1
|
Fernández-Arribas J, Callejas-Martos S, Balasch A, Moreno T, Eljarrat E. Simultaneous analysis of several plasticizer classes in different matrices by on-line turbulent flow chromatography-LC-MS/MS. Anal Bioanal Chem 2024; 416:6957-6972. [PMID: 39425761 PMCID: PMC11579108 DOI: 10.1007/s00216-024-05593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The development of methodologies for the determination of plasticizers is essential for assessing the environmental and human impact resulting from the use of plastics. A fast analytical method with on-line purification based on turbulent flow chromatography (TFC) coupled to tandem mass spectrometry (MS-MS) has been developed for the analysis of ten phthalates, four alternative plasticizers (including adipates and citrates), and 20 organophosphate esters (OPEs). The method has been validated for the determination of plasticizers across different matrices. Analytical parameters showed acceptable recoveries ranging between 50 and 125%, RSDs lower than 20%, and mLODs of 0.001-2.08 ng g-1 wet weight (ww), 0.002-0.30 ng g-1, and 0.001-0.93 ng m-3 for foodstuffs, face masks, and ambient air, respectively. These methodologies were applied to foodstuff samples purchased in grocery stores, reusable and self-filtering masks, and indoor air measured in different locations. Plasticizers were detected in all the analyzed samples, with values up to 22.0 μg g-1 ww, 6.78 μg g-1, and 572 ng m-3 for foodstuffs, face masks, and indoor air, respectively. The contribution of each family to the total plasticizer content varied between 1.3 and 87%, 0.5 and 98%, and 0.5 and 65% for phthalates, alternative plasticizers, and OPEs, respectively. These findings highlighted the need for analytical methodologies capable of simultaneously assessing a wide number of plasticizers with minimal extraction steps. This capability is crucial in order to obtain more conclusive insights into the impact of these pollutants on both the environment and human health, arising from different sources of exposure such as foodstuffs, plastic materials, and atmospheric air.
Collapse
Affiliation(s)
- Julio Fernández-Arribas
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Sandra Callejas-Martos
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Aleix Balasch
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
2
|
Salcedo S, Di Marzio A, Martínez-López E. Biomonitoring of persistent pollutants in grey seal (Halichoerus seagrypus) pups from the Gulf of Riga, Baltic Sea. MARINE POLLUTION BULLETIN 2024; 209:117198. [PMID: 39486196 DOI: 10.1016/j.marpolbul.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
We analyzed for the first time the concentration of potentially toxic trace elements Hg, As, Pb, Cr and Se and POPs (PCBs and OCPs) in tissues of 41 grey seal pups (Halichoerus grypus) stranded on the shores of the Gulf of Riga. Lanugo was the sample with the highest concentrations of all trace elements except Hg. The concentrations found in this biological matrix appeared as follows: Hg (2.50 ± 1.43 μg/g); Se (1.22 ± 0.82 μg/g); Cr (0.96 ± 1.51 μg/g); As (0.95 ± 1.03 μg/g); Pb (0.50 ± 0.60 μg/g). POPs were∑PCB (0.566 ± 0.520 μg/g), ∑DDT (0.522 ± 0.454 μg/g), ∑HCH (0.043 ± 0.045 μg/g) and Chlordane (0.041 μg/g). We detected brain Hg levels above the threshold described for neurobehavioural changes and some individuals also exceeded the toxic threshold described for PCBs. Thus, the health of grey seal pups could be affected by both groups of pollutants.
Collapse
Affiliation(s)
- S Salcedo
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain
| | - A Di Marzio
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Department of Science and Education, Rigas Nacionalais zoologiskais darzs (Riga Zoo), Meza prospekts 1, LV-1014 Riga, Latvia
| | - E Martínez-López
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
3
|
Zhao Y, Deng Y, Shen F, Huang J, Yang J, Lu H, Wang J, Liang X, Su G. Characteristics and partitions of traditional and emerging organophosphate esters in soil and groundwater based on machine learning. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135351. [PMID: 39088951 DOI: 10.1016/j.jhazmat.2024.135351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Organophosphate esters (OPEs) pose hazards to both humans and the environment. This study applied target screening to analyze the concentrations and detection frequencies of OPEs in the soil and groundwater of representative contaminated sites in the Pearl River Delta. The clusters and correlation characteristics of OPEs in soil and groundwater were calculated by self-organizing map (SOM). The risk assessment and partitions of OPEs in industrial park soil and groundwater were conducted. The results revealed that 14 out of 23 types of OPEs were detected. The total concentrations (Σ23OPEs) ranged from 1.931 to 743.571 ng/L in the groundwater, and 0.218 to 79.578 ng/g in the soil, the former showed highly soluble OPEs with high detection frequencies and concentrations, whereas the latter exhibited the opposite trend. SOM analysis revealed that the distribution of OPEs in the soil differed significantly from that in the groundwater. In the industrial park, OPEs posed acceptable risks in both the soil and groundwater. The soil could be categorized into Zone I and II, and the groundwater into Zone I, II, and III, with corresponding management recommendations. Applying SOM to analyze the characteristics and partitions of OPEs may provide references for other new pollutants and contaminated sites.
Collapse
Affiliation(s)
- Yanjie Zhao
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China.
| | - Fang Shen
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Yang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Haijian Lu
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Jun Wang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xiaoyang Liang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Zhou X, Wang C, Huang M, Zhang J, Cheng B, Zheng Y, Chen S, Xiang M, Li Y, Bedia J, Belver C, Li H. A review of the present methods used to remediate soil and water contaminated with organophosphate esters and developmental directions. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134834. [PMID: 38889460 DOI: 10.1016/j.jhazmat.2024.134834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Organophosphate esters (OPEs) are widely used commercial additives, but their environmental persistence and toxicity raise serious concerns necessitating associated remediation strategies. Although there are various existing technologies for OPE removal, comprehensive screening for them is urgently needed to guide further research. This review provides a comprehensive overview of the techniques used to remove OPEs from soil and water, including their related influencing factors, removal mechanisms/degradation pathways, and practical applications. Based on an analysis of the latest literature, we concluded that (1) methods used to decontaminate OPEs include adsorption, hydrolysis, photolysis, advanced oxidation processes (AOPs), activated sludge processes, and microbial degradation; (2) factors such as the quantity/characteristics of the catalysts/additives, pH value, inorganic ion concentration, and natural organic matter (NOM) affect OPE removal; (3) primary degradation mechanisms involve oxidation induced by reactive oxygen species (ROS) (including •OH and SO4•-) and degradation pathways include hydrolysis, hydroxylation, oxidation, dechlorination, and dealkylation; (5) interference from the pH value, inorganic ion and the presence of NOM may limit complete mineralization during the treatment, impacting practical application of OPE removal techniques. This review provides guidance on existing and potential OPE removal methods, providing a theoretical basis and innovative ideas for developing more efficient and environmentally friendly techniques to treat OPEs in soil and water.
Collapse
Affiliation(s)
- Xuan Zhou
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Mengyan Huang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Biao Cheng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yang Zheng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuai Chen
- School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Minghui Xiang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jorge Bedia
- Chemical Engineering Department, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, Madrid E-28049, Spain
| | - Carolina Belver
- Chemical Engineering Department, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, Madrid E-28049, Spain
| | - Hui Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Zhang Q, Wu R, Zheng S, Luo C, Huang W, Shi X, Wu K. Exposure of male adult zebrafish (Danio rerio) to triphenyl phosphate (TPhP) induces eye development disorders and disrupts neurotransmitter system-mediated abnormal locomotor behavior in larval offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133332. [PMID: 38147758 DOI: 10.1016/j.jhazmat.2023.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Triphenyl phosphate (TPhP) is a widely used organophosphorus flame retardant, which has become ubiquitous in the environment. However, little information is available regarding its transgenerational effects. This study aimed to investigate the developmental toxicity of TPhP on F1 larvae offspring of adult male zebrafish exposed to various concentrations of TPhP for 28 or 60 days. The findings revealed significant morphological changes, alterations in locomotor behavior, variations in neurotransmitter, histopathological changes, oxidative stress levels, and disruption of Retinoic Acid (RA) signaling in the F1 larvae. After 28 and 60 days of TPhP exposure, the F1 larvae exhibited a myopia-like phenotype with pathological alterations in the lens and retina. The genes involved in the RA signaling pathway were down-regulated following parental TPhP exposure. Swimming speed and total distance of F1 larvae were significantly reduced by TPhP exposure, and long-term exposure to environmental levels of TPhP had more pronounced effects on locomotor behavior and neurotransmitter levels. In conclusion, TPhP induced histological and morphological alterations in the eyes of F1 larvae, leading to visual dysfunction, disruption of RA signaling and neurotransmitter systems, and ultimately resulting in neurobehavioral abnormalities. These findings highlight the importance of considering the impact of TPhP on the survival and population reproduction of wild larvae.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
6
|
Xie Z, Zhang X, Xie Y, Liu F, Sun B, Liu W, Wu J, Wu Y. Bioaccumulation and Potential Endocrine Disruption Risk of Legacy and Emerging Organophosphate Esters in Cetaceans from the Northern South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4368-4380. [PMID: 38386007 DOI: 10.1021/acs.est.3c09590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Despite the increasing health risks shown by the continuous detection of organophosphate esters (OPEs) in biota in recent years, information on the occurrence and potential risks of OPEs in marine mammals remains limited. This study conducted the first investigation into the body burdens and potential risks of 10 traditional OPEs (tOPEs) and five emerging OPEs (eOPEs) in 10 cetacean species (n = 84) from the northern South China Sea (NSCS) during 2005-2021. All OPEs, except for 2-ethylhexyl diphenyl phosphate (EHDPHP), were detected in these cetaceans, indicating their widespread occurrence in the NSCS. Although the levels of the ∑10tOPEs in humpback dolphins remained stable from 2005 to 2021, the concentrations of the ∑5eOPEs showed a significant increase, suggesting a growing demand for these new-generation OPEs in South China. Dolphins in proximity to urban regions generally exhibited higher OPE concentrations than those from rural areas, mirroring the environmental trends of OPEs occurring in this area. All OPE congeners, except for EHDPHP, in humpback dolphins exhibited a maternal transfer ratio >1, indicating that the dolphin placenta may not be an efficient barrier for OPEs. The observed significant correlations between levels of OPEs and hormones (triiodothyronine, thyroxine, and testosterone) in humpback dolphins indicated that OPE exposures might have endocrine disruption effects on the dolphin population.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Bin Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Wen Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
7
|
Li J, Liu Y, Meng W, Su G. Biotransformation of Organophosphate Diesters Characterized via In Vitro Metabolism and In Vivo Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4381-4391. [PMID: 38381810 DOI: 10.1021/acs.est.3c09803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Organophosphate diesters (di-OPEs), as additives in industrial applications and/or transformation products of emerging environmental pollutants, such as organophosphate triesters (tri-OPEs), have been found in the environment and biological matrices. The metabolic fate of di-OPEs in biological media is of great significance for tracing the inherent and precursor toxicity variations. This is the first study to investigate the metabolism of a suite of di-OPEs by liver microsomes and to identify any metabolite of metabolizable di-OPEs in in vitro and in vivo samples. Of the 14 di-OPEs, 5 are significantly metabolizable, and their abundant metabolites with hydroxyl, carboxyl, dealkylated, carbonyl, and/or epoxide groups are tentatively identified. More than half of the di-OPEs are detectable in human serum and/or wild fish tissues, and dibenzyl phosphate (DBzP), bis(2,3-dibromopropyl) phosphate (BDBPP), and isopropyl diphenyl phosphate (ip-DPHP) are first reported at a detectable level in humans and wildlife. Using an in vitro assay and a known biotransformation rule-based integrated screening strategy, 2 and 10 suspected metabolite peaks of DEHP are found in human serum and wild fish samples, respectively, and are then identified as phase I and phase II metabolites of DEHP. This study provides a novel insight into fate and persistence of di-OPE and confirms the presence of di-OPE metabolites in humans and wildlife.
Collapse
Affiliation(s)
- Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yaxin Liu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weikun Meng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
8
|
Ai S, Li J, Wang X, Zhao S, Ge G, Liu Z. Derivation of aquatic predicted no-effect concentration and ecological risk assessment for triphenyl phosphate and tris(1,3-dichloro-2-propyl) phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169756. [PMID: 38171460 DOI: 10.1016/j.scitotenv.2023.169756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) are common organophosphate esters (OPEs), which are used as additives in various industries. These compounds have been widely detected in aquatic environment, raising concerns about their adverse effects on aquatic organisms. In order to protect aquatic ecosystems, a total of 7 species were selected for acute and chronic toxicity tests in this study. The results indicated that TPhP and TDCIPP exhibited varying degrees of toxicity to aquatic organisms. The 96-h LC50 values ranged from 1.088 mg/L to 1.574 mg/L for TPhP and from 2.027 mg/L to 17.855 mg/L for TDCIPP. The 28-d LC10 values ranged from 0.023 mg/L to 0.177 mg/L for TPhP and from 0.300 mg/L to 1.102 mg/L for TDCIPP. The tested toxicity data, combined with collected toxicity data, were used to investigate the predicted no-effect concentration in water (PNECwater) of TPhP and TDCIPP by species sensitivity distribution (SSD) method. The results revealed PNECwater values of 6.35 and 38.0 μg/L for TPhP and TDCIPP, respectively. Furthermore, the predicted no-effect concentrations in sediment (PNECsed) were derived as 110 μg/kg dry weight (dw) for TPhP and 424 μg/kg dw for TDCIPP using the equilibrium partitioning (EqP) approach. Based on the toxicity data and PNECs, the ecological risk of these two chemicals in surface waters and sediments worldwide over the last decade were evaluated. The results indicated that TDCIPP posed negligible risk in aquatic ecosystems. However, TPhP showed potential risk in sediments, as indicated by the hazard quotients (HQs) exceeding 0.1. The results of joint probability curves (JPC) indicated that the probabilities of exceeding hazardous concentration for 1 % of species for TPhP in water and sediment were 0.33 % and 5.2 %, respectively. Overall, these findings highlight the need for continued monitoring and assessment of the presence and potential impacts of TPhP and TDCIPP in aquatic ecosystems.
Collapse
Affiliation(s)
- Shunhao Ai
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shiqing Zhao
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Ge
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhengtao Liu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
9
|
Ai S, Chen X, Zhou Y. Critical review on organophosphate esters in water environment: Occurrence, health hazards and removal technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123218. [PMID: 38147949 DOI: 10.1016/j.envpol.2023.123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Organophosphate esters (OPEs), which are phosphoric acid ester derivatives, are anthropogenic substances that are widely used in commerce. Nevertheless, there is growing public concern about these ubiquitous contaminants, which are frequently detected in contaminated water sources. OPEs are mostly emitted by industrial operations, and the primary routes of human exposure to OPEs include food intake and dermal absorption. Because of their negative effects on both human health and the environment, it is clear that innovative methods are needed to facilitate their eradication. In this study, we present a comprehensive overview of the existing characteristics and origins of OPEs, their possible impacts on human health, and the merits, drawbacks, and future possibilities of contemporary sophisticated remediation methods. Current advanced remediation approaches for OPEs include adsorption, degradation (advanced oxidation, advanced reduction, and redox technology), membrane filtration, and municipal wastewater treatment plants, degradation and adsorption are the most promising removal technologies. Meanwhile, we proposed potential areas for future research (appropriate management approaches, exploring the combination treatment process, economic factors, and potential for secondary pollution). Collectively, this work gives a comprehensive understanding of OPEs, providing useful insights for future research on OPEs pollution.
Collapse
Affiliation(s)
- Shali Ai
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Xia Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Nguyen XC, Nguyen TP, Lam VS, Le PC, Vo TDH, Hoang THT, Chung WJ, Chang SW, Nguyen DD. Estimating ammonium changes in pilot and full-scale constructed wetlands using kinetic model, linear regression, and machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168142. [PMID: 37898211 DOI: 10.1016/j.scitotenv.2023.168142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Constructed wetlands (CWs) are a widely utilized nature-based wastewater treatment method for various effluents. However, their application has been more focused on pilot and full-scale CWs with substantial surface areas and extended operation times, which hold greater relevance in practical scenarios. This study used kinetics, linear regression (LR), and machine learning (ML) models to estimate effluent ammonium in pilot and full-scale CWs. From screening 1476 papers, 24 pilot and full-scale CW studies were selected to extract data containing 15 features and 975 data points. Nine models were fit to this data, revealing that linear models were less effective in capturing CW effluent compared to nonlinear ML algorithms. For training data, the Monod kinetic model predicted the poorest performance with an RMSE of 41.84 mg/L and R2 of 0.34, followed by simple LR (RMSE 24.29 mg/L and R2 0.77) and multiple LR (RMSE 22.63 mg/L and R2 0.80). In contrast, Cubist and Random Forest achieved high performances, with an average RMSE of 12.01 ± 5.38 and an average R2 of 0.93 ± 0.07 for Cubist, and an average RMSE of 15.94 ± 10.69 and an average R2 of 0.91 ± 0.08 for RF. The trained Random Forest performed the best for new data, with an R2 of 0.93 and RMSE of 13.48 mg/L. This ML-based model is a valuable tool for efficiently estimating effluent ammonium concentration in pilot and full-scale CWs, thereby facilitating the design of systems.
Collapse
Affiliation(s)
- X Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - T Phuong Nguyen
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Viet Nam
| | - V Son Lam
- HUTECH Institute of Applied Sciences (HIAS), HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Phuoc-Cuong Le
- Department of Environmental Management, Faculty of Environment, The University of Danang-University of Science and Technology, Danang 550000, Viet Nam
| | - T Dieu Hien Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Thu-Huong Thi Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, Hanoi 10000, Viet Nam
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea.
| | - D Duc Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam; Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea.
| |
Collapse
|
11
|
Ye L, Li J, Gong S, Herczegh SM, Zhang Q, Letcher RJ, Su G. Established and emerging organophosphate esters (OPEs) and the expansion of an environmental contamination issue: A review and future directions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132095. [PMID: 37523961 DOI: 10.1016/j.jhazmat.2023.132095] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The list of organophosphate esters (OPEs) reported in the environment continues to expand as evidenced by the increasing number of OPE studies in the literature. However, there remains a general dearth of information on more recently produced and used OPEs that are proving to be emerging environmental contaminants. The present review summarizes the available studies in a systematic framework of the current state of knowledge on the analysis, environmental fate, and behavior of emerging OPEs. This review also details future directions to better understand emerging OPEs in the environment. Firstly, we make recommendations that the current structural/practical abbreviations and naming of OPEs be revised and updated. A chemical database (CDB) containing 114 OPEs is presently established based on the suspect list from the current scientific literature. There are 12 established OPEs and a total of 83 emerging OPEs that have been reported in human and/or biota samples. Of the emerging OPEs more than 80% have nearly 100% detection frequencies in samples of certain environmental media including indoor air, wastewater treatment plants, sediment, and fish. In contrast to OPEs considered established contaminants, most emerging OPEs have been identified more recently due to the more pervasive use of high-resolution mass spectrometry (HRMS) based approaches and especially gas or liquid chromatography coupled with HRMS-based non-target analysis (NTA) of environmental sample fractions. Intentional/unintentional industrial use and non-industrial formation are sources of emerging OPEs in the environment. Predicted physical-chemical properties in silico of newer, molecularly larger and more oligomeric OPEs strongly suggest that some compounds such as bisphenol A diphenyl phosphate (BPA-DPP) are highly persistent, bioaccumulative and/or toxic. Limited information on laboratory-based toxicity data has shown that some emerging OPEs elicit harmful effects such as cytotoxicity, development toxicity, hepatotoxicity, and endocrine disruption in exposed humans and mammals. Established, and to a much lesser degree emerging OPEs, have also been shown to transform and degrade in biota and possibly alter their toxicological effects. Research on emerging OPE contaminants is presently limited and more study is warranted on sample analysis methods, source apportionment, transformation processes, environmental behavior, biomarkers of exposure and toxicity.
Collapse
Affiliation(s)
- Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Gong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sofia M Herczegh
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Qi Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
12
|
Gu L, Hu B, Fu Y, Zhou W, Li X, Huang K, Zhang Q, Fu J, Zhang H, Zhang A, Fu J, Jiang G. Occurrence and risk assessment of organophosphate esters in global aquatic products. WATER RESEARCH 2023; 240:120083. [PMID: 37224669 DOI: 10.1016/j.watres.2023.120083] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Organophosphate esters (OPEs), as an important class of new pollutants, have been pervasively detected in global aquatic products, arousing widespread public concern due to their potential bioaccumulative behavior and consequent risks. With the continuous improvement of living standards of citizens, there have been constant increment of the proportion of aquatic products in diets of people. The levels of OPEs exposed to residents may also be rising due to the augmented consumption of aquatic products, posing potential hazards on human health, especially for people in coastal areas. The present study integrated the concentrations, profiles, bioaccumulation, and trophic transfer of OPEs in global aquatic products, including Mollusca, Crustacea, and fish, evaluated health risks of OPEs through aquatic products in daily diets by Mont Carol Simulation (MCS), and found Asia has been the most polluted area in terms of the concentration of OPEs in aquatic products, and would have been increasingly polluted. Among all studied OPEs, chlorinated OPEs generally showed accumulation predominance. It is worth noting that some OPEs were found bioaccumulated and/or biomagnified in aquatic ecosystems. Though MCS revealed relative low exposure risks of residents, sensitive and special groups such as children, adolescents, and fishermen may face more serious health risks than the average residents. Finally, knowledge gaps and recommendations for future research are discussed encouraging more long-term and systematic global monitoring, comprehensive studies of novel OPEs and OPEs metabolites, and more toxicological studies to completely evaluate the potential risks of OPEs.
Collapse
Affiliation(s)
- Luyao Gu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Boyuan Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qun Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| |
Collapse
|
13
|
Fernández-Arribas J, Moreno T, Eljarrat E. Human exposure to organophosphate esters in water and packed beverages. ENVIRONMENT INTERNATIONAL 2023; 175:107936. [PMID: 37088006 DOI: 10.1016/j.envint.2023.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Drinks are an essential part of human diet, which makes them a source of human exposure to plasticizers such as organophosphate esters (OPEs). The current study provides new information about sixteen OPE levels in 75 different samples (tap water, packed water, cola drinks, juice, wine and hot drinks). Tap water mean levels (40.9 ng/L) were statistically higher than packed water mean levels (4.82 ng/L), mainly due to the contribution of tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2-butoxyethyl) phosphate (TBOEP) that may come from PVC water pipes. Over 90% of samples presented at least one OPE, where regular cola drinks had the highest mean concentrations (2876 ng/L). There was a significantly higher presence of OPEs in added sugar beverages than sugar free drinks, especially for 2-ethylhexyl diphenyl phosphate (EHDPP), which might be related not only to packaging materials but to the added sugar content. Estimated daily intakes (EDIs) in normal and high-exposure scenarios were 2.52 ng/kg bw/day and 7.43 ng/kg bw/day, respectively. Human risk associated with beverages ingestion showed regular cola drinks, juice and tap water as the groups with the highest hazard quotients (HQs). Although OPE exposure was below to safety limits, it should be noted that EHDPP values for regular cola group must be cause of concern, and other routes of exposure such as food ingestion or air inhalation should be also considered.
Collapse
Affiliation(s)
- Julio Fernández-Arribas
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
14
|
Alimohamadi M, Khataee A, Arefi-Oskoui S, Vahid B, Orooji Y, Yoon Y. Catalytic activation of hydrogen peroxide by Cr 2AlC MAX phase under ultrasound waves for a treatment of water contaminated with organic pollutants. ULTRASONICS SONOCHEMISTRY 2023; 93:106294. [PMID: 36640461 PMCID: PMC9852641 DOI: 10.1016/j.ultsonch.2023.106294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
This study aims to investigate the sonocatalytic activation of hydrogen peroxide (H2O2) using Cr2AlC MAX phase prepared by the reactive sintering process. The hexagonal structure of the crystalline MAX phase was confirmed by X-ray diffraction. Moreover, the compacted layered structure of the MAX phase was observed via scanning electron microscopy and high-resolution transmission electron microscopy. Under the desired operating conditions, Cr2AlC MAX phase (0.75 g/L) showed suitable potential to activate H2O2 (1 mmol/L) under sonication, thereby allowing a considerable removal efficiency for various organic pollutants, including dimethyl phthalate (69.1%), rifampin (94.5%), hydroxychloroquine (100%), and acid blue 7 (91.5%) with initial concentration of 15 mg/L within 120 min of treatment. Kinetic analysis proved that the degradation reaction followed pseudo-first-order kinetics. Scavenging tests demonstrated that hydroxyl radicals and singlet oxygen were effective species during degradation. Furthermore, a probable mechanism for dimethyl phthalate degradation was suggested according to gas chromatography-mass spectroscopy and nuclear magnetic resonance analyses. The obtained results confirmed the capability of the triple Cr2AlC/H2O2/US process as a promising method for treating contaminated water.
Collapse
Affiliation(s)
- Monireh Alimohamadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran
| | - Behrouz Vahid
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004 Jinhua, China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
15
|
Guo X, Ke Y, Wu B, Song Q, Sun C, Li Y, Wang H, Su W, Liang Q, Lowe S, Bentley R, Song EJ, King B, Zhou Q, Xie R, Deng F. Exploratory analysis of the association between organophosphate ester mixtures with high blood pressure of children and adolescents aged 8-17 years: cross-sectional findings from the National Health and Nutrition Examination Survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22900-22912. [PMID: 36308653 DOI: 10.1007/s11356-022-23740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Epidemiological studies on the effect of organophosphate esters (OPEs) on high blood pressure (BP) among children and adolescents are scant. Therefore, the main objective of the present study was to explore the effect of exposure to OPEs on high BP among children and adolescents. A total of 1340 participants were included in the current analyses. Multivariable logistic regression models were implemented to calculate odds ratios (ORs) and corresponding 95% confidence intervals (CIs) to examine the association between OPE metabolites and high BP. We also assessed the modified effect of sex, age, and overweight/obesity on this association. Furthermore, quantile g-computation (Qgcomp) and Bayesian kernel machine regression (BKMR) were exhibited to analyze the association between multiple OPE metabolite mixtures and high BP. After adjusting for covariates, the highest (vs. lowest) tertiles of bis (1-choloro-2-propyl) phosphate (BCPP), bis-2-chloroethyl phosphate (BCEP), and di-n-butyl phosphate (DBUP) were associated with 1.23 (95% CI: 0.83, 1.83), 1.27 (95% CI: 0.85, 1.92), and 1.01 (95% CI: 0.67, 1.53) odds ratios for high BP, respectively. In the Qgcomp, a quartile increase in OPE metabolite mixtures was weakly associated with an elevated risk of high BP (adjusted OR: 1.06, 95CI%: 0.81, 1.37). The results from BKMR showed a positive trend of association between OPE metabolite mixture on the risk of high BP. In conclusion, our study demonstrated that higher levels of BCPP, BCEP, and DBUP were weakly associated with high BP among US children and adolescents. Moderate evidence suggested OPE metabolite mixtures had positive joint effects on high BP. Consequently, longitudinal studies with repeated measurements are warranted to examine the relationships between multiple OPE metabolites and high blood pressure among children and adolescents.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Yujie Ke
- Children's Hospital of Anhui Medical University, 39 Wangjiang East Road, Hefei, 230051, Anhui, People's Republic of China
| | - Birong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Yaru Li
- Internal Medicine, Swedish Hospital, 5140 N California Ave, Chicago, IL, 60625, USA
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
- Children's Hospital of Anhui Medical University, 39 Wangjiang East Road, Hefei, 230051, Anhui, People's Republic of China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Evelyn J Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Bethany King
- Internal Medicine, MercyOne Des Moines Medical Center, 1111 6Th Avenue, Des Moines, IA, 50314, USA
| | - Qin Zhou
- Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ruijin Xie
- School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Fang Deng
- Children's Hospital of Anhui Medical University, 39 Wangjiang East Road, Hefei, 230051, Anhui, People's Republic of China.
| |
Collapse
|
16
|
Antonopoulou M, Vlastos D, Dormousoglou M, Bouras S, Varela-Athanasatou M, Bekakou IE. Genotoxic and Toxic Effects of The Flame Retardant Tris(Chloropropyl) Phosphate (TCPP) in Human Lymphocytes, Microalgae and Bacteria. TOXICS 2022; 10:736. [PMID: 36548569 PMCID: PMC9782401 DOI: 10.3390/toxics10120736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Tris(chloropropyl) phosphate (TCPP) is a characteristic and widely used organophosphorus flame retardant. TCPP is comprised of four isomers and the most abundant is tris(1-chloro-2-propyl) phosphate. TCPP can be released into the environment, with potential impacts on living organisms and humans due to its extensive industrial use. Aiming to assess the potential risks of TCPP on human health and the environment, its toxic and genotoxic effects-using organisms from different trophic levels, i.e., bacteria, green microalgae, and human cells-were investigated. TCPP exposure at nominal concentrations of 10, 20, 30 and 40 μg mL-1 was studied to identify the potential risk of inducing genotoxic effects in cultured human lymphocytes. Treatment with 30 and 40 μg mL-1 of TCPP induced marginally significant micronuclei (MN) frequencies as well as cytotoxic effects. Freshwater microalgae species treated with TCPP (0.5, 1, 10, 20 and 50 μg L-1) showed different growth rates over time. All the tested microalgae species were adversely affected after exposure to TCPP during the first 24 h. However, differences among the microalgae species' sensitivities were observed. In the case of the freshwater species, the most sensitive was found to be Chlorococcum sp. The marine algal species Dunaliella tertiolecta and Tisochrysis lutea were significantly affected after exposure to TCPP. The effects of TCPP on Aliivibrio fischeri that were observed can classify this flame retardant as a "harmful" compound. Our results suggest a potential risk to aquatic organisms and humans from the wide utilization of TCPP and its consequent release into the environment. These results highlight that further research should be conducted to investigate the effects of TCPP individually and in combination with other organophosphorus flame retardants in various organisms. In addition, the concern induced by TCPP points out that measures to control the introduction of TCPP into the environment should be taken.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture (Former Department of Environmental Engineering), University of Patras, 30100 Agrinio, Greece
| | - Dimitris Vlastos
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, 26500 Patras, Greece
| | - Margarita Dormousoglou
- Department of Sustainable Agriculture (Former Department of Environmental Engineering), University of Patras, 30100 Agrinio, Greece
| | - Spyridon Bouras
- Department of Sustainable Agriculture (Former Department of Environmental Engineering), University of Patras, 30100 Agrinio, Greece
| | - Maria Varela-Athanasatou
- Department of Sustainable Agriculture (Former Department of Environmental Engineering), University of Patras, 30100 Agrinio, Greece
| | - Irene-Eleni Bekakou
- Department of Sustainable Agriculture (Former Department of Environmental Engineering), University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
17
|
Zhu K, Sarvajayakesavalu S, Han Y, Zhang H, Gao J, Li X, Ma M. Occurrence, distribution and risk assessment of organophosphate esters (OPEs) in water sources from Northeast to Southeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119461. [PMID: 35577264 DOI: 10.1016/j.envpol.2022.119461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
With the wide utilization of organophosphate esters (OPEs) in recent years, OPEs have been detected more frequently in the aquatic environment. However, the distribution of OPEs in drinking source water has rarely been investigated across a large region. In this study, the occurrence and distribution of 13 OPEs were investigated in 23 source water sites from Northeast to Southeast (spacing greater than 3320 km) with a direct injection ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Total OPEs ranged from 218.8 to 636.6 ng/L, with a mean of 380.8 ng/L. The average detected concentration of OPEs in southern cities was higher than that in northern cities. Chlorinated OPEs accounted for 64.74% of the total concentration. Triethyl phosphate (TEP), tri (2-chloroethyl) phosphate (TCEP), and tri (chloropropyl) phosphate (TCPP) were detected in all water samples. Rainfall is a significant factor that affects the OPE concentration (less rainfall, higher concentration). China's OPE concentrations have rapidly reached a median level when compared to those of other countries. Ecological risk assessment showed that most OPEs have no or low risk to organisms (fish, crustacea, algae), except tricresyl phosphate (TCP), which is medium risk. The risk of OPEs in less-rain regions needs to be of greater concern, especially TCP.
Collapse
Affiliation(s)
- Kongrui Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suriyanarayanan Sarvajayakesavalu
- Vinayaka Mission Kirupananda Variyar Arts and Science College, Vinayaka Mission's Research Foundation (Deemed to Be University), Salem, Tamil Nadu, India
| | - Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junmin Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xinyan Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Occurrence, Distribution, and Risk of Organophosphate Flame Retardants in Sediments from Jiulong River Estuary and Adjacent Western Taiwan Strait, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042449. [PMID: 35206636 PMCID: PMC8872513 DOI: 10.3390/ijerph19042449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
Abstract
Organophosphate ester flame retardants (OPFRs) are widely prevalent in the environment and are of significant concern because of their potential toxicity to human health and wildlife. In this study, the concentration, frequency, spatial distribution, potential sources, and ecological risks of OPFRs in sediments from the Jiulong River estuary and the adjacent western Taiwan Strait were investigated. Concentrations of four of the five studied OPFRs were between <LOD and 36.6 ng/g. The distribution of all OPFRs, except 2-Ethylhexyl diphenyl phosphate (EHDPP), remained highly consistent with hydrological (salinity) trends. Furthermore, a significantly positive correlation between EHDPP and total concentrations suggested that it may be the dominant contaminant at both sites. Principal element analysis indicated multiple sources of OPFRs, which were categorized as emissions from road runoff and surface traffic, effects of atmospheric deposition and hydrologic conditions, and a combination of industrial and population effects. Ecological risk indicates that tris (chloroethyl) phosphate (TCEP) and triphosphate ester (2,3-dibromopropyl) (TDBPP) have almost no risk, tris (clorisopropyl) phosphate (TCPP) generally has low risk, while EHDPP has moderate risk with the highest value of 0.487 in the sediments from both sites. Meanwhile, TCPP and TCEP exhibit lower theoretical health risks but are still not negligible. Overall, this work provides data to support global pollutant studies and facilitate the implementation of pollutant control strategies.
Collapse
|