1
|
Alanazi Y, Al-Fatesh AS, Al-Mubaddel FS, Ibrahim AA, Fakeeha AH, Abasaeed AE, AL-Garadi NYA, Osman AI. Response Surface Methodology for Ni-Zeolite Catalyst Optimization in Syngas Production. ACS OMEGA 2024; 9:41636-41650. [PMID: 39398177 PMCID: PMC11465259 DOI: 10.1021/acsomega.4c05617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
This work addresses the problem of converting waste methane, a significant greenhouse gas, using customized nickel-zeolite catalysts to produce profitable syngas. The investigation employs 5 wt % of Ni on various zeolite supports with Si/Al ratios ranging from 13 to 25. Comprehensive characterization methods, including temperature-programmed reduction, N2 adsorption-desorption, and X-ray diffraction, were used to identify critical structural characteristics that greatly impact the catalyst's performance. The study indicates that the reducibility and basicity of the catalyst, the type of zeolite support, and the kind of carbon deposits formed during the reaction at 800 °C all influence the efficiency of methane conversion to syngas. The best catalyst was found to be 5Ni-Z3, which at 800 °C produced high conversion rates of carbon dioxide (60%) and methane (50%). Lastly, the response surface methodology, in conjunction with numerical simulation, was used to determine the best operating settings for maximizing syngas production with the 5Ni-Z3 catalyst. Reaction temperature, space velocity, and the methane-to-carbon dioxide feed ratio were considered in this analysis. With a methane conversion rate exceeding 92%, a carbon dioxide conversion rate exceeding 90%, and a hydrogen-to-carbon monoxide ratio of 1.00, the catalyst produced experimental results very similar to the SRM predictions when the reaction was conducted at conditions close to the predicted values [temperature around 845 °C, space velocity around 22,000 mL/(h·gcat), and feed ratio close to 0.94]. The effectiveness of the identified operating conditions for the dry reforming process is validated by the near alignment of expected and experimental outcomes.
Collapse
Affiliation(s)
- Yousef
M. Alanazi
- Chemical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Ahmed S. Al-Fatesh
- Chemical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Fahad S. Al-Mubaddel
- Chemical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Ahmed A. Ibrahim
- Chemical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Anis H. Fakeeha
- Chemical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Ahmed E. Abasaeed
- Chemical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Najib Y. A. AL-Garadi
- Chemical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Ahmed I. Osman
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast, BT9 5AG Northern Ireland, U.K.
| |
Collapse
|
2
|
Keith M, Koller M, Lackner M. Carbon Recycling of High Value Bioplastics: A Route to a Zero-Waste Future. Polymers (Basel) 2024; 16:1621. [PMID: 38931972 PMCID: PMC11207349 DOI: 10.3390/polym16121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Today, 98% of all plastics are fossil-based and non-biodegradable, and globally, only 9% are recycled. Microplastic and nanoplastic pollution is just beginning to be understood. As the global demand for sustainable alternatives to conventional plastics continues to rise, biobased and biodegradable plastics have emerged as a promising solution. This review article delves into the pivotal concept of carbon recycling as a pathway towards achieving a zero-waste future through the production and utilization of high-value bioplastics. The review comprehensively explores the current state of bioplastics (biobased and/or biodegradable materials), emphasizing the importance of carbon-neutral and circular approaches in their lifecycle. Today, bioplastics are chiefly used in low-value applications, such as packaging and single-use items. This article sheds light on value-added applications, like longer-lasting components and products, and demanding properties, for which bioplastics are increasingly being deployed. Based on the waste hierarchy paradigm-reduce, reuse, recycle-different use cases and end-of-life scenarios for materials will be described, including technological options for recycling, from mechanical to chemical methods. A special emphasis on common bioplastics-TPS, PLA, PHAs-as well as a discussion of composites, is provided. While it is acknowledged that the current plastics (waste) crisis stems largely from mismanagement, it needs to be stated that a radical solution must come from the core material side, including the intrinsic properties of the polymers and their formulations. The manner in which the cascaded use of bioplastics, labeling, legislation, recycling technologies, and consumer awareness can contribute to a zero-waste future for plastics is the core topics of this article.
Collapse
Affiliation(s)
- Matthew Keith
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria;
| | - Maximilian Lackner
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands
- University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
3
|
Imai Y, Tominaga Y, Tanaka S, Yoshida M, Furutate S, Sato S, Koh S, Taguchi S. Modification of poly(lactate) via polymer blending with microbially produced poly[(R)-lactate-co-(R)-3-hydroxybutyrate] copolymers. Int J Biol Macromol 2024; 266:130990. [PMID: 38508553 DOI: 10.1016/j.ijbiomac.2024.130990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
This study investigated the effect of polymer blending of microbially produced poly[(R)-lactate-co-(R)-3-hydroxybutyrate] copolymers (LAHB) with poly(lactate) (PLA) on their mechanical, thermal, and biodegradable properties. Blending of high lactate (LA) content and high molecular weight LAHB significantly improved the tensile elongation of PLA up to more than 250 % at optimal LAHB composition of 20-30 wt%. Temperature-modulated differential scanning calorimetry and dynamic mechanical analysis revealed that PLA and LAHB were immiscible but interacted with each other, as indicated by the mutual plasticization effect. Detailed morphological characterization using scanning probe microscopy, small-angle X-ray scattering, and solid-state NMR confirmed that PLA and LAHB formed a two-phase structure with a characteristic length scale as small as 20 nm. Because of mixing in this order, the polymer blends were optically transparent. The biological oxygen demand test of the polymer blends in seawater indicated an enhancement of PLA biodegradation during biodegradation of the polymer blends.
Collapse
Affiliation(s)
- Yusuke Imai
- Multi-Material Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan.
| | - Yuichi Tominaga
- Multi-Material Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry, AIST, Tsukuba, Ibaraki, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry, AIST, Tsukuba, Ibaraki, Japan
| | | | | | - Sangho Koh
- Graduate School of Science, Technology and Innovation, Kobe University, Nada, Kobe 657-8501, Japan
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, Nada, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
4
|
Zheng Y, Ngo HH, Luo H, Wang R, Li C, Zhang C, Wang X. Production of cost-competitive bioethanol and value-added co-products from distillers' grains: Techno-economic evaluation and environmental impact analysis. BIORESOURCE TECHNOLOGY 2024; 397:130470. [PMID: 38395236 DOI: 10.1016/j.biortech.2024.130470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Here, Baijiu distillers' grains (BDGs) were employed in biorefinery development to generate value-added co-products and bioethanol. Through ethyl acetate extraction at a 1:6 solid-liquid ratio for 10 h, significant results were achieved, including 100 % lactic acid and 92 % phenolics recovery. The remaining BDGs also achieved 99 % glucan recovery and 81 % glucan-to-glucose conversion. Simultaneous saccharification and fermentation of remaining BDGs at 30 % loading resulted in 78.5 g bioethanol/L with a yield of 94 %. The minimum selling price of bioethanol varies from $0.149-$0.836/kg, contingent on the co-product market prices. The biorefinery processing of one ton of BDGs caused a 60 % reduction in greenhouse gas emissions compared to that of the traditional production of 88 kg corn-lactic acid, 70 kg antioxidant phenolics, 234 kg soybean protein, and 225 kg corn-bioethanol, along with emissions from BDG landfilling. The biorefinery demonstrated a synergistic model of cost-effective bioethanol production and low-carbon emission BDGs treatment.
Collapse
Affiliation(s)
- Yuxi Zheng
- Department of Resources and Environmental Science, Moutai Institute, Renhuai 564500, Guizhou Province, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, FEIT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Han Luo
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruxue Wang
- Department of Resources and Environmental Science, Moutai Institute, Renhuai 564500, Guizhou Province, China
| | - Chun Li
- Baolu Green Technology (Chengdu) Co., Ltd., Chengdu 610000, China
| | - Chaolong Zhang
- Baolu Green Technology (Chengdu) Co., Ltd., Chengdu 610000, China
| | - Xuliang Wang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China; China Alcoholic Drinks Association, Beijing 100037, China.
| |
Collapse
|
5
|
Jung H, Shin G, Park SB, Jegal J, Park SA, Park J, Oh DX, Kim HJ. Circular waste management: Superworms as a sustainable solution for biodegradable plastic degradation and resource recovery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:568-579. [PMID: 37812971 DOI: 10.1016/j.wasman.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Bioplastics offer a promising solution to plastic pollution, however, their production frequently relies on edible biomass, and their degradation rates remain inadequate. This study investigates the potential of superworms (Zophobas atratus larvae) for polybutylene succinate (PBS) waste management, aiming to achieve both resource recovery and biodegradation. Superworms exclusively fed on PBS for a month exhibited the same survival rate as those on a standard bran diet. PBS digestion yielded a 5.13% weight gain and a 23.23% increase in protein composition in superworms. Additionally, carbon isotope analyses substantiated the conversion of PBS into superworm components. Gut microbes capable of PBS biodegradation became progressively prominent, further augmenting the degradation rate of PBS under composting conditions (ISO 14855-1). Gut-free superworms fed with PBS exhibited antioxidant activities comparable to those of blueberries, renowned for their high antioxidant activity. Based on these findings, this study introduces a sustainable circular solution encompassing recycling PBS waste to generate insect biomass, employing insect gut and frass for PBS degradation and fertilizer, and harnessing insect residue as a food source. In essence, the significance of this research extends to socio-economic and environmental spheres, impacting waste management, resource efficiency, circular economy promotion, environmental preservation, industrial advancement, and global sustainability objectives. The study's outcomes possess the potential to reshape society's approach to plastic waste, facilitating a shift toward more sustainable paradigms.
Collapse
Affiliation(s)
- Hyuni Jung
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Sung Bae Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| |
Collapse
|
6
|
Sangtani R, Nogueira R, Yadav AK, Kiran B. Systematizing Microbial Bioplastic Production for Developing Sustainable Bioeconomy: Metabolic Nexus Modeling, Economic and Environmental Technologies Assessment. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:2741-2760. [PMID: 36811096 PMCID: PMC9933833 DOI: 10.1007/s10924-023-02787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 06/12/2023]
Abstract
The excessive usage of non-renewable resources to produce plastic commodities has incongruously influenced the environment's health. Especially in the times of COVID-19, the need for plastic-based health products has increased predominantly. Given the rise in global warming and greenhouse gas emissions, the lifecycle of plastic has been established to contribute to it significantly. Bioplastics such as polyhydroxy alkanoates, polylactic acid, etc. derived from renewable energy origin have been a magnificent alternative to conventional plastics and reconnoitered exclusively for combating the environmental footprint of petrochemical plastic. However, the economically reasonable and environmentally friendly procedure of microbial bioplastic production has been a hard nut to crack due to less scouted and inefficient process optimization and downstream processing methodologies. Thereby, meticulous employment of computational tools such as genome-scale metabolic modeling and flux balance analysis has been practiced in recent times to understand the effect of genomic and environmental perturbations on the phenotype of the microorganism. In-silico results not only aid us in determining the biorefinery abilities of the model microorganism but also curb our reliance on equipment, raw materials, and capital investment for optimizing the best conditions. Additionally, to accomplish sustainable large-scale production of microbial bioplastic in a circular bioeconomy, extraction, and refinement of bioplastic needs to be investigated extensively by practicing techno-economic analysis and life cycle assessment. This review put forth state-of-the-art know-how on the proficiency of these computational techniques in laying the foundation of an efficient bioplastic manufacturing blueprint, chiefly focusing on microbial polyhydroxy alkanoates (PHA) production and its efficacy in outplacing fossil based plastic products.
Collapse
Affiliation(s)
- Rimjhim Sangtani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, 453552, Indore, India
| | - Regina Nogueira
- Institute for Sanitary Engineering and Waste Management, Leibniz Universität Hannover, Hannover, Germany
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Bala Kiran
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, 453552, Indore, India
| |
Collapse
|
7
|
Milovanovic S, Lukic I, Horvat G, Novak Z, Frerich S, Petermann M, García-González CA. Green Processing of Neat Poly(lactic acid) Using Carbon Dioxide under Elevated Pressure for Preparation of Advanced Materials: A Review (2012-2022). Polymers (Basel) 2023; 15:polym15040860. [PMID: 36850144 PMCID: PMC9960451 DOI: 10.3390/polym15040860] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
This review provides a concise overview of up-to-date developments in the processing of neat poly(lactic acid) (PLA), improvement in its properties, and preparation of advanced materials using a green medium (CO2 under elevated pressure). Pressurized CO2 in the dense and supercritical state is a superior alternative medium to organic solvents, as it is easily available, fully recyclable, has easily tunable properties, and can be completely removed from the final material without post-processing steps. This review summarizes the state of the art on PLA drying, impregnation, foaming, and particle generation by the employment of dense and supercritical CO2 for the development of new materials. An analysis of the effect of processing methods on the final material properties was focused on neat PLA and PLA with an addition of natural bioactive components. It was demonstrated that CO2-assisted processes enable the control of PLA properties, reduce operating times, and require less energy compared to conventional ones. The described environmentally friendly processing techniques and the versatility of PLA were employed for the preparation of foams, aerogels, scaffolds, microparticles, and nanoparticles, as well as bioactive materials. These PLA-based materials can find application in tissue engineering, drug delivery, active food packaging, compostable packaging, wastewater treatment, or thermal insulation, among others.
Collapse
Affiliation(s)
- Stoja Milovanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
- Correspondence: (S.M.); (I.L.)
| | - Ivana Lukic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: (S.M.); (I.L.)
| | - Gabrijela Horvat
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Zoran Novak
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Sulamith Frerich
- Faculty of Mechanical Engineering, Institute of Thermo and Fluid Dynamics, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Marcus Petermann
- Faculty of Mechanical Engineering, Institute of Thermo and Fluid Dynamics, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Carlos A. García-González
- I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Do Kim P, Park H, Rajendran N, Yu J, Min J, Kim SK, Han J. Economic and Environmentally Viable Preparation of a Biodegradable Polymer Composite from Lignocellulose. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Rajendran N, Han J. Techno-economic analysis and life cycle assessment of poly (butylene succinate) production using food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:168-176. [PMID: 36470012 DOI: 10.1016/j.wasman.2022.11.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
In this present study, the production of poly (butylene succinate) (PBS) from food waste was investigated and critical factors were evaluated. The economic feasibility of the process was investigated, as well as the minimum selling price (MSP) of PBS and sensitivity analysis of economic factors based on critical input parameters. 1,4-butanediol price and solvent usage in PBS purification significantly impacted economics during the process. In this process, the MSP of PBS was 3.5 $/kg. The Monte Carlo simulation technique was used to determine the uncertainty in the MSP of PBS. The plant's return on investment (ROI), payback period, internal rate of return (IRR), and net present value (NPV) were 15.79 %, 6.33 years, 16.48 %, and 58,879,000 USD, respectively. The environmental impact factors were evaluated. The results showed the GHG emission from the process was 5.19 kg CO2-eq/kg of PBS which is low than conventional PBS production.
Collapse
Affiliation(s)
- Naveenkumar Rajendran
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, United States
| | - Jeehoon Han
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
10
|
Tassinari G, Bassani A, Spigno G, Soregaroli C, Drabik D. Do biodegradable food packaging films from agro-food waste pay off? A cost-benefit analysis in the context of Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159101. [PMID: 36181818 DOI: 10.1016/j.scitotenv.2022.159101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/12/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Bio-based polymers are increasingly attracting attention as a solution to reducing the consumption of non-renewable resources and curbing the accumulation of fossil-based plastic waste. In this study, we analyze the economics of a new packaging film based on a polylactic acid-polyhydroxybutyrate blend (PLA-PHB), with PHB obtained from agro-industrial residues (potato peels). We model various sizes of biorefineries using the new biotechnology in Europe. For a four-year payback period, which is generally accepted in the industry, the calculated minimum product selling price ranges from 9.7 euros per kilogram to 37.2 euros per kilogram, depending, among other factors, on the production capacity of the biorefinery. We have incorporated the uncertainty over the model parameters in a Monte Carlo simulation and investigated the relative impact of individual factors on the minimum product selling price. Overall, the results indicate that the bio-based feedstock availability is the most influential factor on the profitability of the new biotechnology.
Collapse
Affiliation(s)
- Gianmaria Tassinari
- Agricultural Economics and Rural Policy Group, Wageningen University, Wageningen, the Netherlands; Department of Agricultural and Food Economics, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Andrea Bassani
- DiSTAS, Department for sustainable food process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Spigno
- DiSTAS, Department for sustainable food process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Claudio Soregaroli
- Department of Agricultural and Food Economics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Dušan Drabik
- Agricultural Economics and Rural Policy Group, Wageningen University, Wageningen, the Netherlands; Department of Trade and Accounting, Czech University of Life Sciences in Prague, Czech Republic
| |
Collapse
|
11
|
García-Velásquez C, van der Meer Y. Mind the Pulp: Environmental and economic assessment of a sugar beet pulp biorefinery for biobased chemical production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:199-210. [PMID: 36395636 DOI: 10.1016/j.wasman.2022.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Sugar beet pulp, a byproduct from sugar beet refining, is used by farmers as fertilizer or sold as animal feed. Both options underestimate the potential of sugar beet pulp as a platform to produce specialty and bulky chemicals as a promising pathway for sustainable biochemicals - mind the pulp. This study proposes a biorefinery concept to produce food additives (pectin-derived oligosaccharides) and bulky chemicals (terephthalic acid). Since the biorefinery has a low technology readiness level (TRL = 1), it is relevant to evaluate the feasibility of this biorefinery concept to provide guidance (at an early stage) on the environmental and economic advantages and limitations. For this purpose, the life cycle assessment and techno-economic assessment frameworks are used to assess the environmental impact and economic performance of the biobased terephthalic acid, respectively. Moreover, environmental impacts are accounted for in economic terms using different monetary valuation methods (environmental prices, Ecovalue12, and Ecotax). The environmental impact of biobased terephthalic acid was higher in most impact categories than the fossil counterpart, depending on the selected allocation approach (mass vs economic). The economic feasibility of the proposed biorefinery is highly dependent on the pectin-derived oligosaccharides market price and the valorization of byproducts (humins and levulinic acid). The selection of the monetary valuation method is critical for monetizing environmental impacts when comparing biobased against fossil-based alternatives.
Collapse
Affiliation(s)
- Carlos García-Velásquez
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Yvonne van der Meer
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, the Netherlands.
| |
Collapse
|
12
|
Ramezani Dana H, Ebrahimi F. Synthesis, properties, and applications of polylactic
acid‐based
polymers. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hossein Ramezani Dana
- Mechanics, Surfaces and Materials Processing (MSMP) – EA 7350 Arts et Metiers Institute of Technology Aix‐en‐Provence France
- Texas A&M Engineering Experiment Station (TEES) Texas A&M University College Station Texas USA
| | - Farnoosh Ebrahimi
- PRISM Polymer, Recycling, Industrial, Sustainability and Manufacturing Technological University of the Shannon (TUS) Athlone Ireland
| |
Collapse
|
13
|
Kumari SVG, Pakshirajan K, Pugazhenthi G. Recent advances and future prospects of cellulose, starch, chitosan, polylactic acid and polyhydroxyalkanoates for sustainable food packaging applications. Int J Biol Macromol 2022; 221:163-182. [PMID: 36067847 DOI: 10.1016/j.ijbiomac.2022.08.203] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 12/26/2022]
Abstract
Cellulose, starch, chitosan, polylactic acid, and polyhydroxyalkanoates are seen as promising alternatives to conventional plastics in food packaging. However, the application of these biopolymers in the food packaging industry on a commercial scale is limited due to their poor performance and processing characteristics and high production cost. This review aims to provide an insight into the recent advances in research that address these limitations. Loading of nanofillers into polymer matrix could improve thermal, mechanical, and barrier properties of biopolymers. Blending of biopolymers also offers the possibility of acquiring newer materials with desired characteristics. However, nanofillers tend to agglomerate when loaded above an optimum level in the polymer matrix. This article throws light on different methods adopted by researchers to achieve uniform dispersion of nanofillers in bionanocomposites. Furthermore, different processing methods available for converting biopolymers into different packaging forms are discussed. In addition, the potential utilization of agricultural, brewery, and industrial wastes as feedstock for the production of biopolymers, and integrated biorefinery concept that not only keep the total production cost of biopolymers low but are also environment-friendly, are discussed. Finally, future research prospects in this field and the possible contribution of biopolymers to sustainable development are presented. This review will certainly be helpful to researchers working on sustainable food packaging, and companies exploring pilot projects to scale up biopolymer production for industrial applications.
Collapse
Affiliation(s)
- Satti Venu Gopala Kumari
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
14
|
|
15
|
Ladakis D, Stylianou E, Ioannidou SM, Koutinas A, Pateraki C. Biorefinery development, techno-economic evaluation and environmental impact analysis for the conversion of the organic fraction of municipal solid waste into succinic acid and value-added fractions. BIORESOURCE TECHNOLOGY 2022; 354:127172. [PMID: 35447331 DOI: 10.1016/j.biortech.2022.127172] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
The organic fraction of municipal solid waste (OFMSW) was used for biorefinery development within a circular bioeconomy context towards extraction of lipids/fats and proteins with 100% and 68% recovery yields, respectively, as well as succinic acid (SA) production. A nutrient-rich hydrolysate (89.1 g/L sugars) produced using crude enzymes derived via solid state fermentation of Aspergillus awamori, was employed in Actinobacillus succinogenes fermentation leading to 31.7 gSA/L with 0.68 g/g yield and 0.67 g/L/h productivity. The SA minimum selling price ($1.13-2.39/kgSA) considering 60,000 tSA/year production varied depending on co-product market prices and OFMSW management fees. The biorefinery using 1000 kg OFMSW contributes 35% lower CO2 emissions than conventional processes for the production of 105 kg vegetable oil, 87 kg vegetable protein and 206.4 kg fossil-SA considering also the CO2 emissions due to OFMSW landfilling. The proposed OFMSW biorefinery leads to cost-competitive SA production with lower CO2 emissions for OFMSW treatment.
Collapse
Affiliation(s)
- Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Eleni Stylianou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Sofia-Maria Ioannidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
16
|
Peñas MI, Pérez-Camargo RA, Hernández R, Müller AJ. A Review on Current Strategies for the Modulation of Thermomechanical, Barrier, and Biodegradation Properties of Poly (Butylene Succinate) (PBS) and Its Random Copolymers. Polymers (Basel) 2022; 14:1025. [PMID: 35267848 PMCID: PMC8914744 DOI: 10.3390/polym14051025] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
The impact of plastics on the environment can be mitigated by employing biobased and/or biodegradable materials (i.e., bioplastics) instead of the traditional "commodities". In this context, poly (butylene succinate) (PBS) emerges as one of the most promising alternatives due to its good mechanical, thermal, and barrier properties, making it suitable for use in a wide range of applications. Still, the PBS has some drawbacks, such as its high crystallinity, which must be overcome to position it as a real and viable alternative to "commodities". This contribution covers the actual state-of-the-art of the PBS through different sections. The first section reviews the different synthesis routes, providing a complete picture regarding the obtained molecular weights and the greener alternatives. Afterward, we examine how different strategies such as random copolymerization and the incorporation of fillers can effectively modulate PBS properties to satisfy the needs for different applications. The impact of these strategies is evaluated in the crystallization behavior, crystallinity, mechanical and barrier properties, and biodegradation. The biodegradation is carefully analyzed, highlighting the wide variety of methodologies existing in the literature to measure PBS degradation through different routes (hydrolytic, enzymatic, and soil).
Collapse
Affiliation(s)
- Mario Iván Peñas
- Institute of Polymer Science and Technology ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain;
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Ricardo Arpad Pérez-Camargo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Rebeca Hernández
- Institute of Polymer Science and Technology ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
17
|
Sasimowski E, Majewski Ł, Grochowicz M. Artificial Ageing, Chemical Resistance, and Biodegradation of Biocomposites from Poly(Butylene Succinate) and Wheat Bran. MATERIALS 2021; 14:ma14247580. [PMID: 34947175 PMCID: PMC8705729 DOI: 10.3390/ma14247580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
The results of comprehensive studies on accelerated (artificial) ageing and biodegradation of polymer biocomposites on PBS matrix filled with raw wheat bran (WB) are presented in this paper. These polymer biocomposites are intended for the manufacture of goods, in particular disposable packaging and disposable utensils, which decompose naturally under the influence of biological agents. The effects of wheat bran content within the range of 10–50 wt.% and extruder screw speed of 50–200 min−1 during the production of biocomposite pellets on the resistance of the products to physical, chemical, and biological factors were evaluated. The research included the determination of the effect of artificial ageing on the changes of structural and thermal properties by infrared spectra (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). They showed structural changes—disruption of chains within the ester bond, which occurred in the composition with 50% bran content as early as after 250 h of accelerated ageing. An increase in the degree of crystallinity with ageing was also found to be as high as 48% in the composition with 10% bran content. The temperature taken at the beginning of weight loss of the compositions studied was also lowered, even by 30 °C at the highest bran content. The changes of mechanical properties of biocomposite samples were also investigated. These include: hardness, surface roughness, transverse shrinkage, weight loss, and optical properties: colour and gloss. The ageing hardness of the biocomposite increased by up to 12%, and the surface roughness (Ra) increased by as much as 2.4 µm at the highest bran content. It was also found that ageing causes significant colour changes of the biocomposition (ΔE = 7.8 already at 10% bran content), and that the ageing-induced weight loss of the biocomposition of 0.31–0.59% is lower than that of the samples produced from PBS alone (1.06%). On the other hand, the transverse shrinkage of moldings as a result of ageing turned out to be relatively small, at 0.05%–0.35%. The chemical resistance of biocomposites to NaOH and HCl as well as absorption of polar and non-polar liquids (oil and water) were also determined. Biodegradation studies were carried out under controlled conditions in compost and weight loss of the tested compositions was determined. The weight of samples made from PBS alone after 70 days of composting decreased only by 4.5%, while the biocomposition with 10% bran content decreased by 15.1%, and with 50% bran, by as much as 68.3%. The measurements carried out showed a significant influence of the content of the applied lignocellulosic fillers (LCF) in the form of raw wheat bran (WB) on the examined properties of the biocompositions and the course of their artificial ageing and biodegradation. Within the range under study, the screw speed of the extruder during the production of biocomposite pellets did not show any significant influence on most of the studied properties of the injection mouldings produced from it.
Collapse
Affiliation(s)
- Emil Sasimowski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Łukasz Majewski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
- Correspondence:
| | - Marta Grochowicz
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska 3, 20-031 Lublin, Poland;
| |
Collapse
|