1
|
Zhang K, Liu Q, Wang Y, Liu X, Zhou X, Yan B. Advances and Challenges in Tracking Interactions Between Plants and Metal-Based Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1939. [PMID: 39683327 DOI: 10.3390/nano14231939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Metal-based nanoparticles (MNPs) are increasingly prevalent in the environment due to both natural processes and human activities, leading to direct interactions with plants through soil, water, and air exposure that can have beneficial and detrimental effects on plant growth and health. Understanding the uptake, translocation, and transformation of MNPs in plants is crucial for assessing environmental risks and leveraging nanotechnology in agriculture. However, accurate analysis of MNPs in plant tissues poses significant challenges due to complex plant matrices and the dynamic nature of nanoparticles. This short review summarizes recent advances in analytical methods for determining MNP-plant interactions, focusing on pre-processing and quantitative nanoparticle analysis. It highlights the importance of selecting appropriate extraction and analytical techniques to preserve nanoparticle integrity and accurate quantification. Additionally, recent advances in mass spectrometry, microscopy, and other spectroscopic techniques that improve the characterization of MNPs within plant systems are discussed. Future perspectives highlight the need to develop real-time in situ monitoring techniques and sensitive tools for characterizing nanoparticle biotransformation.
Collapse
Affiliation(s)
- Kena Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266701, China
| | - Qingmeng Liu
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yukun Wang
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xigui Liu
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266701, China
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Kaleem Z, Xu W, Ulhassan Z, Shahbaz H, He D, Naeem S, Ali S, Shah AM, Sheteiwy MS, Zhou W. Harnessing the potential of copper-based nanoparticles in mitigating abiotic and biotic stresses in crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59727-59748. [PMID: 39373837 DOI: 10.1007/s11356-024-35174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
The demand for crops production continues to intensify with the rapid increase in population. Agricultural crops continue to encounter abiotic and biotic stresses, which can substantially hamper their productivity. Numerous strategies have been focused to tackle the abiotic and biotic stress factors in various plants. Nanotechnology has displayed great potential to minimize the phytotoxic impacts of these environmental constraints. Copper (Cu)-based nanoparticles (NPs) have displayed beneficial effects on plant growth and stress tolerance. Cu-based NPs alone or in combination with plant growth hormones or microorganisms have been documented to induce plant tolerance and mitigate abiotic or biotic stresses in different plants. In this review, we have comprehensively discussed the uptake and translocation of Cu-based NPs in plants, and beneficial roles in improving the plant growth and development at various growth stages. Moreover, we have discussed how Cu-based NPs mechanistically modulate the physiological, biochemical, metabolic, cellular, and metabolic functions to enhance plant tolerance against both biotic (viruses, bacterial and fungal diseases, etc.) and abiotic stresses (heavy metals or metalloids, salt, and drought stress, etc.). We elucidated recent advancements, knowledge gaps, and recommendations for future research. This review would help plant and soil scientists to adapt Cu-based novel strategies such as nanofertilizers and nanopesticides to detoxify the abiotic or biotic stresses. These outcomes may contribute to the promotion of healthy food production and food security, thus providing new avenues for sustainable agriculture production.
Collapse
Affiliation(s)
- Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Wan Xu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Hafsah Shahbaz
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Di He
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Shoaib Naeem
- Agriculture Officer (Extension) Jauharabad, Office of Assistant Director Agriculture (Extension) Khushab, Punjab, 41000, Pakistan
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Aamir Mehmood Shah
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al-Ain, United Arab Emirates University, Abu-Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Jia X, He J, Yan T, Lu D, Xu H, Li K, Ren Y. Copper oxide nanoparticles mitigate cadmium toxicity in rice seedlings through multiple physiological mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34412-5. [PMID: 39042189 DOI: 10.1007/s11356-024-34412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Heavy metal pollution poses a serious threat to crops growth and yield. Recently, nanoparticles (NPs) have emerged as a promising strategy to mitigate the negative effect of heavy metal on crop growth. This study investigated the beneficial effects of copper oxide nanoparticles (CuO NPs) on the morphological and physiological-biochemical traits of rice seedlings (Oryza sativa L.) under cadmium (Cd) stress. The results demonstrated that the application of CuO NPs increased the contents of nutrition elements in shoots and roots as well as photosynthetic pigments, consequently improving the growth of rice seedlings under Cd stress, especially at low level of Cd stress. Meanwhile, CuO NPs obviously decreased the Cd accumulation in the rice seedlings and immobilized Cd in less toxic chemical forms and subcellular compartments. Moreover, CuO NPs modulated the antioxidant system, ameliorating oxidative damage and membrane injury caused by Cd. Multivariate analysis established correlations between physio-biochemical parameters and further revealed the mitigation of Cd damage to rice seedlings by CuO NPs was associated with inhibition Cd accumulation, altering Cd chemical form and subcellular distribution, increasing the contents of mineral nutrients, photosynthetic pigments and secondary metabolites and antioxidant enzyme activities, and reducing oxidative damage. Overall, the present study indicated that CuO NPs could effectively reduce the Cd toxicity to rice seedlings, demonstrating their potential application in agricultural production.
Collapse
Affiliation(s)
- Xiangwei Jia
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
- Jiangsu Engineering Research Center of Petrochemical Safety and Environmental Protection, Changzhou, 213164, People's Republic of China
| | - Tengyu Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Dandan Lu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Haojie Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Ke Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China.
- Jiangsu Engineering Research Center of Petrochemical Safety and Environmental Protection, Changzhou, 213164, People's Republic of China.
| |
Collapse
|
4
|
Gao J, Zhu Y, Zeng L, Liu X, Yang Y, Zhou Y. Recent advances on environmental behavior of Cu-based nanomaterials in soil-plant system: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121289. [PMID: 38820797 DOI: 10.1016/j.jenvman.2024.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
In recent years, copper-based nanomaterials (Cu-based NMs) have shown great potential in promoting agriculture development due to their special physicochemical characteristics. With the mass production and overuse of Cu-based NMs, there are potential effects on the soil-plant environment. Soil organisms, especially soil microorganisms, play a significant part in terrestrial or soil ecosystems; plants, as indirect organisms with soil-related Cu-based NMs, may affect human health through plant agricultural products. Understanding the accumulation and transformation of Cu-based NMs in soil-plant systems, as well as their ecotoxicological effects and potential mechanisms, is a prerequisite for the scientific assessment of environmental risks and safe application. Therefore, based on the current literature, this review: (i) introduces the accumulation and transformation behaviors of Cu-based NMs in soil and plant systems; (ii) focuses on the ecotoxicological effects of Cu-based NMs on a variety of organisms (microorganisms, invertebrates, and plants); (iii) reveals their corresponding toxicity mechanisms. It appears from studies hitherto made that both Cu-based NMs and released Cu2+ may be the main reasons for toxicity. When Cu-based NMs enter the soil-plant environment, their intrinsic physicochemical properties, along with various environmental factors, could also affect their transport, transformation, and biotoxicity. Therefore, we should push for intensifying the multi-approach research that focuses on the behaviors of Cu-based NMs in terrestrial exposure environments, and mitigates their toxicity to ensure the promotion of Cu-based NMs.
Collapse
Affiliation(s)
- Jieyu Gao
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Yi Zhu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China.
| | - Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
5
|
Zhang Y, Li H, Qiu Y, Liu Y. Bioavailability and Toxicity of nano Copper Oxide to Pakchoi (Brassica Campestris L.) as Compared with bulk Copper Oxide and Ionic Copper. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:52. [PMID: 38565801 DOI: 10.1007/s00128-024-03882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The increasing use of copper oxide nano particles (nCuO) as nano-fertilizers and pesticides have raised concerns over their impact on soil environment and agricultural products. In this study, two nCuO with different shapes, namely spherical nCuO (CuO NPs) and tubular nCuO (CuO NTs), were selected to investigate their bioavailability and toxicity to pakchoi in two soils with different properties. At the meantime, CuO bulk particles (CuO BPs) and Cu(NO3)2 were used for comparison. Results showed that all the Cu treatments increased the DTPA extractable (DTPA-Cu) concentrations in GD soil (acidic) more than in HN soil (alkaline). The DTPA-Cu concentrations increased in the order of Cu(NO3)2 ≈ CuO NPs > CuO BPs ≈ CuO NTs in GD soil and Cu(NO3)2 > CuO NPs > CuO BPs ≈ CuO NTs in HN soil. While for the contents of Cu in the aerial parts of pakchoi, the order is CuO NPs > Cu(NO3)2 > CuO NTs ≈ CuO BPs in GD soil and CuO NPs ≈ Cu(NO3)2 > CuO BPs ≈ CuO NTs in HN soil. Only CuO NPs reduced pakchoi biomass in GD soil. There are no significant difference among CuO NPs, CuO BPs, and Cu(NO3)2 in reducing the chlorophyll contents in pakchoi in HN soil, whereas in GD soil, CuO NPs and CuO BPs led to significantly lower chlorophyll contents in pakchoi compared to Cu(NO3)2. Additionally, CuO NPs and Cu(NO3)2 increased Mn and Mo in pakchoi leaf in HN soil, while increased Zn in pakchoi leaf in GD soil. These results indicated that CuO NPs showed higher or comparable toxicity and bioavailability to pakchoi compared with Cu(NO3)2 depending on soil properties, and nCuO are more easily to be transferred from roots to the aerial parts than CuO BPs and Cu(NO3)2.
Collapse
Affiliation(s)
- Yuqing Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Helian Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Yanhua Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yinghao Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
6
|
Yusefi-Tanha E, Fallah S, Pokhrel LR, Rostamnejadi A. Role of particle size-dependent copper bioaccumulation-mediated oxidative stress on Glycine max (L.) yield parameters with soil-applied copper oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28905-28921. [PMID: 38564134 PMCID: PMC11058571 DOI: 10.1007/s11356-024-33070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Increased impetus on the application of nano-fertilizers to improve sustainable food production warrants understanding of nanophytotoxicity and its underlying mechanisms before its application could be fully realized. In this study, we evaluated the potential particle size-dependent effects of soil-applied copper oxide nanoparticles (nCuO) on crop yield and quality attributes (photosynthetic pigments, seed yield and nutrient quality, seed protein, and seed oil), including root and seed Cu bioaccumulation and a suite of oxidative stress biomarkers, in soybean (Glycine max L.) grown in field environment. We synthesized three distinct sized (25 nm = S [small], 50 nm = M [medium], and 250 nm = L [large]) nCuO with same surface charge and compared with soluble Cu2+ ions (CuCl2) and water-only controls. Results showed particle size-dependent effects of nCuO on the photosynthetic pigments (Chla and Chlb), seed yield, potassium and phosphorus accumulation in seed, and protein and oil yields, with nCuO-S showing higher inhibitory effects. Further, increased root and seed Cu bioaccumulation led to concomitant increase in oxidative stress (H2O2, MDA), and as a response, several antioxidants (SOD, CAT, POX, and APX) increased proportionally, with nCuO treatments including Cu2+ ion treatment. These results are corroborated with TEM ultrastructure analysis showing altered seed oil bodies and protein storage vacuoles with nCuO-S treatment compared to control. Taken together, we propose particle size-dependent Cu bioaccumulation-mediated oxidative stress as a mechanism of nCuO toxicity. Future research investigating the potential fate of varied size nCuO, with a focus on speciation at the soil-root interface, within the root, and edible parts such as seed, will guide health risk assessment of nCuO.
Collapse
Affiliation(s)
- Elham Yusefi-Tanha
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Rostamnejadi
- Faculty of Electromagnetics, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
7
|
Kumar D, Singh R, Upadhyay SK, Verma KK, Tripathi RM, Liu H, Dhankher OP, Tripathi RD, Sahi SV, Seth CS. Review on interactions between nanomaterials and phytohormones: Novel perspectives and opportunities for mitigating environmental challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111964. [PMID: 38159611 DOI: 10.1016/j.plantsci.2023.111964] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO2, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants. The critical theme of this review provides detailed insights into different physiological, biochemical, molecular, and stress tolerance mechanism(s) of NMs action and their cross-talk with different phytohormones. The role of NMs as a double-edged sword for climate change factors, abiotic, and biotic stresses for nutrients uptake, hormones synthesis, cytotoxic, and genotoxic effects including chromosomal aberration, and micronuclei synthesis have been extensively studied. Importantly, this review aims to provide an in-depth understanding of the hormesis effect at low and toxicity at higher doses of NMs under different stressors to develop innovative approaches and design smart NMs for sustainable crop production.
Collapse
Affiliation(s)
| | - Ritu Singh
- Departmental of Environmental Science, Central University of Rajasthan, Ajmer 305817, Rajsthan, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Rudra Deo Tripathi
- CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Shivendra V Sahi
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
8
|
Thiruvengadam M, Chi HY, Kim SH. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108370. [PMID: 38271861 DOI: 10.1016/j.plaphy.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Praise S, Miyazawa M, Phung LD, Nishiyama M, Kumar A, Watanabe T. Impact of nCuO containing treated wastewater on soil microbes and dissolved organic matter in paddy field leachate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122923. [PMID: 37977365 DOI: 10.1016/j.envpol.2023.122923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Using treated wastewater (TWW) resources in agriculture is a major pathway for disseminating nanoparticles. Copper-oxide nanoparticles (nCuO) offer potential benefits, but their presence in the environment poses risks to agricultural and environmental sustainability. This study examined soil microbial transformations and the composition of leachate dissolved organic matter (DOM) of paddy soils irrigated with nCuO-contaminated TWW at different concentrations (T2: 0.02 mgL-1, T3: 0.2 mgL-1, T4: 2.0 mgL-1) and examined the differences in Cu source (T5: 0.2 mgL-1 CuSO4). Results showed negative impacts on the absolute microbial abundance with up to 46 % reduction relative to the control treatment (T1). Changes in relative abundance of specific microbes at the genus level deviated from the corresponding phyla. Acidobacteria, Actinobacteria, Chloroflexi, and Verrucomicrobia phyla increased in the surface (0-3 cm) and subsurface (3-15 cm) layers responding differently to nCuO. In the 0-3 cm layer, Nitrospirae, Euryarchaeota, and Crenarchaeota increased, but only Dechloromonas genus from Proteobacteria increased with increasing nCuO. No significant variations were observed in the DOM composition, except in T4, which had a significantly low content of dissolved organic carbon (DOC), total dissolved nitrogen, and terrestrial humic-like and protein-like components. Ninety-eight distinct genera were identified, of which 44%, including 15 bacteria and two archaea, varied between the surface and subsurface, among treatments, and significantly correlated with more DOM parameters in the subsurface. T4 had the highest microbial diversity in the 0-3 layer, and Cu treatments slightly increased the diversity index in the subsurface. Moreover, the effects differed by Cu source, with T3 showing 10 % more reduction in the subsurface and 17 % less reduction in the surface than T5. The variable microbial responses to nCuO and their strong correlations with DOM highlight the need to consider the potential consequences of low nCuO concentrations on biogeochemical cycles.
Collapse
Affiliation(s)
- Susan Praise
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Masaaki Miyazawa
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Luc Duc Phung
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Masateru Nishiyama
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Toru Watanabe
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| |
Collapse
|
10
|
Roy D, Adhikari A, Saha S, Ghosh PK, Shaw AK, Mukherjee M, Pramanik G, Hossain Z. Untying the regulatory roles of miRNAs in CuO-NPs stress response mechanism in maize: A genome-wide sRNA transcriptome analysis. CHEMOSPHERE 2024; 347:140628. [PMID: 37951395 DOI: 10.1016/j.chemosphere.2023.140628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
MicroRNAs (miRNAs), a group of tiny non-coding RNAs play pivotal role in plant responses to environmental stress. The present small RNA transcriptome study aims to untie the role of miRNAs in CuO-NPs stress adaptation in maize seedlings. Restricted seedling growth, enhanced ROS generation and higher membrane damage were recorded under CuO-NPs [<50 nm, 8 mM] treatment. Deep sequencing reveals 7 up- and 36 down-regulated known miRNAs from CuO-NPs challenged leaves. Gene ontology study demonstrates involvement of CuO-NPs responsive miRNAs in a variety of biological processes including plant growth (miR159a, miR159b), redox homeostasis (miR156e, miR395a), detoxification of heavy metals (miR156e, miR827), signal transduction (miR156e, miR156d), and cell signalling (miR167b-3p, miR393a). Enhanced transcriptional abundance of ABC transporter G family member 41 isoform X2 and HM-associated isoprenylated plant protein 45 isoform X1 might be involved in sequestration and detoxification of excess Cu, essential for metal homeostasis in maize. The miR528-5p mediated up-regulation of superoxide dismutase does not give much protection against CuO-NPs induced oxidative stress damages as evident after histochemical staining with NBT. Moreover, CuO-NPs stress mediated down regulation of miR396 could be an underlying cause of the restricted seedling growth. Taken together, our findings provide insights into the miRNA-guided stress regulatory networks involved in plant's adaptive responses to CuO-NPs stress.
Collapse
Affiliation(s)
- Doyel Roy
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Ayan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Shrabani Saha
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Pratyush Kanti Ghosh
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arun Kumar Shaw
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Moupriya Mukherjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Bidhan Nagar, Kolkata, 700 106, West Bengal, India
| | - Goutam Pramanik
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Bidhan Nagar, Kolkata, 700 106, West Bengal, India
| | - Zahed Hossain
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
11
|
Gao X, Kundu A, Persson DP, Szameitat A, Minutello F, Husted S, Ghoshal S. Application of ZnO Nanoparticles Encapsulated in Mesoporous Silica on the Abaxial Side of a Solanum lycopersicum Leaf Enhances Zn Uptake and Translocation via the Phloem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21704-21714. [PMID: 38079531 PMCID: PMC10753877 DOI: 10.1021/acs.est.3c06424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 12/27/2023]
Abstract
Foliar application of nutrient nanoparticles (NPs) is a promising strategy for improving fertilization efficiency in agriculture. Phloem translocation of NPs from leaves is required for efficient fertilization but is currently considered to be feasible only for NPs smaller than a cell wall pore size exclusion limit of <20 nm. Using mass spectrometry imaging, we provide here the first direct evidence for phloem localization and translocation of a larger (∼70 nm) fertilizer NP comprised of ZnO encapsulated in mesoporous SiO2 (ZnO@MSN) following foliar deposition. The Si content in the phloem tissue of the petiole connected to the dosed leaf was ∼10 times higher than in the xylem tissue, and ∼100 times higher than the phloem tissue of an untreated tomato plant petiole. Direct evidence of NPs in individual phloem cells has only previously been shown for smaller NPs introduced invasively in the plant. Furthermore, we show that uptake and translocation of the NPs can be enhanced by their application on the abaxial (lower) side of the leaf. Applying ZnO@MSN to the abaxial side of a single leaf resulted in a 56% higher uptake of Zn as well as higher translocation to the younger (upper) leaves and to the roots, than dosing the adaxial (top) side of a leaf. The higher abaxial uptake of NPs is in alignment with the higher stomatal density and lower density of mesophyll tissues on that side and has not been demonstrated before.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Department
of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Anirban Kundu
- Department
of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Daniel Pergament Persson
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Augusta Szameitat
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Francesco Minutello
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Søren Husted
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Subhasis Ghoshal
- Department
of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|
12
|
Deng C, Protter CR, Wang Y, Borgatta J, Zhou J, Wang P, Goyal V, Brown HJ, Rodriguez-Otero K, Dimkpa CO, Hernandez R, Hamers RJ, White JC, Elmer WH. Nanoscale CuO charge and morphology control Fusarium suppression and nutrient biofortification in field-grown tomato and watermelon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167799. [PMID: 37838047 DOI: 10.1016/j.scitotenv.2023.167799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Limited data exist on how surface charge and morphology impact the effectiveness of nanoscale copper oxide (CuO) as an agricultural amendment under field conditions. This study investigated the impact of these factors on tomatoes and watermelons following foliar treatment with CuO nanosheets (NS-) or nanospikes (NP+ and NP-) exhibiting positive or negative surface charge. Results showed plant species-dependent benefits. Notably, tomatoes infected with Fusarium oxysporum had significantly reduced disease progression when treated with NS-. Watermelons benefited similarly from NP+. Although disease suppression was significant and trends indicated increased yield, the yield effects weren't statistically significant. However, several nanoscale treatments significantly enhanced the fruit's nutritional value, and this nano-enabled biofortification was a function of particle charge and morphology. Negatively charged nanospikes significantly increased the Fe content of healthy watermelon and tomato (20-28 %) and Ca in healthy tomato (66 %), compared to their positively charged counterpart. Negatively charged nanospikes also outperformed negatively charged nanosheets, leading to significant increases in the content of S and Mg in infected watermelon (37-38 %), Fe in healthy watermelon (58 %), and Ca (42 %) in healthy tomato. These findings highlight the potential of tuning nanoscale CuO chemistry for disease suppression and enhanced food quality under field conditions.
Collapse
Affiliation(s)
- Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Connor R Protter
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jaya Borgatta
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jingyi Zhou
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Peiying Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Vinod Goyal
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Hannah J Brown
- Agronomy Department, University of Florida, Gainesville, FL 32603, United States
| | | | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| |
Collapse
|
13
|
Duc Phung L, Dhewi Afriani S, Aditya Padma Pertiwi P, Ito H, Kumar A, Watanabe T. Effects of CuO nanoparticles in composted sewage sludge on rice-soil systems and their potential human health risks. CHEMOSPHERE 2023; 338:139555. [PMID: 37487974 DOI: 10.1016/j.chemosphere.2023.139555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
The release of metal-based nanoparticles (MNPs) into sewage systems is worrisome due to their potential impact on crop-soil systems that are amended with sewage sludge. This study aimed to investigate the effects of copper oxide nanoparticles (CuO NPs) in composted sewage sludge (CSS) on rice-soil systems and to assess the health risks associated with consuming CuO NP-contaminated rice produced by CSS amendment. CSS was treated with three doses of CuO NPs, resulting in Cu levels below the sludge limits (1500 mg Cu kg-1) for reuse as a soil amendment. Results showed that CuO NPs in CSS at environmentally acceptable levels had no negative effect on rice growth and yield. In fact, they enhanced biomass production, tillering capacity, and soil fertility by increasing N and K levels in the soil. In addition, CuO NPs in CSS (450-1450 mg Cu kg-1) promoted the accumulation of macro- and micro-minerals in rice grains, thereby improving the nutritional value of rice. However, Cu contamination in CSS led to elevated levels of toxic metals, especially As, in rice grains, posing potential health risks to both adults and children. In the presence of higher CuO NPs contamination in CSS, the hazard quotient of As exceeded one, indicating an increased risks of toxic metal exposure via rice consumption. This study raises concerns about potential long-term threats to human health posed by MNPs contamination in CSS and highlights the need to reevaluate the permissible limits of hazardous elements in sludge to ensure its safe reuse in agriculture.
Collapse
Affiliation(s)
- Luc Duc Phung
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan; Center for Foreign Languages and International Education, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, 12406, Viet Nam.
| | - Shinta Dhewi Afriani
- Graduate School of Agricultural Science, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Putri Aditya Padma Pertiwi
- Graduate School of Agricultural Science, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Hiroaki Ito
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Toru Watanabe
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| |
Collapse
|
14
|
Dey S, Nath S, Alam Ansari T, Biswas A, Barman F, Mukherjee S, Gopal G, Bhattacharyya A, Mukherjee A, Kundu R, Paul S. Application of green synthesized bimetallic nZVI-Cu nanoparticle as a sustainable alternative to chemical fertilizers to enhance growth and photosynthetic efficiency of rice seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107837. [PMID: 37331074 DOI: 10.1016/j.plaphy.2023.107837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Application of nanomaterials in agriculture has been extensively explored over the past decade leading to a wide ambit of nanoparticle-based agrochemicals. Metallic nanoparticles consisting of plant macro- and micro-nutrients have been used as nutritional supplements for plants through soil amendments, foliar sprays, or seed treatment. However, most of these studies emphasize monometallic nanoparticles which limit the range of usage and effectivity of such nanoparticles (NPs). Hence, we have employed a bimetallic nanoparticle (BNP) consisting of two different micro-nutrients (Cu & Fe) in rice plants to test its efficacy in terms of growth and photosynthesis. Several experiments were designed to assess growth (root-shoot length, relative water content) and photosynthetic parameters (pigment content, relative expression of rbcS, rbcL & ChlGetc.). To determine whether the treatment induced any oxidative stress or structural anomalies within the plant cells, histochemical staining, anti-oxidant enzyme activities, FTIR, and SEM micrographs were undertaken. Results indicated that foliar application of 5 mg L-1 BNP increased vigor and photosynthetic efficiency whereas 10 mg L-1 concentration induced oxidative stress to some extent. Furthermore, the BNP treatment did not perturb the structural integrity of the exposed plant parts and also did not induce any cytotoxicity. Application of BNPs in agriculture has not been explored extensively to date and this study is one of the first reports that not only documents the effectivity of Cu-Fe BNP but also critically explores the safety of its usage on rice plants making it a useful lead to design new BNPs and explore their efficacy.
Collapse
Affiliation(s)
- Swarnali Dey
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Shreya Nath
- Institute of Health Sciences, Presidency University (2nd Campus), Action Area-ID, New Town, Kolkata, 700156, India
| | - Tauhid Alam Ansari
- Institute of Health Sciences, Presidency University (2nd Campus), Action Area-ID, New Town, Kolkata, 700156, India
| | - Ankita Biswas
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Falguni Barman
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Saikat Mukherjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Geetha Gopal
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Arindam Bhattacharyya
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Subhabrata Paul
- Institute of Health Sciences, Presidency University (2nd Campus), Action Area-ID, New Town, Kolkata, 700156, India.
| |
Collapse
|
15
|
Kusiak M, Sozoniuk M, Larue C, Grillo R, Kowalczyk K, Oleszczuk P, Jośko I. Transcriptional response of Cu-deficient barley (Hordeum vulgare L.) to foliar-applied nano-Cu: Molecular crosstalk between Cu loading into plants and changes in Cu homeostasis genes. NANOIMPACT 2023; 31:100472. [PMID: 37453617 DOI: 10.1016/j.impact.2023.100472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
For safe and effective nutrient management, the cutting-edge approaches to plant fertilization are continuously developed. The aim of the study was to analyze the transcriptional response of barley suffering from Cu deficiency to foliar application of nanoparticulate Cu (nano-Cu) and its ionic form (CuSO4) at 100 and 1000 mg L-1 for the examination of their supplementing effect. The initial interactions of Cu-compounds with barley leaves were analyzed with spectroscopic (ICP-OES) and microscopic (SEM-EDS) methods. To determine Cu cellular status, the impact of Cu-compounds on the expression of genes involved in regulating Cu homeostasis (PAA1, PAA2, RAN1, COPT5), aquaporins (NIP2.1, PIP1.1, TIP1.1, TIP1.2) and antioxidant defense response (SOD CuZn, SOD Fe, SOD Mn, CAT) after 1 and 7 days of exposure was analyzed. Although Cu accumulation in plant leaves was detected overtime, the Cu content in leaves exposed to nano-Cu for 7 days was 44.5% lower than in CuSO4 at 100 mg L-1. However, nano-Cu aggregates remaining on the leaf surface indicated a potential difference between measured Cu content and the real Cu pool present in the plant. Our study revealed significant changes in the pattern of gene expression overtime depending on Cu-compound type and dose. Despite the initial puzzling patterns of gene expression, after 7 days all Cu transporters showed significant down-regulation under Cu-compounds exposure to prevent Cu excess in plant cells. Conversely, aquaporin gene expression was induced after 7 days, especially by nano-Cu and CuSO4 at 100 mg L-1 due to the stimulatory effect of low Cu doses. Our study revealed that the gradual release of Cu ions from nano-Cu at a lower rate provided a milder molecular response than CuSO4. It might indicate that nano-Cu maintained better metal balance in plants than the conventional compounds, thus may be considered as a long-term supplier of Cu.
Collapse
Affiliation(s)
- Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Camille Larue
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse 31062, France
| | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP 15385-000, Brazil
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland.
| |
Collapse
|
16
|
Zhou P, Jiang Y, Adeel M, Shakoor N, Zhao W, Liu Y, Li Y, Li M, Azeem I, Rui Y, Tan Z, White JC, Guo Z, Lynch I, Zhang P. Nickel Oxide Nanoparticles Improve Soybean Yield and Enhance Nitrogen Assimilation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7547-7558. [PMID: 37134233 DOI: 10.1021/acs.est.3c00959] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nickel (Ni) is a trace element beneficial for plant growth and development and could improve crop yield by stimulating urea decomposition and nitrogen-fixing enzyme activity. A full life cycle study was conducted to compare the long-term effects of soil-applied NiO nanoparticles (n-NiO), NiO bulk (b-NiO), and NiSO4 at 10-200 mg kg-1 on plant growth and nutritional content of soybean. n-NiO at 50 mg kg-1 significantly promoted the seed yield by 39%. Only 50 mg kg-1 n-NiO promoted total fatty acid content and starch content by 28 and 19%, respectively. The increased yield and nutrition could be attributed to the regulatory effects of n-NiO, including photosynthesis, mineral homeostasis, phytohormone, and nitrogen metabolism. Furthermore, n-NiO maintained a Ni2+ supply for more extended periods than NiSO4, reducing potential phytotoxicity concerns. Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the first time confirmed that the majority of the Ni in seeds is in ionic form, with only 28-34% as n-NiO. These findings deepen our understanding of the potential of nanoscale and non-nanoscale Ni to accumulate and translocate in soybean, as well as the long-term fate of these materials in agricultural soils as a strategy for nanoenabled agriculture.
Collapse
Affiliation(s)
- Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanwanjing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
17
|
Di X, Fu Y, Xu Y, Zheng S, Huang Q, Sun Y. Assessment of CuO NPs on soil microbial community structure based on phospholipid fatty acid techniques and phytotoxicity of bok choy seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107657. [PMID: 36989987 DOI: 10.1016/j.plaphy.2023.107657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
In this study, a soil culture and a hydroponic experiment were conducted to assess the toxicology effects of copper oxide nanoparticles (CuO NPs) on soil microbial community structure and the growth of bok choy. Results showed CuO NPs had an inhibitory effect on soil microbial abundance, diversity, and activity, as well as the bok choy seedling growth, whereas CuO NPs at low concentrations did not significantly affect the soil microbial biomass or plant growth. In soil, CuO NPs at high dose (80 mg kg-1) significantly reduced the indexes of Simpson diversity, Shannon-Wiener diversity and Pielou evenness by 3.7%, 4.9% and 4.5%, respectively. In addition, CuO NPs at 20 and 80 mg kg-1 treatment significantly reduced soil enzymes (urease, alkaline phosphatase, dehydrogenase, and catalase) activities by 25.5%-58.9%. Further, CuO NPs at 20 mg L-1 significantly inhibited the growth of plant root by 33.8%, and catalase (CAT) activity by 17.9% in bok choy seedlings. The present study can provide a basis for a comprehensive evaluation of the toxicity effect of CuO NPs on soil microorganisms and phytotoxicity to bok choy seedlings.
Collapse
Affiliation(s)
- Xuerong Di
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Yutong Fu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Yingming Xu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing, 100125, China
| | - Qingqing Huang
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China.
| | - Yuebing Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China.
| |
Collapse
|
18
|
Huang D, Shi Z, Shan X, Yang S, Zhang Y, Guo X. Insights into growth-affecting effect of nanomaterials: Using metabolomics and transcriptomics to reveal the molecular mechanisms of cucumber leaves upon exposure to polystyrene nanoplastics (PSNPs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161247. [PMID: 36603646 DOI: 10.1016/j.scitotenv.2022.161247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Polystyrene nanoplastics (PSNPs, <100nm), an artificial pollutant that is widespread in the environment, can be assimilated by plants to alter plant gene expression and its metabolic pathway; thus, interfering with physiological homeostasis and growth of plants. Recently, the biosafety and potential environmental risks of PSNPs have attracted enormous attention. However, the knowledge regarding the uptake and phytotoxicity of atmosphere PSNPs subsiding to plant leaves is still limited. Here, we separately applied 50 mg/L and 100 mg/L PSNPs on cucumber leaves to simulate the plant response to the atmosphere PSNPs. We found that the PSNPs can be accumulated on the surface of cucumber leaves and are also able to be uptake by cucumber leaf stomata. The repertoires of metabolomics and transcriptomics from cucumber leaves upon PSNPs treatment demonstrated that the deposition of PSNPs on leaves alters the biosynthesis of various metabolites and the expression of a variety of genes. The leaves exposure to low concentration (50 mg/L) of PSNPs impact the genes involved in carbohydrate metabolism and the biosynthesis of metabolites related to membrane stability maintenance, thereby, probably enhancing plant tolerance to the stress caused by PSNPs. Whereas, exposure to high concentration (100 mg/L) of PSNPs, both nitrogen and carbohydrate metabolism in cucumber leaves are affected, as well as that the photosynthetic capacity was decreased, leading to the threat to plant health. Combined omics technologies, our findings advance our understanding about how the PSNPs released to ecological environment influence the terrestrial plant growth and provide phytotoxic mechanism.
Collapse
Affiliation(s)
- Daofen Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zihan Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoling Shan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University Xining, China
| | - Yuzhou Zhang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Rashid MI, Shah GA, Sadiq M, Amin NU, Ali AM, Ondrasek G, Shahzad K. Nanobiochar and Copper Oxide Nanoparticles Mixture Synergistically Increases Soil Nutrient Availability and Improves Wheat Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061312. [PMID: 36986999 PMCID: PMC10052822 DOI: 10.3390/plants12061312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
Recently, nanomaterials have received considerable attention in the agricultural sector, due to their distinctive characteristics such as small size, high surface area to volume ratio, and charged surface. These properties allow nanomaterials to be utilized as nanofertilizers, that can improve crop nutrient management and reduce environmental nutrient losses. However, after soil application, metallic nanoparticles have been shown to be toxic to soil biota and their associated ecosystem services. The organic nature of nanobiochar (nanoB) may help to overcome this toxicity while maintaining all the beneficial effects of nanomaterials. We aimed to synthesize nanoB from goat manure and utilize it with CuO nanoparticles (nanoCu) to influence soil microbes, nutrient content, and wheat productivity. An X-ray diffractogram (XRD) confirmed nanoB synthesis (crystal size = 20 nm). The XRD spectrum showed a distinct carbon peak at 2θ = 42.9°. Fourier-transform spectroscopy of nanoB's surface indicated the presence of C=O, C≡N-R, and C=C bonds, and other functional groups. The electron microscopic micrographs of nanoB showed cubical, pentagonal, needle, and spherical shapes. NanoB and nanoCu were applied alone and as a mixture at the rate of 1000 mg kg-1 soil, to pots where wheat crop was grown. NanoCu did not influence any soil or plant parameters except soil Cu content and plant Cu uptake. The soil and wheat Cu content in the nanoCu treatment were 146 and 91% higher, respectively, than in the control. NanoB increased microbial biomass N, mineral N, and plant available P by 57, 28, and 64%, respectively, compared to the control. The mixture of nanoB and nanoCu further increased these parameters, by 61, 18, and 38%, compared to nanoB or nanoCu alone. Consequently, wheat biological, grain yields, and N uptake were 35, 62 and 80% higher in the nanoB+nanoCu treatment compared to the control. NanoB further increased wheat Cu uptake by 37% in the nanoB+nanoCu treatment compared to the nanoCu alone. Hence, nanoB alone, or in a mixture with nanoCu, enhanced soil microbial activity, nutrient content, and wheat production. NanoB also increased wheat Cu uptake when mixed with nanoCu, a micronutrient essential for seed and chlorophyll production. Therefore, a mixture of nanobiochar and nanoCu would be recommended to farmers for improving their clayey loam soil quality and increasing Cu uptake and crop productivity in such agroecosystems.
Collapse
Affiliation(s)
- Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Abbas Shah
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Maqsood Sadiq
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Noor ul Amin
- Department of Environmental Science, Sub-Campus, COMSATS University Islamabad, Vehari 61000, Pakistan
| | - Arshid Mahmood Ali
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Khurram Shahzad
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Nekoukhou M, Fallah S, Pokhrel LR, Abbasi-Surki A, Rostamnejadi A. Foliar enrichment of copper oxide nanoparticles promotes biomass, photosynthetic pigments, and commercially valuable secondary metabolites and essential oils in dragonhead (Dracocephalum moldavica L.) under semi-arid conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160920. [PMID: 36529390 DOI: 10.1016/j.scitotenv.2022.160920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
High alkaline and low organic carbon hinder micronutrients, such as copper (Cu), bioavailability in (semi-) arid soils, affecting plant nutrient quality and productivity. This study aimed at investigating the potential beneficial effects of foliar Cu oxide nanoparticles (CuONPs) and conventional chelated-Cu applications (0-400 mg Cu/L) on the biomass, physiological biomarkers of plant productivity and oxidative stress, Cu bioaugmentation, and essential oils and secondary metabolites in dragonhead (Dracocephalum moldavica [L.]) grown in Cu-limited alkaline soil in semi-arid condition. Employing a randomized complete block design with three replicates, two different sources of Cu (CuONPs and chelated-Cu), and a wide range of Cu concentrations (0, 40, 80, 160, and 400 mg Cu/L), plants were foliarly treated at day-60 and day-74. At day-120, plants were harvested at the end of the flowering stage. Results showed shoot Cu bioaccumulation, flavonoids and anthocyanin increased in a dose-dependent manner for both Cu compounds, but the beneficial effects were significantly higher with CuONPs compared to chelated-Cu treatments. Further, shoot biomass (23 %), photosynthetic pigments (chlorophyll-a and chlorophyll-b; 77 and 123 %, respectively), and essential oil content and yield (70 and 104 %, respectively) increased significantly with foliar application of 80 mg/L CuONPs compared to equivalent concentration of chelated-Cu, suggesting an optimal threshold beyond which toxicity was observed. Likewise, commercially important secondary metabolites' yield (such as geranyl acetate, geranial, neral, and geraniol) was higher with 80 mg/L CuONPs compared to 160 mg/L chelated-Cu (2.3, 0.5, 2.5, and 7.1 %, respectively). TEM analyses of leaf ultrastructure revealed altered cellular organelles for both compounds at 400 mg/L, corroborating the results of oxidative stress response (malondialdehyde and H2O2). In conclusion, these findings indicate significantly higher efficacy of CuONPs, with an optimal threshold of 80 mg/L, in promoting essential oil and bioactive compound yield in dragonhead and may pave a path for the use of nano-Cu as a sustainable fertilizer promoting agricultural production in semi-arid soils that are micronutrient Cu deficient.
Collapse
Affiliation(s)
- Marjan Nekoukhou
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Abbasi-Surki
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Ali Rostamnejadi
- Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Iran
| |
Collapse
|
21
|
Haider HI, Zafar I, Ain QU, Noreen A, Nazir A, Javed R, Sehgal SA, Khan AA, Rahman MM, Rashid S, Garai S, Sharma R. Synthesis and characterization of copper oxide nanoparticles: its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of Bacillus subtilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37370-37385. [PMID: 36571685 DOI: 10.1007/s11356-022-24877-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology is now playing an emerging role in green synthesis in agriculture as nanoparticles (NPs) are used for various applications in plant growth and development. Copper is a plant micronutrient; the amount of copper oxide nanoparticles (CuONPs) in the soil determines whether it has positive or adverse effects. CuONPs can be used to grow corn and wheat plants by combining Bacillus subtilis. In this research, CuONPs were synthesized by precipitation method using different precursors such as sodium hydroxide (0.1 M) and copper nitrate (Cu(NO3)2) having 0.1 M concentration with a post-annealing method. The NPs were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet (UV) visible spectroscopy. Bacillus subtilis is used as a potential growth promoter for microbial inoculation due to its prototrophic nature. The JAR experiment was conducted, and the growth parameter of corn (Z. mays) and wheat (Triticum aestivum) was recorded after 5 days. The lab assay evaluated the germination in JARs with and without microbial inoculation under CuONP stress at different concentrations (25 and 50 mg). The present study aimed to synthesize CuONPs and systematically investigate the particle size effects of copper (II) oxide (CuONPs) (< 50 nm) on Triticum aestivum and Z. mays. In our results, the XRD pattern of CuONPs at 500 °C calcination temperature with monoclinic phase is observed, with XRD peak intensity slightly increasing. The XRD patterns showed that the prepared CuONPs were extremely natural, crystal-like, and nano-shaped. We used Scherrer's formula to calculate the average size of the particle, indicated as 23 nm. The X-ray diffraction spectrum of synthesized materials and SEM analysis show that the particles of CuONPs were spherical in nature. The results revealed that the synthesized CuONPs combined with Bacillus subtilis used in a field study provided an excellent result, where growth parameters of Z. Mays and Triticum aestivum such as root length, shoot length, and plant biomass was improved as compared to the control group.
Collapse
Affiliation(s)
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Qurat Ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asifa Noreen
- Department of Chemistry, Riphah International University, Faisalabad Campus, , Faisalabad, Pakistan
| | - Aamna Nazir
- Department of Chemistry, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Rida Javed
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, University of Okara, Okara, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Somenath Garai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
22
|
Di X, Fu Y, Huang Q, Xu Y, Zheng S, Sun Y. Comparative effects of copper nanoparticles and copper oxide nanoparticles on physiological characteristics and mineral element accumulation in Brassica chinensis L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:974-981. [PMID: 36893612 DOI: 10.1016/j.plaphy.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In this study, the short-term toxicity of Cu NPs, CuO NPs, and CuSO4 on bok choy (Brassica chinensis L.) under hydroponic conditions was evaluated using indicators such as biomass, net photosynthesis rate, root morphology, enzyme activity, and Cu accumulation and subcellular distribution. Results showed that CuO NPs exposure notably increased the biomass, root length, and root tip number by 22.0%, 22.7%, and 82.9%, respectively, whereas Cu NPs and CuSO4 significantly reduced root biomass, net photosynthetic rate (PN), and root length by 31.2% and 44.2%, 24.5% and 32.2%, and 43.4% and 40.6%, respectively. In addition, Cu NPs, CuO NPs and CuSO4 exposure increased the distribution of Cu in soluble component and cell wall. Moreover, short-term exposure to different Cu forms significantly affected mineral element accumulation in bok choy. For instance, Cu NPs exposure reduced the concentrations of Mg, Ca and Mn in edible part by 21.7%, 16.1% and 23.2%, respectively. CuSO4 exposure reduced the concentrations of Mg and Ca in edible part by 12.3% and 50.1%, respectively. CuO NPs caused a significant increase of 30.4% for Ca concentration in root, 34.5% and 34.5% for K and Mn concentration in edible part. Over all, CuO NPs exposure was beneficial for plant growth. These findings help understand the phytotoxic effect of different Cu forms on bok choy, and CuO NPs has the potential to be applied to improve nutrition and prompt growth in edible plants.
Collapse
Affiliation(s)
- Xuerong Di
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Yutong Fu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Qingqing Huang
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China.
| | - Yingming Xu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing, 100125, China
| | - Yuebing Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China.
| |
Collapse
|
23
|
Xu M, Zhang Q, Lin X, Shang Y, Cui X, Guo L, Huang Y, Wu M, Song K. Potential Effects of Metal Oxides on Agricultural Production of Rice: A Mini Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:778. [PMID: 36840126 PMCID: PMC9966375 DOI: 10.3390/plants12040778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The extensive usage of metal oxide nanoparticles has aided in the spread and accumulation of these nanoparticles in the environment, potentially endangering both human health and the agroecological system. This research describes in detail the hazardous and advantageous impacts of common metal oxide nanomaterials, such as iron oxide, copper oxide, and zinc oxide, on the life cycle of rice. In-depth analyses are conducted on the transport patterns of nanoparticles in rice, the plant's reaction to stress, the reduction of heavy metal stress, and the improvement of rice quality by metal oxide nanoparticles, all of which are of significant interest in this subject. It is emphasized that from the perspective of advancing the field of nanoagriculture, the next stage of research should focus more on the molecular mechanisms of the effects of metal oxide nanoparticles on rice and the effects of combined use with other biological media. The limitations of the lack of existing studies on the effects of metal oxide nanomaterials on the entire life cycle of rice have been clearly pointed out.
Collapse
Affiliation(s)
- Miao Xu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Qi Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiuyun Lin
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130118, China
| | - Yuqing Shang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiyan Cui
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Liquan Guo
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yuanrui Huang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Ming Wu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
24
|
Atri A, Echabaane M, Bouzidi A, Harabi I, Soucase BM, Ben Chaâbane R. Green synthesis of copper oxide nanoparticles using Ephedra Alata plant extract and a study of their antifungal, antibacterial activity and photocatalytic performance under sunlight. Heliyon 2023; 9:e13484. [PMID: 36816263 PMCID: PMC9929317 DOI: 10.1016/j.heliyon.2023.e13484] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
In the present work, copper oxide (CuO NPs) was synthesized by an eco-friendly, simple, low-cost, and economical synthesis method using Ephedra Alata aqueous plant extract as a reducing and capping agent. The biosynthesized CuO-NPs were compared with chemically obtained CuO-NPs to investigate the effect of the preparation method on the structural, optical, morphological, antibacterial, antifungal, and photocatalytic properties under solar irradiation. The CuO NPs were characterized using X-ray diffraction (XRD), UV-VIS spectroscopy, Fourier transform infrared spectrometer (FTIR) analysis, and field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). The photocatalytic activities of biosynthetic CuO-NPs and chemically prepared CuO-NPs were studied using methylene blue upon exposure to solar irradiation. The results showed that the biosynthesized CuO photocatalyst was more efficient than the chemically synthesized CuO-NPs for Methylene Blue (MB) degradation under solar irradiation, with MB degradation rates of 93.4% and 80.2%, respectively. In addition, antibacterial and antifungal activities were evaluated. The disk diffusion technique was used to test the biosynthesized CuO-NPs against gram-negative bacteria, Staphylococcus aureus and Bacillus subtilis, as well as C. Albicans and S. cerevisiae. The biosynthesized CuO-NPs showed efficient antibacterial and antifungal activity. The obtained results revealed that the biosynthesized CuO-NPs can play a vital role in the destruction of pathogenic bacteria, the degradation of dyes, and the activity of antifungal agents in the bioremediation of industrial and domestic waste.
Collapse
Affiliation(s)
- Afrah Atri
- Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5000 Monastir, Tunisia
| | - Mosaab Echabaane
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Technopark of Sousse, B.P. 334, Sahloul, 4034 Sousse, Tunisia
| | - Amel Bouzidi
- University Yahia Fares of Medea Urban Pole, Laboratory of Biomaterials and Transport Phenomena (LBMPT), (26000), Medea, Algeria
| | - Imen Harabi
- School of Design Engineering, Universitat Politecnica de Valencia, Cami de Vera, Spain
| | - Bernabe Mari Soucase
- School of Design Engineering, Universitat Politecnica de Valencia, Cami de Vera, Spain
| | - Rafik Ben Chaâbane
- Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5000 Monastir, Tunisia
| |
Collapse
|
25
|
Pagano L, Rossi R, White JC, Marmiroli N, Marmiroli M. Nanomaterials biotransformation: In planta mechanisms of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120834. [PMID: 36493932 DOI: 10.1016/j.envpol.2022.120834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Research on engineered nanomaterials (ENMs) exposure has continued to expand rapidly, with a focus on uncovering the underlying mechanisms. The EU largely limits the number and the type of organisms that can be used for experimental testing through the 3R normative. There are different routes through which ENMs can enter the soil-plant system: this includes the agricultural application of sewage sludges, and the distribution of nano-enabled agrochemicals. However, a thorough understanding of the physiological and molecular implications of ENMs dispersion and chronic low-dose exposure remains elusive, thus requiring new evidence and a more mechanistic overview of pathways and major effectors involved in plants. Plants can offer a reliable alternative to conventional model systems to elucidate the concept of ENM biotransformation within tissues and organs, as a crucial step in understanding the mechanisms of ENM-organism interaction. To facilitate the understanding of the physico-chemical forms involved in plant response, synchrotron-based techniques have added new potential perspectives in studying the interactions between ENMs and biota. These techniques are providing new insights on the interactions between ENMs and biomolecules. The present review discusses the principal outcomes for ENMs after intake by plants, including possible routes of biotransformation which make their final fate less uncertain, and therefore require further investigation.
Collapse
Affiliation(s)
- Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Riccardo Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale per L'Energia e L'Ambiente (CIDEA), University of Parma, 43124, Parma, Italy
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), 43124, Parma, Italy.
| |
Collapse
|
26
|
The life cycle study revealed distinct impact of foliar-applied nano-Cu on antioxidant traits of barley grain comparing with conventional agents. Food Res Int 2023; 164:112303. [PMID: 36737907 DOI: 10.1016/j.foodres.2022.112303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Despite that the applicability of Cu-based engineered nanoparticles (ENPs) as an antibacterial and antifungal agent for plant protection has been studied widely, little is known about their role in the improvement of crop yield and quality. Here, a full life study was performed to investigate the nutritional quality and bioactivity of barley grains under foliar application of nano-/microparticulate (nano-Cu, nano-CuO, micro-Cu) and ionic Cu compounds (CuSO4, CuEDTA). Hordeum vulgaris L. plants were sprayed with Cu compounds at 500 mg/L during the end of tillering and the beginning of heading. Yield, mineral composition, protein and dietary content, antioxidant (phenolic, anthocyanin, flavonoid, tannin, flavanol) content and antioxidant capacity of barley grain were evaluated. Grain yield was unaffected by all treatments. Only nano-Cu and ionic compounds enhanced Cu accumulation in grain: 2-fold increase was observed compared to the control (2.6 µg/kg). Nano-Cu also increased the dietary fiber content by 19.9 %, while no impact of the other treatments was determined. The content of phenolic compounds, the main group of antioxidants, remained unchanged after Cu supply. In general, for all Cu treatment, antiradical and reducing abilities were decreased or were at the similar level in relation to the control. On the other hand, chelating power in grain extracts was 2-4 times higher under nano-Cu/nano-CuO/micro-Cu than in the untreated sample, while the ionic compounds had no impact on the chelating indicator. Our results demonstrated that more favorable effects were triggered by nano-Cu than CuSO4 or CuEDTA on the tested indicators of barley grain, despite that both compounds resulted in similar superior Cu acquisition. It suggests that nano-Cu may be considered as an alternative agent to be used as economic and traditional fertilizers.
Collapse
|
27
|
Phung LD, Kumar A, Watanabe T. CuO nanoparticles in irrigation wastewater have no detrimental effect on rice growth but may pose human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157602. [PMID: 35896133 DOI: 10.1016/j.scitotenv.2022.157602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The possibility of metal-based nanoparticles (NPs) being released into agricultural soils via sewage systems has raised widespread concern about their negative effects on crop plants, soils, and potential risks to human health via the food chain. The objectives of this study were to (i) determine the effect of CuO NPs in irrigation water on plant growth and Cu accumulation in a rice-soil system using continuous sub-irrigation with treated wastewater (CSI), and (ii) assess the Cu exposure and potential health risk associated with rice consumption. CuO NPs were examined in treated municipal wastewater (TWW) at environmentally acceptable concentrations (0, 0.02, 0.2, and 2.0 mg Cu L-1), allowing for effluent discharge and/or crop irrigation reuse. Low CuO NP concentrations in TWW had no adverse effect on plant growth, yield, or grain quality. Cu accumulation significantly increased in various parts of rice plants and paddy soils at 2.0 mg Cu L-1. CuO NPs had no discernible effect on rice plants when compared to CuSO4 at 0.2 mg Cu L-1. The estimated daily intake of Cu derived from inadvertent consumption of Cu-contaminated rice (by CuO NPs in TWW) for young children aged 0-6 years exceeded the oral reference dose for toxicity. Overall, we found no acute toxicity of CuO NPs in TWW to rice plants, but significant Cu accumulation in grains. This implies that there is a high risk of human health problems associated with rice that was intensively irrigated with TWW containing CuO NPs.
Collapse
Affiliation(s)
- Luc Duc Phung
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan; Center for Foreign Languages and International Education, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi 12406, Viet Nam.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Toru Watanabe
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
28
|
Kala S, Jawle CKD, Sogan N, Agarwal A, Kant K, Mishra BK, Kumar J. Analogous foliar uptake and leaf-to-root translocation of micelle nanoparticles in two dicot plants of diverse families. NANOIMPACT 2022; 28:100431. [PMID: 36206944 DOI: 10.1016/j.impact.2022.100431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Bio-inspired nanoparticles, including metallic, micelles, and polymeric, have been explored as a novel tool in the quest for effective and safe agrochemicals. Although nanoparticles (NPs) are being rapidly investigated for their usefulness in agricultural production and protection, little is known about the behaviour and interaction of oil-in-water micelle nanoparticles or nano-micelles (NM) with plants. We loaded a bio-based resin inherent of tree from the Pinaceae family as active material and produced stable nano-micelles using a natural emulsifier system. Here, we show that foliar-applied nano-micelle can translocate in two dicot plants belonging to diverse families (Coriandrum sativum -Apiaceae and Trigonella foenumgraecum -Fabaceae) via similar mode. Fluorescent-tagged NM (average diameter 11.20nm) showed strong signals and higher intensities as revealed by confocal imaging and exhibited significant adhesion in leaf compared to control. The NM subsequently translocates to other parts of the plants. As observed by SEM, the leaf surface anatomies revealed higher stomata densities and uptake of NM by guard cells; furthermore, larger extracellular spaces in mesophyll cells indicate a possible route of NM translocation. In addition, NM demonstrated improved wetting-spreading as illustrated by contact angle measurement. In a field bioassay, a single spray application of NM offered protection from aphid infestation for at least 9 days. There were no signs of phytotoxicity in plants post-application of NM. We conclude that pine resin-based nano-micelle provides an efficient, safe, and sustainable alternative for agricultural applications.
Collapse
Affiliation(s)
- Smriti Kala
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India.
| | - Chetan K D Jawle
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India
| | - Nisha Sogan
- Deapartment of Botany, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Amrish Agarwal
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India
| | - Krishna Kant
- National Research Center for Seed Spice Research, Ajmer 305206, India
| | - B K Mishra
- National Research Center for Seed Spice Research, Ajmer 305206, India
| | - Jitendra Kumar
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India
| |
Collapse
|
29
|
Zong X, Wu D, Zhang J, Tong X, Yin Y, Sun Y, Guo H. Size-dependent biological effect of copper oxide nanoparticles exposure on cucumber (Cucumis sativus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69517-69526. [PMID: 35567686 DOI: 10.1007/s11356-022-20662-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received considerable attention for their toxic effects on crops and potential application in agriculture. In order to investigate the biological effects of CuO NPs on plants, we exposed cucumber (Cucumis sativus) to two sizes of CuO NPs (510 nm, μCuO and 43 nm, nCuO). Results indicated that with concentration increased, the available Cu content in soil increased significantly. The addition of CuO NPs increased Cu content and other nutrient element (e.g., K, P, Mn, and Zn) content in plants. However, diverse particle sizes had different effects. The nCuO treatment had larger translocation factor, higher nutrient element content in fruits, and lower oxidative damage than μCuO treatment. Moreover, nCuO of 100 mg/kg could stimulate cucumber growth, while μCuO had no obvious effects on growth. Conclusively, CuO NPs could be used as copper fertilizer to supply copper to cucumber. The nCuO had better effects on improving the bioavailability of Cu and nutritional value of fruits. These results can help develop strategies for safe disposal of CuO NPs as agricultural fertilizer.
Collapse
Affiliation(s)
- Xueying Zong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Juanjuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
30
|
Ji H, Guo Z, Wang G, Wang X, Liu H. Effect of ZnO and CuO nanoparticles on the growth, nutrient absorption, and potential health risk of the seasonal vegetable Medicago polymorpha L. PeerJ 2022; 10:e14038. [PMID: 36164609 PMCID: PMC9508880 DOI: 10.7717/peerj.14038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/18/2022] [Indexed: 01/19/2023] Open
Abstract
Background Medicago polymorpha L., a seasonal vegetable, is commonly grown in China. The increasing use of nanoparticles (NPs) such as ZnO and CuO NPs in agriculture has raised concerns about their potential risks for plant growth and for human consumption. There is a lack of research on the effects of ZnO and CuO NPs on agronomic performance of Medicago polymorpha L. and their potential risks for human health. Methods In this study, different treatment concentrations of ZnO NPs (25, 50, 100, and 200 mg kg-1) and CuO NPs (10, 25, 50, and 100 mg kg-1) were used to determine their effects on the growth and nutrient absorption of Medicago polymorpha L., as well as their potential risk for human health. Results The results showed that ZnO and CuO NPs increased the fresh weight of Medicago polymorpha L. by 5.8-11.8 and 3.7-8.1%, respectively. The best performance for ZnO NPs occurred between 25-50 mg kg-1 and the best performance for CuO NPs occurred between 10-25 mg kg-1. Compared with the control, ZnO and CuO NPs improved the macronutrients phosphorus (P), potassium (K), magnesium (Mg), and calcium (Ca). The following micronutrients were also improved: iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), and manganese (Mn), with the exception of nitrogen (N) accumulation. Low treatment concentrations exhibited more efficient nutrient uptake than high treatment concentrations. A comprehensive analysis showed that the optimum concentrations were 25 mg kg-1 for ZnO NPs and 10 mg kg-1 for CuO NPs. The potential non-carcinogenic health risk of Medicago polymorpha L. treated with ZnO and CuO NPs was analyzed according to the estimated daily intake (EDI), the hazard quotient (HQ), and the cumulative hazard quotient (CHQ). Compared with the oral reference dose, the EDI under different ZnO and CuO NPs treatments was lower. The HQ and CHQ under different ZnO and CuO NPs treatments were far below 1. This indicated that Medicago polymorpha L. treated with ZnO and CuO NPs did not pose any non-carcinogenic health risk to the human body. Therefore, ZnO and CuO NPs were considered as a safe nano fertilizer for Medicago polymorpha L. production according to growth analysis and a human health risk assessment.
Collapse
Affiliation(s)
- Hongting Ji
- Jiangsu Academy of Agricultural Sciences, Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Nanjing, Jiangsu, China
| | - Zhi Guo
- Jiangsu Academy of Agricultural Sciences, Institute of Agricultural Resources and Environment, Nanjing, Jiangsu, China
| | - Guodong Wang
- Jiangsu Academy of Agricultural Sciences, Institute of Agricultural Resources and Environment, Nanjing, Jiangsu, China
| | - Xin Wang
- Jiangsu Academy of Agricultural Sciences, Institute of Agricultural Resources and Environment, Nanjing, Jiangsu, China
| | - Hongjiang Liu
- Jiangsu Academy of Agricultural Sciences, Institute of Agricultural Resources and Environment, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Xu T, Wang Y, Aytac Z, Zuverza-Mena N, Zhao Z, Hu X, Ng KW, White JC, Demokritou P. Enhancing Agrichemical Delivery and Plant Development with Biopolymer-Based Stimuli Responsive Core-Shell Nanostructures. ACS NANO 2022; 16:6034-6048. [PMID: 35404588 DOI: 10.1021/acsnano.1c11490] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The inefficient delivery of agrichemicals in agrifood systems is among the leading cause of serious negative planetary and public health impacts. Such inefficiency is mainly attributed to the inability to deliver the agrichemicals at the right place (target), right time, and right dose. In this study, scalable, biodegradable, sustainable, biopolymer-based multistimuli responsive core-shell nanostructures were developed for smart agrichemical delivery. Three types of responsive core/shell nanostructures incorporated with model agrichemicals (i.e., CuSO4 and NPK fertilizer) were synthesized by coaxial electrospray, and the resulting nanostructures showed spherical morphology with an average diameter about 160 nm. Tunable agrichemical release kinetics were achieved by controlling the surface hydrophobicity of nanostructures. The pH and enzyme responsiveness was also demonstrated by the model analyte release kinetics (up to 7 days) in aqueous solution. Finally, the efficacy of the stimuli responsive nanostructures was evaluated in soil-based greenhouse studies using soybean and wheat in terms of photosynthesis efficacy and linear electron flow (LEF), two important metrics for seedling development and health. Findings confirmed plant specificity; for soybean, the nanostructures resulted in 34.3% higher value of relative chlorophyll content and 41.2% higher value of PS1 centers in photosystem I than the ionic control with equivalent agrichemical concentration. For wheat, the nanostructures resulted in 37.6% higher value of LEF than the ionic agrichemicals applied at 4 times higher concentration, indicating that the responsive core-shell nanostructure is an effective platform to achieve precision agrichemical delivery while minimizing inputs. Moreover, the Zn and Na content in the leaves of 4-week-old soybean seedlings were significantly increased with nanostructure amendment, indicating that the developed nanostructures can potentially be used to modulate the accumulation of other important micronutrients through a potential biofortification strategy.
Collapse
Affiliation(s)
- Tao Xu
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Zeynep Aytac
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Nubia Zuverza-Mena
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Xiao Hu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 637141, Singapore
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 637141, Singapore
| | - Jason C White
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, New Jersey 08854, United States
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|