1
|
Du X, Chen R, Kan H. Challenges of Air Pollution and Health in East Asia. Curr Environ Health Rep 2024; 11:89-101. [PMID: 38321318 DOI: 10.1007/s40572-024-00433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW Air pollution has been a serious environmental and public health issue worldwide, particularly in Asian countries. There have been significant increases in epidemiological studies on fine particulate matter (PM2.5) and ozone pollution in East Asia, and an in-depth review of epidemiological evidence is urgent. Thus, we carried out a systematic review of the epidemiological research on PM2.5 and ozone pollution in East Asia released in recent years. RECENT FINDINGS Recent studies have indicated that PM2.5 and ozone are the most detrimental air pollutants to human health, resulting in substantial disease burdens for Asian populations. Many epidemiological studies of PM2.5 and ozone have been mainly performed in three East Asian countries (China, Japan, and South Korea). We derived the following summary findings: (1) both short-term and long-term exposure to PM2.5 and ozone could raise the risks of mortality and morbidity, emphasizing the need for continuing improvements in air quality in East Asia; (2) the long-term associations between PM2.5 and mortality in East Asia are comparable to those observed in Europe and North America, whereas the short-term associations are relatively smaller in magnitude; and (3) further cohort and intervention studies are required to yield robust and precise evidence that can promote evidence-based policymaking in East Asia. This updated review presented an outline of the health impacts of PM2.5 and ozone in East Asia, which may be beneficial for the development of future regulatory policies and standards, as well as for designing subsequent investigations.
Collapse
Affiliation(s)
- Xihao Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
2
|
Zhou C, Xv J, Xia W, Wu Y, Jia X, Li S. Greenness, air pollution, and mortality risk: a retrospective cohort study of patients with lung cancer in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-12. [PMID: 38770969 DOI: 10.1080/09603123.2024.2355278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
The association between long-term exposure to air pollution and mortality from lung cancer has been established, yet evaluations of the potential mitigating effects of greenness on this impact are scarce. We conducted a cohort study in Pingyi County. A two-level Cox proportional hazards regression model was used to examine the associations among long-term exposure to air pollution, residential greenness, and lung cancer mortality. Among the examined pollutants, nitrogen dioxide exhibited the most significant adverse effects and highest risk of lung cancer mortality, with hazard ratio (HR) = 2.783 (95% confidence interval [CI]: 1.885-4.107) for all-cause mortality, HR = 2.492 (95%CI: 1.659-3.741) for tumour-related mortality, and HR = 2.431 (95%CI: 1.606-3.678) for lung cancer mortality. Higher greenness values were associated with a reduced risk of lung cancer mortality. These findings suggest the importance of implementing strategies for increasing greenness to reduce the health impacts of air pollution.
Collapse
Affiliation(s)
- Changqiang Zhou
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- NHC Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Juan Xv
- Chronic Disease Department, Pingyi Center for Disease Control and Prevention, Pingyi, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wanning Xia
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Yue Wu
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Xianjie Jia
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Shixue Li
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- NHC Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| |
Collapse
|
3
|
Ma X, Wu H, Huang H, Tang P, Zeng X, Huang D, Liu S, Qiu X. The role of liver enzymes in the association between ozone exposure and diabetes risk: a cross-sectional study of Zhuang adults in China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:765-777. [PMID: 38517292 DOI: 10.1039/d3em00463e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Background: Growing evidence has demonstrated the role of ambient air pollutants in driving diabetes incidence. However, epidemiological evidence linking ozone (O3) exposure to diabetes risk has been scarcely studied in Zhuang adults in China. We aimed to investigate the associations of long-term exposure to O3 with diabetes prevalence and fasting plasma glucose (FPG) and estimate the mediating role of liver enzymes in Zhuang adults. Methods: We recruited 13 843 ethnic minority adults during 2018-2019 based on a cross-sectional study covering nine districts/counties in Guangxi. Generalized linear mixed models were implemented to estimate the relationships between O3 exposure and diabetes prevalence and FPG. Mediation effect models were constructed to investigate the roles of liver enzymes in the associations of O3 exposure with diabetes prevalence and FPG. Subgroup analyses were conducted to identify potential effect modifications. Results: Long-term exposure to O3 was positively associated with diabetes prevalence and FPG levels in Zhuang adults, with an excess risk of 7.32% (95% confidence interval [CI]: 2.56%, 12.30%) and an increase of 0.047 mmol L-1 (95% CI: 0.032, 0.063) for diabetes prevalence and FPG levels, respectively, for each interquartile range (IQR, 1.18 μg m-3) increment in O3 concentrations. Alanine aminotransferase (ALT) significantly mediated 8.10% and 29.89% of the associations of O3 with FPG and diabetes prevalence, respectively, and the corresponding mediation proportions of alkaline phosphatase (ALP) were 8.48% and 30.00%. Greater adverse effects were observed in females, obese subjects, people with a low education level, rural residents, non-clean fuel users, and people with a history of stroke and hypertension in the associations of O3 exposure with diabetes prevalence and/or FPG levels (all P values for interaction < 0.05). Conclusion: Long-term exposure to O3 is related to an increased risk of diabetes, which is partially mediated by liver enzymes in Chinese Zhuang adults. Promoting clean air policies and reducing exposure to environmental pollutants should be a priority for public health policies geared toward preventing diabetes.
Collapse
Affiliation(s)
- Xiaoyun Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning, Guangxi, China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Han Wu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning, Guangxi, China.
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning, Guangxi, China.
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Zhang Y, Yan Z, Nan N, Qin G, Sang N. Circadian rhythm disturbances involved in ozone-induced glucose metabolism disorder in mouse liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167316. [PMID: 37742977 DOI: 10.1016/j.scitotenv.2023.167316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Ozone (O3) is a key environmental factor for developing diabetes. Nevertheless, the underlying mechanisms remain unclear. This study aimed to investigate alterations of glycometabolism in mice after O3 exposure and the role of circadian rhythms in this process. C57BL/6 male mice were randomly assigned to O3 (0.5 ppm) or filtered air for four weeks (4 h/day). Then, hepatic tissues of mice were collected at 4 h intervals within 24 h after O3 exposure to test. The results showed that hepatic circadian rhythm genes oscillated abnormally, mainly at zeitgeber time (ZT)8 and ZT20 after O3 exposure. Furthermore, detection of glycometabolism (metabolites, enzymes, and genes) revealed that O3 caused change in the daily oscillations of glycometabolism. The serum glucose content decreased at ZT4 and ZT20, while hepatic glucose enhanced at ZT16 and ZT24(0). Both G6pc and Pck1, which are associated with hepatic gluconeogenesis, significantly increased at ZT20. O3 exposure disrupted glycometabolism by increasing gluconeogenesis and decreasing glycolysis in mice liver. Finally, correlation analysis showed that the association between Bmal1 and O3-induced disruption of glycometabolism was the strongest. The findings emphasized the interaction between adverse outcomes of circadian rhythms and glycometabolism following O3 exposure.
Collapse
Affiliation(s)
- Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
5
|
Hou X, Mao Z, Song X, Li R, Liao W, Kang N, Zhang C, Liu X, Chen R, Huo W, Wang C, Hou J. Synergistic association of long-term ozone exposure and solid fuel use with biomarkers of advanced fibrosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85318-85329. [PMID: 37382821 DOI: 10.1007/s11356-023-28337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
This study aims to explore the association of combined exposure to cooking fuel type and ambient ozone (O3) levels with hepatic fibrosis indices among rural adults. A total of 21,010 participants were derived from the Henan Rural Cohort. Information regarding cooking fuel type was collected through a questionnaire, and the concentration of ground-level O3 for each subject was obtained from the Tracking Air Pollution in China (TAP) dataset. A generalized linear model was used to examine the independent association of cooking fuel type or O3 exposure with hepatic fibrosis indices (FIB-4, APRI, and AST/ALT), and their possible interactions with advanced fibrosis were conducted. Compared to clean fuel users, solid fuel users had increased the risk of advanced fibrosis, the adjusted odds ratio (OR) of its assessment by FIB-4 1.240 (1.151, 1.336), by APRI 1.298 (1.185, 1.422), and by AST/ALT 1.135 (1.049, 1.227), respectively. Compared to low O3 exposure, the adjusted ORs of advanced fibrosis assessed by FIB-4, APRI, and AST/ALT in women with high O3 exposure were correspondingly 1.219 (1.138, 1.305), 1.110 (1.017, 1.212), and 0.883 (0.822, 0.949). The adjusted ORs of advanced fibrosis assessed by FIB-4, APRI, and AST/ALT for solid fuel users with high O3 exposure relative to clean fuel users with low O3 exposure in women were 1.557 (1.381, 1.755), 1.427 (1.237, 1.644), and 0.979 (0.863, 1.108), respectively. Significant additive effect of O3 exposure and solid fuel use on FIB-4-defined advanced fibrosis was observed in women, which was quantified by RERI (0.265, 95%CI: 0.052, 0.477), AP (0.170 95%CI: 0.045, 0.295), and SI (1.906, 95%CI: 1.058, 3.432). Solid fuel users with high O3 exposure were significantly associated with elevated hepatic fibrosis indices among rural women, suggesting that poor air quality may induce hepatocellular injury, and women might be more vulnerable to air pollution. The findings indicate that using cleaner fuels in cooking is an effective measure to maintain sustainable development of the environment and gain beneficial effect on human health. Clinical trial registration: The Henan Rural Cohort Study has been registered at the Chinese Clinical Trial Register (registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375.
Collapse
Affiliation(s)
- Xiaoyu Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaoqin Song
- Physical Examination Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Caiyun Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
6
|
Gauthier-Manuel H, Bernard N, Boilleaut M, Giraudoux P, Pujol S, Mauny F. Spatialized temporal dynamics of daily ozone concentrations: Identification of the main spatial differences. ENVIRONMENT INTERNATIONAL 2023; 173:107859. [PMID: 36898173 DOI: 10.1016/j.envint.2023.107859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Ground-level ozone (O3) is one of the most worrisome air pollutants regarding environmental and health impacts. There is a need for a deeper understanding of its spatial and temporal dynamics. Models are needed to provide continuous temporal and spatial coverage in ozone concentration data with a fine resolution. However, the simultaneous influence of each determinant of ozone dynamics, their spatial and temporal variations, and their interaction make the resulting dynamics of O3 concentrations difficult to understand. This study aimed to i) identify different classes of temporal dynamics of O3 at daily and 9 km2 resolution over a long-term period of 12 years, ii) identify the potential determinants of these dynamics and, iii) explore the spatial distribution of the potential classes of temporal dynamics on a spatial continuum and over about 1000 km2. Thus, 126 time series of 12-year daily ozone concentrations were classified using dynamic time warping (DTW) and hierarchical clustering (study area centered on Besançon, eastern France). The different temporal dynamics obtained differed on elevation, ozone levels, proportions of urbanized and vegetated surfaces. We identified different daily ozone temporal dynamics, spatially structured, that overlapped areas called urban, suburban and rural. Urbanization, elevation and vegetation acted as determinants simultaneously. Individually, elevation and vegetated surface were positively correlated with O3 concentrations (r = 0.84 and r = 0.41, respectively), while the proportion of urbanized area was negatively correlated with O3 (r = -0.39). An increasing ozone concentration gradient was observed from urban to rural areas and was reinforced by the elevation gradient. Rural areas were both subject to higher ozone levels (p < 0.001), least monitoring and lower predictability. We identified main determinants of the temporal dynamics of ozone concentrations. The joint influence of determinants was also synthesized. This study proposed a systematic, and reproducible way to build exposure area mapping.
Collapse
Affiliation(s)
- Honorine Gauthier-Manuel
- Chrono-environnement UMR 6249, CNRS, Université de Franche-Comté, F-25000 Besançon, France; Unité de méthodologie en recherche clinique, épidémiologie et santé publique (uMETh), Inserm CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.
| | - Nadine Bernard
- Chrono-environnement UMR 6249, CNRS, Université de Franche-Comté, F-25000 Besançon, France; Centre National de La Recherche Scientifique, UMR 6049, Laboratoire ThéMA, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| | | | - Patrick Giraudoux
- Chrono-environnement UMR 6249, CNRS, Université de Franche-Comté, F-25000 Besançon, France
| | - Sophie Pujol
- Chrono-environnement UMR 6249, CNRS, Université de Franche-Comté, F-25000 Besançon, France; Unité de méthodologie en recherche clinique, épidémiologie et santé publique (uMETh), Inserm CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France
| | - Frédéric Mauny
- Chrono-environnement UMR 6249, CNRS, Université de Franche-Comté, F-25000 Besançon, France; Unité de méthodologie en recherche clinique, épidémiologie et santé publique (uMETh), Inserm CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France
| |
Collapse
|
7
|
Yitshak Sade M, Shi L, Colicino E, Amini H, Schwartz JD, Di Q, Wright RO. Long-term air pollution exposure and diabetes risk in American older adults: A national secondary data-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121056. [PMID: 36634862 PMCID: PMC9905312 DOI: 10.1016/j.envpol.2023.121056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 05/18/2023]
Abstract
Type 2 diabetes is a major public health concern. Several studies have found an increased diabetes risk associated with long-term air pollution exposure. However, most current studies are limited in their generalizability, exposure assessment, or the ability to differentiate incidence and prevalence cases. We assessed the association between air pollution and first documented diabetes occurrence in a national U.S. cohort of older adults to estimate diabetes risk. We included all Medicare enrollees 65 years and older in the fee-for-service program, part A and part B, in the contiguous United States (2000-2016). Participants were followed annually until the first recorded diabetes diagnosis, end of enrollment, or death (264, 869, 458 person-years). We obtained annual estimates of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and warm-months ozone (O3) exposures from highly spatiotemporally resolved prediction models. We assessed the simultaneous effects of the pollutants on diabetes risk using survival analyses. We repeated the models in cohorts restricted to ZIP codes with air pollution levels not exceeding the national ambient air quality standards (NAAQS) during the study period. We identified 10, 024, 879 diabetes cases of 41, 780, 637 people (3.8% of person-years). The hazard ratio (HR) for first diabetes occurrence was 1.074 (95% CI 1.058; 1.089) for 5 μg/m3 increase in PM2.5, 1.055 (95% CI 1.050; 1.060) for 5 ppb increase in NO2, and 0.999 (95% CI 0.993; 1.004) for 5 ppb increase in O3. Both for NO2 and PM2.5 there was evidence of non-linear exposure-response curves with stronger associations at lower levels (NO2 ≤ 36 ppb, PM2.5 ≤ 8.2 μg/m3). Furthermore, associations remained in the restricted low-level cohorts. The O3-diabetes exposure-response relationship differed greatly between models and require further investigation. In conclusion, exposures to PM2.5 and NO2 are associated with increased diabetes risk, even when restricting the exposure to levels below the NAAQS set by the U.S. EPA.
Collapse
Affiliation(s)
- Maayan Yitshak Sade
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA.
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elena Colicino
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Joel D Schwartz
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| |
Collapse
|
8
|
Yitshak Sade M, Shi L, Colicino E, Amini H, Schwartz JD, Di Q, Wright RO. Long-term air pollution exposure and diabetes risk in American older adults: A national secondary data-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121056. [PMID: 36634862 DOI: 10.1101/2021.09.09.21263282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 05/27/2023]
Abstract
Type 2 diabetes is a major public health concern. Several studies have found an increased diabetes risk associated with long-term air pollution exposure. However, most current studies are limited in their generalizability, exposure assessment, or the ability to differentiate incidence and prevalence cases. We assessed the association between air pollution and first documented diabetes occurrence in a national U.S. cohort of older adults to estimate diabetes risk. We included all Medicare enrollees 65 years and older in the fee-for-service program, part A and part B, in the contiguous United States (2000-2016). Participants were followed annually until the first recorded diabetes diagnosis, end of enrollment, or death (264, 869, 458 person-years). We obtained annual estimates of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and warm-months ozone (O3) exposures from highly spatiotemporally resolved prediction models. We assessed the simultaneous effects of the pollutants on diabetes risk using survival analyses. We repeated the models in cohorts restricted to ZIP codes with air pollution levels not exceeding the national ambient air quality standards (NAAQS) during the study period. We identified 10, 024, 879 diabetes cases of 41, 780, 637 people (3.8% of person-years). The hazard ratio (HR) for first diabetes occurrence was 1.074 (95% CI 1.058; 1.089) for 5 μg/m3 increase in PM2.5, 1.055 (95% CI 1.050; 1.060) for 5 ppb increase in NO2, and 0.999 (95% CI 0.993; 1.004) for 5 ppb increase in O3. Both for NO2 and PM2.5 there was evidence of non-linear exposure-response curves with stronger associations at lower levels (NO2 ≤ 36 ppb, PM2.5 ≤ 8.2 μg/m3). Furthermore, associations remained in the restricted low-level cohorts. The O3-diabetes exposure-response relationship differed greatly between models and require further investigation. In conclusion, exposures to PM2.5 and NO2 are associated with increased diabetes risk, even when restricting the exposure to levels below the NAAQS set by the U.S. EPA.
Collapse
Affiliation(s)
- Maayan Yitshak Sade
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA.
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elena Colicino
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Joel D Schwartz
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| |
Collapse
|
9
|
Liu X, Dong X, Song X, Li R, He Y, Hou J, Mao Z, Huo W, Guo Y, Li S, Chen G, Wang C. Physical activity attenuated the association of ambient ozone with type 2 diabetes mellitus and fasting blood glucose among rural Chinese population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90290-90300. [PMID: 35867296 DOI: 10.1007/s11356-022-22076-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The association of ozone with type 2 diabetes mellitus (T2DM) is uncertain. Moreover, the moderating effect of physical activity on this association is largely unknown. This study aims to evaluate the independent and combined effects of ozone and physical activity on T2DM and fasting blood glucose (FBG) in a Chinese rural adult population. A total of 39,192 participants were enrolled in the Henan Rural Cohort Study. Individual ozone exposure was assessed by using a satellite-based random forest model. The logistic regression and generalized linear models were used to evaluate the associations of ozone and physical activity with T2DM and FBG, respectively. Interaction plots were used to visualize the interaction effects of ozone and physical activity on T2DM or FBG. An interquartile range (IQR) increase in ozone exposure concentration was related to a 53.3% (odds ratio (OR),1.533; 95% confidence interval (CI), 1.426, 1.648) increase in odds of T2DM and a 0.292 mmol/L (95%CI, 0.263, 0.321) higher FBG level, respectively. The effects of ozone on T2DM and FBG generally decreased as physical activity levels increased. Negative additive interactions between ozone and physical activity on T2DM risk were observed (relative excess risk due to interaction (RERI), -0.261; 95%CI, -0.473, -0.048; attributable proportion due to interaction (AP), -0.203; 95%CI, -0.380, -0.027; synergy index (S), 0.520; 95%CI, 0.299, 0.904). The larger effects of ozone were observed among elderly and men on T2DM and FBG than young and women. Long-term exposure to ozone was associated with higher odds of T2DM and higher FBG levels, and these associations might be attenuated by increasing physical activity levels. In addition, there was a negative additive interaction (antagonistic effect) between ozone exposure and physical activity level on T2DM risk, suggesting that physical activity might be an effective method to reduce the burden of T2DM attributed to ozone exposure. Trail registration: The Henan Rural Cohort Study has been registered at Chinese Clinical Trial Register (registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015, http://www.chictr.org.cn/showproj.aspx?proj=11375.
Collapse
Affiliation(s)
- Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiaoqin Song
- Physical Examination Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaling He
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
10
|
Song L, Wu M, Wang L, Bi J, Cao Z, Xu S, Tian Y, Xiong C, Wang Y. Ambient ozone exposure during pregnancy and telomere length in newborns: a prospective investigation in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62662-62668. [PMID: 35411518 DOI: 10.1007/s11356-022-19977-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Recent studies suggest that environmental exposures, including air pollution, may influence initial (newborn) telomere length (TL), which has important implications for lifetime health. However, the effect of prenatal ozone exposure on newborn TL is unclear. This study aimed to examine the association of ozone exposure during pregnancy with newborn TL. We used data from a birth cohort study of 762 mother-newborn pairs performed in Wuhan, China, during 2013-2015. Land-use regression models were used to assess prenatal ozone exposure. Newborn TL was quantified in cord blood by qPCR assay. We applied multiple informant model to explore the relationship of prenatal ozone exposure with newborn TL. After adjustment for potential confounders, an interquartile range (IQR) increase in ozone exposure during the 2nd trimester, 3rd trimester, and whole pregnancy were associated with 6.00% (95% confidence interval [CI]: 1.59%, 10.62%), 12.64% (95% CI: 7.52%, 18.00%), and 7.10% (95% CI: 4.09%, 10.20%) longer cord blood TL, respectively. In contrast, an IQR increase in ozone exposure during the 1st trimester was associated with a 8.39% (95% CI: - 12.90%, - 3.65%) shorter cord blood TL. In multipollutant models, consistent associations were observed between ozone exposures during the 2nd trimester and whole pregnancy and cord blood TL, but not significant for the 1st and 3rd trimesters. In conclusion, our findings suggest positive associations of ozone exposure during the 2nd trimester, 3rd trimester, and whole pregnancy with newborn TL and a negative association during the 1st trimester. This study provides new evidence in humans for a potential "programming" mechanism linking maternal ozone exposure to the initial (newborn) setting of offspring's telomere biology.
Collapse
Affiliation(s)
- Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Hong Kong Road No. 100, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Hong Kong Road No. 100, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Long-Term Variations of Meteorological and Precursor Influences on Ground Ozone Concentrations in Jinan, North China Plain, from 2010 to 2020. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ground-level ozone (O3) pollution in the North China Plain has become a serious environmental problem over the last few decades. The influence of anthropogenic emissions and meteorological conditions on ozone trends have become the focus of widespread research. We studied the long-term ozone trends at urban and suburban sites in a typical city in North China and quantified the contributions of anthropogenic and meteorological factors. The results show that urban O3 increased and suburban O3 decreased from 2010 to 2020. The annual 90th percentile of the maximum daily 8-h average of ozone in urban areas increased by 3.01 μgm−3year−1 and, in suburban areas, it decreased by 3.74 μgm−3year−1. In contrast to the meteorological contributions, anthropogenic impacts are the decisive reason for the different ozone trends in urban and suburban areas. The rapid decline in nitrogen oxides (NOX) in urban and suburban areas has had various effects. In urban areas, this leads to a weaker titration of NOX and enhanced O3 formation, while in suburban areas, this weakens the photochemical production of O3. Sensitivity analysis shows that the O3 formation regime is in a transition state in both the urban and suburban areas. However, this tends to be limited to volatile organic compounds (VOCs) in urban areas and to NOX in suburban areas. One reasonable approach to controlling ozone pollution should be to reduce nitrogen oxide emissions while strengthening the control of VOCs.
Collapse
|