1
|
Li R, Yang W, Yan X, Zhou X, Song X, Liu C, Zhang Y, Li J. Folic acid mitigates the developmental and neurotoxic effects of bisphenol A in zebrafish by inhibiting the oxidative stress/JNK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117363. [PMID: 39566264 DOI: 10.1016/j.ecoenv.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Bisphenol A (BPA) is a widespread environmental endocrine disruptor (EED) that can cause various environmental and health issues by inducing oxidative stress. The c-Jun N-terminal kinase (JNK) signaling pathway plays a crucial role in oxidative stress-mediated cellular damage. Although folic acid (FA) has demonstrated antioxidant properties, its potential protective effects against BPA-induced developmental and neurotoxicity, as well as the mechanisms involved in the JNK signaling pathway, are still not completely understood. Zebrafish embryos were exposed to different concentrations of BPA ranging from 20 to 40 µM, with or without treatment of 50 µM FA, starting at 6 hours post-fertilization (hpf). Various parameters such as hatchability, survival rate, body length, and heart rate were measured and analyzed. Transcriptome sequencing was conducted to study the changes in gene expression. Oxidative stress markers, including reactive oxygen species (ROS), lipid peroxidation (LPO), hydrogen peroxide (H2O2), and catalase (CAT) activity, were assessed. The expression of proteins related to the mitogen-activated protein kinase (MAPK)/JNK pathway was analyzed using western blot. Neurodevelopmental and apoptotic outcomes were evaluated through behavioral tests, immunofluorescence and RT-qPCR examinations. The study found that exposure to BPA led to a decrease in hatchability, survival, body length, heart rate, total antioxidant capacity and promoted apoptosis in zebrafish larvae. However, supplementation with FA was able to alleviate these negative effects. BPA exposure increased levels of ROS, LPO, and H2O2, while decreasing CAT activity in zebrafish larvae. Treatment with FA effectively reduced BPA-induced oxidative stress and restored antioxidant defense systems. Moreover, KEGG pathway enrichment analysis revealed that the MAPK signaling pathway was the most enriched signaling pathway. Further studies revealed that BPA activated the JNK signaling pathway, while FA suppressed this activation. Additionally, FA significantly improved BPA-induced neurobehavioral deficits and protected against neurocytological alterations. Our findings demonstrate that FA effectively protects against BPA-induced developmental and neurotoxic effects in zebrafish by suppressing oxidative stress and inhibiting the JNK signaling pathway. This study provides new strategies and insights for preventing BPA-induced developmental and neurotoxicity in aquatic organisms.
Collapse
Affiliation(s)
- Ruijing Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Weili Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Xingxue Yan
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Xinkui Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Xiaorui Song
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Cuihua Liu
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China.
| | - Jitong Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China; Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
2
|
Li S, Ma X, Zhang X, Bai S, Li X, Huang Y, Yu J, Fan Y, Lu C, Du G, Qin Y. Bisphenol S exposure induces intestinal inflammation via altering gut microbiome. Food Chem Toxicol 2024; 190:114830. [PMID: 38908815 DOI: 10.1016/j.fct.2024.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Bisphenol S (BPS), a substitute for bisphenol A, is widely used in the manufacture of food packaging materials, raising concern over its toxicity. However, evidence is still lacking on whether gut microbiota involved in BPS induced intestinal inflammation in mammals, as well as its underlying mechanism. Using mouse BPS exposure model, we found intestinal inflammation characterized by shortened colon length, crypt distortion, macrophage accumulation and increased apoptosis. As for gut microbiota, 16s rRNA gene amplicon sequencing showed BPS exposure induced gut dysbiosis, including increased pro-inflammatory microbes such as Ileibacterium, and decreased anti-inflammatory genera such as Lactobacillus, Blautia and Romboutsia. Besides, LC-MS/MS-based untargeted metabolomic analysis indicated BPS impaired both bacteria and host metabolism. Additionally, transcriptome analysis of the intestine revealed abnormal gene expression in intestinal mucosal barrier and inflammation. More importantly, treating mice with antibiotics significantly attenuated BPS-induced gut inflammation via the regulation of both bacterial and host metabolites, indicating the role of gut microbiota. Collectively, BPS exposure induces intestinal inflammation via altering gut microbiota in mouse. This study provides the possibility of madecassic acid, an anti-inflammatory metabolite, to prevent BPS-induced intestinal inflammation and also new insights in understanding host-microbiota interaction in BPS toxicity.
Collapse
Affiliation(s)
- Shiqi Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuan Ma
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueer Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinyu Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Huang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiao Yu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yun Fan
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guizhen Du
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Marquet F, Champmartin C, Seiwert C, Aubertin M, Viton S, Chedik L, Cosnier F. Human in vitro percutaneous absorption of bisphenol S: Assessment of the skin reservoir and occlusion effects. Toxicol In Vitro 2024; 99:105886. [PMID: 38945377 DOI: 10.1016/j.tiv.2024.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Bisphenol S (BPS) was introduced in many industrial and commercial applications as a presumed safer alternative to bisphenol A. However, concerns have been raised surrounding skin absorption and potential persistence of BPS and its related toxic effects in humans. A previous study revealed the likelihood of a reservoir building up in exposed skin. Here, we studied the interactions of BPS solubilized in acetone, ultrapure water, or artificial sebum with freshly excised human skin samples. In vitro tests were performed in static Franz diffusion cells, to explore reservoir and occlusion effects, absorption and metabolism. Most BPS passed through the skin without metabolization - <10% was recovered as glucuronide or sulfate conjugates. Importantly, a substantial amount of BPS persisted in the skin, especially in the stratum corneum. This reservoir could lead to prolonged diffusion into the body after surface cleaning. Occlusion, that may occur with protective clothing, amplified BPS absorption up to six-fold. These findings have implications for occupational settings, highlighting the persistence of BPS contamination even after washing the skin's surface and the need to ensure protective equipment is correctly maintained and used.
Collapse
Affiliation(s)
- Fabrice Marquet
- Institut National de Recherche et de Sécurité, rue du Morvan, CS 60027, 54519 Vandoeuvre les Nancy, Cedex, France.
| | - Catherine Champmartin
- Institut National de Recherche et de Sécurité, rue du Morvan, CS 60027, 54519 Vandoeuvre les Nancy, Cedex, France
| | - Claire Seiwert
- Institut National de Recherche et de Sécurité, rue du Morvan, CS 60027, 54519 Vandoeuvre les Nancy, Cedex, France
| | - Matthieu Aubertin
- Institut National de Recherche et de Sécurité, rue du Morvan, CS 60027, 54519 Vandoeuvre les Nancy, Cedex, France
| | - Stéphane Viton
- Institut National de Recherche et de Sécurité, rue du Morvan, CS 60027, 54519 Vandoeuvre les Nancy, Cedex, France
| | - Lisa Chedik
- Institut National de Recherche et de Sécurité, rue du Morvan, CS 60027, 54519 Vandoeuvre les Nancy, Cedex, France
| | - Frédéric Cosnier
- Institut National de Recherche et de Sécurité, rue du Morvan, CS 60027, 54519 Vandoeuvre les Nancy, Cedex, France
| |
Collapse
|
4
|
Qu J, Guo R, Liu L, Ren F, Jin H. Occurrence of bisphenol analogues and their conjugated metabolites in foodstuff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174922. [PMID: 39038674 DOI: 10.1016/j.scitotenv.2024.174922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Bisphenol analogues (BPs) are prevalent in diverse foodstuff samples worldwide. However, the occurrence of conjugated bisphenol A (BPA) and bisphenol S (BPS) metabolites in foodstuff remains poorly understood. This study analyzed eight BPs, and four conjugated BPA and BPS metabolites, in three animal-derived foodstuff and five plant-derived foodstuff samples from China. Results showed that fish foodstuff (9.7 ng/g ww) contained the highest mean concentration of BPA, followed by rice (5.1 ng/g ww) and beans foodstuff (3.6 ng/g ww). BPA-sulfate had higher mean concentrations than BPA-glucuronide in different foodstuff categories, except that in eggs foodstuff (p < 0.05). Compared with other foodstuff items, fish (3.4 ng/g ww) and vegetable (1.6 ng/g ww) foodstuff samples exhibited comparatively higher mean concentrations of BPS. Mean concentrations of BPS-sulfate were consistently higher than BPS-glucuronide in vegetables, meats, and fish foodstuff (p < 0.05). BPA contributed the major total dietary intake (DI) of BPs, with the mean DI of 435 ng/kg bw/day for women and 374 ng/kg bw/day for men, respectively. To our knowledge, this study is the first to investigate the occurrence of conjugated BPA and BPS metabolites in foodstuff, which enhances our comprehension of the origins of these conjugated metabolites in the human body.
Collapse
Affiliation(s)
- Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Lin Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
5
|
Zhang X, Zhang X, Zhang Z, Shi Y, Wang J, Ru S, Tian H. Bisphenol S causes excessive estrogen synthesis by activating FSHR and the downstream cAMP/PKA signaling pathway. Commun Biol 2024; 7:844. [PMID: 38987655 PMCID: PMC11237073 DOI: 10.1038/s42003-024-06449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Estrogen excess in females has been linked to a diverse array of chronic and acute diseases. Emerging research shows that exposure to estrogen-like compounds such as bisphenol S leads to increases in 17β-estradiol levels, but the mechanism of action is unclear. The aim of this study was to reveal the underlying signaling pathway-mediated mechanisms, target site and target molecule of action of bisphenol S causing excessive estrogen synthesis. Human ovarian granulosa cells SVOG were exposed to bisphenol S at environmentally relevant concentrations (1 μg/L, 10 μg/L, and 100 μg/L) for 48 h. The results confirms that bisphenol S accumulates mainly on the cell membrane, binds to follicle stimulating hormone receptor (FSHR) located on the cell membrane, and subsequently activates the downstream cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signaling pathway, leading to enhanced conversion of testosterone to 17β-estradiol. This study deepens our knowledge of the mechanisms of environmental factors in pathogenesis of hyperestrogenism.
Collapse
Affiliation(s)
- Xiaorong Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
- Tai'an Agriculture and Rural Affairs Bureau, 271000, Tai'an, Shandong Province, China
| | - Xinda Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China.
| |
Collapse
|
6
|
Fu Z, Jin H, Mao W, Hu Z. Conjugated bisphenol S metabolites in human serum and whole blood. CHEMOSPHERE 2024; 357:142082. [PMID: 38642776 DOI: 10.1016/j.chemosphere.2024.142082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Studies have shown that bisphenol S (BPS) is mainly present as its conjugated metabolites in human blood. However, the distribution of conjugated BPS metabolites in different human blood matrices has not been characterized. In this study, paired human serum and whole blood samples (n = 79) were collected from Chinese participants, and were measured for the occurrence of BPS and 4 BPS metabolites. BPS was detectable in 49% of human serum (
Collapse
Affiliation(s)
- Zhenling Fu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
7
|
Gao Z, He W, Liu Y, Gao Y, Fan W, Luo Y, Shi X, Song S. Perinatal bisphenol S exposure exacerbates the oxidative burden and apoptosis in neonatal ovaries by suppressing the mTOR/autophagy axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123939. [PMID: 38593938 DOI: 10.1016/j.envpol.2024.123939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Bisphenol S (BPS) is an emerging environmental endocrine disruptor capable of crossing the placental barrier, resulting in widespread exposure to pregnant women due to its extensive usage. However, the impact of perinatal maternal exposure to BPS on reproductive health in offspring and the underlying molecular mechanism remain underexplored. In this study, gestational ICR mice were provided with drinking water containing 3.33 mg/L BPS to mimic possible human exposure in some countries. Results demonstrated that BPS accelerated the breakdown of germ-cell cysts and the assembly of primordial follicles in neonates, leading to oocyte over-loss. Furthermore, the expression levels of folliculogenesis-related genes (Kit, Nobox, Gdf9, Sohlh2, Kitl, Bmp15, Lhx8, Figla, and Tgfb1) decreased, thus compromising oocyte quality and disrupting early folliculogenesis dynamics. BPS also disrupted other aspects of offspring reproduction, including advancing puberty onset, disrupting the estrus cycle, and impairing fertility. Further investigation found that BPS exposure inhibited the activities and expression levels of antioxidant-related enzymes in neonatal ovaries, leading to the substantial accumulation of MDA and ROS. The increased oxidative burden exacerbated the intracellular apoptotic signaling, manifested by increased expression levels of pro-apoptotic markers (Bax, Caspase 3, and Caspase 9) and decreased expression levels of anti-apoptotic marker (Bcl2). Concurrently, BPS inhibited autophagy by increasing p-mTOR/mTOR and decreasing p-ULK1/ULK1, subsequently down-regulating autophagy flux-related biomarkers (LC3b/LC3a and Beclin-1) and impeding the degradation of autophagy substrate p62. However, the imbalanced crosstalk between autophagy, apoptosis and oxidative stress homeostasis was restored after rapamycin treatment. Collectively, the findings demonstrated that BPS exposure induced reproductive disorders in offspring by perturbing the mTOR/autophagy axis, and such autophagic dysfunction exacerbated redox imbalance and promoted excessive apoptosis. These results provide novel mechanistic insights into the role of autophagy in mitigating BPS-induced intergenerational reproductive dysfunction.
Collapse
Affiliation(s)
- Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wanqiu He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yapei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yixin Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Xizhi Shi
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
8
|
Zhu M, Zeng R, Wu D, Li Y, Chen T, Wang A. Research progress of the effects of bisphenol analogues on the intestine and its underlying mechanisms: A review. ENVIRONMENTAL RESEARCH 2024; 243:117891. [PMID: 38072107 DOI: 10.1016/j.envres.2023.117891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Bisphenol A (BPA) and its analogues have prompted rising concerns, especially in terms of human safety, due to its broad use and ubiquity throughout the ecosystem. Numerous studies reported various adverse effects of bisphenols, including developmental disorders, reproductive toxicity, cardiovascular toxicity, and so on. There is increasing evidence that bisphenols can enter the gastrointestinal tract. Consequently, it is important to investigate their effects on the intestine. Several in vivo and in vitro studies have examined the impacts of bisphenols on the intestine. Here, we summarized the literature concerning intestinal toxicity of bisphenols over the past decade and presented compelling evidence of the link between bisphenol exposure and intestinal disorders. Experiment studies revealed that even at low levels, bisphenols could promote intestinal barrier dysregulation, disrupt the composition and diversity of intestinal microbiota as well as induce an immunological response. Moreover, possible underlying mechanisms of these effects were discussed. Because of a lack of empirical data, the potential risk of bisphenol exposure in humans is still unidentified, particularly regarding intestinal disorders. Thus, we propose to conduct additional epidemiological investigations and animal experiments to elucidate the associations between bisphenol exposure and human intestinal health and reveal underlying mechanisms to develop preventative and therapeutic techniques.
Collapse
Affiliation(s)
- Min Zhu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ran Zeng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; School of Civil and Environmental Engineering, Harbin Institute of Technology, 518055, Shenzhen, China
| | - Dan Wu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China
| | - Yuanyuan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ting Chen
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China.
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, 518055, Shenzhen, China.
| |
Collapse
|
9
|
Moscoso-Ruiz I, Cantarero-Malagón S, Rivas A, Zafra-Gómez A. New analytical method for the determination of endocrine disruptors in human faeces using gas chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 2024; 416:1085-1099. [PMID: 38108843 DOI: 10.1007/s00216-023-05087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Endocrine-disrupting chemicals are environmental pollutants that can enter our bodies and cause diverse pathologies. Some bisphenols and parabens have been shown to be capable of modifying proper functioning of the endocrine system. Among other dysfunctions, endocrine-disrupting chemicals can cause changes in intestinal microbiota. Faeces are a convenient matrix that can be useful for identifying the quantity of endocrine disruptors that reach the intestine and the extent to which the organism is exposed to these pollutants. The present work developed a new analytical method to determine 17 compounds belonging to the paraben and bisphenol families found in human faeces. The extraction method was optimized using an ultrasound-assisted extraction technique followed by a clean-up step based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) technique. Optimization was performed using the design of experiments technique. In validation analysis, the method was proven to be linear over a wide range. R-squared outcomes were between 95 and 99%. Selectiveness and sensitivity outcomes were acceptable, with detection limits being between 1 and 10 ng g-1 in all cases, whilst quantification limits were between 3 and 25 ng g-1 in all instances, with the exception of bisphenol AF. The method was deemed accurate, with recovery values being close to 100% and relative standard deviations being lower than 15% in all cases. Applicability was examined by analysing 13 samples collected from volunteers (male and female). All samples were contaminated with at least one of the analytes studied. The most commonly found compounds were methylparaben and bisphenol A, which were detected in almost all samples and quantitatively determined in 11 and 12 samples, respectively. Of the 17 compounds analysed, 11 were found in at least one sample. Outcomes demonstrate that faeces can be a good matrix for the determination of exposure to contaminants of interest here.
Collapse
Affiliation(s)
- Inmaculada Moscoso-Ruiz
- Department of Analytical Chemistry, University of Granada, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.Granada, 18016, Granada, Spain
| | | | - Ana Rivas
- Instituto de Investigación Biosanitaria Ibs.Granada, 18016, Granada, Spain
- Department of Nutrition and Food Science, University of Granada, 18071, Granada, Spain
- Institute of Nutrition and Food Technology (INYTA)"José Mataix Verdú", Biomedical Research Centre (CIBM), University of Granada, 18100, Granada, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, University of Granada, 18071, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.Granada, 18016, Granada, Spain.
- Institute of Nutrition and Food Technology (INYTA)"José Mataix Verdú", Biomedical Research Centre (CIBM), University of Granada, 18100, Granada, Spain.
| |
Collapse
|
10
|
Li J, Li Z, Zhu Y, Peng H, Du Z, Ru S, Wang W. Bisphenol S remodels red blood cell membrane lipids by altering plasma lipid levels, causing the risk of venous thrombosis in SD rats and zebrafish embryos. ENVIRONMENT INTERNATIONAL 2023; 182:108331. [PMID: 37995390 DOI: 10.1016/j.envint.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol S (BPS) is a raw material that is used extensively in various manufacturing processes but possesses a high detection rate in human red blood cells (RBCs). Accordingly, BPS is a potential toxicant in disturbing the function of RBCs and causing RBC-related diseases. To date, the effects and mechanisms of BPS-induced RBC-related diseases have not been elucidated. Here, using different models, including rats, zebrafish embryos and RBCs, the underlying mechanism of RBC-related diseases induced by BPS was explored. The accumulation of BPS in tissue was colon > kidney > liver > plasma > testicle > heart > brain in SD rats orally administered BPS (10 and 50 mg/kg bw/day) for 32 days, which was similar in both 10 mg/kg bw/day and 50 mg/kg bw/day group. Rats given BPS orally developed hyperlipidemia and increased RBC membrane cholesterol, as well as changes in RBC morphology and function. Moreover, BPS at the concentrations measured in rats plasma caused oxidative stress and phosphatidylserine exposure in vitro RBCs. These combined factors led to RBC aggregation in blood and an increasing in the number of RBCs in the blood vessels of the liver in rats. The dynamic visual observation of RBCs in vein vessels of zebrafish embryos exposed to BPS at 0, 1, 10 and 100 μg/L further found that the flow of RBCs in the tail vein is slow or even immobile, posing the risk of venous thrombosis. The present study provides new insight into the links between environmental pollutants and venous thrombosis.
Collapse
Affiliation(s)
- Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|