1
|
Guo Q, Zhai W, Li P, Xiong Y, Li H, Liu X, Zhou Z, Li B, Wang P, Liu D. Nitrogen fertiliser-domesticated microbes change the persistence and metabolic profile of atrazine in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133974. [PMID: 38518695 DOI: 10.1016/j.jhazmat.2024.133974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Pesticides and fertilisers are frequently used and may co-exist on farmlands. The overfertilisation of soil may have a profound influence on pesticide residues, but the mechanism remains unclear. The effects of chemical fertilisers on the environmental behaviour of atrazine and their underlying mechanisms were investigated. The present outcomes indicated that the degradation of atrazine was inhibited and the half-life was prolonged 6.0 and 7.6 times by urea and compound fertilisers (NPK) at 1.0 mg/g (nitrogen content), respectively. This result, which was confirmed in both sterilised and transfected soils, was attributed to the inhibitory effect of nitrogen fertilisers on soil microorganisms. The abundance of soil bacteria was inhibited by nitrogen fertilisers, and five families of potential atrazine degraders (Micrococcaceae, Rhizobiaceae, Bryobacteraceae, Chitinophagaceae, and Sphingomonadaceae) were strongly and positively (R > 0.8, sig < 0.05) related to the decreased functional genes (atzA and trzN), which inhibited hydroxylation metabolism and ultimately increased the half-life of atrazine. In addition, nitrogen fertilisers decreased the sorption and vertical migration behaviour of atrazine in sandy loam might increase the in-situ residual and ecological risk. Our findings verified the weakened atrazine degradation with nitrogen fertilisers, providing new insights into the potential risks and mechanisms of atrazine in the context of overfertilisation.
Collapse
Affiliation(s)
- Qiqi Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Pengxi Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Yabing Xiong
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Huimin Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Bingxue Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
2
|
Taoumi H, Elouahbi K, Adnane I, Lahrech K. Sustainable crop production: Highlights on economic, environmental and social life cycle thinking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170267. [PMID: 38253108 DOI: 10.1016/j.scitotenv.2024.170267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Seeking multi-dimensional inclusion is one of the most global concerns of the crop production sector worldwide. Socio-eco-effectiveness or socio-eco-efficiency optimization plays a crucial role in future strategy establishment. Life cycle is a widely used approach examining economic, environmental, and social impacts. Recently, life cycle thinking approaches have been increasingly utilized to bring to light useful perceptions of the crop production processes. This study aims to apply a systematic review and prescriptive analytics to critically investigate the life cycle thinking approaches application according to sustainability pyramid aspects, life cycle thinking unicity, goal and scope variability, functional units' causality, system boundary' diversity, involved aspect' concentration, indicators, impacts categories and influencing variables distribution, as well as to define a first datasheet model and directive axis to apply per aspect and family for socio-eco-effectiveness or socio-eco-efficiency evaluation. Over 295 peer-reviewed studies from 2019 to the middle of 2023, 52 reviews and articles gathered from Web of Science and Scopus meet the criteria to be analyzed. Our inspection revealed that related reviews are few, approximately 2 %. Moving from the traditional life cycle perspective to the sustainability pyramid approach, the indicators applied by researchers were classified per aspect and family belonging. A deductive analysis was carried out to narrow the impact categories, and the influencing factors to the population's main interests: four economic (input status, resources consumption, waste, and Costs of Life Cycle), eight environmental (Climate Change, Global Warming, Ozone, Acidification, Eutrophication, Photochemical Oxidation, Abiotic Depletion, and Toxicity), and three social families (Human Toxicity, employment, and Ionizing Radiation). The results combination highlights the construction need for a directive datasheet model to address the optimizing problem under the identified families and aspects constraints, as well as to envisage the units and methods worldwide standardization's necessity for spatial-temporal studies comparison in the present, the past, and the future.
Collapse
Affiliation(s)
- Hamza Taoumi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco.
| | - Karim Elouahbi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Imane Adnane
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco.
| | - Khadija Lahrech
- Sidi Mohamed Ben Abdellah University (USMBA), ENSA, Fez, Morocco.
| |
Collapse
|
3
|
Wang Y, Zhang L, Zhang S, Zhu S, Zhang F, Zhang G, Duan B, Ren R, Zhang H, Han M, Xu Y, Li Y. Regulating pathway for bacterial diversities toward improved ecological benefits of thiencarbazone-methyl·isoxaflutole application: A field experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120037. [PMID: 38194872 DOI: 10.1016/j.jenvman.2024.120037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Herbicide abuse has a significantly negative impact on soil microflora and further influences the ecological benefit. The regulating measures and corresponding mechanisms mitigating the decreased bacterial diversity due to herbicide use have rarely been studied. A field experiment containing the application gradient of an efficient maize herbicide thiencarbazone-methyl·isoxaflutole was performed. The relationship between soil bacterial community and thiencarbazone-methyl·isoxaflutole use was revealed. Modified attapulgite was added to explore its impacts on soil microflora under the thiencarbazone-methyl·isoxaflutole application. Based on the analytic network process-entropy weighting method-TOPSIS method model, the ecological benefit focusing on microbial responses was quantitatively estimated along with technical effectiveness and economic benefit. The results showed that the diversity indices of soil microflora, especially the Inv_Simpson index, were reduced at the recommended, 5 and 10 times the recommended dosages of thiencarbazone-methyl·isoxaflutole use. The Flavisolibacter bacteria was negatively correlated with the residues in soils based on the random forest model and correlation analysis, indicating a potential degrader of thiencarbazone-methyl·isoxaflutole residues. The structural equation model further confirmed that the high soil water content and soil pH promoted the function of Flavisolibacter bacteria, facilitated the dissipation of thiencarbazone-methyl·isoxaflutole residues and further improved the diversity of soil microflora. In addition, the presence of modified attapulgite was found to increase the soil pH, which may improve bacterial diversity through the regulating pathway. This explained the high ecological benefits of the treatment where the thiencarbazone-methyl·isoxaflutole was applied at the recommended dosage rates in conjunction with modified attapulgite addition. Therefore, the comprehensive benefits of thiencarbazone-methyl·isoxaflutole application with a focus on ecological benefits can be improved by regulating the soil pH with modified attapulgite.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Shumin Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiliang Zhu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China.
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Bihua Duan
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Ren
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Meng Han
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Yi Xu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuyang Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
4
|
Zhang M, Wang L, Wang Q, Chen D, Liang X. The environmental and socioeconomic benefits of optimized fertilization for greenhouse vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168252. [PMID: 37918729 DOI: 10.1016/j.scitotenv.2023.168252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
China produces more than half of global vegetables with greenhouse farms contributes approximately 35 % to the country's overall vegetable supply. The average nitrogen (N) application rate of greenhouse vegetable production exceeds 2000 kg N ha-1 yr-1, considerably contributing to global agricultural GHG emissions and reactive N (Nr) losses. Optimizing the N fertilizer utilization in greenhouse vegetable production is essential for mitigating environmental pollution and promoting sustainable development nationally and globally. In this study, we estimated the N footprint (NF), social costs (SC, which includes ecosystem and human health damage costs caused by Nr losses to the environment) and net ecosystem economic income (NEEI, which balances between the fertilizers input cost, yield profit, and social costs) of different greenhouse vegetables (tomato, pakchoi, lettuce, cabbage) under farmers' practice (FP) and reduced fertilization treatment (R). Results showed that compared with FP, the NF of tomato, pakchoi, lettuce and cabbage in the R treatment decreased by 61 %, 29 %, 46 % and 36 %, respectively, and the social costs were decreased by 60 %, 48 %, 57 % and 50 %, respectively. On the regional scale, the reduction in N fertilizer use for greenhouse vegetables in Beijing only could save the fertilizer input cost by 1-5 million USD, and avoided SC would increase by 1-14 million USD. As a result, this increased the NEEI by 2-19million USD. This study has demonstrated that adopting reduced fertilization practices represents a cost-effective measure that not only ensures yields but also decrease social costs, NF, and improve the benefits to help achieve sustainable development of greenhouse vegetable production.
Collapse
Affiliation(s)
- Mengxuan Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Field Scientific Observation and Experiment Station of Ecological Agriculture in Miyun, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Agriculture and Food, The University of Melbourne, VIC 3010, Australia
| | - Ligang Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Field Scientific Observation and Experiment Station of Ecological Agriculture in Miyun, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qingmei Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Field Scientific Observation and Experiment Station of Ecological Agriculture in Miyun, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Deli Chen
- School of Agriculture and Food, The University of Melbourne, VIC 3010, Australia
| | - Xia Liang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Field Scientific Observation and Experiment Station of Ecological Agriculture in Miyun, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Agriculture and Food, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
5
|
Ansari SA, Shakeel A, Sawarkar R, Maddalwar S, Khan D, Singh L. Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: An up to date review. ENVIRONMENTAL RESEARCH 2023; 224:115529. [PMID: 36822534 DOI: 10.1016/j.envres.2023.115529] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Although the composting of lignocellulosic biomass is an emerging waste-to-wealth approach towards organic waste management and circular economy, it still has some environmental loopholes that must be addressed to make it more sustainable and reliable. The significant difficulties encountered when composting lignocellulosic waste biomass are consequently discussed in this study, as well as the advances in science that have been achieved throughout time to handle these problems in a sustainable manner. It discusses an important global concern, the emission of greenhouse gases during the composting process which limits its applicability on a broader scale. Furthermore, it discusses in detail, how different organic minerals and biological additives modify the physiochemical and biological characteristics of compost, aiming at developing eco-friendly compost with minimum odor, greenhouse gases emission and an optimum C/N ratio. It brings novel insights by demonstrating the effect of additives on the microbial enzymes and their pathways involved in the degradation of lignocellulosic biomass. This review also highlights the limitations of the application of additives in composting and suggests possible ways to overcome these limitations in the future for the sustainable and eco-friendly management of agricultural waste. The present review concludes that the use of additives in the co-composting of lignocellulosic biomass can be a viable remedy for the ongoing issues with the management of lignocellulosic waste.
Collapse
Affiliation(s)
- Suhel Aneesh Ansari
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Adnan Shakeel
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Riya Sawarkar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Shrirang Maddalwar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Debishree Khan
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| |
Collapse
|
6
|
Liu H, Liu M, Chen K, Shan M, Li Y. Fertilization can modify the enantioselective persistence of penthiopyrad in relation to the co-influence on soil ecological health. ENVIRONMENTAL RESEARCH 2023; 224:115514. [PMID: 36801231 DOI: 10.1016/j.envres.2023.115514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Penthiopyrad is a widely used chiral fungicide for controlling rust and Rhizoctonia diseases. Development of optically pure monomers is an important strategy to realize amount reduction and increment effects of penthiopyrad, wherein, fertilizers as the co-exiting nutrient supplement may alter the enantioselective residues of penthiopyrad in soil. In our study, influences of urea, phosphate, potash, NPK compound, organic granular, vermicompost and soya bean cake fertilizers on enantioselective persistence of penthiopyrad were fully evaluated. This study demonstrated that R-(-)-penthiopyrad dissipated faster than S-(+)-penthiopyrad during 120 days. High pH, available nitrogen, invertase activities and reduced available phosphorus, dehydrogenase, urease, catalase activities were situated to benefit removing the concentrations of penthiopyrad and weakening enantioselectivity in soil. With respect to the impact of different fertilizers on soil ecological indicators, vermicompost contributed to enhanced pH. Urea and compound fertilizer played an absolute advantage in promoting available nitrogen. All fertilizers didn't go against available phosphorus. Dehydrogenase responded negatively to phosphate, potash and organic fertilizers. Urea increased invertase, besides, it and compound fertilizer both diminished urease activity. The catalase activity was not activated by organic fertilizer. Based on all the findings, soil application of urea and phosphate fertilizers was recommended and considered as a better option to exhibit high efficiency for the dissipation of penthiopyrad. The combined environmental safety estimation can effectively guide the treatment of fertilization soils in line with the nutrition requirements and pollution regulation from penthiopyrad.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Mengqi Liu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Kuiyuan Chen
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Mei Shan
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Yongye Li
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
Yan X, Ye D, Tang Y, Muneer MA, Christie P, Tou C, Xu W, Shen B, Xu J, Zhang J. Potential mitigation of environmental impacts of intensive plum production in southeast China with maintenance of high yields: Evaluation using life cycle assessment. FRONTIERS IN PLANT SCIENCE 2023; 14:1158591. [PMID: 37035064 PMCID: PMC10073430 DOI: 10.3389/fpls.2023.1158591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Introduction Intensive plum production usually involves high yields but also high environmental costs due to excessive fertilizer inputs. Quantitative analysis of the environmental effects of plum production is thereby required in the development of optimum strategies to promote sustainable fruit production. Methods We collected survey questionnaires from 254 plum production farms in Zhao'an county, Fujian province, southeast China to assess the environmental impacts by life cycle assessment (LCA) methodology. The farms were categorized into four groups based on yield and environmental impacts, i.e., LL (low yield and low environmental impact), LH (low yield but high environmental impact), HL (high yield but low environmental impact), and HH (high yield and high environmental impact). Results The environmental impacts, i.e., average energy depletion, global warming, acidification, and eutrophication potential in plum production were 18.17 GJ ha-1, 3.63 t CO2 eq ha-1, 42.18 kg SO2 eq ha-1, and 25.06 kg PO4 eq ha-1, respectively. Only 19.7% of farmers were in the HL group, with 13.3% in the HH group, 39.0% in LL, and 28.0% LH. Plum yields of the HL group were 109-114% higher than the mean value of all 254 farms. Additionally, the HL group had a lower environmental impact per unit area compared to the overall mean value, with a reduction ranging from 31.9% to 36.7%. Furthermore, on a per tonne of plum production basis, the energy depletion, global warming potential, acidification potential, and eutrophication potential of HL farms were lower by 75.4%, 75.0%, 75.6%, and 75.8%, respectively. Overall, the total environmental impact index of LL, LH, HL, and HH groups were 0.26, 0.42, 0.06, and 0.21, respectively. Discussion Excessive fertilizer N application was the main source of the environmental impacts, the potential to reduce fertilizer N rate can be achieved without compromising plum yield by studying the HH group. The results provide an important foundation for enhancing the management of plum production, in order to promote 'green' agricultural development by reducing environmental impacts.
Collapse
Affiliation(s)
- Xiaojun Yan
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Delian Ye
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yafu Tang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peter Christie
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Congyue Tou
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weidong Xu
- Soil and Fertilizer Station of Zhaoan County, Zhangzhou, China
| | - Bingrong Shen
- Soil and Fertilizer Station of Zhaoan County, Zhangzhou, China
| | - Jinxian Xu
- Soil and Fertilizer Station of Zhaoan County, Zhangzhou, China
| | - Jiangzhou Zhang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Sanoja-López KA, Quiroz-Suárez KA, Dueñas-Rivadeneira AA, Maddela NR, Montenegro MCBSM, Luque R, Rodríguez-Díaz JM. Polymeric membranes functionalized with nanomaterials (MP@NMs): A review of advances in pesticide removal. ENVIRONMENTAL RESEARCH 2023; 217:114776. [PMID: 36403656 DOI: 10.1016/j.envres.2022.114776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The excessive contamination of drinking water sources by pesticides has a pernicious impact on human health and the environment since only 0.1% of pesticides is utilized effectively to control the and the rest is deposited in the environment. Filtration by polymeric membranes has become a promising technique to deal with this problem; however, the scientific community, in the need to find better pesticide retention results, has begun to meddle in the functionalization of polymeric membranes. Given the great variety of membrane, polymer, and nanomaterial synthesis methods present in the market, the possibilities of obtaining membranes that adjust to different variables and characteristics related to a certain pesticide are relatively extensive, so it is expected that this technology will represent one of the main pesticide removal strategies in the future. In this direction, this review focused on, - the main characteristics of the nanomaterials and their impact on pristine polymeric membranes; - the removal performance of functionalized membranes; and - the main mechanisms by which membranes can retain pesticides. Based on these insights, the functionalized polymeric membranes can be considered as a promising technology in the removal of pesticides since the removal performance of this technology against pesticide showed a significant increase. Obtaining membranes that adjust to different variables and characteristics related to a certain pesticide are relatively extensive, so it is expected that functionalized membrane technology will represent one of the main pesticide removal strategies in the future.
Collapse
Affiliation(s)
- Kelvin Adrian Sanoja-López
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Kevin Alberto Quiroz-Suárez
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador.
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| |
Collapse
|
9
|
Srithaworn M, Jaroenthanyakorn J, Tangjitjaroenkun J, Suriyachadkun C, Chunhachart O. Zinc solubilizing bacteria and their potential as bioinoculant for growth promotion of green soybean ( Glycine max L. Merr.). PeerJ 2023; 11:e15128. [PMID: 37193032 PMCID: PMC10182760 DOI: 10.7717/peerj.15128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/04/2023] [Indexed: 05/18/2023] Open
Abstract
Zinc-solubilizing rhizobacteria can convert insoluble zinc to an accessible form and increase Zn bioavailability in soil, which help mitigate Zn deficiency in crops. In this work, 121 bacterial isolates were isolated from the rhizosphere soils of peanuts, sweet potatoes, and cassava, and their capability to solubilize Zn was evaluated using Bunt and Rovira's agar containing 0.1% ZnO and ZnCO3. Among these isolates, six showed high Zn solubilization efficiencies ranging from 1.32 to 2.84 and 1.93 to 2.27 on the medium supplemented with 0.1% ZnO and ZnCO3, respectively. In a quantitative analysis of soluble Zn in liquid medium supplemented with 0.1% ZnO, the isolate KAH109 showed the maximum soluble zinc concentration of 62.89 mg L-1. Among the six isolates, the isolate KAH109 also produced the most indole-3-acetic acid (IAA) at 33.44 mg L-1, whereas the isolate KEX505 also produced IAA at 17.24 mg L-1 along with showing zinc and potassium solubilization activity. These strains were identified as Priestia megaterium KAH109 and Priestia aryabhattai KEX505 based on 16S rDNA sequence analysis. In a greenhouse experiment conducted in Nakhon Pathom, Thailand the ability of P. megaterium KAH109 and P. aryabhattai KEX505 to stimulate the growth and production of green soybeans was examined. The results revealed that inoculation with P. megaterium KAH109 and P. aryabhattai KEX505 considerably increased plant dry weight by 26.96% and 8.79%, respectively, and the number of grains per plant by 48.97% and 35.29% when compared to those of the uninoculated control. According to these results, both strains can be considered as a potential zinc solubilizing bioinoculant to promote the growth and production yield of green soybeans.
Collapse
Affiliation(s)
- Moltira Srithaworn
- Division of Microbiology, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Jieb Jaroenthanyakorn
- Division of Microbiology, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Janpen Tangjitjaroenkun
- Department of Resources and Environment, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Patumthani, Thailand
| | - Orawan Chunhachart
- Division of Microbiology, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| |
Collapse
|
10
|
Temizyurek-Arslan M, Karacetin E. Assessing the environmental impacts of organic and conventional mixed vegetable production based on the life cycle assessment approach. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1733-1746. [PMID: 35332683 DOI: 10.1002/ieam.4609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
This study aims to assess the environmental impacts and the energy efficiency of organic and conventional vegetable production in Palas Basin, Kayseri, Turkey. Three organic and three conventional farmers representing the vegetable production in the region participated in face-to-face questionnaires. Life cycle assessment (LCA) was implemented to assess the global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), and energy use, which were selected as environmental impact potentials. Additionally, the environmental risk assessment was conducted to understand the impact of pesticide use in the region. Six farmers were investigated individually, and it was found that all of the farmers had a common cultivation calendar, but there were differences in the application. Particularly, mineral fertilizer use and irrigation were excessive in some agricultural practices. Although the use of N- and P-based mineral fertilizers was one of the main differences between organic and conventional farming, irrigation was a common practice. Irrigation, the most influential practice, elevated not only water consumption but also EP, AP, and GWP as a result of electricity consumption by electrical pumps. Electricity consumption from irrigation contributed to the GWP most, and this value was in the range of 45%-95%. Mineral fertilizer use covered up to 40% of the EP, 31% of the GWP, and 37% of the AP for conventional farmers. Three different scenarios were developed to reduce the environmental impacts of the use of excessive mineral fertilizer and irrigation. The developed scenarios recommended the reductions by 38%, 44%, 25%, and 60% in GWP, EP, AP, and total energy inputs, respectively. This study demonstrates that LCA is beneficial in determining the environmental impact of hotspots in vegetable production and allows the development of different solutions to mitigate environmental impacts for agricultural sustainability. Integr Environ Assess Manag 2022;18:1733-1746. © 2022 SETAC.
Collapse
Affiliation(s)
| | - Evrim Karacetin
- Department of Environmental Engineering, Erciyes University, Kayseri, Turkey
| |
Collapse
|
11
|
Foong SY, Chan YH, Loy ACM, How BS, Tamothran AM, Yip AJK, Liew RK, Peng W, Alstrup AK, Lam SS, Sonne C. The nexus between biofuels and pesticides in agroforestry: Pathways toward United Nations sustainable development goals. ENVIRONMENTAL RESEARCH 2022; 214:113751. [PMID: 35753369 DOI: 10.1016/j.envres.2022.113751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The growth of global population continuously increases the demands for agroforestry-derived products, underpinning a sustainable growth of energy matrix in the sectors of food security, transportation, and industrial is momentous. The high demand for the sustainable energy sources has led to an increase in the application of pesticides associated with growing crops for the production of biofuel. In 2019, the global consumption of pesticides was 4.2 million tonnes. Case studies on life cycle assessment (LCA) of pesticides showed that toxicity is the major severe impact of pesticide usage, contributing to human toxicity (∼70%) and freshwater eco-toxicity (>50%). This alarming situation needs a solution as conventional pesticides pose various negative impacts to human and the environment, rendering the biofuel production process unsustainable. In this review, we focus on the interaction between pesticide use, biofuel production, food security for a sustainable balancing in between government benefits, environmental, and human health, aiming to track the implications and impact to the global efforts towards achieving the UN Sustainable Development Goals (SDGs). Even though, there are strict government regulations and legislations pertaining to pesticide use, and policies devised as guidelines for agroforestry sectors to implement and monitor these measures, the discrepancies still exist in between national and supranational entities. To cater the above issue, many efforts have been made to upscale the biofuel production, for example, the United States, Brazil, China and Indonesia have ventured into biofuels production from non-food-crops based feedstock while other developing nations are rapidly catching up. In this perspective, a sustainable nexus between Biofuels-Pesticides-Agroforestry (BPA) is essential to create a sustainable roadmap toward the UN SDGs, to fulfilling the energy, food, and land security. The contribution of technologies in BPA includes genetic modified crops, integrated pest and weed management with controlled release pesticides, use of nano-biopesticides is being reviewed. As a whole, the concept of biofuel processing complex (BPC) and farmers upskilling, together with the effective implementation of efficient policies and Internet of Things (IoT) would be the key to drive the BPA nexus towards fulfilment of SDGs.
Collapse
Affiliation(s)
- Shin Ying Foong
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Bing Shen How
- Biomass Waste-to-Wealth Special Interest Group, Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia.
| | | | - Andrew Jun Kit Yip
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Rock Keey Liew
- NV Western PLT, 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Aage Ko Alstrup
- Aarhus University Hospital, Department of Nuclear Medicine and PET, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
12
|
Wu YX, Zhang YD, Li N, Wu DD, Li QM, Chen YZ, Zhang GC, Yang J. Inhibitory effect and mechanism of action of juniper essential oil on gray mold in cherry tomatoes. Front Microbiol 2022; 13:1000526. [PMID: 36212845 PMCID: PMC9537556 DOI: 10.3389/fmicb.2022.1000526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Juniper essential oil (JEO), which is mostly known as an immune system booster and effective detoxifier, has substantial antimicrobial activity. A comparison of the inhibitory effects of three plant essential oils from juniper (Juniperus rigida), cedarwood (Juniperus virginiana), and cypress (Crupressus sempervirens) on four plant pathogenic fungi indicated that JEO was the most effective at inhibiting the growth of gray mold (Botrytis cinerea). Additional studies were subsequently conducted to explore the in vivo and in vitro antifungal activity and possible mechanism of JEO against B. cinerea. The results show that JEO inhibited the germination of spores and mycelial growth of B. cinerea in a concentration-dependent manner and exhibited strong inhibition when its concentration exceeded 10 μL/mL. JEO also significantly inhibited the incidence of disease and diameters of gray mold lesions on cherry tomato fruit (Solanum lycopersicum). After 12 h of treatment with JEO, the extracellular conductivity, and the contents of soluble protein, malondialdehyde, and hydrogen peroxide were 3.1, 1.2, 7.2, and 4.7 folds higher than those of the control group, respectively (P < 0.05), which indicated that JEO can damage membranes. Scanning electron microscopy observations revealed that JEO affected the morphology of mycelia, causing them to shrivel, twist and distort. Furthermore, JEO significantly improved the activities of the antioxidant-related enzymes superoxide dismutase and catalase but reduced the pathogenicity-related enzymes polygalacturonase (PG), pectin lyase and endoglucanase of B. cinerea (P < 0.05). In particular, PG was reduced by 93% after treatment with JEO for 12 h. Moreover, the 18 constituents of JEO were identified by gas chromatography/mass spectrometry (GC-MS) analysis, mainly limonene (15.17%), γ-terpinene (8.3%), β-myrcene (4.56%), terpinen-4-ol (24.26%), linalool (8.73%), α-terpineol (1.03%), o-cymene (8.35%) and other substances with antimicrobial activity. Therefore, JEO can be an effective alternative to prevent and control gray mold on cherry tomato fruit.
Collapse
Affiliation(s)
- Yu-Xuan Wu
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin, China
| | - Yun-Di Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin, China
| | - Na Li
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin, China
| | - De-Dong Wu
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin, China
| | - Qi-Meng Li
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin, China
| | - Yun-Ze Chen
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin, China
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Guo-Cai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin, China
- *Correspondence: Guo-Cai Zhang,
| | - Jing Yang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin, China
- College of Forestry, Guizhou University, Guiyang, China
- Jing Yang,
| |
Collapse
|
13
|
Liu H, Shan M, Liu M, Song J, Chen K. Assessment of the eco-toxicological effects in zoxamide polluted soil amended with fertilizers-An indoor evaluation. CHEMOSPHERE 2022; 301:134630. [PMID: 35447215 DOI: 10.1016/j.chemosphere.2022.134630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Zoxamide is a benzamide fungicide applied to control diseases caused by oomycete fungi. Fertilizers are important agricultural supplies to adjust soil properties and increase nutrition. To investigate the impact of zoxamide and seven fertilizers urea, phosphate fertilizer, potash fertilizer, compound fertilizer, organic fertilizer, vermicompost and soya bean cakes on the soil environment, the enantioselective dissipation characteristics of zoxamide, soil enzyme activities, pH and N, P nutrition changes were comprehensively analyzed in our present study. The enantioseparation method was successfully validated to quantify the zoxamide enantiomers in soil by HPLC using Chiral NQ (2)-RH column. Our results demonstrated that the R-(-)- and S-(+)-zoxamide half dissipated in the range of 10.88-17.81 and 8.05-14.41 days, respectively. S-(+)-zoxamide disappeared faster in soil. The vermicompost accelerated the dissipation rate of S-(+)-zoxamide, while urea, phosphate, organic and vermicompost fertilizer increased the dissipation selectivity. Zoxamide and fertilizers other than urea caused soil acidification during 80 days. Zoxamide was beneficial to soil catalase, instead inhibited soil urease, dehydrogenase activities and available phosphorus content. No significant effects on sucrase activity and available nitrogen content were found by zoxamide. Vermicompost and soya bean cakes had lasting and outstanding performance in efficiently improving soil enzyme activity and N, P nutrition. The comprehensive understanding of the ecological impact induced by chiral pesticide enantiomers and fertilizers on soil is vital to ensure the sustainable development and safety of agricultural production.
Collapse
Affiliation(s)
- Hui Liu
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Mei Shan
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Mengqi Liu
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Jiaqi Song
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Kuiyuan Chen
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
14
|
Huang X, Feng C, Qin J, Wang X, Zhang T. Measuring China's agricultural green total factor productivity and its drivers during 1998-2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154477. [PMID: 35304138 DOI: 10.1016/j.scitotenv.2022.154477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 05/16/2023]
Abstract
Improving agricultural green total factor productivity (AGTFP) is essential to China's agricultural sustainable development. Although several studies have focused on China's AGTFP, its measurement and drivers are not fully investigated yet. More specifically, the published research examining the drivers of China's AGTFP at both the production and factor levels is still scarce. To fill this gap, this study constructs two different data envelopment analysis models combined with green Luenberger productivity indicator (GLPI), the biennial weight modified Russell model and the biennial bounded adjusted model, to measure China's AGTFP as well as check the robustness. We further decompose the AGTFP growth at both production and factor levels to investigate its drivers. The main findings are as follows. First, during 1998-2019, the central region with its GLPI at 0.0377 had the largest AGTFP growth, followed by the western (0.0281) and eastern regions (0.0254). Second, in terms of production-decomposition, technical progress was crucial driver to AGTFP growth, energy conservation and emission reduction (ECER) and market performance. Third, in terms of factors-decomposition, the contributions of these factors to the AGTFP growth were positive and the contribution rates ranged from 1.01% (pesticide) to 38.51% (agricultural carbon emissions). Additionally, ECER performance was the primary driver of AGTFP, accounting for about 51.35% of the growth. Finally, according to the decompositions, Porter effect was discovered in China's agricultural sector. ECER drove China's agriculture to achieve win-win development between the environment and economic production.
Collapse
Affiliation(s)
- Xiuquan Huang
- Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao 999078, China
| | - Chao Feng
- School of Economics and Business Administration, Chongqing University, Chongqing 400030, China
| | - Jiahong Qin
- Institute of Finance and Economics, Shanghai University of Finance and Economics, Shanghai 361005, China
| | - Xi Wang
- Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao 999078, China
| | - Tao Zhang
- Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao 999078, China.
| |
Collapse
|
15
|
Hou J, Guo Z, Meng F, Li M, Hou LA. Restoration of organic-matter-impoverished arable soils through the application of soil conditioner prepared via short-time hydrothermal fermentation. ENVIRONMENTAL RESEARCH 2022; 204:112088. [PMID: 34563527 DOI: 10.1016/j.envres.2021.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The diversity and stability of critical microbial communities are of great importance for ensuring soil fertility. From the perspective of stimulating microbial diversity in organic-matter-impoverished arable soils, soil conditioner with a certain proportion of labile organic carbon was prepared by short-time hydrothermal fermentation (SHF). The effects of applying SHF, along with soil conditioner derived from traditional aerobic fermentation (TF) and heterogeneous fertilizer (HF), on soil texture, dissolved organic matter evolution, the structure of humic acid, and the succession of dominant microbial taxa were evaluated. SHF enhanced the storage capacity of soil organic carbon and nitrogen retention, and increased the relative abundance of Proteobacteria, Firmicutes and Nitrospirae in organic-matter-impoverished arable soil, with Lysobacter as its significant difference species. In conclusion, the proposed soil conditioner and the positive effects observed in this study indicate that it could be used to solve dual problems of food waste recycling and arable soil improvement.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012, China
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012, China.
| | - Li-An Hou
- Xi'an High-Tech Institute, Xi'an, 710025, China
| |
Collapse
|
16
|
Human Health and Ecosystem Quality Benefits with Life Cycle Assessment Due to Fungicides Elimination in Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14020846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Industrial agriculture results in environmental burdens due to the overuse of fertilizers and pesticides. Fungicides is a class of pesticides whose application contributes (among others) to human toxicity and ecotoxicity. The European Union aims to increase organic agriculture. For this reason, this work aims to analyze climate change, freshwater ecotoxicity, terrestrial ecotoxicity, human toxicity, (terrestrial) acidification, and freshwater eutrophication impacts of fungicides and calculate expected benefits to human health (per European citizen) and ecosystem quality (terrestrial) with life cycle assessment (LCA) during crop production. The Scopus database was searched for LCA studies that considered the application of fungicides to specific crops. The analysis shows how many systemic and contact fungicides were considered by LCA studies and what was the applied dosage. Furthermore, it shows that fungicides highly contribute to freshwater ecotoxicity, terrestrial ecotoxicity, human toxicity, and freshwater eutrophication for fruits and vegetables, but to a low extent compared to all considered environmental impacts in the case of cereals and rapeseed. Expected benefits to human health and ecosystem quality after fungicides elimination are greater for fruits and vegetables, ranging between 0 to 47 min per European citizen in a year and 0 to 90 species per year, respectively.
Collapse
|