1
|
Chen Z, Li N, Li L, Liu Z, Zhao W, Li Y, Huang X, Li X. BCDPi: An interpretable multitask deep neural network model for predicting chemical bioconcentration in fish. ENVIRONMENTAL RESEARCH 2025; 264:120356. [PMID: 39549907 DOI: 10.1016/j.envres.2024.120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Predicting the bioconcentration of chemical compounds plays a crucial role in assessing environmental risks and toxicological impacts. This study presents a robust multitask deep learning model for predicting the bioconcentration potential. The model can predict the bioconcentration of compounds in multiple categories, including non-bioconcentrative (non-BC), weakly bioconcentrative (weak-BC), and strongly bioconcentrative (strong-BC). We also employed the SHapley Additive exPlanations (SHAP) technology for the model interpretation. The binary classification models (non-BC vs BC and weak-BC vs strong-BC) showed good predictive performance, which achieved accuracy values over 90% and area under the curve (AUC) values with 0.95. The final ternary classification model provided an overall accuracy with 91.11%. Comparative analysis of molecular physicochemical properties showed that the importance of molecular weight, polar surface area, solubility, and hydrogen bonding are important for chemical bioconcentration. Besides, we identified eight structural alerts responsible for chemical bioconcentration. We made the model available as an online tool named BCdpi-predictor, which is accessible at http://bcdpi.sapredictor.cn/. Users can predict the bioconcentration potential of chemical compounds freely. The model has significant implications for environmental policy and regulatory frameworks, such as REACH, by providing a more accurate and interpretable method for assessing chemical risks. We hope that the results of this study can provide helpful tools and meaningful information for chemical bioconcentration prediction in environmental risk assessment.
Collapse
Affiliation(s)
- Zhaoyang Chen
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Na Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Ling Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Zihan Liu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250014, China
| | - Wenqiang Zhao
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250014, China
| | - Yan Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xin Huang
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xiao Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
2
|
Paun I, Pirvu F, Chiriac FL, Iancu VI, Pascu LF. Organophosphate flame retardants in Romania coastline: Occurrence, faith and environmental risk. MARINE POLLUTION BULLETIN 2024; 208:116982. [PMID: 39312814 DOI: 10.1016/j.marpolbul.2024.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
This research comprehensively assesses phosphorus-based flame retardants (OPFRs) in seawater, sediment, and algae from the Romanian Black Sea coastline, evaluating their concentrations, distribution patterns, and potential environmental risks. OPFR concentrations ranged from 479 to 2229 ng/L in abiotic samples and 44 to 1953 ng/g dry weight in sediments, while algae samples showed concentrations between 273 and 10,301 ng/g dry weight. The most common OPFRs identified were tri-propyl phosphate (TPP), tri(2-chloroethyl) phosphate (TCEP), and tri(2-chloroisopropyl) phosphate (TCPP) in abiotic samples, with TCEP, diphenyl phosphate (DPHP), TPP, and TCPP dominating in algae. Notably, TPP reached concentrations of 1417 ng/L and 10,062 ng/g dry weight in algae. The environmental risk assessment indicated that these contaminants pose risks ranging from low to medium, highlighting a moderate concern for aquatic organisms. The findings underscore the need for ongoing monitoring and evaluation of OPFR levels in marine environments to inform management strategies and mitigate potential ecological impacts on the Black Sea ecosystem.
Collapse
Affiliation(s)
- Iuliana Paun
- National Research and Development Institute for Industrial Ecology-ECOIND, Drumul Podu Dambovitei street 57-73, 060652 Bucharest, Romania
| | - Florinela Pirvu
- National Research and Development Institute for Industrial Ecology-ECOIND, Drumul Podu Dambovitei street 57-73, 060652 Bucharest, Romania.
| | - Florentina Laura Chiriac
- National Research and Development Institute for Industrial Ecology-ECOIND, Drumul Podu Dambovitei street 57-73, 060652 Bucharest, Romania.
| | - Vasile Ion Iancu
- National Research and Development Institute for Industrial Ecology-ECOIND, Drumul Podu Dambovitei street 57-73, 060652 Bucharest, Romania
| | - Luoana Florentina Pascu
- National Research and Development Institute for Industrial Ecology-ECOIND, Drumul Podu Dambovitei street 57-73, 060652 Bucharest, Romania.
| |
Collapse
|
3
|
Xu W, Zhang W, Yu Z, Gai X, Fu J, Hu L, Fu J, Zhang H, Jiang G. A comparative study for organophosphate triesters and diesters in mice via oral gavage exposure: Tissue distribution, excreta elimination, metabolites and toxicity. ENVIRONMENT INTERNATIONAL 2024; 193:109114. [PMID: 39509842 DOI: 10.1016/j.envint.2024.109114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Organophosphate triesters (tri-OPEs) and diesters (di-OPEs) may threaten human health through dietary intake, whereas little information is available about their fate in mammals. Herein, mice exposure experiments were carried out through gavage with six tri-OPEs and six di-OPEs, respectively. The residual levels of di-OPEs in mice were generally higher than those of tri-OPEs. The residual di-OPEs mainly distributed in the liver and blood while the most tri-OPEs remained in stomach, indicating easier transfer and lower metabolism levels of di-OPEs. The accumulation of tri- and di-OPEs with large octanol-water partition coefficients and long carbon chain were observed in tissues and feces, implying that the elimination of these OPEs through fecal excretion is an important elimination pathway. A total of 86 OPE metabolites were found in murine urine and feces, 57 of which were identified for the first time. For tri-OPEs, carboxylated OPEs had higher peak intensities and fewer interference factors among the metabolites, which could serve as ideal biomarkers. The predicted oral median lethal doses of OPEs and corresponding metabolites showed an increased toxicity of some hydroxylated OPEs and di-OPEs, needing further attention. These results provided new insights and evidence on the fates and biomarkers of OPEs exposure for mammals.
Collapse
Affiliation(s)
- Wenyu Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wei Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zechen Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaoyu Gai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Kang D, Jang H, Mok S, Kim JY, Choi Y, Lee SH, Han S, Park TJ, Moon HB, Jeon J. Nationwide profiling and source identification of organophosphate esters in Korean surface waters using target, suspect, and non-target HRMS analysis. CHEMOSPHERE 2024; 367:143579. [PMID: 39428021 DOI: 10.1016/j.chemosphere.2024.143579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Organophosphate esters (OPEs) are emerging contaminants that serve as alternatives to regulated substances in aquatic environments. A nationwide large-scale assessment for OPEs, including point sources, remains insufficient. To address this issue, we aimed to investigate OPEs occurrence and novel OPEs via comprehensive target, suspect and non-target analysis. Among the 11 target OPEs, 10 were detected at sampling sites distributed evenly nationwide. The highest mean concentrations were measured for tris-(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroisopropyl) phosphate (TCIPP). The multivariate statistical analysis revealed that TBOEP and TCIPP are essential components for assessing total OPEs pollution. The systematic risk assessment results evaluated the overall risk contribution of TBOEP and the significant risk impact of 2-ethylhexyl diphenyl phosphate. Promising suspect and non-target analysis enabled frequent detection and identification of 6 antioxidant transformation products (TPs), as well as the tentative identification of 14 OPEs and TPs, including 3 di-OPEs. Based on sampling site classification, we confirmed that major OPEs are significantly discharged near point sources. We believe that this is the first attempt to assess the nationwide risk and potential sources of OPEs in Korean surface waters, providing insights that could support further prioritization and regulation efforts.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea
| | - Heewon Jang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea
| | - Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jun Yub Kim
- Graduate School of AI Policy and Strategy, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju, 61005, Republic of Korea
| | - Younghun Choi
- Water Environmental Management Dept., Korea Water Resources Corporation (K-water), 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, Republic of Korea
| | - Sun-Hong Lee
- Water Environmental Management Dept., Korea Water Resources Corporation (K-water), 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, Republic of Korea
| | - Sojeong Han
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, 22689, Republic of Korea
| | - Tae Jin Park
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, 22689, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea.
| |
Collapse
|
5
|
Zhong Z, Huang W, Yin Y, Wang S, Chen L, Chen Z, Wang J, Li L, Khalid M, Hu M, Wang Y. Tris(1-chloro-2-propyl) phosphate enhances the adverse effects of biodegradable polylactic acid microplastics on the mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124741. [PMID: 39147220 DOI: 10.1016/j.envpol.2024.124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Microplastics (MPs) and organophosphate flame retardants (OPFRs) have recently become ubiquitous and cumulative pollutants in the oceans. Since OPFRs are added to or adsorbed onto MPs as additives, it is necessary to study the composite contamination of OPFRs and MPs, with less focus on bio-based PLA. Therefore, this study focused on the ecotoxicity of the biodegradable MP polylactic acid (PLA) (5 μm, irregular fragments, 102 and 106 particles/L), and a representative OPFRs tris(1-chloro-2-propyl) phosphate (TCPP, 0.5 and 50 μg/L) at environmental and high concentrations. The mussel Mytilus coruscus was used as a standardised bioindicator for exposure experiments. The focus was on examining oxidative stress (catalase, CAT, superoxide dismutase, SOD, malondialdehyde, MDA), immune responses acid (phosphatase, ACP, alkaline phosphatase, AKP, lysozyme, LZM), neurotoxicity (acetylcholinesterase, AChE), energy metabolism (lactate dehydrogenase, LDH, succinate dehydrogenase, SDH, hexokinase, HK), and physiological indices (absorption efficiency, AE, excretion rate, ER, respiration rate, RR, condition index, CI) after 14 days exposure. The results of significantly increased oxidative stress and immune responses, and significantly disturbed energy metabolism and physiological activities, together with an integrated biomarker response (IBR) analysis, indicate that bio-based PLA MPs and TCPP could cause adverse effects on mussels. Meanwhile, TCPP interacted significantly with PLA, especially at environmental concentrations, resulting in more severe negative impacts on oxidative and immune stress, and neurotoxicity. The more severe adverse effects at environmental concentrations indicate higher ecological risks of PLA, TCPP and their combination in the real marine environment. Our study presents reliable data on the complex effects of bio-based MP PLA, TCPP and their combination on marine organisms and the environment.
Collapse
Affiliation(s)
- Zhen Zhong
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Yiwei Yin
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Shixiu Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhaowen Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiacheng Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Mansoor Khalid
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Yi X, Qin H, Li G, Kong R, Liu C. Isomer-specific cardiotoxicity induced by tricresyl phosphate in zebrafish embryos/larvae. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134753. [PMID: 38823104 DOI: 10.1016/j.jhazmat.2024.134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Tricresyl phosphate (TCP) has received extensive attentions due to its potential adverse effects, while the toxicological information of TCP isomers is limited. In this study, 2 h post-fertilization zebrafish embryos were exposed to tri-o-cresyl phosphate (ToCP), tri-m-cresyl phosphate (TmCP) or tri-p-cresyl phosphate (TpCP) at concentrations of 0, 100, 300 and 600 μg/L until 120 hpf, and the cardiotoxicity and mechanism of TCP isomers in zebrafish embryos/larvae were evaluated. The results showed that ToCP or TmCP exposure induced cardiac morphological defects and dysfunction in zebrafish, characterized by increased distance between sinus venosus and bulbus arteriosis, increased atrium and pericardial sac area, trabecular defects, and decreased heart rate and blood flow velocity, while no adverse effects of TpCP on zebrafish heart were found. Transcriptomic results revealed that extracellular matrix (ECM) and motor proteins, as well as PPAR signaling pathways, were included in the cardiac morphological defects and dysfunction induced by ToCP and TmCP. Co-exposure test with D-mannitol indicated that the inhibition of energy metabolism by ToCP and TmCP affected cardiac morphology and function by decreasing osmoregulation. This study is the first to report the cardiotoxicity induced by TCP in zebrafish from an isomer perspective, providing a new insight into the toxicity of TCP isomers and highlighting the importance of evaluating the toxicity of different isomers.
Collapse
Affiliation(s)
- Xun'e Yi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyu Qin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Chunsheng Liu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Olisah C, Rubidge G, Human LRD, Adams JB. Investigation of alkyl, aryl, and chlorinated OPFRs in sediments from estuarine systems: Seasonal variation, spatial distribution and ecological risks assessment. ENVIRONMENTAL RESEARCH 2024; 250:118465. [PMID: 38367839 DOI: 10.1016/j.envres.2024.118465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Estuaries in South Africa are very important for biodiversity conservation and serve as focal points for leisure and tourism activities. The organophosphate flame retardants (OPFRs) levels in these aquatic systems haven't been documented in any studies as of yet. Due to the negative effects of persistent organic pollutants in South African estuaries, we examined the occurrence of eight OPFRs in sediments of two estuaries by studying their spatiotemporal distribution, season variation, and ecological risks. The Sundays Estuary (SDE), a semi-urbanized agricultural surrounding system, recorded an ∑8OPFR concentration in sediments that ranged from 0.71 to 22.5 ng/g dw, whereas Swartkops Estuary, a largely urbanized system, recorded a concentration that ranged from 0.61 to 119 ng/g dw. Alkyl-OPFRs were the prevalent homologue in both estuaries compared to the chlorinated and aryl groups. While TBP, TCPP, and TCrP were the most abundant compounds among the homologue groups. There was no distinct seasonal trend of ∑8OPFR concentration in either estuary, with summer and autumn seasons recording the highest concentrations in SDE and SWE, respectively. Ecological risks in the majority of the study sites for the detected compounds were at low (RQ < 0.1) and medium levels (0.1 ≤ RQ < 1) for certain species of fish, Daphnia magna and algae. However, the cumulative RQs for all the compounds had ∑RQs ≥1 for most sites in both estuaries, indicating that these organisms, if present in both estuaries, may be exposed to potential ecological concerns due to accumulated OPFR chemicals. The scope of future studies should be broadened to include research areas that are not only focus on the bioaccumulation patterns of these compounds but also find sustainable ways to reduce them from these estuarine environments.
Collapse
Affiliation(s)
- Chijioke Olisah
- DSI/NRF Research Chair, Shallow Water Ecosystems, Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Department of Botany, Institute of Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Department of Chemistry, Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00, Brno, Czech Republic.
| | - Gletwyn Rubidge
- Department of Chemistry, Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa
| | - Lucienne R D Human
- Department of Botany, Institute of Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; South African Environmental Observation Network (SAEON) Elwandle Coastal Node PO Box 77000, Gqeberha, 6031, South Africa
| | - Janine B Adams
- DSI/NRF Research Chair, Shallow Water Ecosystems, Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Department of Botany, Institute of Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa
| |
Collapse
|
8
|
Colás-Ruiz NR, Pintado-Herrera MG, Santonocito M, Salerno B, Tonini F, Lara-Martín PA, Hampel M. Bioconcentration, biotransformation, and transcriptomic impact of the UV-filter 4-MBC in the manila clam Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169178. [PMID: 38072265 DOI: 10.1016/j.scitotenv.2023.169178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Ultraviolet filters (UV-filters) are compounds extensively used in personal care products. These compounds are produced at increasing rates and discharged into marine ecosystems in unknown quantities and with no regulation, making them emerging contaminants. Among those, the UV-filter 4-Methylbenzylidene camphor (4-MBC) is used in a variety of personal care products such as sunscreens, soaps, or lipsticks. This high consumption has resulted in its presence in various environmental matrices at in concentrations ranging from ng to μg L-1. Very little is known, however, about the possible adverse effects in exposed non-target organisms. Our study presents novel data on the bioconcentration, toxicokinetics, and molecular effects of 4-MBC in a marine bivalve species of commercial interest, Ruditapes philippinarum (Manila clam). Organisms were exposed at two different concentrations (1.34 and 10.79 μg L-1) of 4-MBC for 7 days, followed by a 3-day depuration period (clean sea waters). Bioconcentration factors (BCF) were 3562 and 2229 L kg-1 for the low and high exposure concentrations, respectively, making this pollutant bioaccumulative according to REACH criteria. Up to six 4-MBC biotransformation products (BTPs)were identified, 2 of them for the first time. Transcriptomic analysis revealed between 658 and 1310 differently expressed genes (DEGs) after 4-MBC exposure. Functional and enrichment analysis of the DEGs showed the activation of the detoxification pathway to metabolize and excrete the bioconcentrated 4-MBC, which also involved energy depletion and caused an impact on the metabolism of carbohydrates and lipids and in the oxidative phosphorylation pathways. Oxidative stress and immune response were also evidenced through the activation of cathepsins and the complement system. Such elucidation of the mode of action of a ubiquitous pollutant such as 4-MBC at the molecular level is valuable both from an environmental point of view and for the sustainable production of Manila clam, one of the most cultivated mollusk species worldwide.
Collapse
Affiliation(s)
- Nieves R Colás-Ruiz
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
| | - Marina G Pintado-Herrera
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Melania Santonocito
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Barbara Salerno
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Federico Tonini
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Pablo A Lara-Martín
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Miriam Hampel
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
9
|
Romero-Murillo P, Gallego JL, Leignel V. Marine Pollution and Advances in Biomonitoring in Cartagena Bay in the Colombian Caribbean. TOXICS 2023; 11:631. [PMID: 37505596 PMCID: PMC10385514 DOI: 10.3390/toxics11070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Coastal zones sustain extensive biodiversity, support key processes for ocean dynamics, and influence the balance of the global environment. They also provide resources and services to communities, determine their culture, and are the basis for their economic growth. Cartagena Bay in the Colombian Caribbean is the place of the establishment of one of the country's main cities, which has a great historical and tourist attraction, and it is also the location of the main commercial port and a great variety of industries. Historically, it has been affected by several environmental impacts and intense pollution. This situation has gained the attention of different researchers, so herein is presented a literature review with a systematic approach using RStudio's bibliometrix on the presence of pollutants and the impact on biodiversity in recent decades, providing a critical analysis of the state of Cartagena Bay and its future needs to ensure its recovery and conservation. In addition, the socioeconomic dynamics related to the environmental state of Cartagena Bay are presented from the framework drivers, pressures, status, impacts, and responses (DPSIR). The update and critical understanding of the sources, fate, and effects of pollution are important not only for the knowledge of the status of this singular ecosystem but also to encourage future research and entrench evidence to support decision makers' actions. This review highlights that several pollutants that have been detected exceeding sediment quality guidelines, like As, Cd, Hg, and PAH, are also reported to bioaccumulate and cause damage throughout the trophic levels of the coastal environment. In addition, the potential use of sentinel species and biomarkers for their monitoring is discussed. Finally, the factors that cause pollution and threaten the state of the bay continue to exert pressure and impact; thus, there is a call for the further monitoring of this ecosystem and the strengthening of policies and regulations.
Collapse
Affiliation(s)
- Patricia Romero-Murillo
- Escuela de Biología Marina, Grupo de Investigación GIBEAM, Universidad del Sinú Seccional Cartagena, Av. El Bosque Trans, 54 N° 30-453 Santillana, Cartagena de Indias 130014, Colombia
| | - Jorge L Gallego
- Grupo de Investigaciones y Mediciones Ambientales GEMA, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 N° 30-65, Medellín 050026, Colombia
| | - Vincent Leignel
- Laboratoire BIOSSE, Le Mans Université, Avenue O Messiaen, 72000 Le Mans, France
| |
Collapse
|
10
|
Hu J, Zou X, Ji S, Chen Q, Wang D, Gong Z. Fluorescence turn-off sensing strategy based on Al-based MOF for selective detection of tricresyl phosphate. Anal Chim Acta 2023; 1243:340809. [PMID: 36697175 DOI: 10.1016/j.aca.2023.340809] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Tricresyl phosphate (TCP), a notable emerging pollutant with a high bioconcentration factor and biotoxicity, is a typical representative of aryl-organophosphorus flame retardants. The electrochemical and chromatographic technologies used in conventional TCP detection have a variety of drawbacks. Hence, it is crucial to suggest an easy, accurate, and selective method for detecting TCP. In this study, we presented a brand-new method based on NH2-MIL-53(Al) nanoprobe for the direct luminescence assay of TCP. NH2-MIL-53(Al) possessed an excellent crystal structure and superior optical qualities. Notably, the introduction of TCP caused a considerable dampening of the photoluminescence signal of the nanoprobe. The fluorescence response based on static quenching was verified by fluorescence lifetime decay curves. The thermodynamic analysis further concluded that TCP and nanoprobe spontaneously produced non-fluorescent complexes due to hydrophobic interaction. The quenching efficiency (F0-F)/F0 of the nanoprobe and the TCP concentration displayed good linearity in the scope of 0.3-3.0 μM (R2 = 0.996), and the LOD was 0.058 μM under the ideal detection conditions. More significantly, the technique was effectively used to identify TCP in lake and tap water (RSD ≤5.79%), which provided a fresh perspective on how to recognize OPFRs in environmental water.
Collapse
Affiliation(s)
- Jie Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xue Zou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Sihan Ji
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qiumeng Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China; State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu, 611756, China.
| |
Collapse
|
11
|
Occurrence and seasonal variation of plasticizers in sediments and biota from the coast of Mahdia, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48532-48545. [PMID: 36759412 DOI: 10.1007/s11356-023-25687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Plasticizers are compounds often involved in the manufacturing of plastic products. Nevertheless, the ageing of the latter generates plasticizers that generally end up in the marine environment. In fact, marine pollution by phthalate acid esters (PAEs) and their alternatives has become an environmental and health issue of serious concern, as they are largely and ubiquitously present in the environment and aquatic organisms. In the present study, four PAEs, such as diethyl phthalate (DEP), diisobutyl phthalate (DiBP), dibutyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), and one non-phthalate plasticizer (NPP), namely di-2-ethylhexyl terephthalate (DEHT), are wanted in different marine compartments from the coast of Mahdia in Tunisia such as sediment, seagrass, and mussel. The most abundant and frequently detected congener was DEHT at the concentrations reached 1.181 mg/kg in the sediment, 1.121 mg/kg in the seagrass, and 1.86 mg/kg in the mussel. This result indicates that the DEHT could emerge through the food chain and therefore bioaccumulate in marine compartments. In addition, we noticed that the seasonal variations of plasticizers were seriously affected by environmental factors including industrial and urban discharges.
Collapse
|
12
|
Pantelaki I, Voutsa D. Occurrence and removal of organophosphate esters in municipal wastewater treatment plants in Thessaloniki, Greece. ENVIRONMENTAL RESEARCH 2022; 214:113908. [PMID: 35843273 DOI: 10.1016/j.envres.2022.113908] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
An integrate study regarding the occurrence and fate of eleven organophosphate esters (OPEs) was conducted at two wastewater treatment plants (WWTPs) in the area of Thessaloniki, Greece. Both plants employed conventional activated sludge process whereas as last treatment step the first unit use chlorination and the second one ozonation. OPEs were determined in dissolved fraction, total suspended solids and sludge from various treatment stages of WWTPs. Tris (2-butoxyethyl) phosphate (TBOEP), tris (1-chloro-2-propyl) phosphate (TClPP) and triphenylphosphine oxide (TPPO) were the most abundant compounds in influent and treated effluent. Triphenyl phosphate (TPHP) was also abundant in suspended solids and sludge. Total concentrations of ∑11OPEs ranged from 2144 to 9743 ng L-1 in influents, 1237-2909 ng L-1 in effluents and 3332-14294 ng g-1 dw in sludge. Removal rates from 55% to 80% were observed for most OPEs, whereas chlorinated OPEs, especially for tris(2-chloroethyl) phosphate (TCEP) exhibited low removal efficiency. Mass balance analysis showed that biodegradation was the dominant removal mechanism contributing up to 85%. Sorption onto sludge was also relevant removal pathway for most compounds. Emissions of OPEs through effluents and sludge did not pose considerable risk to the aquatic and terrestrial environment.
Collapse
Affiliation(s)
- Ioanna Pantelaki
- Environmental Pollution Control Laboratory, School of Chemistry, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Greece.
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, School of Chemistry, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Greece
| |
Collapse
|
13
|
Liu W, Zhang H, Ding J, He W, Zhu L, Feng J. Waterborne and Dietary Bioaccumulation of Organophosphate Esters in Zooplankton Daphnia magna. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159382. [PMID: 35954739 PMCID: PMC9367849 DOI: 10.3390/ijerph19159382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
Organophosphate esters (OPEs) are widely used as an additive in flame retardants, plasticizers, lubricants, consumer chemicals, and foaming agents. They can accumulate in aquatic organisms from water (waterborne exposure) and food (dietary exposure). However, the bioaccumulation characteristics and relative importance of different exposure routes to the bioaccumulation of OPEs are relatively poorly understood. In this study, Daphnia magna were exposed to fo typical OPEs (tris(2-chloroethyl) phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(2-butoxyethyl) phosphate (TBOEP), and triphenyl phosphate (TPHP)), and their toxicokinetics under waterborne and dietary exposure routes were analyzed. For the waterborne exposure route, the bioconcentration factors (BCFs) increased in the order of TBOEP, TCEP, TDCPP, and TPHP, which were consistent with their uptake rate constants. TPHP might have the most substantial accumulation potential while TBOEP may have the smallest potential. In dietary exposure, the depuration rate constants of four OPEs were different from those in the waterborne experiment, which may indicate other depuration mechanisms in two exposure routes. The biomagnification factors (BMFs) of fur OPEs were all below 1, suggesting trophic dilution in the transfer of four OPEs from Scenedesmus obliquus to D. magna. Except for TBOEP, the contributions of dietary exposure were generally lower than waterborne exposure in D. magna under two exposure concentrations. This study provides information on the bioaccumulation and contribution of OPEs in D. magna via different exposure routes and highlights the importance of considering different exposure routes in assessing the risk of OPEs.
Collapse
Affiliation(s)
| | | | | | | | - Lin Zhu
- Correspondence: (L.Z.); (J.F.)
| | | |
Collapse
|
14
|
Omedes S, Andrade M, Escolar O, Villanueva R, Freitas R, Solé M. B-esterases characterisation in the digestive tract of the common octopus and the European cuttlefish and their in vitro responses to contaminants of environmental concern. ENVIRONMENTAL RESEARCH 2022; 210:112961. [PMID: 35181305 DOI: 10.1016/j.envres.2022.112961] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Cephalopods are a group of marine invertebrates that have received little attention as sentinel species in comparison to other molluscs, such as bivalves. Consequently, their physiological and biochemical xenobiotic metabolism responses are poorly understood. Here we undertake a comparative analysis of the enzymatic activities involved in detoxification reactions and neural transmission in the digestive tract of two commercial cephalopods: the Common octopus, Octopus vulgaris, and the European cuttlefish, Sepia officinalis. For methodological purposes, several common B-esterases (five carboxylesterase (CE) substrates and three cholinesterase (ChE) determinations) were assayed as a proxy of metabolic and neuronal activities, respectively. Four components of the digestive tract in each species were considered: salivary glands, the stomach, the digestive gland and the caecum. The in vitro responses of digestive gland homogenates to model chemicals and contaminants of environmental concern were contrasted between both cephalopod species. The baseline biochemical activities in the four digestive tract components were also determined. Moreover, in order to validate the protocol, purified proteins, recombinant human CE (CE1 and CE2) and purified eel acetylcholinesterase (AChE) were included in the analysis. Overall, carboxylesterase activities were higher in octopus than in cuttlefish, with the activity quantified in the digestive tract components in the following order: digestive gland ≈ caecum > stomach ≈ salivary glands, with higher hydrolysis rates reached with naphthyl-derived substrates. In contrast, cuttlefish hydrolysis rates with ChE substrates were higher than in octopus. This trend was also reflected in a higher sensitivity to CE inhibitors in octopus and to AChE inhibitors in cuttlefish. Given the detoxification character of CEs and its protective role preventing AChE inhibition, octopus could be regarded as more efficiently protected than cuttlefish from neurotoxic exposures. A full characterisation of B-esterases in the digestive tract of the two common cephalopods is also provided.
Collapse
Affiliation(s)
- S Omedes
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - M Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - O Escolar
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - R Villanueva
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - R Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - M Solé
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain.
| |
Collapse
|
15
|
Shen J, Liang J, Lin X, Lin H, Yu J, Wang S. The Flame-Retardant Mechanisms and Preparation of Polymer Composites and Their Potential Application in Construction Engineering. Polymers (Basel) 2021; 14:82. [PMID: 35012105 PMCID: PMC8747271 DOI: 10.3390/polym14010082] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Against the background of people's increasing awareness of personal safety and property safety, the flame retardancy (FR) of materials has increasingly become the focus of attention in the field of construction engineering. A variety of materials have been developed in research and production in this field. Polymers have many advantages, such as their light weight, low water absorption, high flexibility, good chemical corrosion resistance, high specific strength, high specific modulus and low thermal conductivity, and are often applied to the field of construction engineering. However, the FR of unmodified polymer is not ideal, and new methods to make it more flame retardant are needed to enhance the FR. This article primarily introduces the flame-retardant mechanism of fire retardancy. It summarizes the preparation of polymer flame-retardant materials by adding different flame-retardant agents, and the application and research progress related to polymer flame-retardant materials in construction engineering.
Collapse
Affiliation(s)
- Jingjing Shen
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; (H.L.); (J.Y.); (S.W.)
| | - Jianwei Liang
- Building Office, Taizhou Urban and Rural Planning & Design and Research Institute Co., Ltd., Taizhou 318000, China;
| | - Xinfeng Lin
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; (H.L.); (J.Y.); (S.W.)
| | - Hongjian Lin
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; (H.L.); (J.Y.); (S.W.)
| | - Jing Yu
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; (H.L.); (J.Y.); (S.W.)
| | - Shifang Wang
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; (H.L.); (J.Y.); (S.W.)
| |
Collapse
|
16
|
Organophosphate Esters in China: Fate, Occurrence, and Human Exposure. TOXICS 2021; 9:toxics9110310. [PMID: 34822701 PMCID: PMC8620853 DOI: 10.3390/toxics9110310] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers. OPEs have been released into various environments (e.g., water, sediments, dust and air, and soil). To investigate the occurrence and distribution of OPEs in various environments in China, this review collects and discusses the published scientific studies in this field. Chlorinated OPEs, as flame retardants, are the predominant OPEs found in the environment. The analysis of data revealed large concentration variations among microenvironments, including inflowing river water (range: 0.69-10.62 µgL-1), sediments (range: 0.0197-0.234 µg/g), dust (range: 8.706-34.872 µg/g), and open recycling sites' soil (range: 0.122-2.1 µg/g). Moreover, OPEs can be detected in the air and biota. We highlight the overall view regarding environmental levels of OPEs in different matrices as a starting point to monitor trends for China. The levels of OPEs in the water, sediment, dust, and air of China are still low. However, dust samples from electronic waste workshop sites were more contaminated. Human activities, pesticides, electronics, furniture, paint, plastics and textiles, and wastewater plants are the dominant sources of OPEs. Human exposure routes to OPEs mainly include dermal contact, dust ingestion, inhalation, and dietary intake. The low level of ecological risk and risk to human health indicated a limited threat from OPEs. Furthermore, current challenges and perspectives for future studies are prospected. A criteria inventory of OPEs reflecting the levels of OPEs contamination association among different microenvironments, emerging OPEs, and potential impact of OPEs on human health, particularly for children are needed in China for better investigation.
Collapse
|