024; 206:363. [PMID: 39073473 DOI: 10.1007/s00203-024-04088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Soil and groundwater were investigated for the genes encoding soluble and particulate methane monooxygenase/ammonia monooxygenase (sMMO, pMMO/AMO), toluene 4-monooxygenase (T4MO), propane monooxygenase (PMO) and phenol hydroxylase (PH). The objectives were (1) to determine which subunits were present, (2) to examine the diversity of the phylotypes associated with the biomarkers and (3) to identify which metagenome associated genomes (MAGs) contained these subunits. All T4MO and PH subunits were annotated in the groundwater metagenomes, while few were annotated in the soil metagenomes. The majority of the soil metagenomes included only four sMMO subunits. Only two groundwater metagenomes contained five sMMO subunits. Gene counts for the pMMO subunits varied between samples. The majority of the soil metagenomes were annotated for all four PMO subunits, while three out of eight groundwater metagenomes contained all four PMO subunits. A comparison of the blast alignments for the sMMO alpha chain (mmoX) indicated the phylotypes differed between the soil and groundwater metagenomes. For the pMMO/AMO alpha subunit (pmoA/amoA), Nitrosospira was important for the soil metagenomes, while Methylosinus and Methylocystis were dominant for the groundwater metagenomes. The majority of pmoA alignments from both metagenomes were from uncultured bacteria. High quality MAGs were obtained from the groundwater data. Four MAGs (Methylocella and Cypionkella) contained sMMO subunits. Another three MAGs, within the order Pseudomonadales, contained all three pMMO subunits. All PH subunits were detected in seven MAGs (Azonexus, Rhodoferax, Aquabacterium). In those seven, all contained catechol 2,3-dioxagenase, and Aquabacterium also contained catechol 1,2-dioxygenase. T4MO subunits were detected in eight MAGs (Azonexus, Rhodoferax, Siculibacillus) and all, except one, contained all six subunits. Four MAGs (Rhodoferax and Azonexus) contained all subunits for PH and T4MO, as well as catechol 2,3-dixoygenase. The detection of T4MO and PH in groundwater metagenomes and MAGs has important implications for the potential oxidation of groundwater contaminants.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| | - Hongyu Dang
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Katy Foss
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Ben Gurion University of the Negev, Beersheba, Israel
| | - Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| |
Collapse
|
2
|
Skinner J, Delgado AG, Hyman M, Chu MYJ. Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171667. [PMID: 38485017 DOI: 10.1016/j.scitotenv.2024.171667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
In situ aerobic cometabolism of groundwater contaminants has been demonstrated to be a valuable bioremediation technology to treat many legacy and emerging contaminants in dilute plumes. Several well-designed and documented field studies have shown that this technology can concurrently treat multiple contaminants and reach very low cleanup goals. Fundamentally different from metabolism-based biodegradation of contaminants, microorganisms that cometabolically degrade contaminants do not obtain sufficient carbon and energy from the degradation process to support their growth and require an exogenous growth supporting primary substrate. Successful applications of aerobic cometabolic treatment therefore require special considerations beyond conventional in situ bioremediation, such as competitive inhibition between growth-supporting primary substrate(s) and contaminant non-growth substrates, toxic effects resulting from contaminant degradation, and differences in microbial population dynamics exhibited by biostimulated indigenous consortia versus bioaugmentation cultures. This article first provides a general review of microbiological factors that are likely to affect the rate of aerobic cometabolic biodegradation. We subsequently review fourteen well documented field-scale aerobic cometabolic bioremediation studies and summarize the underlying microbiological factors that may affect the performance observed in these field studies. The combination of microbiological and engineering principles gained from field testing leads to insights and recommendations on planning, design, and operation of an in situ aerobic cometabolic treatment system. With a vision of more aerobic cometabolic treatments being considered to tackle large, dilute plumes, we present several novel topics and future research directions that can potentially enhance technology development and foster success in implementing this technology for environmental restoration.
Collapse
Affiliation(s)
- Justin Skinner
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA; Andrews Engineering, Inc., 3300 Ginger Creek Drive, Springfield, IL 62711, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA
| | - Michael Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Thomas Hall 4545, 112 Derieux Place, Raleigh, NC 27607, USA
| | - Min-Ying Jacob Chu
- Haley & Aldrich Inc., 400 E Van Buren St, Ste 545, Phoenix, AZ 85004, USA.
| |
Collapse
|
3
|
Clark C, Rhea LK. Cometabolism of Chlorinated Volatile Organic Compounds and 1,4-Dioxane in Groundwater. WATER 2023; 15:1-12. [PMID: 38264201 PMCID: PMC10805244 DOI: 10.3390/w15223952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
This article provides an overview of the bioremediation of groundwater plumes containing admixtures of chlorinated volatile organic compounds (CVOCs) and 1,4-dioxane. The remediation of these plumes has historically focused on the reductive dechlorination of the CVOCs. Many of the remaining plumes are relatively large, and contaminant concentrations are diluted below the concentrations that can sustain reductive dechlorination. Cometabolic processes can decrease contaminant concentrations below the thresholds needed to support direct metabolism but typically require the addition of a substrate, such as high-purity propane. Relatively intensive site characterization and monitoring is necessary to implement bioremediation.
Collapse
Affiliation(s)
- Catherine Clark
- Subsurface Remediation Branch, Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Lee K. Rhea
- Subsurface Remediation Branch, Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| |
Collapse
|
4
|
Chen Y, Ren H, Kong X, Wu H, Lu Z. A multicomponent propane monooxygenase catalyzes the initial degradation of methyl tert-butyl ether in Mycobacterium vaccae JOB5. Appl Environ Microbiol 2023; 89:e0118723. [PMID: 37823642 PMCID: PMC10617536 DOI: 10.1128/aem.01187-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
Methyl tert-butyl ether (MTBE) has been recognized as a groundwater contaminant due to its widespread distribution and potential threat to human health. The limited understanding of the enzymes catalyzing MTBE degradation restricts their application in MTBE bioremediation. In this study, an MTBE-degrading soluble di-iron monooxygenase that clusters phylogenetically with a known propane monooxygenase (PRM) encoded by the prmABCD gene cluster was identified and functionally characterized, revealing their role in MTBE metabolism by Mycobacterium vaccae JOB5. Transcriptome analysis demonstrated that the expression of prmABCD was upregulated when JOB5 was induced by MTBE. Escherichia coli Rosetta heterologously expressing prmABCD from JOB5 could transform MTBE, indicating that the PRM of JOB5 is capable of the initial degradation of MTBE. The loss of the gene encoding the oxygenase α-subunit or β-subunit, the coupling protein, or the reductase disrupted MTBE transformation by the recombinant E. coli Rosetta. In addition, the catalytic capacity of PRM is likely affected by residue G95 in the active site pocket and residues I84, P165, A269, and V270 in the substrate tunnel structure. Mutation of amino acids in the active site and substrate tunnel resulted in inefficiency or inactivation of MTBE degradation, and the activity in 1,4-dioxane (1,4-D) degradation was diminished less than that in MTBE degradation.IMPORTANCEMulticomponent monooxygenases catalyzing the initial hydroxylation of MTBE are important in MTBE biodegradation. Previous studies of MTBE degradation enzymes have focused on P450s, alkane monooxygenase and MTBE monooxygenase, but the vital role of soluble di-iron monooxygenases has rarely been reported. In this study, we deciphered the essential catalytic role of a PRM and revealed the key residues of the PRM in MTBE metabolism. Our findings provide new insight into the MTBE-degrading gene cluster and enzymes in bacteria. This characterization of the PRM associated with MTBE degradation expands our understanding of MTBE-degrading gene diversity and provides a novel candidate enzyme for the bioremediation of MTBE-contaminated sites.
Collapse
Affiliation(s)
- Yiyang Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Wilsey MK, Taseska T, Meng Z, Yu W, Müller AM. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chem Commun (Camb) 2023; 59:11895-11922. [PMID: 37740361 DOI: 10.1039/d3cc03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Halogenated organic compounds are widespread, and decades of heavy use have resulted in global bioaccumulation and contamination of the environment, including water sources. Here, we introduce the most common halogenated organic water pollutants, their classification by type of halogen (fluorine, chlorine, or bromine), important policies and regulations, main applications, and environmental and human health risks. Remediation techniques are outlined with particular emphasis on carbon-halogen bond strengths. Aqueous advanced redox processes are discussed, highlighting mechanistic details, including electrochemical oxidations and reductions of the water-oxygen system, and thermodynamic potentials, protonation states, and lifetimes of radicals and reactive oxygen species in aqueous electrolytes at different pH conditions. The state of the art of aqueous advanced redox processes for brominated, chlorinated, and fluorinated organic compounds is presented, along with reported mechanisms for aqueous destruction of select PFAS (per- and polyfluoroalkyl substances). Future research directions for aqueous electrocatalytic destruction of organohalogens are identified, emphasizing the crucial need for developing a quantitative mechanistic understanding of degradation pathways, the improvement of analytical detection methods for organohalogens and transient species during advanced redox processes, and the development of new catalysts and processes that are globally scalable.
Collapse
Affiliation(s)
- Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
6
|
Intrinsic and bioaugmented aerobic trichloroethene degradation at seven sites. Heliyon 2023; 9:e13485. [PMID: 36846709 PMCID: PMC9946854 DOI: 10.1016/j.heliyon.2023.e13485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Trichloroethene (TCE) is one of the most prevalent contaminants in groundwater pollution worldwide. Aerobic-metabolic degradation of TCE has only recently been discovered at one field site. It has significant advantages over aerobic co-metabolism because no auxiliary substrates are required, and the oxygen demand is considerably lower. This study investigated the intrinsic degradation potential as well as the stimulation potential by bioaugmentation in microcosm experiments with groundwater from seven different sites contaminated with chloroethenes. An enrichment culture metabolizing TCE aerobically served as inoculum. The groundwater samples were inoculated with liquid culture in mineral salts medium as well as with immobilized culture on silica sand. Additionally, some samples were inoculated with groundwater from the site where the enrichment culture originated. The microcosms without inoculum proved the occurrence of aerobic TCE-metabolizing bacteria stimulated by the supply of oxygen in 54% of the groundwater samples. TCE degradation started in most cases after adaptation times of up to 92 d. The doubling time of 24 d indicated comparatively slow growth of the aerobic TCE degrading microorganisms. Bioaugmentation triggered or accelerated TCE-degradation in all microcosms with chlorothene concentrations below 100 mg L-1. All inoculation strategies (liquid and immobilized enrichment culture or addition of groundwater from the active field site) were successful. Our study demonstrates that aerobic-metabolic TCE degradation can occur and be stimulated across a broad hydrogeologic spectrum and should be considered as a viable option for groundwater remediation at TCE-contaminated sites.
Collapse
|
7
|
Characterization of 1,4-dioxane degrading microbial community enriched from uncontaminated soil. Appl Microbiol Biotechnol 2023; 107:955-969. [PMID: 36625913 DOI: 10.1007/s00253-023-12363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/01/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
1,4-Dioxane is a contaminant of emerging concern that has been commonly detected in groundwater. In this study, a stable and robust 1,4-dioxane degrading enrichment culture was obtained from uncontaminated soil. The enrichment was capable to metabolically degrade 1,4-dioxane at both high (100 mg L-1) and environmentally relevant concentrations (300 μg L-1), with a maximum specific 1,4-dioxane degradation rate (qmax) of 0.044 ± 0.001 mg dioxane h-1 mg protein-1, and 1,4-dioxane half-velocity constant (Ks) of 25 ± 1.6 mg L-1. The microbial community structure analysis suggested Pseudonocardia species, which utilize the dioxane monooxygenase for metabolic 1,4-dioxane biodegradation, were the main functional species for 1,4-dioxane degradation. The enrichment culture can adapt to both acidic (pH 5.5) and alkaline (pH 8) conditions and can recover degradation from low temperature (10°C) and anoxic (DO < 0.5 mg L-1) conditions. 1,4-Dioxane degradation of the enrichment culture was reversibly inhibited by TCE with concentrations higher than 5 mg L-1 and was completely inhibited by the presence of 1,1-DCE as low as 1 mg L-1. Collectively, these results demonstrated indigenous stable and robust 1,4-dioxane degrading enrichment culture can be obtained from uncontaminated sources and can be a potential candidate for 1,4-dioxane bioaugmentation at environmentally relevant conditions. KEY POINTS: •1,4-Dioxane degrading enrichment was obtained from uncontaminated soil. • The enrichment culture could degrade 1,4-dioxane to below 10 μg L-1. •Low Ks and low cell yield of the enrichment benefit its application in bioremediation.
Collapse
|
8
|
Tang Y. A Review of Challenges and Opportunities for Microbially Removing 1,4-Dioxane to Meet Drinking-Water and Groundwater Guidelines. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 31:100419. [PMID: 36582465 PMCID: PMC9794176 DOI: 10.1016/j.coesh.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
1,4-Dioxane is an emerging contaminant in drinking-water sources and contaminated sites. Microbial removal of 1,4-dioxane has attracted a lot of attention, but faces a challenge: being not able to continuously metabolize 1,4-dioxane to below most drinking-water and groundwater guidelines. The 1,4-dioxane concentrations in most drinking-water sources and contaminated sites are too low to sustain biomass growth. This minireview discusses strategies that may potentially address the challenge. The strategies include: 1) finding oligotrophs for which the minimum 1,4-dioxane concentrations to sustain biomass are low, 2) determining conditions that maximize 1,4-dioxane co-metabolism or co-oxidation, 3) creating novel materials as biomass carriers and contaminant concentrators, and 4) lowering the life-cycle costs of technologies that combine biodegradation with (electro)chemical oxidation or phytoremediation.
Collapse
Affiliation(s)
- Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street Suite A130, Tallahassee, Florida 32310, USA
| |
Collapse
|
9
|
Cupples AM, Li Z, Wilson FP, Ramalingam V, Kelly A. In silico analysis of soil, sediment and groundwater microbial communities to predict biodegradation potential. J Microbiol Methods 2022; 202:106595. [DOI: 10.1016/j.mimet.2022.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 12/27/2022]
|
10
|
Vishnyakova A, Popova N, Artemiev G, Botchkova E, Litti Y, Safonov A. Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a “Warm” Anammox Reactor. BIOLOGY 2022; 11:biology11101421. [PMID: 36290325 PMCID: PMC9598201 DOI: 10.3390/biology11101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary During more than 50 years of exploitation of the sludge repositories near Chepetsky Mechanical Plant (Glazov, Udmurtia, Russia) containing solid wastes of uranium and processed polymetallic concentrate, the soluble compounds entered the upper aquifer due to infiltration. Nowadays, this has resulted in a high level of pollution of the groundwater with reduced and oxidized nitrogen compounds. In this work, quartz, kaolin, and bentonite clays from various deposits were shown to induce biofilm formation and enhance nitrogen removal by an indigenous microbial community capable of anaerobic ammonium oxidation with nitrite (anammox) at low temperatures. The addition of a “warm” anammox community was also effective in further improving nitrogen removal and expanding the list of mineral carriers most suitable for creating a permeable reactive barrier. It has been suggested that the anammox activity is determined by the presence of essential trace elements in the carrier, the morphology of its surface, and most importantly, competition from rapidly growing microbial groups. Future work was discussed to adapt the “warm” anammox community to cold and provide the anammox community with nitrite through a partial denitrification route within the scope of sustainable anammox-based bioremediation of a nitrogen-polluted cold aquifer. In this unique habitat, novel species of anammox bacteria that are adapted to cold and heavy nitrogen pollution can be discovered. Abstract The complex pollution of aquifers by reduced and oxidized nitrogen compounds is currently considered one of the urgent environmental problems that require non-standard solutions. This work was a laboratory-scale trial to show the feasibility of using various mineral carriers to create a permeable in situ barrier in cold (10 °C) aquifers with extremely high nitrogen pollution and inhabited by the Candidatus Scalindua-dominated indigenous anammox community. It has been established that for the removal of ammonium and nitrite in situ due to the predominant contribution of the anammox process, quartz, kaolin clays of the Kantatsky and Kamalinsky deposits, bentonite clay of the Berezovsky deposit, and zeolite of the Kholinsky deposit can be used as components of the permeable barrier. Biofouling of natural loams from a contaminated aquifer can also occur under favorable conditions. It has been suggested that the anammox activity is determined by a number of factors, including the presence of the essential trace elements in the carrier and the surface morphology. However, one of the most important factors is competition with other microbial groups that can develop on the surface of the carrier at a faster rate. For this reason, carriers with a high specific surface area and containing the necessary microelements were overgrown with the most rapidly growing microorganisms. Bioaugmentation with a “warm” anammox community from a laboratory reactor dominated by Ca. Kuenenia improved nitrogen removal rates and biofilm formation on most of the mineral carriers, including bentonite clay of the Dinozavrovoye deposit, as well as loamy rock and zeolite-containing tripoli, in addition to carriers that perform best with the indigenous anammox community. The feasibility of coupled partial denitrification–anammox and the adaptation of a “warm” anammox community to low temperatures and hazardous components contained in polluted groundwater prior to bioaugmentation should be the scope of future research to enhance the anammox process in cold, nitrate-rich aquifers.
Collapse
Affiliation(s)
- Anastasia Vishnyakova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Grigoriy Artemiev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ekaterina Botchkova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Yuriy Litti
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
- Correspondence: ; Tel.: +7-(926)-369-92-43
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
11
|
Earnden L, Marangoni AG, Laredo T, Stobbs J, Marshall T, Pensini E. Decontamination of water co-polluted by copper, toluene and tetrahydrofuran using lauric acid. Sci Rep 2022; 12:15832. [PMID: 36138091 PMCID: PMC9500063 DOI: 10.1038/s41598-022-20241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Co-contamination by organic solvents (e.g., toluene and tetrahydrofuran) and metal ions (e.g., Cu2+) is common in industrial wastewater and in industrial sites. This manuscript describes the separation of THF from water in the absence of copper ions, as well as the treatment of water co-polluted with either THF and copper, or toluene and copper. Tetrahydrofuran (THF) and water are freely miscible in the absence of lauric acid. Lauric acid separates the two solvents, as demonstrated by proton nuclear magnetic resonance (1H NMR) and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR). The purity of the water phase separated from 3:7 (v/v) THF:water mixtures using 1 M lauric acid is ≈87%v/v. Synchrotron small angle X-Ray scattering (SAXS) indicates that lauric acid forms reverse micelles in THF, which swell in the presence of water (to host water in their interior) and ultimately lead to two free phases: 1) THF-rich and 2) water-rich. Deprotonated lauric acid (laurate ions) also induces the migration of Cu2+ ions in either THF (following separation from water) or in toluene (immiscible in water), enabling their removal from water. Laurate ions and copper ions likely interact through physical interactions (e.g., electrostatic interactions) rather than chemical bonds, as shown by ATR-FTIR. Inductively coupled plasma-optical emission spectrometry (ICP-OES) demonstrates up to 60% removal of Cu2+ ions from water co-polluted by CuSO4 or CuCl2 and toluene. While lauric acid emulsifies water and toluene in the absence of copper ions, copper salts destabilize emulsions. This is beneficial, to avoid that copper ions are re-entrained in the water phase alongside with toluene, following their migration in the toluene phase. The effect of copper ions on emulsion stability is explained based on the decreased interfacial activity and compressional rigidity of interfacial films, probed using a Langmuir trough. In wastewater treatment, lauric acid (a powder) can be mixed directly in the polluted water. In the context of groundwater remediation, lauric acid can be solubilized in canola oil to enable its injection to treat aquifers co-polluted by organic solvents and Cu2+. In this application, injectable filters obtained by injecting cationic hydroxyethylcellulose (HEC +) would impede the flow of toluene and copper ions partitioned in it, protecting downstream receptors. Co-contaminants can be subsequently extracted upstream of the filters (using pumping wells), to enable their simultaneous removal from aquifers.
Collapse
Affiliation(s)
- Laura Earnden
- School of Engineering, University of Guelph, Room 2525 Richards Bld., 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Alejandro G Marangoni
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Thamara Laredo
- Chemistry Department, Lakehead University, 500 University Ave, Orillia, ON, L3V 0B9, Canada
| | - Jarvis Stobbs
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Canadian Light Source Synchrotron, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Tatianna Marshall
- School of Engineering, University of Guelph, Room 2525 Richards Bld., 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Erica Pensini
- School of Engineering, University of Guelph, Room 2525 Richards Bld., 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
12
|
Rolston H, Hyman M, Semprini L. Single-well push-pull tests evaluating isobutane as a primary substrate for promoting in situ cometabolic biotransformation reactions. Biodegradation 2022; 33:349-371. [PMID: 35553282 DOI: 10.1007/s10532-022-09987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
A series of single-well push-pull tests (SWPPTs) were performed to investigate the efficacy of isobutane (2-methylpropane) as a primary substrate for in situ stimulation of microorganisms able to cometabolically transform common groundwater contaminants, such as chlorinated aliphatic hydrocarbons and 1,4-dioxane (1,4-D). In biostimulation tests, the disappearance of isobutane relative to a nonreactive bromide tracer indicated an isobutane-utilizing microbial community rapidly developed in the aquifer around the test well. SWPPTs were performed as natural drift tests with first-order rates of isobutane consumption ranging from 0.4 to 1.4 day-1. Because groundwater contaminants were not present at the demonstration site, isobutene (2-methylpropene) was used as a nontoxic surrogate to demonstrate cometabolic activity in the subsurface after biostimulation. The transformation of isobutene to isobutene epoxide (2-methyl-1,2-epoxypropane) illustrates the epoxidation process previously shown for common groundwater contaminants after cometabolic transformation by alkane-utilizing bacteria. The rate and extent of isobutene consumption and the formation and transformation of isobutene epoxide were greater in the presence of isobutane, with no evidence of primary substrate inhibition. Modeled concentrations of isobutane-utilizing biomass in microcosms constructed with groundwater collected before and after each SWPPT offered additional evidence that the isobutane-utilizing microbial community was stimulated in the aquifer. Experiments in groundwater microcosms also demonstrated that the isobutane-utilizing bacteria stimulated in the subsurface could cometabolically transform a mixture of co-substrates including isobutene, 1,1-dichloroethene, cis-1,2-dichloroethene, and 1,4-D with the same co-substrate preferences as the bacterium Rhodococcus rhodochrous ATCC strain 21198 after growth on isobutane. This study demonstrated the effectiveness of isobutane as primary substrate for stimulating in situ cometabolic activity and the use of isobutene as surrogate to investigate in situ cometabolic reactions catalyzed by isobutane-stimulated bacteria.
Collapse
|
13
|
Rhea LK, Clark C. Management of large dilute plumes of chloroethenes and 1,4-dioxane via monitored natural attenuation (MNA) and MNA augmentation. REMEDIATION (NEW YORK, N.Y.) 2022; 32:97-118. [PMID: 35539433 PMCID: PMC9083347 DOI: 10.1002/rem.21710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/08/2022] [Indexed: 01/11/2023]
Abstract
Management of large, dilute groundwater plumes of comingled chlorinated volatile organic compounds (CVOCs) and 1,4-dioxane (dioxane) is problematic due to chemical, hydrogeologic and economic concerns. The US Environmental Protection Agency (US EPA) has conducted research on the management of CVOC plumes for many years, and more recently dioxane. US EPA research on monitored natural attenuation (MNA) of CVOC plumes was reviewed by a science advisory board in 2001. Specific additional research was recommended and has been addressed in a series of US EPA reports produced over almost two decades. These reports are summarized in this document along with supporting information including evidence of biological degradation of dioxane. Based on the summarized reports, US EPA work documented elsewhere, and the work of others, under appropriate conditions MNA or augmented MNA remain viable management options for these plumes. Unlike MNA of plumes containing only CVOCs, however, MNA of large dilute comingled plumes should be expected to occur by cometabolic oxidation rather than direct metabolic processes.
Collapse
Affiliation(s)
- Lee K Rhea
- Groundwater Characterization and Remediation Division, US Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Subsurface Remediation Branch, Ada, Oklahoma, USA
| | - Catherine Clark
- Groundwater Characterization and Remediation Division, US Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Subsurface Remediation Branch, Ada, Oklahoma, USA
| |
Collapse
|
14
|
Cupples AM, Thelusmond JR. Predicting the occurrence of monooxygenases and their associated phylotypes in soil microcosms. METHODS IN MICROBIOLOGY 2021; 193:106401. [PMID: 34973287 DOI: 10.1016/j.mimet.2021.106401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Cometabolic oxidation involves the oxidation of chemicals often by monooxygenases or dioxygenases and can be a removal process for environmental contaminants such as trichloroethene (TCE) or 1,4-dioxane. Information on the occurrence of these genes and their associated microorganisms in environmental samples has the potential to enhance our understanding of contaminant removal. The overall aims were to 1) ascertain which genes encoding for monooxygenases (from methanotrophs, ammonia oxidizing bacteria and toluene/phenol oxidizers) and other key enzymes are present in soil microcosms and 2) determine which phylotypes are associated with those genes. The approach involved a predictive tool called PICRUSt2 and 16S rRNA gene amplicon datasets from two previous soil microcosm studies. The following targets from the KEGG database were examined: pmo/amo, mmo, dmp/pox/tomA, tmo/tbu/tou, bssABC (and downstream genes), tod, xylM, xylA, gst, dhaA, catE, dbfA1, dbfA2 and phenol 2-monooxygenase. A large number of phylotypes were associated with pmo/amo, while mmo was linked to only five. Several phylotypes were associated with both pmo/amo and mmo. The most dominant microorganism predicted for mmoX was Mycobacterium (also predicted for pmo/amo). A large number of phylotypes were associated with all six genes from the dmp/pox/tomA KEGG group. The taxonomic associations predicted for the tmo/tbu/tou KEGG group were more limited. In both datasets, Geobacter was a key phylotype for benzylsuccinate synthase. The dioxygenase-mediated toluene degradation pathway encoded by todC1C2BA was largely absent, as were the genes (xylM, xylA) encoding for xylene monooxygenase. All other genes investigated were predicted to be present and were associated with a number of microorganisms. Overall, the analysis predicted the genes encoding for sMMO (mmo), T3MO/T3MO/ToMO (tmo/tbu/tou) and benzylsuccinate synthase (bssABC) are present for a limited number of phylotypes compared to those encoding for pMMO/AMO (pmo/amo) and phenol monooxygenase/T2MO (dmp/poxA/tomA). These findings suggest in soils contaminant removal via pMMO/AMO or phenol monooxygenase/T2MO may be common because of the occurrence of these enzymes with a large number of phylotypes.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Liu Y, Zhang Y, Zhou A, Li M. Insights into carbon isotope fractionation on trichloroethene degradation in base activated persulfate process: The role of multiple reactive oxygen species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149371. [PMID: 34426360 DOI: 10.1016/j.scitotenv.2021.149371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Understanding the role of reactive oxygen species (ROS) is essential to elucidate the mechanism of contaminants degradation in in-situ chemical oxidation (ISCO). In this study, compound specific isotope analysis (CSIA) and radicals quenching methods were integrated to investigate the roles of hydroxyl radical (HO), sulfate radical (SO4-), and superoxide radical (O2-) on trichloroethene (TCE) degradation during persulfate (PS) activated with base. The carbon isotope fractionation of TCE was found to be dependent of the base:PS ratios, yielding carbon enrichment factors (ε values) from -9.8 ± 0.5‰ to -16.7 ± 1.0‰ at base:PS molar ratios between 0.5:1 and 10:1, which was attributed to multi-pathways degradation of TCE by multiple ROS. The expected ε value (-31.6 ± 1.6‰) for TCE degradation via O2- attacking pathway, was more negative than those values via SO4- or HO pathways. The relative contributions of HO, SO4- and O2- for TCE degradation during base activated PS were estimated with observed ε values. HO and O2- were the predominant ROS for TCE degradation (with the relative contribution of 55-69% and 22-45%, respectively) in base activated PS. This work highlights the prospect of CSIA application for identifying degradation pathways of contaminants with ROS in environment.
Collapse
Affiliation(s)
- Yunde Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yuanzheng Zhang
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Aiguo Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China.
| | - Minglu Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
16
|
Dang H, Cupples AM. Identification of the phylotypes involved in cis-dichloroethene and 1,4-dioxane biodegradation in soil microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148690. [PMID: 34198077 DOI: 10.1016/j.scitotenv.2021.148690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Co-contamination with chlorinated compounds and 1,4-dioxane has been reported at many sites. Recently, there has been an increased interest in bioremediation because of the potential to degrade multiple contaminants concurrently. Towards improving bioremediation efficacy, the current study examined laboratory microcosms (inoculated separately with two soils) to determine the phylotypes and functional genes associated with the biodegradation of two common co-contaminants (cis-dichloroethene [cDCE] and 1,4-dioxane). The impact of amending microcosms with lactate on cDCE and 1,4-dioxane biodegradation was also investigated. The presence of either lactate or cDCE did not impact 1,4-dioxane biodegradation one of the two soils. Lactate appeared to improve the initiation of the biological removal of cDCE in microcosms inoculated with either soil. Stable isotope probing (SIP) was then used to determine which phylotypes were actively involved in carbon uptake from cDCE and 1,4-dioxane in both soil communities. The most enriched phylotypes for 13C assimilation from 1,4-dioxane included Rhodopseudomonas and Rhodanobacter. Propane monooxygenase was predicted (by PICRUSt2) to be dominant in the 1,4-dioxane amended microbial communities and propane monooxygenase gene abundance values correlated with other enriched (but less abundant) phylotypes for 13C-1,4-dioxane assimilation. The dominant enriched phylotypes for 13C assimilation from cDCE included Bacteriovorax, Pseudomonas and Sphingomonas. In the cDCE amended soil microcosms, PICRUSt2 predicted the presence of DNA encoding glutathione S-transferase (a known cDCE upregulated enzyme). Overall, the work demonstrated concurrent removal of cDCE and 1,4-dioxane by indigenous soil microbial communities and the enhancement of cDCE removal by lactate. The data generated on the phylotypes responsible for carbon uptake (as determined by SIP) could be incorporated into diagnostic molecular methods for site characterization. The results suggest concurrent biodegradation of cDCE and 1,4-dioxane should be considered for chlorinated solvent site remediation.
Collapse
Affiliation(s)
- Hongyu Dang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|