1
|
Wang YL, Yang YL, Tan X, Li X, Zhao L. Enhanced nutrients removal from low C/N ratio rural sewage by embedding heterotrophic nitrifying bacteria and activated alumina in a tidal flow constructed wetland. BIORESOURCE TECHNOLOGY 2024; 413:131513. [PMID: 39313009 DOI: 10.1016/j.biortech.2024.131513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Rural sewage treatment facilitates nitrogen and phosphorus removal yet can be costly. To address this challenge, a cost-effective embedding material mainly consisting of heterotrophic nitrifying bacteria, activated alumina (AA), and a solid carbon source (HPMC) was applied to a tidal flow constructed wetlands (TFCWs); aimed at stable nitrogen and phosphorus removal under low carbon-to-nitrogen (C/N) ratios. The TFCWs could be shortened to 16 d of startup duration time compared with the control group; and improved the ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) removal efficiencies to 98 %, 93 %, and 68 %, respectively. Also, effluent NH4+-N, TN, and TP in the enhanced TFCWs could be stable at 0.52 ± 0.18, 1.23 ± 0.45, and 0.75 ± 0.25 mg/L, respectively. Microbial community analysis revealed that AA and HPMC were enriched Pseudomonas sp., which potentially accelerated the NH4+-N assimilation pathway and phosphate biological removal. Embedding materials-TFCWs can provide new solutions for integrated rural sewage technology.
Collapse
Affiliation(s)
- Yan-Lin Wang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yan-Ling Yang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xu Tan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China; China Architecture Design and Research Group, Beijing 100044, PR China.
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Li Zhao
- China Architecture Design and Research Group, Beijing 100044, PR China.
| |
Collapse
|
2
|
Priks H, Zekker I, Nava AIM, Kumar R, Das S, Jaagura M, Mamun FA, Bhowmick GD, Tamm T, Tenno T. Enhanced anammox-mediated nitrogen removal in bioelectrochemical systems at prolonged negative electrode potentials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35405-0. [PMID: 39480580 DOI: 10.1007/s11356-024-35405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Bioelectrochemical anaerobic ammonium oxidation (anammox) systems allow eco-friendly removal of nitrogen from reject wastewater coming from biogas processing as the anammox bacteria have previously shown to have c-type cytochromes acting in the extracellular electron transport (EET) mechanism between the bacteria and electrode. The anammoxosome compartment present in anammox bacteria features a highly curved membrane and contains tubular structures along with electron-dense particles that contain iron, which could enhance the process of EET and enhance nitrogen removal by properly applied potentials. In this study, nitrogen removal was investigated in the electrostimulated anammox nitrogen removal (EANR) cells operated comparatively at open circuit and at applied potentials of - 300 mV, - 500 mV, and - 700 mV vs. Ag/AgCl. At peak performance (at - 700 mV vs. Ag/AgCl), the EANR showed up to 140% higher specific nitrogen removal rate (11.2 ± 0.3 g N/m2/day) compared to the control reactors without applied potential (8.3 ± 0.2 g N/m2/day). The microbial community on the cathode with the applied potential had a higher relative proportion of unclassified Candidatus Brocadia (7.5%) compared to inoculum (> 0.01%), in contrast to cathode without potential (0.74%) and control (0.2%). The EANR system demonstrated to achieve ammonium and nitrite removal efficiencies of 91% and 53%, respectively, during a 24-h test cycle from an initial TN concentration of ~ 100 mg N/L. After 150 h, it achieved complete removal of all nitrogen compounds, reaching a 100% removal efficiency. The EANR would be very useful in the establishment of field-scale bilateral anammox-bioelectrochemical technology combining microbial fuel cell bioanodes and EANR biocathodes for wastewater treatment.
Collapse
Affiliation(s)
- Hans Priks
- Institute of Technology, University of Tartu, 1 Nooruse St., 50411, Tartu, Estonia
| | - Ivar Zekker
- Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia.
| | | | - Rohit Kumar
- Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia
| | - Sovik Das
- Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Madis Jaagura
- Tallinn University of Technology, 5 Ehitajate St., 19086, Tallinn, Estonia
| | - Faysal-Al Mamun
- Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia
| | | | - Tarmo Tamm
- Institute of Technology, University of Tartu, 1 Nooruse St., 50411, Tartu, Estonia
| | - Taavo Tenno
- Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia
| |
Collapse
|
3
|
Rajeev M, Jung I, Kang I, Cho JC. Genome-centric metagenomics provides insights into the core microbial community and functional profiles of biofloc aquaculture. mSystems 2024; 9:e0078224. [PMID: 39315779 PMCID: PMC11494986 DOI: 10.1128/msystems.00782-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Bioflocs are microbial aggregates that play a pivotal role in shaping animal health, gut microbiota, and water quality in biofloc technology (BFT)-based aquaculture systems. Despite the worldwide application of BFT in aquaculture industries, our comprehension of the community composition and functional potential of the floc-associated microbiota (FAB community; ≥3 µm size fractions) remains rudimentary. Here, we utilized genome-centric metagenomic approach to investigate the FAB community in shrimp aquaculture systems, resulting in the reconstruction of 520 metagenome-assembled genomes (MAGs) spanning both bacterial and archaeal domains. Taxonomic analysis identified Pseudomonadota and Bacteroidota as core community members, with approximately 93% of recovered MAGs unclassified at the species level, indicating a large uncharacterized phylogenetic diversity hidden in the FAB community. Functional annotation of these MAGs unveiled their complex carbohydrate-degrading potential and involvement in carbon, nitrogen, and sulfur metabolisms. Specifically, genomic evidence supported ammonium assimilation, autotrophic nitrification, denitrification, dissimilatory nitrate reduction to ammonia, thiosulfate oxidation, and sulfide oxidation pathways, suggesting the FAB community's versatility for both aerobic and anaerobic metabolisms. Conversely, genes associated with heterotrophic nitrification, anaerobic ammonium oxidation, assimilatory nitrate reduction, and sulfate reduction were undetected. Members of Rhodobacteraceae emerged as the most abundant and metabolically versatile taxa in this intriguing community. Our MAGs compendium is expected to expand the available genome collection from such underexplored aquaculture environments. By elucidating the microbial community structure and metabolic capabilities, this study provides valuable insights into the key biogeochemical processes occurring in biofloc aquacultures and the major microbial contributors driving these processes. IMPORTANCE Biofloc technology has emerged as a sustainable aquaculture approach, utilizing microbial aggregates (bioflocs) to improve water quality and animal health. However, the specific microbial taxa within this intriguing community responsible for these benefits are largely unknown. Compounding this challenge, many bacterial taxa resist laboratory cultivation, hindering taxonomic and genomic analyses. To address these gaps, we employed metagenomic binning approach to recover over 500 microbial genomes from floc-associated microbiota of biofloc aquaculture systems operating in South Korea and China. Through taxonomic and genomic analyses, we deciphered the functional gene content of diverse microbial taxa, shedding light on their potential roles in key biogeochemical processes like nitrogen and sulfur metabolisms. Notably, our findings underscore the taxa-specific contributions of microbes in aquaculture environments, particularly in complex carbon degradation and the removal of toxic substances like ammonia, nitrate, and sulfide.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Institute for Specialized Teaching and Research, Inha University, Incheon, South Korea
| | - Ilsuk Jung
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Ilnam Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| |
Collapse
|
4
|
Hu Y, Feng Y, Yao L, Wu C, Chen M, Zhang H, Li Q. Destabilization mechanisms of Semi-aerobic aged refuse biofilters under harsh treatment conditions: Evidence from fluorescence and microbial characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174436. [PMID: 38964403 DOI: 10.1016/j.scitotenv.2024.174436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Semi-aerobic aged refuse biofilters (SAARB) are commonly-used biotechnologies for treating landfill leachate. In actual operation, SAARB often faces harsh conditions characterized by high concentrations of chemical oxygen demand (COD) and Cl-, as well as a low carbon-to-nitrogen ratio (C/N), which can disrupt the microbial community within SAARB, leading to operational instability. Maintaining the stable operation of SAARB is crucial for the efficient treatment of landfill leachate. However, the destabilization mechanism of SAARB under harsh conditions remains unclear. To address this, the study simulated the operation of SAARB under three harsh conditions, namely, high COD loading (H-COD), high chloride ion (Cl-) concentration environment (H-Cl-), and low C/N ratio environment (L-C/N). The aim is to reveal the destabilization mechanism of SAARB under harsh conditions by analyzing the fluorescence characteristics of effluent DOM and the microbial community in aged refuse. The results indicate that three harsh conditions have different effects on SAARB. H-COD leads to the accumulation of proteins; H-Cl- impedes the reduction of nitrite nitrogen; L-C/N inhibits the degradation of humic substances. These outcomes are attributed to the specific effects of different factors on the microbial communities in different zones of SAARB. H-COD and L-C/N mainly affect the degradation of organic matter in aerobic zone, while H-Cl- primarily impedes the denitrification process in the anaerobic zone. The abnormal enrichment of Corynebacterium, Castellaniella, and Sporosarcina can indicate the instability of SAARB under three harsh conditions, respectively. To maintain the steady operation of SAARB, targeted acclimation of the microbial community in SAARB should be carried out to cope with potentially harsh operating conditions. Besides, timely mitigation of loads should be implemented when instability characteristics emerge, and carbon sources and electron donors should be provided to restore treatment performance effectively.
Collapse
Affiliation(s)
- Yuansi Hu
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yuanyuan Feng
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Li Yao
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chuanwei Wu
- Three Gorges Group Sichuan Energy Investment Co., Ltd., Chengdu 610000, China
| | - Mengli Chen
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Han Zhang
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Qibin Li
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
5
|
Fang J, Liao S, Gu T, Lu W, Lu X, Yu M, Li B, Ye J. Efficient nitrogen removal by heterotrophic nitrification-aerobic denitrification yeast Candida boidinii L21: Performance, pathway and application. BIORESOURCE TECHNOLOGY 2024; 414:131621. [PMID: 39393649 DOI: 10.1016/j.biortech.2024.131621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Efficient nitrogen removal yeasts are rarely encountered. Here, a heterotrophic nitrification-aerobic denitrification strain of Candida boidinii L21 was isolated. The optimal removal conditions for strain L21 were glucose as carbon source, C/N of 15, salinity of 10 ppt, pH of 7, shaking speed of 120 rpm, and temperature of 30 °C. Strain L21 removed NH4+-N, NO2--N, NO3--N (14---140 mg/L) and achieved nearly complete NO2--N, removal. Nitrogen balance and enzyme activity analysis indicated the nitrogen removal pathway of strain L21 through assimilation, nitrification, and denitrification pathways. When applied in wastewater and sludge, strain L21 reduced inorganic nitrogen levels within 4 days, with a 58-fold increase in nitrite removal compared to controls. These findings demonstrate that strain L21 holds great potential for enhancing nitrogen removal in wastewater treatment processes, providing valuable insights for improving environmental management practices.
Collapse
Affiliation(s)
- Jinkun Fang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Shaoan Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Tengpeng Gu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Weihao Lu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xiaohan Lu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Mianrong Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Binxi Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China.
| |
Collapse
|
6
|
Ye J, Liu X, Khalid M, Li X, Romantschuk M, Bian Y, Li C, Zhang J, Zhao C, Wu J, Hua Y, Chen W, Hui N. The simultaneous addition of chitosan and peat enhanced the removals of antibiotics resistance genes during biogas residues composting. ENVIRONMENTAL RESEARCH 2024; 263:120109. [PMID: 39369780 DOI: 10.1016/j.envres.2024.120109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Direct reuse of biogas residue (BR) has the potential to contribute to the dissemination of antibiotic resistance genes (ARGs). Although high-temperature composting has been demonstrated as an effective method for the harmless treatment of organic waste, there is few researches on the fate of ARGs in high-temperature composting of BR. This research examined the impact of adding 5% chitosan and 15% peat on physicochemical characteristics, microbial communities, and removal of ARGs during BR-straw composting in 12 Biolan 220L composters for 48 days. Our results showed that the simultaneous addition of chitosan and peat extended the high-temperature period, and increased the highest temperature to 74 °C and germination index. These effects could be attributed to the presence of thermophilic cellulose-decomposing genera (Thermomyces and Thermobifida). Although the microbial communities differed compositionally among temperature stages, their dissimilarity drastically reduced at final stage, indicating that the impact of different treatments on microbial community composition decreases at the end of composting. Peat had a greater impact on aerobic genera capable of cellulose degradation at thermophilic stage than chitosan. Surprisingly, despite the total copy number of ARGs significantly decreased during composting, especially in the treatment with both chitosan and peat, intI1 gene abundance significantly increased 2 logs at thermophilic stage and maintained high level in the final compost, suggesting there is still a potential risk of transmission and proliferation of ARGs. Our work shed some lights on the development of waste resource utilization and emerging contaminants removal technology.
Collapse
Affiliation(s)
- Jieqi Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China.
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Martin Romantschuk
- Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland.
| | - Yucheng Bian
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Junren Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Jian Wu
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Yinfeng Hua
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Weihua Chen
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland.
| |
Collapse
|
7
|
Wang Y, Li A, Xue J, Fan J, Ji B. Nitrogen removal pathways in lake restoration using microalgal-bacterial granular sludge: Unraveling influence of organics and carbon to nitrogen ratio. BIORESOURCE TECHNOLOGY 2024; 409:131215. [PMID: 39102967 DOI: 10.1016/j.biortech.2024.131215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
This study investigated the performance of microalgal-bacterial granular sludge (MBGS) in the restoration of Qingling Lake and Huangjia Lake, focusing on nitrogen removal under varying water quality conditions. Significant color changes in MBGS and differences in granule characteristics were observed, with Qingling Lake demonstrating superior removal efficiencies for ammonia nitrogen, nitrate nitrogen, and total nitrogen compared to Huangjia Lake. Stoichiometric analysis revealed that when the chemical oxygen demand (COD) and carbon-to-nitrogen (C/N) ratios were less than 20 mg/L and 20, respectively, assimilatory nitrate reduction was positively correlated with both, whereas denitrification was negatively correlated. Gene function analysis showed that Qingling Lake had a more active microbial community supporting efficient nitrogen metabolism. The findings highlighted the enormous potential of MBGS in lake restoration, demonstrating its ability to adapt to different COD concentrations and C/N ratios by altering its nitrogen removal pathways.
Collapse
Affiliation(s)
- Yihang Wang
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jinfeng Xue
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
| | - Jie Fan
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
8
|
Wu Y, Cui Y, Li D, Yin M, Pei Y, Wang X, Li J, Zhu Y. Fulvic acid mediated highly efficient heterotrophic nitrification-aerobic denitrification by Paracoccus denitrificans XW11 with reduced C/N ratio. WATER RESEARCH 2024; 267:122557. [PMID: 39366321 DOI: 10.1016/j.watres.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Reducing the C/N ratio requirements for heterotrophic nitrification-aerobic denitrification (HNAD) is crucial for its practical application; however, it remains underexplored. In this study, a highly efficient HNAD bacterium, Paracoccus denitrificans XW11, was isolated. The HNAD characteristics of XW11 were studied, and the redox mediator fulvic acid (FA) was used to reduce the C/N requirements. Whole-genome sequencing revealed multiple denitrification genes in XW11; however, nitrification genes were not identified, because heterotrophic nitrification-related gene sequences were not included in the database. However, the nitrogen removal related enzyme activity test revealed complete nitrification and denitrification pathways. Reverse transcription PCR showed that the membrane-bound nitrate reductase (NarG), rather than the periplasmic nitrate reductase, was responsible for aerobic denitrification. The conventional nitrite reductase (NirS) also does not mediate nitrite denitrification. When the C/N ratio was 10, the ammonia removal efficiency of the Control was 71.71 % and the addition of FA increased it to 86.12 %. Transcriptomic analysis indicated electron flow from the carbon source to FA without proton transmembrane transport, and the presence of FA constructs another electron transfer system. The redox potential of oxidized FA/reduced FA is 0.3679 V, avoiding competition for electrons from Complex III. Thus, ammonia monooxygenase obtains electrons more easily, thereby promoting nitrification. The enzyme activity test of the nitrification process confirmed this view. In addition, NarG expression increased, and the denitrification process was enhanced. Overall, FA improved HNAD efficiency by facilitating electron transfer to the nitrogen dissimilation process, offering a novel approach to reduce the C/N requirement of HNAD.
Collapse
Affiliation(s)
- Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yanan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Muchen Yin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yanxue Pei
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiujie Wang
- The College of environmental and chemical engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Yuhan Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Wu T, Li J, Cao R, Chen X, Wang B, Huang T, Wen G. Nitrate removal by a novel aerobic denitrifying Pelomonas puraquae WJ1 in oligotrophic condition: Performance and carbon source metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176614. [PMID: 39357767 DOI: 10.1016/j.scitotenv.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Reducing nitrate contamination in drinking water has become a critical issue in urban water resource management. Here a novel oligotrophic aerobic denitrifying bacterium, Pelomonas puraquae WJ1, was isolated and purified from artificial lake sediments. For the first time, excellent aerobic denitrification capabilities were demonstrated. At a carbon-to‑nitrogen ratio of 5.0, strain WJ1 achieved 100.0 % nitrate removal and 84.92 % total nitrogen removal within 24 h, with no nitrite accumulation. PCR amplification and sequencing confirmed the presence of the denitrification genes napA, nirS, and nosZ in the strain. The nitrogen balance demonstrated that approximately 74.95 % of the initial nitrogen was eliminated as gaseous products under aerobic conditions. Furthermore, carbon balance analysis showed that most electron donors from strain WJ1 were directed towards oxygen, with limited availability for nitrate reduction. A combination of bio-ECO analysis and network modeling indicated that strain WJ1 has robust metabolic capabilities for diverse carbon sources and exhibits high adaptability to complex carbon environments. Overall, Pelomonas puraquae WJ1 removed approximately 45.89 % of the nitrates in raw water, demonstrating significant potential for practical applications in oligotrophic denitrification.
Collapse
Affiliation(s)
- Tianhua Wu
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaxin Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaojie Chen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Baoshan Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
10
|
Sun W, Hu C, Wu J, Wei M, Lin JG, Hong Y. Efficient nitrogen removal via simultaneous ammonium assimilation and heterotrophic denitrification of Paracoccus denitrificans R-1. iScience 2024; 27:110599. [PMID: 39220262 PMCID: PMC11365388 DOI: 10.1016/j.isci.2024.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Although diverse microorganisms can remove ammonium and nitrate simultaneously, their metabolic mechanisms are not well understood. Paracoccus denitrificans R-1 showed the maximal NH4 + removal rate 9.94 mg L-1·h-1 and 2.91 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. Analysis of the nitrogen balance calculation and isotope tracing experiment indicated that NH4 + was consumed through assimilation. The maximal NO3 - removal rate of strain R-1 was 18.05 and 19.76 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. The stoichiometric consumption ratio of acetate to nitrate was 0.902 and NO3 - was reduced to N2 for strain R-1 through 15NO3 - isotopic tracing experiment, which indicated a respiratory process coupled with the oxidation of electron donors. Genomic analysis showed that strain R-1 contained genes for ammonium assimilation and denitrification, which effectively promoted each other. These findings provide insights into microbial nitrogen transformation and facilitate the simultaneous removal of NH4 + and NO3 - in a single reactor.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P.R. China
| | - Chunchen Hu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Mingken Wei
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P.R. China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
11
|
Huan C, Wang J, He Y, Liu Y, Tian X, Lyu Q, Wang Z, Ji G, Yan Z. Efficient strategy for employing HN-AD bacterium enhanced biofilter reactors to remove NH 3 and reduce secondary pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135802. [PMID: 39312845 DOI: 10.1016/j.jhazmat.2024.135802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Heterotrophic nitrification-aerobic denitrification (HN-AD) strain (Paracoccus denitrificans HY-1) was employed in this study to enhance the removal efficiency of NH3 in a biological trickling filter (BTF) reactor. The results demonstrated that inoculation with HY-1 and packed with bamboo charcoal as filler significantly improved the RE of NH3 in BTF, reaching 96.52 % under 27 s of empty bed residence time (EBRT) and 812.56 ppm of inlet gas concentration. Meanwhile, the titer of NH4+-N, NO2--N, and NO3--N in the circulating fluid were merely 8.52 mg/L, 5.14 mg/L, and 18.07 mg/L, respectively. Microbial community and metabolism analyses revealed that HY-1 have successfully colonized in the BTF, and the high expression of denitrification-related genes (nar, nap, nir, nor and nos) further confirmed that the inoculation of HY-1 greatly improved both nitrification and denitrification metabolism. Furthermore, the biofilter reactor inoculated with HY-1 was applied at a large-scale piggery and exhibited remarkable odor removal effect, in which 99.61 % of NH3 and 96.63 % of H2S were completely eliminated. In general, the HN-AD bacterium could strengthen the performance of BTF reactor and reduce the secondary pollution of circulating fluid during bio-deodorization.
Collapse
Affiliation(s)
- Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shaanxi Province 710064, PR China; School of Water and Environment, Chang'an University, Xi'an, Shaanxi Province 710064, PR China
| | - Jialing Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yue He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhenhong Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shaanxi Province 710064, PR China; School of Water and Environment, Chang'an University, Xi'an, Shaanxi Province 710064, PR China
| | - Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
12
|
Zhang Y, Wang B, Hassan M, Zhang X. Biochar coupled with multiple technologies for the removal of nitrogen and phosphorus from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122407. [PMID: 39265490 DOI: 10.1016/j.jenvman.2024.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
Water eutrophication caused by nitrogen (N) and phosphorus (P) has become a global environmental issue. Biochar is a competent adsorbent for removing N and P from wastewater. However, compared with commercial activated carbon, biochar has relatively limited adsorption capacity. To broaden the field scale application of biochar, biochar coupled with multiple technologies (BC-MTs) (such as microorganisms, electrochemistry, biofilm, phytoremediation, etc.) have been extensively developed for environmental remediation. Nevertheless, due to the fluctuations and differences in biochar types, coupling methods, and wastewater types, various techniques show different removal mechanisms and performance, hindering the promotion and application of BC-MTs. A systematic review of the research progress of BC-MTs is highly necessary to gain a better understanding of the current research status and progress, as well as to promote the application of these techniques. In this paper, the application of pristine and modified biochar in adsorbing N and P in wastewater is critically reviewed. Then the removal performance, influencing factors, mechanisms, and the environmental applications of BC-MTs in wastewater are systematically summarized. In addition, the cost analysis and risk assessment of BC-MTs in environmental applications are conducted. Finally, suggestions and prospects for future research and practical application are put forward.
Collapse
Affiliation(s)
- Yaping Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| |
Collapse
|
13
|
Guo Y, Gao J, Cui Y, Zhao Y, Ma B, Zeng L, Chen H. Hormesis and synergistic effects of disinfectants chloroxylenol and benzethonium chloride on highly efficient heterotrophic nitrification-aerobic denitrification functional strain: From performance to mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135160. [PMID: 38991646 DOI: 10.1016/j.jhazmat.2024.135160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The heterotrophic nitrification-aerobic denitrification (HNAD) strain Exiguobacterium H1 (H1) was isolated in this study. The changes in nitrogen metabolism functions of H1 strain were discussed in presence of disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) alone and combined pollution (PCMX+BEC). The H1 strain could use NH4+-N, NO2--N and NO3--N as nitrogen sources and had good nitrogen removal performance under conditions of C/N ratio 25, pH 5-8, 25-35 oC and sodium acetate as carbon. PCMX and BEC alone exhibited hormesis effects on H1 strain which promoted the growth of H1 strain at low concentrations but inhibited it at high concentrations, and combined pollution showed synergistic inhibitory on H1 strain. H1 strain owned a full nitrogen metabolic pathway according to functional genes quantification. PCMX encouraged nitrification process of H1, while BEC and combined pollution mostly blocked nitrogen removal. PCMX, but not BEC, mainly led to the enrichment of resistance genes. These findings will aid in systematic assessment of contaminant tolerance characteristics of HNAD strain and its application prospects.
Collapse
Affiliation(s)
- Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Biao Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liqin Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hao Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
14
|
Ma B, Chu M, Zhang H, Chen K, Li F, Liu X, Kosolapov DB, Zhi W, Chen Z, Yang J, Deng Y, Sekar R, Liu T, Liu X, Huang T. Mixotrophic aerobic denitrification facilitated by denitrifying bacterial-fungal communities assisted with iron in micro-polluted water: Performance, metabolic activity, functional genes abundance, and community co-occurrence. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135057. [PMID: 38943884 DOI: 10.1016/j.jhazmat.2024.135057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Low-dosage nitrate pollutants can contribute to eutrophication in surface water bodies, such as lakes and reservoirs. This study employed assembled denitrifying bacterial-fungal communities as bio-denitrifiers, in combination with zero-valent iron (ZVI), to treat micro-polluted water. Immobilized bacterial-fungal mixed communities (IBFMC) reactors demonstrated their ability to reduce nitrate and organic carbon by over 43.2 % and 53.7 %, respectively. Compared to IBFMC reactors, IBFMC combined with ZVI (IBFMC@ZVI) reactors exhibited enhanced removal efficiencies for nitrate and organic carbon, reaching the highest of 31.55 % and 17.66 %, respectively. The presence of ZVI in the IBFMC@ZVI reactors stimulated various aspects of microbial activity, including the metabolic processes, electron transfer system activities, abundance of functional genes and enzymes, and diversity and richness of microbial communities. The contents of adenosine triphosphate and electron transfer system activities enhanced more than 5.6 and 1.43 folds in the IBFMC@ZVI reactors compared with IBFMC reactors. Furthermore, significant improvement of crucial genes and enzyme denitrification chains was observed in the IBFMC@ZVI reactors. Iron played a central role in enhancing microbial diversity and activity, and promoting the supply, and transfer of inorganic electron donors. This study presents an innovative approach for applying denitrifying bacterial-fungal communities combined with iron enhancing efficient denitrification in micro-polluted water.
Collapse
Affiliation(s)
- Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fengrui Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Wei Zhi
- Department of Civil and Environmental Engineering, the Pennsylvania State University, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Praha 16500, Czech Republic
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Ye Deng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, University of Chinese Academy of Sciences, Beijing, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
15
|
Abdul Hamid SH, Sakinah Din WN, Lananan F, Endut A. Growth performance of African catfish (Clarias gariepinus) in aquaponic systems with varying densities of Vietnamese coriander (Persicaria odorata). CHEMOSPHERE 2024; 363:142998. [PMID: 39097110 DOI: 10.1016/j.chemosphere.2024.142998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Mass cultivation of high-value aromatic herbs such as Vietnamese coriander and Persicaria odorata required specific soil, nutrients, and irrigation, mostly found in the limited natural wetland. This study aimed to evaluate the capacity of P. odorata at different densities in nutrient removal and the growth performance of African catfish, Clarias gariepinus in aquaponic systems. P. odorata was cultivated for 40 d with less than 10% water exchange. The effects of increasing crop densities, from zero plants for the control, 0.035 ± 0.003 kg/m2 in Treatment 1, 0.029 ± 0.002 kg/m2 in Treatment 2, and 0.021 ± 0.003 kg/m2 in Treatment 3, were tested on the growth performance of C. gariepinus with an initial density of 3.00 ± 0.50 kg/m3. The specific growth rate (SGR), daily growth rate of fish (DGRf), and survival rate (SR) of the C. gariepinus were monitored. Nutrient removal, daily growth rate of plant (DGRp), relative growth rate (RGR), and the sum of leaf number (Ʃn) of the P. odorata plant were also recorded. It was found that nutrient removal percentage significantly increased with the presence of P. odorata at different densities. The growth performance of C. gariepinus was also affected by P. odorata density in each treatment. However, no significant difference was observed in the DGRp and RGR of the P. odorata (p>0.05), except for Ʃn values. Treatment 1 had the highest Ʃn number compared to Treatment 2 and Treatment 3, showing a significant difference (p<0.05). This study demonstrates that the presence of P. odorata significantly contributes to lower nutrient concentrations, supporting the fundamental idea that plants improve water quality in aquaponic systems.
Collapse
Affiliation(s)
- Siti Hajar Abdul Hamid
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia.
| | - Wan Nur Sakinah Din
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia.
| | - Fathurrahman Lananan
- Faculty of Bioresource and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Besut, Terengganu, Malaysia.
| | - Azizah Endut
- Deputy Vice-Chancellor (Research & Innovation) Office, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
16
|
Yang Y, Gui X, Chen L, Li H, Li Z, Liu T. Acid-tolerant Pseudomonas citronellolis YN-21 exhibits a high heterotrophic nitrification capacity independent of the amo and hao genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116385. [PMID: 38772137 DOI: 10.1016/j.ecoenv.2024.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/23/2024]
Abstract
Heterotrophic nitrifying bacteria are found to be promising candidates for implementation in wastewater treatment systems due to their tolerance to extreme environments. A novel acid-resistant bacterium, Pseudomonas citronellolis YN-21, was isolated and reported to have exceptional heterotrophic nitrification capabilities in acidic condition. At pH 5, the highest NH4+ removal rate of 7.84 mg/L/h was displayed by YN-21, which was significantly higher than the NH4+ removal rates of other strains in neutral and alkaline environments. Remarkably, a distinct accumulation of NH2OH and NO3- was observed during NH4+ removal by strain YN-21, while traditional amo and hao genes were not detected in the genome, suggesting the possible presence of alternative nitrifying genes. Moreover, excellent nitrogen removal performance was displayed by YN-21 even under high concentrations of metal ion stress. Consequently, a broad application prospect in the treatment of leather wastewater and mine tailwater is offered by YN-21.
Collapse
Affiliation(s)
- Yuran Yang
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xuwei Gui
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Liuyi Chen
- Hanhong college, southwest university, Chongqing 400716, China
| | - Huimiao Li
- Chongqing Key Laboratory of Plant Disease Biology, college of Plant Protection, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Tuohong Liu
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
17
|
Ma J, Min Y, Su J, Huang T, Ali A, Wang Y, Li X. Simultaneous removal of ammonia nitrogen, phosphate, zinc, and phenol by degradation of cellulose in composite mycelial pellet bioreactor: Enhanced performance and community co-assembly mechanism. ENVIRONMENTAL RESEARCH 2024; 252:118780. [PMID: 38555089 DOI: 10.1016/j.envres.2024.118780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
In this experiment, the prepared tea biochar-cellulose@LDH material (TB-CL@LDH) was combined with mycelium pellets to form the composite mycelial pellets (CMP), then assembled and immobilized with strains Pseudomonas sp. Y1 and Cupriavidus sp. ZY7 to construct a bioreactor. At the best operating parameters, the initial concentrations of phosphate (PO43--P), ammonia nitrogen (NH4+-N), chemical oxygen demand (COD), zinc (Zn2+), and phenol were 22.3, 25.0, 763.8, 1.0, and 1.0 mg L-1, the corresponding removal efficiencies were 80.4, 87.0, 83.4, 91.8, and 96.6%, respectively. Various characterization analyses demonstrated that the strain Y1 used the additional carbon source produced by the strain ZY7 degradation of cellulose to enhance the removal of composite pollutants and clarified the principle of Zn2+ and PO43--P removal by adsorption, co-precipitation and biomineralization. Pseudomonas and Cupriavidus were the dominant genera according to the high-throughput sequencing. As shown by KEGG results, nitrification and denitrification genes were affected by phenol. The study offers prospects for the simultaneous removal of complex pollutants consisting of NH4+-N, PO43--P, Zn2+, and phenol.
Collapse
Affiliation(s)
- Jiayao Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
18
|
Wang JF, Liu C, Xu ZM, Wang FP, Sun YY, Huang JW, Li QS. Microbial mechanisms in nitrogen fertilization: Modulating the re-mobilization of clay mineral-bound cadmium in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171809. [PMID: 38513845 DOI: 10.1016/j.scitotenv.2024.171809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Soil cadmium (Cd) can affect crop growth and food safety, and through the enrichment in the food chain, it ultimately poses a risk to human health. Reducing the re-mobilization of Cd caused by the release of protons and acids by crops and microorganisms after stabilization is one of the significant technical challenges in agricultural activities. This study aimed to investigate the re-mobilization of stabilized Cd within the clay mineral-bound fraction of soil and its subsequent accumulation in crops utilizing nitrogen ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N), at 60 and 120 mg kg-1. Furthermore, the study harvested root exudates at various growth stages to assess their direct influence on the re-mobilization of stabilized Cd and to evaluate the indirect effects mediated by soil microorganisms. The results revealed that, in contrast to the NO3--N treatment, the NH4+-N treatment significantly enhanced the conversion of clay mineral-bound Cd in the soil to NH4NO3-extractable Cd. It also amplified the accumulation of Cd in edible amaranth, with concentrations in roots and shoots rising from 1.7-6.0 mg kg-1 to 4.3-9.8 mg kg-1. The introduction of NH4+-N caused a decrease in the pH value of the rhizosphere soil and stimulated the production and secretion organic and amino acids, such as oxalic acid, lactic acid, stearic acid, succinic acid, and l-serine, from the crop roots. Furthermore, compared to NO3--N, the combined interaction of root exudates with NH4+-N has a more pronounced impact on the abundance of microbial genes associated with glycolysis pathway and tricarboxylic acid cycle, such as pkfA, pfkB, sucB, sucC, and sucD. The effects of NH4+-N on crops and microorganisms ultimately result in a significant increase in the re-mobilization of stabilized Cd. However, the simulated experiments showed that microorganisms only contribute to 3.8-6.6 % of the re-mobilization of clay mineral-bound Cd in soil. Therefore, the fundamental strategy to inhibit the re-mobilization of stabilized Cd in vegetable cultivation involves the regulation of proton and organic acid secretion by crops.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Can Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Zhi-Min Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fo-Peng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Jia-Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
Zhou T, Xu Z, Bai SH, Zhou M, Tang W, Ma B, Zhang M. Asymmetries among soil fungicide residues, nitrous oxide emissions and microbiomes regulated by nitrification inhibitor at different moistures. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134301. [PMID: 38626681 DOI: 10.1016/j.jhazmat.2024.134301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
Carbendazim residue has been widely concerned, and nitrous oxide (N2O) is one of the dominant greenhouse gases. Microbial metabolisms are fundamental processes of removing organic pollutant and producing N2O. Nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) can change soil abiotic properties and microbial communities and simultaneously affect carbendazim degradation and N2O emission. In this study, the comprehensive linkages among carbendazim residue, N2O emission and microbial community after the DMPP application were quantified under different soil moistures. Under 90% WHC, the DMPP application significantly reduced carbendazim residue by 54.82% and reduced soil N2O emission by 98.68%. The carbendazim residue was negatively related to soil ammonium nitrogen (NH4+-N), urease activity, and ratios of Bacteroidetes, Thaumarchaeota and Nitrospirae under 90% WHC, and the N2O emission was negatively related to NH4+-N content and relative abundance of Acidobacteria under the 60% WHC condition. In the whole (60% and 90% WHC together), the carbendazim residue was negatively related to the abundances of nrfA (correlation coefficient = -0.623) and nrfH (correlation coefficient = -0.468) genes. The hao gene was negatively related to the carbendazim residue but was positively related to the N2O emission rate. The DMPP application had the promising potential to simultaneously reduce ecological risks of fungicide residue and N2O emission via altering soil abiotic properties, microbial activities and communities and functional genes. ENVIRONMENTAL IMPLICATION: Carbendazim was a high-efficiency fungicide that was widely used in agricultural production. Nitrous oxide (N2O) is the third most important greenhouse gas responsible for global warming. The 3, 4-dimethylpyrazole phosphate (DMPP) is an effective nitrification inhibitor widely used in agricultural production. This study indicated that the DMPP application reduced soil carbendazim residues and N2O emission. The asymmetric linkages among the carbendazim residue, N2O emission, microbial community and functional gene abundance were regulated by the DMPP application and soil moisture. The results could broaden our horizons on the utilizations DMPP in decreasing fungicide risks and N2O emission.
Collapse
Affiliation(s)
- Tangrong Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhihong Xu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Shahla Hosseini Bai
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Minzhe Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Wenhui Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Bin Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Manyun Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China; Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
20
|
Pedroza-Camacho LD, Ospina-Sánchez PA, Romero-Perdomo FA, Infante-González NG, Paredes-Céspedes DM, Quevedo-Hidalgo B, Gutiérrez-Romero V, Rivera-Hoyos CM, Pedroza-Rodríguez AM. Wastewater treatment from a science faculty during the COVID-19 pandemic by using ammonium-oxidising and heterotrophic bacteria. 3 Biotech 2024; 14:129. [PMID: 38601881 PMCID: PMC11003938 DOI: 10.1007/s13205-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/22/2024] [Indexed: 04/12/2024] Open
Abstract
During and after the pandemic caused by the SARS-CoV-2 virus, the use of personal care products and disinfectants increased in universities worldwide. Among these, quaternary ammonium-based products stand out; these compounds and their intermediates caused substantial changes in the chemical composition of the wastewater produced by these institutions. For this reason, improvements and environmentally sustainable biological alternatives were introduced in the existing treatment systems so that these institutions could continue their research and teaching activities. For this reason, the objective of this study was to develop an improved culture medium to cultivate ammonium oxidising bacteria (AOB) to increase the biomass and use them in the treatment of wastewater produced in a faculty of sciences in Bogotá, D.C., Colombia. A Plackett Burman Experimental Design (PBED) and growth curves served for oligotrophic culture medium, and production conditions improved for the AOB. Finally, these bacteria were used with total heterotrophic bacteria (THB) for wastewater treatment in a pilot plant. Modification of base ammonium broth and culture conditions (6607 mg L-1 of (NH4)2SO4, 84 mg L-1 CaCO3, 40 mg L-1 MgSO4·7H2O, 40 mg L-1 CaCl2·2H2O and 200 mg L-1 KH2PO4, 10% (w/v) inoculum, no copper addition, pH 7.0 ± 0.2, 200 r.p.m., 30 days) favoured the growth of Nitrosomonas europea, Nitrosococcus oceani, and Nitrosospira multiformis with values of 8.23 ± 1.9, 7.56 ± 0.7 and 4.2 ± 0.4 Log10 CFU mL-1, respectively. NO2- production was 0.396 ± 0.0264, 0.247 ± 0.013 and 0.185 ± 0.003 mg L-1 for Nitrosomonas europea, Nitrosococcus oceani and Nitrosospira multiformis. After the 5-day wastewater treatment (WW) by co-inoculating the three studied bacteria in the wastewater (with their self-microorganisms), the concentrations of AOB and THB were 5.92 and 9.3 Log10 CFU mL-1, respectively. These values were related to the oxidative decrease of Chemical Oxygen Demand (COD), (39.5 mg L-1), Ammonium ion (NH4+), (6.5 mg L-1) Nitrite (NO2-), (2.0 mg L-1) and Nitrate (NO3-), (1.5 mg L-1), respectively in the five days of treatment. It was concluded, with the improvement of a culture medium and production conditions for three AOB through biotechnological strategies at the laboratory scale, being a promising alternative to bio-augment of the biomass of the studied bacteria under controlled conditions that allow the aerobic removal of COD and nitrogen cycle intermediates present in the studied wastewater. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03961-4.
Collapse
Affiliation(s)
- Lucas D. Pedroza-Camacho
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Paula A. Ospina-Sánchez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Felipe A. Romero-Perdomo
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Nury G. Infante-González
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Diana M. Paredes-Céspedes
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Balkys Quevedo-Hidalgo
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | | | - Claudia M. Rivera-Hoyos
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | - Aura M. Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| |
Collapse
|
21
|
Zajac O, Zielinska M, Zubrowska-Sudol M. Enhancing wastewater treatment efficiency: A hybrid technology perspective with energy-saving strategies. BIORESOURCE TECHNOLOGY 2024; 399:130593. [PMID: 38493937 DOI: 10.1016/j.biortech.2024.130593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The study aimed to investigate how hybrid technology, combined with various intermittent aeration (IA) strategies, contributes to reducing the energy costs of wastewater treatment while simultaneously ensuring a high treatment efficiency. Even with IA subphases lasting half as long as those without aeration, and oxygen levels reduced from 3.5 to 1.5 mg O2/L, pollutants removal efficiency remains robust, allowing for a 1.41-fold reduction in energy consumption (EO). Hybrid technology led to a 1.34-fold decrease in EO, along with improved denitrification efficiency from 74.05 ± 4.71 to 81.87 ± 2.43 % and enhanced biological phosphorus removal from 35.03 ± 4.25 to 87.32 ± 3.64 %. The high nitrification efficiency may have been attributed to the abundance of Pseudomonas, Acinetobacter, and Rhodococcus, which outcompeted the genera of autotrophic nitrifying bacteria, suggesting that the hybrid system is favorable for the growth of heterotrophic nitrifiers.
Collapse
Affiliation(s)
- Olga Zajac
- Department of Water Supply and Wastewater Treatment, Faculty of Building Services Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland.
| | - Magdalena Zielinska
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland
| | - Monika Zubrowska-Sudol
- Department of Water Supply and Wastewater Treatment, Faculty of Building Services Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland
| |
Collapse
|
22
|
Zhang Q, Yu X, Yang Y, Ruan J, Zou Y, Wu S, Chen F, Zhu R. Enhanced ammonia removal in tidal flow constructed wetland by incorporating steel slag: Performance, microbial community, and heavy metal release. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171333. [PMID: 38423325 DOI: 10.1016/j.scitotenv.2024.171333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Utilizing alkaline solid wastes, such as steel slag, as substrates in tidal flow constructed wetlands (TFCWs) can effectively neutralize the acidity generated by nitrification. However, the impacts of steel slag on microbial communities and the potential risk of heavy metal release remain poorly understood. To address these knowledge gaps, this study compared the performance and microbial community structure of TFCWs filled with a mixture of steel slag and zeolite (TFCW-S) to those filled with zeolite alone (TFCW-Z). TFCW-S exhibited a much higher NH4+-N removal efficiency (98.35 %) than TFCW-Z (55.26 %). Additionally, TFCW-S also achieved better TN and TP removal. The steel slag addition helped maintain the TFCW-S effluent pH at around 7.5, while the TFCW-Z effluent pH varied from 3.74 to 6.25. The nitrification and denitrification intensities in TFCW-S substrates were significantly higher than those in TFCW-Z, consistent with the observed removal performance. Moreover, steel slag did not cause excessive heavy metal release, as the effluent concentrations were below the standard limits. Microbial community analysis revealed that ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and complete ammonia-oxidizing bacteria coexisted in both TFCWs, albeit with different compositions. Furthermore, the enrichment of heterotrophic nitrification-aerobic denitrification bacteria in TFCW-S likely contributed to the high NH4+-N removal. In summary, these findings demonstrate that the combined use of steel slag and zeolite in TFCWs creates favorable pH conditions for ammonia-oxidizing microorganisms, leading to efficient ammonia removal in an environmentally friendly manner.
Collapse
Affiliation(s)
- Quan Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xingyu Yu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China.
| | - Jingjun Ruan
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yuhuan Zou
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| |
Collapse
|
23
|
Zhao T, Huang S, Zhang Y, Chow AT, Chen P, Wang Y, Lu Y, Xiong J. Removal of sulfur and nitrogen pollutants in a sediment microbial fuel cell coupled with Vallisneria natans: Efficiency, microbial community structure, and functional genes. CHEMOSPHERE 2024; 354:141667. [PMID: 38485002 DOI: 10.1016/j.chemosphere.2024.141667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
The rapid development of the economy has led to an increase in the sulfur and nitrogen load in surface water, which has the potential to cause river eutrophication and the emission of malodorous gases. A lab-scale sediment microbial fuel cell coupled with Vallisneria natans (P-SMFC) was designed for surface water remediation. The enhancement of pollutant removal performance of P-SMFC was evaluated in contrast to the SMFC system without plants (SMFC), the open-circuit control system with plants (C-P), and the open-circuit control system without plants (C-S), while illustrating the mechanisms of the sulfur and nitrogen transformation process. The results demonstrated that the effluent and sediment of P-SMFC had lower concentrations of sulfide compared to other systems. Furthermore, P-SMFC exhibited higher removal efficiency for COD (73.1 ± 8.7%), NH4+-N (80.5 ± 19.8%), and NO3--N (88.5 ± 11.8%) compared to other systems. The closed-circuit conditions and growth of Vallisneria natans create a favorable ecological niche for functional microorganisms involved in power generation, sulfur oxidation, and nitrogen transformation. Additionally, metagenomic analysis revealed that multifunctional bacteria possessing both denitrification and sulfur oxidation genes, such as Thiobacillus, Dechloromonas, and Bacillus, may play simultaneous roles in metabolizing sulfur and nitrogen, thus serving as integral factors in maintaining the performance of P-SMFC. In summary, these findings provide a theoretical reference for the concurrent enhancement of sulfur and nitrogen pollutants removal in P-SMFC and will facilitate its practical application in the remediation of contaminated surface water.
Collapse
Affiliation(s)
- Tianyu Zhao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Alex T Chow
- Earth and Environmental Science Program, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Pengfei Chen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yanling Wang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yao Lu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
24
|
Li J, Liao Q, Wang Y, Wang X, Liu J, Zha R, He JZ, Zhang M, Zhang W. Involvement of functional metabolism promotes the enrichment of antibiotic resistome in drinking water: Based on the PICRUSt2 functional prediction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120544. [PMID: 38471323 DOI: 10.1016/j.jenvman.2024.120544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Biofilters are the important source and sink of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in the drinking water. Current studies generally ascribed the prevalence of BAR in biofilter from the perspective of gene behavior, i.e. horizontal gene transfer (HGT), little attentions have been paid on the ARGs carrier- ARB. In this study, we proposed the hypothesis that ARB participating in pollutant metabolism processes and becoming dominant is an important way for the enrichment of ARGs. To verify this, the antibiotic resistome and bacterial functional metabolic pathways of a sand filter was profiled using heterotrophic bacterial plate counting method (HPC), high-throughput qPCR, Illumina Hiseq sequencing and PICRUSt2 functional prediction. The results illustrated a significant leakage of ARB in the effluent of the sand filter with an average absolute abundance of approximately 102-103 CFU/mL. Further contribution analysis revealed that the dominant genera, such as Acinetobacter spp., Aeromonas spp., Elizabethkingia spp., and Bacillus spp., were primary ARGs hosts, conferring resistance to multiple antibiotics including sulfamethoxazole, tetracycline and β-lactams. Notably, these ARGs hosts were involved in nitrogen metabolism, including extracellular nitrate/nitrite transport and nitrite reduction, which are crucial in nitrification and denitrification in biofilters. For example, Acinetobacter spp., the dominant bacteria in the filter (relative abundance 69.97 %), contributed the majority of ARGs and 53.79 % of nitrite reduction function. That is, ARB can predominate by participating in the nitrogen metabolism pathways, facilitating the enrichment of ARGs. These findings provide insights into the stable presence of ARGs in biofilters from a functional metabolism perspective, offering a significant supplementary to the mechanisms of the emergence, maintenance, and transmission of BARin drinking water.
Collapse
Affiliation(s)
- Jiabing Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Qiuyu Liao
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Yun Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Xuansen Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Ruibo Zha
- School of Cultural Tourism and Public Administration, Fujian Normal University, Fuzhou 350117, China
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China
| | - Menglu Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China.
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| |
Collapse
|
25
|
Guerrero-Egido G, Pintado A, Bretscher KM, Arias-Giraldo LM, Paulson JN, Spaink HP, Claessen D, Ramos C, Cazorla FM, Medema MH, Raaijmakers JM, Carrión VJ. bacLIFE: a user-friendly computational workflow for genome analysis and prediction of lifestyle-associated genes in bacteria. Nat Commun 2024; 15:2072. [PMID: 38453959 PMCID: PMC10920822 DOI: 10.1038/s41467-024-46302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Bacteria have an extensive adaptive ability to live in close association with eukaryotic hosts, exhibiting detrimental, neutral or beneficial effects on host growth and health. However, the genes involved in niche adaptation are mostly unknown and their functions poorly characterized. Here, we present bacLIFE ( https://github.com/Carrion-lab/bacLIFE ) a streamlined computational workflow for genome annotation, large-scale comparative genomics, and prediction of lifestyle-associated genes (LAGs). As a proof of concept, we analyzed 16,846 genomes from the Burkholderia/Paraburkholderia and Pseudomonas genera, which led to the identification of hundreds of genes potentially associated with a plant pathogenic lifestyle. Site-directed mutagenesis of 14 of these predicted LAGs of unknown function, followed by plant bioassays, showed that 6 predicted LAGs are indeed involved in the phytopathogenic lifestyle of Burkholderia plantarii and Pseudomonas syringae pv. phaseolicola. These 6 LAGs encompassed a glycosyltransferase, extracellular binding proteins, homoserine dehydrogenases and hypothetical proteins. Collectively, our results highlight bacLIFE as an effective computational tool for prediction of LAGs and the generation of hypotheses for a better understanding of bacteria-host interactions.
Collapse
Affiliation(s)
- Guillermo Guerrero-Egido
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Adrian Pintado
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Kevin M Bretscher
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Luisa-Maria Arias-Giraldo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Joseph N Paulson
- Department of Data Sciences, N-Power Medicine, Redwood City, CA, 94063, USA
| | - Herman P Spaink
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Cayo Ramos
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
- Área de Genética, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Marnix H Medema
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Víctor J Carrión
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain.
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain.
| |
Collapse
|
26
|
Zhang Y, Qiu X, Luo J, Li H, How SW, Wu D, He J, Cheng Z, Gao Y, Lu H. A review of the phosphorus removal of polyphosphate-accumulating organisms in natural and engineered systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169103. [PMID: 38065508 DOI: 10.1016/j.scitotenv.2023.169103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/13/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Increasing eutrophication has led to a continuous deterioration of many aquatic ecosystems. Polyphosphate-accumulating organisms (PAOs) can provide insight into the human response to this challenge, as they initiate enhanced biological phosphorus removal (EBPR) through cyclical anaerobic phosphorus release and aerobic phosphorus uptake. Although the limiting environmental factors for PAO growth and phosphorus removal have been widely discussed, there remains a gap in the knowledge surrounding the differences in the type and phosphorus removal efficiencies of natural and engineered PAO systems. Furthermore, due to the limitations of PAOs in conventional wastewater treatment environments, there is an urgent need to find functional PAOs in extreme environments for better wastewater treatment. Therefore, it is necessary to explore the effects of extreme conditions on the phosphorus removal efficiency of PAOs as well as the types, sources, and characteristics of PAOs. In this paper, we summarize the response mechanisms of PAOs, denitrifying polyphosphate-accumulating organisms (D-PAOs), aerobic denitrifying polyphosphate-accumulating organisms (AD-PAOs), and sulfur-related PAOs (S-PAOs). The mechanism of nitrogen and phosphorus removal in PAOs is related to the coupling cycles of carbon, nitrogen, phosphorus, and sulfur. The genera of PAOs differ in natural and engineered systems, but PAOs have more diversity in aquatic environments and soils. Recent studies on the impact of several parameters (e.g., temperature, carbon source, pH, and dissolved oxygen) and extracellular polymer substances on the phosphorus removal efficiency of PAOs in natural and engineered systems are further discussed. Most of the PAOs screened under extreme conditions still had high phosphorus removal efficiencies (>80.0 %). These results provide a reference for searching for PAOs with different adaptations to achieve better wastewater treatment.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Xiaoqing Qiu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Jiahao Luo
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Huishi Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Seow-Wah How
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Ghent B9000, Belgium
| | - Di Wu
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Ghent B9000, Belgium
| | - Juhua He
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Zihang Cheng
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Yunan Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
27
|
Wang Y, Bai Y, Su J, Wang Z, Li Y, Gao Z, Cao M, Ren M. Kinetic analysis and mechanism of nitrate, calcium, and cadmium removal using the newly isolated Pseudomonas sp. LYF26. CHEMOSPHERE 2024; 350:141156. [PMID: 38211799 DOI: 10.1016/j.chemosphere.2024.141156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
The co-existence of heavy metals and nitrate (NO3--N) pollutants in wastewater has been a persistent global concern for a long time. A strain LYF26, which can remove NO3--N, calcium (Ca(II)), and cadmium (Cd(II)) simultaneously, was isolated to explore the properties and mechanisms of synergistic contaminants removal. Different conditions (Cd(II) and Ca(II) concentrations and pH) were optimized by Zero-, Half-, and First-order kinetic analyses to explore the environmental parameters for the optimal effect of strain LYF26. Results of the kinetic analyses revealed that the optimal culture conditions for strain LYF26 were pH of 6.5, Cd(II) and Ca(II) concentrations of 3.00 and 180.00 mg L-1, accompanied by Ca(II), Cd(II), and NO3--N efficiencies of 53.10%, 90.03%, and 91.45%, respectively. The removal mechanisms of Cd(II) using strain LYF26 as a nucleation template were identified as biomineralization, lattice substitution, and co-precipitation. The differences and changes of dissolved organic matter during metabolism were analyzed and the results demonstrated that besides the involvement of extracellular polymeric substances in the precipitation of Cd(II) and Ca(II), the high content of humic acid-like species revealed a remarkable contribution to the denitrification process. This study is hopeful to contribute a theory for further developing microbially induced calcium precipitation used to treat complex polluted wastewater.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Meng Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
28
|
Xu MJ, Cui YW, Huang MQ, Sui Y. Simultaneous inorganic nitrogen and phosphate removal by aerobic-heterotrophic fungus Fusarium keratoplasticum FSP1: Performance, pathway and application. BIORESOURCE TECHNOLOGY 2024; 393:130141. [PMID: 38040316 DOI: 10.1016/j.biortech.2023.130141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Fungi with multiple contaminant removal function have rarely been studied. Here, a novel fungal strain Fusarium keratoplasticum FSP1, which was isolated from halophilic granular sludge, is reported for first time to perform simultaneous nitrogen and phosphate removal. The strain showed wide adaptability under C/N ratios of 30-35, salinities of 0 %-3 % (m/v), and pH of 7.5-9.5. The maximum removal rates of ammonium, nitrate and nitrite were 4.43, 4.01 and 2.97 mg N/L/h. The nitrogen balance, enzyme activity and substrate conversion experiments demonstrated a single strain FSP1 can assimilate inorganic nitrogen and convert inorganic nitrogen to gaseous nitrogen through heterotrophic nitrification or aerobic denitrification. About 39 %-42 % of the degraded phosphorus was in the extracellular polymeric substances (EPS). Orthophosphate was the main phosphorus species in the cell, whereas phosphate monoester and diester were in the EPS. The novel strain FSP1 is a potential candidate for wastewater treatment.
Collapse
Affiliation(s)
- Meng-Jiao Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Mei-Qi Huang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuan Sui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
29
|
Takahashi K, Oshiki M, Ruan C, Morinaga K, Toyofuku M, Nomura N, Johnson DR. Denitrification in low oxic environments increases the accumulation of nitrogen oxide intermediates and modulates the evolutionary potential of microbial populations. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13221. [PMID: 38037543 PMCID: PMC10866065 DOI: 10.1111/1758-2229.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Denitrification in oxic environments occurs when a microorganism uses nitrogen oxides as terminal electron acceptors even though oxygen is available. While this phenomenon is well-established, its consequences on ecological and evolutionary processes remain poorly understood. We hypothesize here that denitrification in oxic environments can modify the accumulation profiles of nitrogen oxide intermediates with cascading effects on the evolutionary potentials of denitrifying microorganisms. To test this, we performed laboratory experiments with Paracoccus denitrificans and complemented them with individual-based computational modelling. We found that denitrification in low oxic environments significantly increases the accumulation of nitrite and nitric oxide. We further found that the increased accumulation of these intermediates has a negative effect on growth at low pH. Finally, we found that the increased negative effect at low pH increases the number of individuals that contribute to surface-associated growth. This increases the amount of genetic diversity that is preserved from the initial population, thus increasing the number of genetic targets for natural selection to act upon and resulting in higher evolutionary potentials. Together, our data highlight that denitrification in low oxic environments can affect the ecological processes and evolutionary potentials of denitrifying microorganisms by modifying the accumulation of nitrogen oxide intermediates.
Collapse
Affiliation(s)
- Kohei Takahashi
- Graduate School of Sciences and TechnologiesUniversity of TsukubaTsukubaIbarakiJapan
- Department of Environmental MicrobiologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Mamoru Oshiki
- Division of Environmental Engineering, Faculty of EngineeringHokkaido UniversitySapporoHokkaidoJapan
| | - Chujin Ruan
- Department of Environmental MicrobiologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Kana Morinaga
- Graduate School of Sciences and TechnologiesUniversity of TsukubaTsukubaIbarakiJapan
| | - Masanori Toyofuku
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Microbiology Research Center for SustainabilityUniversity of TsukubaTsukubaIbarakiJapan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Microbiology Research Center for SustainabilityUniversity of TsukubaTsukubaIbarakiJapan
| | - David R. Johnson
- Department of Environmental MicrobiologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
30
|
Zhang X, Lan T, Jiang H, Ye K, Dai Z. Bacterial community driven nitrogen cycling in coastal sediments of intertidal transition zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168299. [PMID: 37926266 DOI: 10.1016/j.scitotenv.2023.168299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Microorganisms inhabiting in coastal sediments significantly affect the nitrogen cycling in coastal waters and ecosystems. However, the bacterial community that related to the key active nitrogen transformation processes in intertidal transition zone are still not understood. Across a long flat intertidal zone at depths from 0 to 3 m in Daya Bay, China, the bacterial communities in sediments and their driven nitrogen cycling potential were evaluated with environmental factors and 16S rRNA sequencing. The results showed that the intertidal zone is a divide for environmental factors as pH, salinity and C/N ratio, instead of an average shift from freshwater to salt water. At the same time, the environmental factors influenced the abundance of bacterial community related to nitrogen cycling. Across the intertidal zone, the dominant nitrogen transformation processes were different. At the high tide and middle tide sites, the primary nitrogen cycling process was nitrification that worked with Nitrosomonadaceae, Nitrospiraceae, 0319-6A21, and wb1-A12. At the low tide sites, nitrogen fixation was the dominant function conducted by Bradyrhizobiaceae. The reduction of nitrate was carried out with the help of Xanthomonadales but relatively weak in all sampling sites especially for low tide sites. This was mostly because the richness and evenness of bacterial community were the lowest at the low tide sites. Meanwhile, the pH, Cl-, salinity, NH4+, NO3- and C/N ratio were the important factors that shaped the composition of local bacterial community. Further, the nonmetric multidimensional scaling results indicated that there were significant statistical differences in the composition of bacterial community among samples at different layers. The dominant nitrogen cycling processes in coastal sediments at different tide levels were revealed in this study, which offered an extended concept of nitrogen transformation along the groundwater discharge path in the intertidal transition zone. The distributions and compositions of bacterial communities and predicted functions provided a new insight for coastal environment and ecosystem management.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China; College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Tianshan Lan
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China.
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Kexin Ye
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China
| | - Zhenxue Dai
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China; College of Construction Engineering, Jilin University, Changchun 130026, China.
| |
Collapse
|
31
|
Zhang Y, Xu J, Dong X, Wang J, Liu C, Liu J. Optimization of nitrogen removal conditions based on response surface methodology and nitrogen removal pathway of Paracoccus sp. QD-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168348. [PMID: 37935269 DOI: 10.1016/j.scitotenv.2023.168348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
The strain Paracoccus sp. QD-19 was isolated from the sludge-water mixture of aerobic tanks at the southern wastewater treatment plant in Shenyang, China. The optimal nitrogen removal conditions for strain QD-19 were determined using the Plackett-Burman design, path of steepest ascent method, and response surface methodology (RSM). The optimum nitrogen removal conditions were C/N 12.93, temperature 37 °C, and shaking speed 175.50 r/min. Strain QD-19 achieved 83.82 ± 0.80 % nitrogen removal efficiency at 10 h under optimum conditions. Functional enzyme-encodinge genes amplified via 16S rRNA sequence analysis included amoA, hao, napA, nirS, nirK, norB, and nosZ. The results revealed that NH4+-N → NH2OH → NO2--N → NO3--N → NO2--N → NO → N2O → N2 was the pathway for heterotrophic nitrification - aerobic denitrification. The strain was used to treat wastewater from a sewage treatment plant under optimal response surface methodology conditions. As a result, the TN removal efficiency was 77.11 %. The findings demonstrated that strain QD-19 exhibits favorable potential for heterotrophic nitrification and aerobic denitrification (HN-AD) of actual wastewater, presenting a promising application for biological wastewater treatment.
Collapse
Affiliation(s)
- Yuhong Zhang
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Jiaqi Xu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xianbo Dong
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiabao Wang
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Changfeng Liu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiaju Liu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
32
|
Lu Z, Cheng X, Xie J, Li Z, Li X, Jiang X, Zhu D. Iron-based multi-carbon composite and Pseudomonas furukawaii ZS1 co-affect nitrogen removal, microbial community dynamics and metabolism pathways in low-temperature aquaculture wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119471. [PMID: 37913618 DOI: 10.1016/j.jenvman.2023.119471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Aerobic denitrification is the key process in the elimination of nitrogen from aquaculture wastewater, especially for wastewater with high dissolved oxygen and low carbon/nitrogen (C/N) ratio. However, a low C/N ratio, especially in low-temperature environments, restricts the activity of aerobic denitrifiers and decreases the nitrogen elimination efficiency. In this study, an iron-based multi-solid carbon source composite that immobilized aerobic denitrifying bacteria ZS1 (IMCSCP) was synthesized to treat aerobic (DO > 5 mg/L), low temperature (<15 °C) and low C/N ratio (C/N = 4) aquaculture wastewater. The results showed that the sequencing batch biofilm reactor (SBBR) packed with IMCSCP exhibited the highest nitrogen removal performance, with removal rates of 95.63% and 85.44% for nitrate nitrogen and total nitrogen, respectively, which were 33.03% and 30.75% higher than those in the reactor filled with multi-solid carbon source composite (MCSC). Microbial community and network analysis showed that Pseudomonas furukawaii ZS1 successfully colonized the SBBR filled with IMCSCP, and Exiguobacterium, Cellulomonas and Pseudomonas were essential for the nitrogen elimination. Metagenomic analysis showed that an increase in gene abundance related to carbon metabolism, nitrogen metabolism, extracellular polymer substance synthesis and electron transfer in the IMCSCP, enabling denitrification in the SBBR to be achieved via multiple pathways. The results of this study provided new insights into the microbial removal mechanism of nitrogen in SBBR packed with IMCSCP at low temperatures.
Collapse
Affiliation(s)
- Zhuoyin Lu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China.
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhifei Li
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xiangyang Li
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China; Guangdong Engineering Technology Research Center of Smart and Ecological River, Guangzhou, 510640, China
| | - Xiaotian Jiang
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
33
|
Cheng W, Yin Y, Li Y, Li B, Liu D, Ye L, Fu C. Nitrogen removal by a strengthened comprehensive floating bed with embedded pellets made by a newly isolated Pseudomonas sp. Y1. ENVIRONMENTAL TECHNOLOGY 2024; 45:208-220. [PMID: 35876098 DOI: 10.1080/09593330.2022.2102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
A newly heterotrophic nitrification aerobic denitrification(HN-AD) bacterium Pseudomonas sp. Y1 with highly nitrogen removal ability was isolated from the activated sludge, TN removal rate of which was 99.73%. In this study, two types of different ecology floating bed systems were designed to achieve efficient nitrogen removal in the urban eutrophic landscape water body, one is the comprehensive ecological floating bed(CEFB) system with only Lythrum salicari and the other is the strengthened comprehensive ecological floating bed (SCEFB) system with both Lythrum and embedded pellets made by Y1. The TN removal rates of the CEFB system were 33.82%, 83.84% and 88.91% at 8±1℃, 15±1℃ and 25±1℃, respectively, while the TN removal rates of the SCEFB system increased by nearly 40%, 16% and 11% at the same environment, respectively. The result shows that the SCEFB system can purify the simulated water from surface water body class V to class IV. Thus it has a broad application prospect in the urban eutrophic landscape water body.
Collapse
Affiliation(s)
- Wanyun Cheng
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Yixin Yin
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
- Shanghai Honess Environmental Technology Co.,Ltd., Shanghai, People's Republic of China
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Dongxue Liu
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Lingfeng Ye
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Chengbin Fu
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| |
Collapse
|
34
|
Li J, Wang Z, Su J, Wang X, Ali A, Li X. Microbial induced calcium precipitation by Zobellella denitrificans sp. LX16 to simultaneously remove ammonia nitrogen, calcium, and chemical oxygen demand in reverse osmosis concentrates. ENVIRONMENTAL RESEARCH 2024; 240:117484. [PMID: 37879392 DOI: 10.1016/j.envres.2023.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
In recent years, with the rapid development of industrial revolution and urbanization, the generation and treatment of a large number of salt-containing industrial wastewater has attracted wide attention. A novel salt-tolerant Zobellella denitrificans sp. LX16 with excellent nitrogen removal and biomineralization capabilities was isolated in this experiment. Kinetic experiments were conducted to determine the optimal condition. Under this condition, chemical oxygen demand (COD) can be entirely removed together with ammonia nitrogen, and the removal efficiency of calcium was 88.09%. Growth curves and nitrogen balance tests showed that strain LX16 not only had good HNAD and MICP capabilities, but also had high nitrite reductase and nitrate reductase activities during this process. Three-dimensional fluorescence results reflected that when external carbon sources were lacking or salinity was high, humic acid could effectively enhance the metabolic activity of heterotrophic nitrifying aerobic denitrifying microorganisms through extracellular electron transfer, and the substances produced in the metabolic process could promote biommineralization. Moreover, combined with SEM, SEM-EDS, XRD and FTIR analysis, it is concluded that the microbial surface can provide nucleation sites to form calcium salts, and with the increase of alkalinity to generate Ca5(PO4)3OH. The theoretical basis for the use of biological treatment in reverse osmosis wastewater have been proved by this experiment.
Collapse
Affiliation(s)
- Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xinjie Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
35
|
Qiao Z, Sheng Y, Wang G, Chen X, Liao F, Mao H, Zhang H, He J, Liu Y, Lin Y, Yang Y. Deterministic factors modulating assembly of groundwater microbial community in a nitrogen-contaminated and hydraulically-connected river-lake-floodplain ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119210. [PMID: 37801950 DOI: 10.1016/j.jenvman.2023.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
The river-lake-floodplain system (RLFS) undergoes intensive surface-groundwater mass and energy exchanges. Some freshwater lakes are groundwater flow-through systems, serving as sinks for nitrogen (N) entering the lake. Despite the threat of cross-nitrogen contamination, the assembly of the microbial communities in the RLFS was poorly understood. Herein, the distribution, co-occurrence, and assembly pattern of microbial community were investigated in a nitrogen-contaminated and hydraulically-connected RLFS. The results showed that nitrate was widely distributed with greater accumulation on the south than on the north side, and ammonia was accumulated in the groundwater discharge area (estuary and lakeshore). The heterotrophic nitrifying bacteria and aerobic denitrifying bacteria were distributed across the entire area. In estuary and lakeshore with low levels of oxidation-reduction potential (ORP) and high levels of total organic carbon (TOC) and ammonia, dissimilatory nitrate reduction to ammonium (DNRA) bacteria were enriched. The bacterial community had close cooperative relationships, and keystone taxa harbored nitrate reduction potentials. Combined with multivariable statistics and self-organizing map (SOM) results, ammonia, TOC, and ORP acted as drivers in the spatial evolution of the bacterial community, coincidence with the predominant deterministic processes and unique niche breadth for microbial assembly. This study provides novel insight into the traits and assembly of bacterial communities and potential nitrogen cycling capacities in RLFS groundwater.
Collapse
Affiliation(s)
- Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China.
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Jiahui He
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yingxue Liu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yilun Lin
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Ying Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| |
Collapse
|
36
|
Chen SL, Wang TY, Tang CC, Wang R, He ZW, Li ZH, Tian Y, Wang XC. Revealing mechanisms of triclosan on the removal and distribution of nitrogen and phosphorus in microalgal-bacterial symbiosis system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122539. [PMID: 37699452 DOI: 10.1016/j.envpol.2023.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
Microalgal-bacterial symbiosis (MABS) system performs synergistic effect on the reduction of nutrients and carbon emissions in the water treatment process. However, antimicrobial agents are frequently detected in water, which influence the performance of MABS system. In this study, triclosan (TCS) was selected to reveal the effects and mechanisms of antimicrobial agents on MABS system. Results showed that the removal efficiencies of chemical oxygen demand, NH4+-N and total phosphorus decreased by 3.0%, 24.0% and 14.3% under TCS stress. In contrast, there were no significant decrease on the removal effect of total nitrogen. Mechanism analysis showed that both the growth rate of microorganisms and the nutrients retention capacity of extracellular polymeric substances were decreased. The intracellular accumulation for nitrogen and phosphorus was promoted due to the increased cytomembrane permeability caused by lipid peroxidation. Moreover, microalgae were dominant in MABS system with ratio between microalgae and bacteria of more than 5.49. The main genus was Parachlorella, with abundance of more than 90%. Parachlorella was highly tolerant to TCS, which might be conductive to maintain its survival. This study revealed the nutrients pathways of MABS system under TCS stress, and helped to optimize the operation of MABS system.
Collapse
Affiliation(s)
- Sheng-Long Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tian-Yang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Rong Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaochang C Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
37
|
Yang S, Huang T, Zhang H, Guo H, Hu R, Lin Z, Li Y, Cheng Y. Activation of indigenous denitrifying bacteria and enhanced nitrogen removal via artificial mixing in a drinking water reservoir: Insights into gene abundance, community structure, and co-existence model. ENVIRONMENTAL RESEARCH 2023; 236:116830. [PMID: 37543131 DOI: 10.1016/j.envres.2023.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Nitrogen pollution poses a severe threat to aquatic ecosystems and human health. This study investigated the use of water lifting aerators for in situ nitrogen reduction in a drinking water reservoir. The reservoir was thoroughly mixed and oxygenated after using water-lifting aerators for 42 days. The average total nitrogen concentration, nitrate nitrogen, and ammonium nitrogen-in all water layers-decreased significantly (P < 0.01), with a reduction efficiency of 35 ± 3%, 34 ± 2%, and 70 ± 6%, respectively. Other pollutants, including organic matter, phosphorus, iron, and manganese, were also effectively removed. Quantitative polymerase chain reactions indicated that bacterial nirS gene abundance was enhanced 26.34-fold. High-throughput sequencing, phylogenetic tree, and network analysis suggested that core indigenous nirS-type denitrifying bacteria, such as Dechloromonas, Simplicispira, Thauera, and Azospira, played vital roles in nitrogen and other pollutant removal processes. Furthermore, structural equation modeling revealed that nitrogen removal responded positively to WT, DO, and nirS gene abundance. Our findings provide a promising strategy for nitrogen removal in oligotrophic drinking water reservoirs with carbon deficiencies.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruzhu Hu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zishen Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yanqing Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
38
|
Zhang M, Jiao T, Chen S, Zhou W. A review of microbial nitrogen transformations and microbiome engineering for biological nitrogen removal under salinity stress. CHEMOSPHERE 2023; 341:139949. [PMID: 37648161 DOI: 10.1016/j.chemosphere.2023.139949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
The osmotic stress caused by salinity exerts severe inhibition on the process of biological nitrogen removal (BNR), leading to the deterioration of biosystems and the discharge of nitrogen with saline wastewater. Feasible strategies to solve the bottleneck in saline wastewater treatment have attracted great attention, but relevant studies to improve nitrogen transformations and enhance the salt-tolerance of biosystems in terms of microbiome engineering have not been systematically reviewed and discussed. This work attempted to provide a more comprehensive explanation of both BNR and microbiome engineering approaches for saline wastewater treatment. The effect of salinity on conventional BNR pathways, nitrification-denitrification and anammox, was summarized at cellular and metabolic levels, including the nitrogen metabolic pathways, the functional microorganisms, and the inhibition threshold of salinity. Promising nitrogen transformations, such as heterotrophic nitrification-aerobic denitrification, ammonium assimilation and the coupling of conventional pathways, were introduced and compared based on advantages and challenges in detail. Strategies to improve the salt tolerance of biosystems were proposed and evaluated from the perspective of microbiome engineering. Finally, prospects of future investigation and applications on halophilic microbiomes in saline wastewater treatment were discussed.
Collapse
Affiliation(s)
- Mengru Zhang
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China
| | - Tong Jiao
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China
| | - Shigeng Chen
- Shandong Nongda Fertilizer Sci.&Tech. Co., Ltd., Taian, Shandong, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China.
| |
Collapse
|
39
|
Li L, Xiong S, Wang Q, Xue C, Xiao P, Qian G. Enhancement strategies of aerobic denitrification for efficient nitrogen removal from low carbon-to-nitrogen ratio shale oil wastewater. BIORESOURCE TECHNOLOGY 2023; 387:129663. [PMID: 37573980 DOI: 10.1016/j.biortech.2023.129663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The strategy of high reflux ratio and long solids retention time was adopted to realize efficient nitrogen removal from real shale oil wastewater. This was undertaken with a low chemical oxygen demand to total nitrogen (COD/TN) ratio by strengthening aerobic denitrification in an anoxic/aerobic membrane bioreactor (A/O-MBR). The TN removal load climbed from 22 to 25 g N/(kg MLSS·d) as the COD/TN ratio declined from 8 to 3. The abundance of heterotrophic nitrifying and aerobic denitrifying (HNAD) bacteria increased by 13.8 times to 42.5%, displacing anoxic denitrifying bacteria as the predominant bacteria. The abundance of genes involved in denitrification (napAB, narGHI, norBC, nosZ) increased, however the genes related to assimilatory nitrate reduction (nirA, narB, nasC) decreased. The capacity of the dominant HNAD bacteria in an A/O-MBR to efficiently utilize a carbon source is the key to efficient nitrogen removal from shale oil wastewater with a low COD/TN ratio.
Collapse
Affiliation(s)
- Liang Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Shaojun Xiong
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China; Centre for Regional Oceans, and Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Qichun Wang
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Chenyao Xue
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ping Xiao
- Fushun Mining Group Co., Ltd., Fushun 113000, China
| | - Guangsheng Qian
- Centre for Regional Oceans, and Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
40
|
Gao Y, Zhu J, Wang K, Ma Y, Fang J, Liu G. Discovery of a heterotrophic aerobic denitrification Pseudomonas sp. G16 and its unconventional nitrogen metabolic pathway. BIORESOURCE TECHNOLOGY 2023; 387:129670. [PMID: 37591467 DOI: 10.1016/j.biortech.2023.129670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
From the aerobic pond of the farm, the Pseudomonas sp. G16 was screened and isolated, which was confirmed to exhibit heterotrophic nitrification and aerobic denitrification. The removal rates of Ammonia (100 mg/L), nitrate (120 mg/L), and nitrite (100 mg/L) by the strain were 94.13%, 92.62%, and 85.67%, and the nitrogen metabolism pathway of strain G16 was analyzed by whole genome sequencing combined with its nitrification-denitrification intermediate products, it was found that the strain had independent nitrification-denitrification ability and no nitrite accumulation. Under the conditions of carbon source of sodium succinate hexahydrate, C/N ratio of 15, pH of 7.5, temperature of 15 °C, and DO of 210 rpm, strain G16 showed excellent denitrification performance. Strain G16 was prepared into biochar-based immobilized bacterial particles, which successfully improved its nitrogen removal efficiency and stability. Therefore, the application of strain G16 in the field of real wastewater treatment has very necessary research value.
Collapse
Affiliation(s)
- Yu Gao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Junwen Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| |
Collapse
|
41
|
Shan X, Guo H, Ma F, Shan Z. Enhanced treatment of synthetic wastewater by bioaugmentation with a constructed consortium. CHEMOSPHERE 2023; 338:139520. [PMID: 37454986 DOI: 10.1016/j.chemosphere.2023.139520] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Bioaugmentation by adding well-functioning mixed microorganism consortia represents a potentially useful approach to improve contaminant removal in wastewater treatment plants (WWTPs). However, unfavorable environmental conditions (i.e., low temperatures) can severely inhibit microbial activity, drawing our attention to constructing cold-tolerant microorganism preparations and investigating their availability in practical applications. Here we screened four in situ functional isolates from the activated sludge of secondary sedimentation tanks in WWTPs to construct a psychrophilic microbial consortium, which was used to perform bioaugmentation for enhanced removal of nitrogen and phosphorus under low temperatures. The consortium was established by cocultivation of four isolates, characterized by 16 S rRNA as the COD-degrading bacterium Aeromonas sp. Z3, aerobic denitrifying bacterium Acinetobacter sp. HF9, nitrifying bacterium Klebsiella sp. X8, and polyphosphate-accumulating bacterium Pseudomonas sp. PC5 respectively. The microorganism preparation was composed of Z3, HF9, X8, and PC5 under the ratio of 1: 1: 3: 1, which can exert optimal pollutant removal under the conditions of 12 °C, 6.0-9.0 pH, 120-200 r‧min-1, and a dosage of 5% (V/V). A 30-day continuous operation of the bioaugmented and control sequencing batch reactors (SBRs) was investigated, and the bioaugmented SBR showed a shorter start-up stage and a more stable operating situation. Compared to the control SBR, the COD, NH4+-N, TN, and TP removal efficiency of the bioaugmented SBR increased by an average of 7.95%, 9.05%, 9.54%, and 7.45% respectively. The analysis of the microbial community revealed that the introduced isolates were dominant in the activated sludge and that functional taxa such as Proteobacteria, Bacteroidota, and Actinobacteria were further enriched after a period of bioaugmentation. The study provides some basis and guidance for the practical application of how to strengthen the stable operation of WWTPs under low temperatures.
Collapse
Affiliation(s)
- Xiaoqing Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Haijuan Guo
- School of Environment, Liaoning University, Shenyang, 110036, PR China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Environment, Liaoning University, Shenyang, 110036, PR China.
| | - Zelin Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
42
|
Zhang X, Shi HT, Feng XC, Jiang CY, Wang WQ, Xiao ZJ, Xu YJ, Zeng QY, Ren NQ. Efficient aerobic denitrification without nitrite accumulation by Pseudomonas mendocina HITSZ-D1 isolated from sewage sludge. BIORESOURCE TECHNOLOGY 2023; 379:129039. [PMID: 37037332 DOI: 10.1016/j.biortech.2023.129039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
A highly efficient aerobic denitrifying microbe was isolated from sewage sludge by using a denitrifier enrichment strategy based on decreasing carbon content. The microbe was identified as Pseudomonas mendocina HITSZ-D1 (hereafter, D1). Investigation of the conditions under which D1 grew and denitrified revealed that it performed good growth and nitrate removal performance under a wide range of conditions. In particular, D1 rapidly removed all types of inorganic nitrogen without accumulation of the intermediate products nitrite and nitrous oxide. Overall, D1 showed a total nitrogen removal efficiency >96% at a C/N ratio of 8. The biotransformation modes and fates of three typical types of inorganic nitrogen were also assessed. Moreover, D1 had significantly higher denitrification efficiency and enzyme activities than other aerobic denitrifying microbes (Paracoccus denitrificans, Pseudomonas aeruginosa, and Pseudomonas putida). These results suggest that D1 has great potential for treating wastewater containing high concentrations of nitrogen.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Hong-Tao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China.
| | - Chen-Yi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Wen-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Zi-Jie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Yu-Jie Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Qin-Yao Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
43
|
Yi M, Wang H, Ma X, Wang C, Wang M, Liu Z, Lu M, Cao J, Ke X. Efficient nitrogen removal of a novel Pseudomonas chengduensis strain BF6 mainly through assimilation in the recirculating aquaculture systems. BIORESOURCE TECHNOLOGY 2023; 379:129036. [PMID: 37037330 DOI: 10.1016/j.biortech.2023.129036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Biological nitrogen removal has received increasing attention in wastewater treatment. A bacterium with excellent nitrogen removal performance was isolated from biofilters of recirculating aquaculture systems (RAS) and identified as Pseudomonas chengduensis BF6. It was indicated that inorganic nitrogen is transformed into gaseous and biological nitrogen by the metabolic pathways of denitrification, anammox, and assimilation, which is the main nitrogen removal pathway of strain BF6. The strain BF6 could effectively remove nitrogen within 24 h under the conditions of ammonia, nitrate, nitrite, and mixed nitrogen sources with maximum total nitrogen removal efficiencies reaching 97.00 %, 61.40 %, 79.10 %, and 84.98 %, respectively. The strain BF6 exhibited total nitrogen removal efficiency of 91.14 %, altered the microbial diversity and enhanced the relative abundance of Pseudomonas in the RAS biofilter. These findings demonstrate that Pseudomonas sp. BF6 is a highly efficient nitrogen-removing bacterium with great potential for application in aquaculture wastewater remediation.
Collapse
Affiliation(s)
- Mengmeng Yi
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - He Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Xiaona Ma
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China; College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Chun Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, PR China
| | - Miao Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Maixin Lu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China
| | - Jianmeng Cao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China
| | - Xiaoli Ke
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China.
| |
Collapse
|
44
|
Chen P, Zhai T, Zhang L, Zhao T, Xing Z, Liu H. Domestication and pilot-scale culture of mixed bacteria HY-1 capable of heterotrophic nitrification-aerobic denitrification. BIORESOURCE TECHNOLOGY 2023:129285. [PMID: 37277005 DOI: 10.1016/j.biortech.2023.129285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
To further investigate the potential of heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria for practical applications, the HN-AD mixed bacteria HY-1 were enriched and domesticated in this study. After five generations of domestication, the mixture was able to remove 98% of ammonia nitrogen (400 mg/L) and 81.9% of mixed nitrogen source (nitrate, nitrite). Changes in community structure in the domestication process of mixed microorganisms were studied using 16S rDNA-seq. The results indicated an increase in the abundance of Acinetobacter from 16.9% to 80%. The conditions for the expanded culture of the HY-1 were also optimized. Moreover, A pilot-scale expanded reactor with a capacity of 1000L was constructed, and the HY-1 was successfully expanded from 0.1L to 800L. The community structures of the HY-1 remained stable after the expanded culture, with Acinetobacter as the dominant species. Moreover, the HY-1 demonstrated adaptability to actual high ammonia nitrogen wastewater and showed potential for practical application.
Collapse
Affiliation(s)
- Peipei Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tianrui Zhai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lijie Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hao Liu
- Chongqing Shiji Eco-Environmental Science and Technology Co., Ltd, China
| |
Collapse
|
45
|
Yang W, Xu L, Su J, Wang Z, Zhang L. Simultaneous removal of phosphate, calcium, and ammonia nitrogen in a hydrogel immobilized reactor with bentonite/lanthanum/PVA based on microbial induced calcium precipitation. CHEMOSPHERE 2023; 326:138460. [PMID: 36948049 DOI: 10.1016/j.chemosphere.2023.138460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/26/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
In recent years, it is urgent to solve nitrogen and phosphorus pollution in domestic wastewater. The target strain Pseudomonas sp. Y1 was immobilized using polyvinyl alcohol (PVA) matrix coupled with bentonite and lanthanum (La), respectively, to fabricate four hydrogel materials that used to construct bioreactors. The optimal operating parameters and dephosphorization mechanism were discussed, and the effects of hydrogel materials and different loads on the performance of the bioreactor were contrastively analyzed. The results manifested that when the hydraulic retention time (HRT) was 6.0 h, the C/N was 6.0, and the Ca2+ concentration was 100.0 mg L-1, the bioreactors had the best heterotrophic nitrification-aerobic denitrification (HNAD) and biomineralization capacity, and the maximum removal efficiencies of Ca2+, PO43--P, and NH4+-N were 82.57, 99.17, and 89.08%, respectively. The operation data indicated that the addition of bentonite significantly promoted HNAD, and the bioreactor had stronger dephosphorization ability in the presence of La. The main phosphorous removal mechanisms were confirmed to be adsorption and co-precipitation. Finally, high-throughput sequencing results indicated that Pseudomonas accounted for the paramount proportion in the bioreactor, and the prediction of functional genes indicated that the C/N of 6.0 is more favorable for the expression of nitrogen removal-related functional genes in the bioreactor system. This study highlights the superiority of microbial induced calcium precipitation (MICP) combined with PVA hydrogel, and provides a theoretical basis for simultaneous nitrogen and phosphate removal of wastewater.
Collapse
Affiliation(s)
- Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
46
|
Qin Y, Wang XW, Lian J, Zhao QF, Jiang HB. Combination of non-sterilized wastewater purification and high-level CO 2 bio-capture with substantial biomass yield of an indigenous Chlorella strain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162442. [PMID: 36842589 DOI: 10.1016/j.scitotenv.2023.162442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The indigenous microalga Chlorella sorokiniana NBU-3 grown under air, 5 %, 15 %, and 25 % CO2 supply was evaluated to determine its potential for flue gas bio-capture, nutrient removal capacity and biomass yield using non-sterilized wastewater as growth medium. The results indicated that C. sorokiniana NBU-3 exhibited high nutrient removal efficiency (>95 % for NH4+-N, TN and TP) with either air or CO2 aeration. 5 %-15 % CO2 supplies promote biomass yield, nutrient utilization and CO2 biofixation of C. sorokiniana NBU-3. In particular, 15 % CO2 promotes C. sorokiniana NBU-3 growth in non-sterilized MW, but inhibits its growth in BG11 medium, indicating the importance of non-sterilized MW and high CO2 aeration concurrence for C. sorokiniana NBU-3 economically practical cultivation. Moreover, the highest values of lipid (27.84 ± 2.12 %) and protein (32.65 ± 4.11 %) contents were obtained in MW with 15 % CO2 aeration. Conceivably, microalgal-bacterial symbiosis may help C. sorokiniana NBU-3 tolerate high concentration of CO2 and promote microalga growth. The succession of the community diversity toward the specific functional bacterial species such as Methylobacillus and Methylophilus (Proteobacteria) which were predicted to possess the function of methylotroph, methanol oxidation and ureolysis would help facilitate the microalgal-bacterial symbiosis and promote the microalgae biomass accumulation with high dosage of CO2 aeration. Overall, these findings clearly highlight the potential of this indigenous microalga C. sorokiniana NBU-3 for industrial-emission level CO2 mitigation and commercial microalga biomass production in MW.
Collapse
Affiliation(s)
- Ying Qin
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315000, China
| | - Xin-Wei Wang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Jie Lian
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518000, China
| | - Qun-Fen Zhao
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315000, China.
| | - Hai-Bo Jiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| |
Collapse
|
47
|
Tang Q, Zeng M, Zou W, Jiang W, Kahaer A, Liu S, Hong C, Ye Y, Jiang W, Kang J, Ren Y, Liu D. A new strategy to simultaneous removal and recovery of nitrogen from wastewater without N 2O emission by heterotrophic nitrogen-assimilating bacterium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162211. [PMID: 36791849 DOI: 10.1016/j.scitotenv.2023.162211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Biological assimilation that recovery the nitrogen from wastewater in the form of biomass offers a more environmentally friendly solution for the limitations of the conventional wastewater treatments. This study reported the simultaneous removal and recovery of nitrogen from wastewater without N2O emission by a heterotrophic nitrogen-assimilating Acinetobacter sp. DN1 strain. Nitrogen balance, biomass qualitative analysis, genome and enzyme studies have been performed to illustrate the mechanism of nitrogen conversion by strain DN1. Results showed that the ammonium removal followed one direct pathway (GOGAT/GDH) and three indirect pathways (NH4+ → NH2OH → NO → NO2- → NH4+ → GOGAT/GDH; NH4+ → NH2OH → NO → NO2- → NO3- → NO2- → NH4+ → GOGAT/GDH; NH4+ → NH2OH → NO → NO3- → NO2- → NH4+ → GOGAT/GDH). Nitrogen balance and biomass qualitative analysis showed that over 70 % of the ammonium in the wastewater was converted into intracellular nitrogen-containing compounds and stored in the cells of strain DN1. Traditional denitrification pathway was not detected and the ammonium was removed through assimilation, which makes it more energy-saving for nitrogen recovery when compared with Haber-Bosch process. This study provides a new direction for simultaneous nitrogen removal and recovery without N2O emission by the heterotrophic nitrogen-assimilating bacterium.
Collapse
Affiliation(s)
- Qian Tang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Mengjie Zeng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China; Wuhan Municipal Engineering Design & Research Institute Co., Ltd, No. 52 Optics Valley Avenue, Wuhan 430074, PR China
| | - Wugui Zou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Wenyu Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Alimu Kahaer
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Shixi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Chol Hong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China; Heat Engineering Faculty, Kim Chaek University of Technology, Pyongyang 999093, Democratic People's Republic of Korea
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Jianxiong Kang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Yongzheng Ren
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Dongqi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|
48
|
Zhou H, Cheng L, Xia L, Deng G, Zhang Y, Shi X. Rapid simultaneous removal of nitrogen and phosphorous by a novel isolated Pseudomonas mendocina SCZ-2. ENVIRONMENTAL RESEARCH 2023; 231:116062. [PMID: 37149028 DOI: 10.1016/j.envres.2023.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) and phosphorous (P) removal by a single bacterium could improve the biological reaction efficiency and reduce the operating cost and complexity in wastewater treatment plants (WWTPs). Here, an isolated strain was identified as Pseudomonas mendocina SCZ-2 and showed high performance of heterotrophic nitrification (HN) and aerobic denitrification (AD) without intermediate accumulation. During the AD process, the nitrate removal efficiency and rate reached a maximum of 100% and 47.70 mg/L/h, respectively, under optimal conditions of sodium citrate as carbon source, a carbon-to-nitrogen ratio of 10, a temperature of 35 °C, and shaking a speed of 200 rpm. Most importantly, the strain SCZ-2 could rapidly and simultaneously eliminate N and P with maximum NH4+-N, NO3--N, NO2--N, and PO43--P removal rates of 14.38, 17.77, 20.13 mg N/L/h, and 2.93 mg P/L/h, respectively. Both the N and P degradation curves matched well with the modified Gompertz model. Moreover, the amplification results of functional genes, whole genome sequencing, and enzyme activity tests provided theoretical support for simultaneous N and P removal pathways. This study deepens our understanding of the role of HN-AD bacteria and provides more options for simultaneous N and P removal from actual sewage.
Collapse
Affiliation(s)
- Hongfeng Zhou
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Lei Cheng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| | - Lisong Xia
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Guozhi Deng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Youde Zhang
- Anhui Xinyu Environmental Protection Technology Co., Ltd., Hefei, 230051, China
| | - Xianyang Shi
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
49
|
Zhou X, Wang Y, Tan X, Sheng Y, Li Y, Zhang Q, Xu J, Shi Z. Genomics and nitrogen metabolic characteristics of a novel heterotrophic nitrifying-aerobic denitrifying bacterium Acinetobacter oleivorans AHP123. BIORESOURCE TECHNOLOGY 2023; 375:128822. [PMID: 36871698 DOI: 10.1016/j.biortech.2023.128822] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
A novel aerobic strain of Acinetobacter oleivorans AHP123 was isolated from activated sludge, which could conduct heterotrophic nitrification and denitrification simultaneously. This strain has excellent NH4+-N removal ability, with 97.93% removal rate at 24-hour. To identify the metabolic pathways of this novel strain, genes of gam, glnA, gdhA, gltB, nirB, nasA, nar, nor, glnK and amt were detected by genome analysis. Through RT-qPCR, it was found that the expression of key genes confirmed two possible ways of nitrogen removal in strain AHP123: nitrogen assimilation and heterotrophic nitrification aerobic denitrification (HNAD). However, the absence of some common HNAD genes (amo, nap and nos) suggested that strain AHP123 might have a different HNAD pathway from other HNAD bacteria. Nitrogen balance analysis revealed that strain AHP123 assimilated most of the external nitrogen sources into intracellular nitrogen.
Collapse
Affiliation(s)
- Xiangqun Zhou
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yuanli Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xin Tan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yequan Sheng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yanbin Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Qin Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jialu Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zhengsheng Shi
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
50
|
Ji B, Qian Y, Zhang H, Al-Gabr HM, Xu M, Zhang K, Zhang D. Optimizing heterotrophic nitrification process: The significance of demand-driven aeration and organic matter concentration. BIORESOURCE TECHNOLOGY 2023; 376:128907. [PMID: 36933574 DOI: 10.1016/j.biortech.2023.128907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Heterotrophic nitrification and aerobic denitrification (HNAD) sludge were successfully acclimated. The effects of organics and dissolved oxygen (DO) on nitrogen and phosphorus removal by the HNAD sludge were investigated. The nitrogen can be heterotrophically nitrified and denitrified in the sludge at a DO of 6 mg/L. The TOC/N (total organic carbon to nitrogen) ratio of 3 was found to result in removal efficiencies of over 88% for nitrogen and 99% for phosphorus. The use of demand-driven aeration with a TOC/N ratio of 1.7 improved nitrogen and phosphorus removal from 35.68% and 48.17% to 68% and 93%, respectively. The kinetics analysis generated an empirical formula, Ammonia oxidation rate = 0.08917·(TOC·Ammonia)0.329·Biomass0.342. The nitrogen, carbon, glycogen, and poly-β-hydroxybutyric acid (PHB) metabolism pathways of HNAD sludge were constructed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The findings suggest that heterotrophic nitrification precedes aerobic denitrification, glycogen synthesis, and PHB synthesis.
Collapse
Affiliation(s)
- Bixiao Ji
- NingboTech University, 315000, China
| | | | | | | | | | | | | |
Collapse
|