1
|
Ryan-Ndegwa S, Zamani R, Martins T. Exploring the Human Health Impact of Artificial Turf Worldwide: A Systematic Review. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241306291. [PMID: 39697377 PMCID: PMC11653453 DOI: 10.1177/11786302241306291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
The growing use of artificial turf in place of natural turf in residential, recreational and commercial settings has raised concerns regarding its potential impact on human health. A systematic review of databases revealed 5673 articles of which, 30 were deemed eligible. Those performing total concentration analyses, bioaccessibility analyses or human health risk assessments (HHRAs) of artificial turf fibres or crumb rubber infill were of interest. Health hazards and risks were explored in relation to three groups of chemicals of concern: polycyclic aromatic hydrocarbons (PAH), heavy metals and other rubber additives. Twenty-five studies performed total concentration analyses on samples of artificial turf infill and/or turf fibres. Of these studies, median reported concentrations of eight PAHs, cadmium, mercury and zinc exceeded the European limits used. Eight studies performed bioaccessibility assays using synthetic biofluids and simulated organ systems. PAHs were not found to be bioaccessible except for benzo[a]pyrene in gastric fluid; heavy metals were bioaccessible except arsenic, and rubber additives were mostly bioaccessible except for three plasticisers: diisobutyl phthalate, benzyl butyl phthalate and dibutyl phthalate. Fourteen studies performed HHRAs to determine non-carcinogenic and carcinogenic risk. Cancer risks were identified for ingestion exposure to PAH in children with pica and heavy metal exposure via dermal, inhalation and ingestion pathways. Non-carcinogenic risks were identified for the ingestion of cobalt in a child spectator and the ingestion of arsenic, cobalt, thallium and zinc. Potentially hazardous concentrations of chemicals were found across both artificial turf infill and artificial turf fibre samples; bioaccessibility of these chemicals varied. Definitive conclusions were unable to be derived on the human health risks posed to users of artificial turf under real-world exposure scenarios. Future studies are recommended to explore the risks associated with the potential synergistic toxicities of chemical mixtures found in artificial turf.
Collapse
Affiliation(s)
- Sebastian Ryan-Ndegwa
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Reza Zamani
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Tanimola Martins
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
2
|
Savva K, Llorca M, Borrell X, Bertran-Solà O, Farré M, Moreno T. Granulated rubber in playgrounds and sports fields: A potential source of atmospheric plastic-related contaminants and plastic additives after runoff events. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135697. [PMID: 39216238 DOI: 10.1016/j.jhazmat.2024.135697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The use of "crumb rubber" coming from recycling materials in outdoor floors like playgrounds has been a frequent practice during the last years. However, these surfaces are object of abrasion and weathering being a potential source of micro and nanoplastics (MNPLs) to the atmosphere and a potential source of human exposure to them. Our main goal has been to expose different crumb rubber materials to summer weathering effects. The released inhalable fractions were sampled for two months with passive samplers and the composition of MNPLs and plastic additives (organic and inorganic) were evaluated. The ecotoxicological effects of leached materials emulating runoff events was evaluated in freshwater micro crustacean Daphnia magna and the green algae Chlorella vulgaris. The analysis of MNPLs showed the presence of polyethylene, polypropylene, polybutadiene, polysiloxanes and polybutylene at concentrations up to 30,426 ng/m3. In the same fraction, we also identified up to 56 plastic additives, including antioxidants, pigments, copolymers, flame retardants, fungicides, lubricants, plasticizers, UV filters and metal ions. Finally, runoff ecotoxicological effects on D. magna and C. vulgaris showed that leached compounds, either from virgin or aged material, would be toxicants for exposed organisms although at concentrations much higher than those expected to be released to the media.
Collapse
Affiliation(s)
- Katerina Savva
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Marta Llorca
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain.
| | - Xavier Borrell
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Ona Bertran-Solà
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain.
| |
Collapse
|
3
|
Hu T, Li W, Xiong J, Zhou J, Xia Q. Influence of rubber particle inputs on nitrogen removal efficiency of bioretention systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:2734-2746. [PMID: 39612171 DOI: 10.2166/wst.2024.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/18/2024] [Indexed: 11/30/2024]
Abstract
Bioretention systems effectively capture rubber particles and other microplastics in stormwater runoff. However, it is uncertain whether long-term particle accumulation affects pollutant removal efficacy. This study investigated the impact of various concentrations of ethylene-propylene-diene-monomer (EPDM) particles (0, 50, 100, and 400 mg/L) on bioretention system nitrogen removal performance. The input of EPDM during short-duration (2 h) rainfall favored the removal of nitrogen, and the total nitrogen effluent concentration of the bioretention system with EPDM was reduced by 0.59-1.52 mg/L compared with that of the system without EPDM. In addition, the input of EPDM reduced the negative effects of drought. During long-duration (24 h) rainfall, higher concentrations of EPDM led to lower nitrate-nitrogen concentrations in the effluent. The bioretention system with EPDM required less time for nitrate-nitrogen removal to reach 50% than that without EPDM input. Microbial community analysis showed that EPDM increased the relative total abundance of denitrifying bacteria (such as Dechloromonas, Zoogloea, Ramlibacter, and Aeromonas) by 7.25-10.26%, which improved the denitrification capacity of the system.
Collapse
Affiliation(s)
- Tuanping Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China
| | - Wenyi Li
- School of Architecture and Hydraulic Engineering, Bingtuan Xingxin Vocational and Technical College, 2 Jiejing Street, Tiemenguan 841007, China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China E-mail:
| | - Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China
| | - Qianhe Xia
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China
| |
Collapse
|
4
|
Thompson RC, Courtene-Jones W, Boucher J, Pahl S, Raubenheimer K, Koelmans AA. Twenty years of microplastic pollution research-what have we learned? Science 2024; 386:eadl2746. [PMID: 39298564 DOI: 10.1126/science.adl2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Twenty years after the first publication that used the term microplastic, we review current understanding, refine definitions, and consider future prospects. Microplastics arise from multiple sources, including tires, textiles, cosmetics, paint, and the fragmentation of larger items. They are widely distributed throughout the natural environment, with evidence of harm at multiple levels of biological organization. They are pervasive in food and drink and have been detected throughout the human body, with emerging evidence of negative effects. Environmental contamination could double by 2040, and wide-scale harm has been predicted. Public concern is increasing, and diverse measures to address microplastic pollution are being considered in international negotiations. Clear evidence on the efficacy of potential solutions is now needed to address the issue and to minimize the risks of unintended consequences.
Collapse
Affiliation(s)
- Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | | | - Sabine Pahl
- Environmental Psychology Group, Faculty of Psychology and Environment and Climate Research Hub, University of Vienna, 1010 Wien, Austria
| | - Karen Raubenheimer
- Faculty of Business and Law, University of Wollongong, Wollongong, NSW, Australia
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University, 6700 AA Wageningen, Netherlands
| |
Collapse
|
5
|
McMinn MH, Hu X, Poisson K, Berger P, Pimentel P, Zhang X, Ashara P, Greenfield EL, Eig J, Tian Z. Emerging investigator series: in-depth chemical profiling of tire and artificial turf crumb rubber: aging, transformation products, and transport pathways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1703-1715. [PMID: 39176437 DOI: 10.1039/d4em00326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Crumb rubber generated from end-of-life tires (ELTs) poses a threat to environmental and human health based on its widespread use. Of particular concern is the use of ELT crumb rubber as infill for artificial turf fields, as people are unknowingly exposed to complex mixtures of chemicals when playing on these fields. Additionally, there is concern regarding transport of rubber-related chemicals from artificial turf into the environment. However, existing knowledge does not fully elucidate the chemical profile, transformation products, and transport pathways of artificial turf crumb rubber across different ages. To address these knowledge gaps, we utilized a multi-faceted approach that consisted of targeted quantitation, chemical profiling, and suspect screening via ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). We collected and processed 3 tire and 11 artificial turf crumb rubber samples via solvent extraction, leaching, and a bioaccessibility-based extraction. Nineteen rubber-derived chemicals were quantified using parallel reaction monitoring and isotope dilution techniques. In solvent extracts, the most abundant analytes were 1,3-diphenylguanidine (0.18-1200 μg g-1), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD, 0.16-720 μg g-1), 2-mercaptobenzothiazole (0.47-140 μg g-1), and benzothiazole (0.84-150 μg g-1). Chemical profiling assessed changes in sample diversity, abundance, polarity, and molecular mass. Suspect screening identified 81 compounds with different confidence levels (16 at level 1, 53 with level 2, 7 at level 3, and 5 at level 4). The formation rate of transformation products and clustering analysis results identified time-based trends in artificial turf field samples. We found that the first two years of aging may be critical for the potential environmental impact of artificial turf fields. Our analysis provides insight into the chemical complexity of artificial turf crumb rubber samples ranging from 0-14 years in age.
Collapse
Affiliation(s)
- Madison H McMinn
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Katherine Poisson
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Phillip Berger
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Paola Pimentel
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Xinwen Zhang
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Pranali Ashara
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Ella L Greenfield
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Jessica Eig
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| |
Collapse
|
6
|
Siegel KR, Murray BR, Gearhart J, Kassotis CD. In vitro endocrine and cardiometabolic toxicity associated with artificial turf materials. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104562. [PMID: 39245243 PMCID: PMC11499011 DOI: 10.1016/j.etap.2024.104562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Artificial turf, a consumer product growing in usage in the United States, contains diverse chemicals, some of which are endocrine disruptive. Endocrine effects from turf material extracts have been primarily limited to one component, crumb rubber, of these multi-material products. We present in vitro bioactivities from non-weathered and weathered turf sample extracts, including multiple turf components. All weathered samples were collected from real-world turf fields. Non-weathered versus weathered differentially affected the androgen (AR), estrogen (ER), glucocorticoid (GR), and thyroid receptors (TR) in reporter bioassays. While weathered extracts more efficaciously activated peroxisome proliferator activated receptor γ (PPARγ), this did not translate to greater in vitro adipogenic potential. All turf extracts activated the aryl hydrocarbon receptor (AhR). High AhR-efficacy extracts induced modest rat cardiomyoblast toxicity in an AhR-dependent manner. Our data demonstrate potential endocrine and cardiometabolic effects from artificial turf material extracts, warranting further investigation into potential exposures and human health effects.
Collapse
Affiliation(s)
- Kyle R Siegel
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Brooklynn R Murray
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Jeff Gearhart
- Research Director, Ecology Center, Ann Arbor, MI 48104, United States
| | - Christopher D Kassotis
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
7
|
Zhao Y, Bai L, Wang X, Huo M, Gao W, Jiang L, Jin J, Wang Y, Cao D. Exposure Assessment of Benzotriazole Ultraviolet Absorbers in Plastic Sports Field Dust and Indoor Dust: Are Plastic Sports Fields High Exposure Scenarios? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17419-17428. [PMID: 39292546 DOI: 10.1021/acs.est.4c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Benzotriazole ultraviolet absorbers (BUVs), as emerging contaminants of extensive use, especially in plastic sports fields, have aroused increasing concern due to their potential human and environmental impacts. However, BUV exposure from plastic sports field dust is still unknown. This study compared BUVs in plastic sports field dust and indoor dust for the first time. The order of the geometric mean concentrations of the total BUVs (ΣBUVs) in plastic sports field dust was indoor badminton courts (11023 ng g-1) > basketball courts (4777 ng g-1) > plastic tracks (3779 ng g-1) > synthetic turf (1920 ng g-1) > tennis courts (689 ng g-1). The geometric mean concentrations of ΣBUVs in indoor dust (1150 ng g-1) were lower than those in most plastic sports field dust. The dominant BUV was 2-hydroxy-4-(octyloxy)benzophenone (UV-531) in plastic sports field dust, while 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-2H-benzotriazole-2-yl)phenol] (UV-360) was the dominant BUV in indoor dust. Releases from plastic track materials, sneaker soles, and friction between them might be important BUV sources in plastic track dust. The average estimated daily intakes of ΣBUVs from plastic sports field dust for general exercisers were lower than those from indoor dust, but those for exercisers with long time or professional athletes might be higher, potentially posing health risks.
Collapse
Affiliation(s)
- Yuqian Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lu Bai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Mengmeng Huo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wei Gao
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dandan Cao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
8
|
Hayes JE, Prata AA, Fisher RM, Lindley MR, S Stuetz RM. Odorous emissions of synthetic turf and its relationship with local communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124462. [PMID: 38944183 DOI: 10.1016/j.envpol.2024.124462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/01/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Synthetic turf has been a mainstay of field sports and local communities for decades, and in that time, has faced both community and government pressure to ensure its safety and fitness for purpose. Considerable research and regulations have been applied to synthetic turf with regards to its safety, construction, potential toxicity, sports impact, as well as environmental considerations. However, very little attention has been paid to reports of odorous impacts from synthetic turf fields. This is problematic as odours are both a source of most complaints by communities towards other industries, as well as the fact that synthetic turf has a unique placement within communities themselves. It is wholly possible that the concerns surrounding synthetic turf are being modulated by the odours that the fields themselves produce through previously identified psychological mechanisms. As a result, ensuring good standards for synthetic turf with regards to odorous emissions should be benchmarked for community acceptability. This review investigates prior research into synthetic turf with regards to identified volatile organic compounds emitted, as well as proposing the means by which community stakeholders engage with synthetic turf, as well as how they should be consulted. From here, this review provides trajectories for future research within this space, and how regulatory bodies should address potential issues. This research space is currently in its infancy and therefore information relating to synthetic turf odour factors must be carefully considered.
Collapse
Affiliation(s)
- J E Hayes
- School of Civil and Environmental Engineering, UNSW, Australia.
| | - A A Prata
- School of Civil and Environmental Engineering, UNSW, Australia
| | - R M Fisher
- School of Civil and Environmental Engineering, UNSW, Australia
| | | | - R M S Stuetz
- School of Civil and Environmental Engineering, UNSW, Australia
| |
Collapse
|
9
|
Wei H, Lundy L, Muthanna TM, Viklander M. Impacts of seasonal activities and traffic conditions on the contamination and accumulation of gully pot sediments: Metal(loid)s and organic substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174749. [PMID: 39004363 DOI: 10.1016/j.scitotenv.2024.174749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Gully pots (GPs) are an integral urban drainage component, transferring surface runoff into piped systems and reducing sediment and contaminant load on downstream sewers and receiving waters. Sediment build-up in GPs impairs their hydraulic performance, necessitating maintenance for hydraulic function recovery. The variations in sediment accumulation rates between GPs suggested by earlier studies challenge the effectiveness of adopting a generalised maintenance frequency. This study addresses the knowledge gap regarding how various factors influence sediment contamination in GPs. The impacts of seasonal activities and traffic conditions on the contamination of sediments in 27 GPs in areas with varying traffic intensities and street features (roundabouts, intersections, and straight roads) were examined. Over one year, GPs were emptied twice, with sediments collected for winter-spring and summer-autumn accumulation periods. These sediments were analysed for 84 substances, including metal(loid)s, hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), alkylphenols, phthalates, per- and polyfluoroalkyl substances and organotins. Significant temporal changes were identified in key parameters such as electrical conductivity, total organic carbons, tungsten (W), heavy-molecular-weight PAHs (PAH-H) and diisodecyl phthalate (DIDP) in GP sediments, influenced by winter road safety measures and autumn leaf abscissions. Significantly higher concentrations of 4-tert-octylphenol, DIDP, diisononyl phthalate, antimony and W were identified in GP sediments from roundabouts compared to those at the other two street features, exclusively during the winter-spring period. This is attributed to the synergistic effect of winter road safety measures and stop-and-go traffic patterns at roundabouts. No consistent spatial and temporal patterns were identified for substance concentration and mass accumulation rates. Results underscore the potential to develop a prioritisation-based maintenance strategy as an opportunity to enhance the efficiency of GP maintenance operations, ensuring better resource allocation and reduced environmental impact.
Collapse
Affiliation(s)
- Haoyu Wei
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden.
| | - Lian Lundy
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Tone Merete Muthanna
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden; Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Maria Viklander
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
10
|
Yu H, Pu Z, Wang S, Chen Y, Wang C, Wan Y, Dong Y, Wang J, Wan S, Wang D, Xie Z. Mitigating microplastic stress on peanuts: The role of biochar-based synthetic community in the preservation of soil physicochemical properties and microbial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172927. [PMID: 38719057 DOI: 10.1016/j.scitotenv.2024.172927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Tire-derived rubber crumbs (RC), as a new type of microplastics (MPs), harms both the environment and human health. Excessive use of plastic, the decomposition of which generates microplastic particles, in current agricultural practices poses a significant threat to the sustainability of agricultural ecosystems, worldwide food security and human health. In this study, the application of biochar, a carbon-rich material, to soil was explored, especially in the evaluation of synthetic biochar-based community (SynCom) to alleviate RC-MP-induced stress on plant growth and soil physicochemical properties and soil microbial communities in peanuts. The results revealed that RC-MPs significantly reduced peanut shoot dry weight, root vigor, nodule quantity, plant enzyme activity, soil urease and dehydrogenase activity, as well as soil available potassium, and bacterial abundance. Moreover, the study led to the identification highly effective plant growth-promoting rhizobacteria (PGPR) from the peanut rhizosphere, which were then integrated into a SynCom and immobilized within biochar. Application of biochar-based SynCom in RC-MPs contaminated soil significantly increased peanut biomass, root vigor, nodule number, and antioxidant enzyme activity, alongside enhancing soil enzyme activity and rhizosphere bacterial abundance. Interestingly, under high-dose RC-MPs treatment, the relative abundance of rhizosphere bacteria decreased significantly, but their diversity increased significantly and exhibited distinct clustering phenomenon. In summary, the investigated biochar-based SynCom proved to be a potential soil amendment to mitigate the deleterious effects of RC-MPs on peanuts and preserve soil microbial functionality. This presents a promising solution to the challenges posed by contaminated soil, offering new avenues for remediation.
Collapse
Affiliation(s)
- Hong Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Zitian Pu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Shuaibing Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Chao Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Yongshan Wan
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yuanjie Dong
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Jianguo Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shubo Wan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China.
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
11
|
Duque-Villaverde A, Armada D, Dagnac T, Llompart M. Recycled tire rubber materials in the spotlight. Determination of hazardous and lethal substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172674. [PMID: 38657808 DOI: 10.1016/j.scitotenv.2024.172674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
One way of recycling end-of-life tires is by shredding them to obtain crumb rubber, a microplastic material (<0.5 mm), used as infill in artificial turf sports fields or as playground flooring. There is emerging concern about the health and environmental consequences that this type of surfaces can cause. This research aims to develop an analytical methodology able to determine 11 compounds of environmental and health concern, including antiozonants such as N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine (6PPD) or N, N´-diphenyl-1,4-phenylenediamine (DPPD), and vulcanization and crosslinking agents, such as N-cyclohexylbenzothiazole-2-sulfenamide (CBS), 1,3-di-o-tolylguanidine (DTG) or hexamethoxymethylmelamine (HMMM) from tire rubber. Ultrasound assisted extraction followed by liquid chromatography coupled to tandem mass spectrometry (UAE-LC-MS/MS) is validated demonstrating suitability. The methodology is applied to monitor the target compounds in forty real crumb rubber samples of different origin including, football pitches, outdoor and indoor playgrounds, urban pavements, commercial samples, and tires. Several alternative infill materials, such as sand, cork granulates, thermoplastic elastomers and coconut fibres, are also collected and analysed. All the target analytes are identified and quantified in the crumb rubber samples. The antiozonant 6PPD is present at the highest concentrations up to 0.2 % in new synthetic fields. The tire rubber-derived chemical 6PPD-quinone (2-((4-methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione), recently linked to acute mortality in salmons, is found in all types of crumb rubber samples attaining concentrations up to 40 μg g-1 in football pitches. The crosslinking agent HMMM is detected in most of the playing surfaces, at concentrations up to 36 μg g-1. The tested infill alternatives are free of most of the target compounds. To the best of our knowledge, this study is the largest study considering the target compounds in tire rubber particles and the first to focus on these compounds in playgrounds including the analysis of HMMM, 6PPD-quinone and DTG in crumb rubber used as an infill material.
Collapse
Affiliation(s)
- Andres Duque-Villaverde
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Daniel Armada
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Thierry Dagnac
- Agronomic Research Centre (AGACAL-CIAM), Unit of Organic Contaminants, Apartado 10, E-15080 A Coruña, Spain
| | - Maria Llompart
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Le Du-Carrée J, Palacios CK, Rotander A, Larsson M, Alijagic A, Kotlyar O, Engwall M, Sjöberg V, Keiter SH, Almeda R. Cocktail effects of tire wear particles leachates on diverse biological models: A multilevel analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134401. [PMID: 38678714 DOI: 10.1016/j.jhazmat.2024.134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Tire wear particles (TWP) stand out as a major contributor to microplastic pollution, yet their environmental impact remains inadequately understood. This study delves into the cocktail effects of TWP leachates, employing molecular, cellular, and organismal assessments on diverse biological models. Extracted in artificial seawater and analyzed for metals and organic compounds, TWP leachates revealed the presence of polyaromatic hydrocarbons and 4-tert-octylphenol. Exposure to TWP leachates (1.5 to 1000 mg peq L-1) inhibited algae growth and induced zebrafish embryotoxicity, pigment alterations, and behavioral changes. Cell painting uncovered pro-apoptotic changes, while mechanism-specific gene-reporter assays highlighted endocrine-disrupting potential, particularly antiandrogenic effects. Although heavy metals like zinc have been suggested as major players in TWP leachate toxicity, this study emphasizes water-leachable organic compounds as the primary causative agents of observed acute toxicity. The findings underscore the need to reduce TWP pollution in aquatic systems and enhance regulations governing highly toxic tire additives.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- University of Las Palmas de Gran Canaria: Las Palmas de Gran Canaria, Spain.
| | - Clara Kempkens Palacios
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Anna Rotander
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden; Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Viktor Sjöberg
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Rodrigo Almeda
- University of Las Palmas de Gran Canaria: Las Palmas de Gran Canaria, Spain
| |
Collapse
|
13
|
Danila V, Januševičius T. Adsorption of aqueous Pb(II) using non-devulcanized and devulcanized tyre rubber powder: a comparative study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39867-39883. [PMID: 37126161 DOI: 10.1007/s11356-023-27271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to compare the adsorption of Pb(II) ions from an aqueous solution using non-devulcanized (NTR) and devulcanized tyre rubber (DTR) powder. Both types of rubber particles were prepared from used truck tyres, with DTR processed through mechano-chemical devulcanization. The adsorption experiments were conducted using 100-200 µm particles, with adsorbent doses ranging from 5 to 15 g/L. Effects of adsorbent dose, initial metal concentration and contact time were investigated. Characterization of both adsorbents was done using SEM-EDS, FTIR, and XRD analysis. Different adsorption isotherm and kinetic models were used to analyse the adsorption mechanisms. The results of the study showed that DTR was significantly more efficient at adsorbing Pb(II) compared to NTR. The maximum adsorption capacities estimated from the Langmuir equation were 75.1 mg/g and 6.61 mg/g for DTR and NTR, respectively. Among the kinetic models tested, pseudo 2nd order kinetic model was found to be the most suitable for tyre rubber adsorbents. The optimal dose and contact time were found to be 5 g/L and 120 min, respectively, for both adsorbents. The superior performance of DTR in Pb(II) adsorption was attributed to the change in the surface morphology of the rubber during the devulcanization process, resulting in increased surface roughness. The adsorption of Pb(II) was accompanied by the leaching of Zn from both types of rubber, suggesting that an ion exchange mechanism might be involved in the adsorption process. In conclusion, devulcanization appears to be a viable method for improving the adsorption properties of tyre rubber.
Collapse
Affiliation(s)
- Vaidotas Danila
- Research Institute of Environmental Protection, Vilnius Gediminas Technical University, Sauletekis Avenue 11, 10223, Vilnius, Lithuania.
| | - Tomas Januševičius
- Research Institute of Environmental Protection, Vilnius Gediminas Technical University, Sauletekis Avenue 11, 10223, Vilnius, Lithuania
| |
Collapse
|
14
|
Zhang T, Wang M, Han Y, Liu J, Zhang Z, Wang M, Liu P, Gao S. Particle sizes crucially affected the release of additives from tire wear particles during UV irradiation and mechanical abrasion. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134106. [PMID: 38552399 DOI: 10.1016/j.jhazmat.2024.134106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
In the environment, tire wear particles (TWPs) could release various additives to induce potential risk, while the effects of particle size on the additive release behavior and ecological risk from TWPs remain unknown. This study investigated the effects and mechanisms of particle sizes (>2 mm, 0.71-1 mm, and <0.1 mm) on the release behavior of TWPs additives under mechanical abrasion and UV irradiation in water. Compared to mechanical abrasion, UV irradiation significantly increased the level of additives released from TWPs. Especially, the additive releasing characteristics were critically affected by the particle sizes of TWPs, manifested as the higher release in the smaller-size ones. After 60 d of UV irradiation, the concentration of antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) reached 10.79 mg/L in the leachate of small-sized TWPs, 2.78 and 5.36 times higher than that of medium-sized and large-sized TWPs. The leachate of the small-sized TWPs also showed higher cytotoxicity. •OH and O2•- were identified as the main reactive oxygen species (ROS), which exhibited higher concentrations and dramatic attack on small-sized TWPs to cause pronounced fragmentation and oxidation, finally inducing the higher release of additives. This paper sheds light on the crucial effects and mechanism of particle sizes in the release behavior of TWPs additives, provides useful information to assess the ecological risk of TWPs.
Collapse
Affiliation(s)
- Taishuo Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mingjun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yingxuan Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jingxuan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zixuan Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mengjie Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China.
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
15
|
Milan J, Jurowski K. Hazardous elements in plastic and rubber granules as infill material from sports facilities? Field Portable-XRF spectroscopy as 'white analytical technique' reveals hazardous elements in fall sports facilities in Rzeszów (Podkarpackie, Poland). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170280. [PMID: 38272072 DOI: 10.1016/j.scitotenv.2024.170280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Plastic and rubber granules are commonly used as infill material in all-weather sports facilities, providing an ideal activity surface for millions of Europeans on a daily basis. However, concerns have been raised about the presence of hazardous elements in these granules, which can pose risks both to the environment and human health. Our study focusses on the elemental composition of rubber granules used in fall sports facilities in Rzeszów, (Podkarpackie, Poland) using field portable X-ray fluorescence (FP-XRF) as a non-destructive and 'white analytical technique'. The results show the content of Zn, Fe, Cr, Ba, Br, Ti, Cu, Cd, As, Au, Bi, Pb, Ni, Sb, and Sn in the rubber granule samples. This study highlights the need for stringent quality control measures and regulations to ensure the safety of all-weather sports facilities and protect the well-being of sportsman. When modern FP-XRF spectrometry is employed as a "white analytical technique," for the first time it becomes possible to identify the presence of hazardous elements, addressing the pressing concerns highlighted by the ECHA and enabling proactive measures to mitigate potential risks. This approach ensures the protection of the health and sustainability of sports facilities, contributing to the ongoing hot topics in the field.
Collapse
Affiliation(s)
- Justyna Milan
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland.
| |
Collapse
|
16
|
Zuccaro P, Thompson DC, de Boer J, Llompart M, Watterson A, Bilott R, Birnbaum LS, Vasiliou V. The European Union Ban on Microplastics Includes Artificial Turf Crumb Rubber Infill: Other Nations Should Follow Suit. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2591-2594. [PMID: 38301275 DOI: 10.1021/acs.est.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Philip Zuccaro
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510, United States
- Yale University, New Haven, Connecticut 06520, United States
| | - David C Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510, United States
| | - Jacob de Boer
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Maria Llompart
- CRETUS, Department of Analytical Chemistry, Nutrition, and Food Sciences, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Andrew Watterson
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, Scotland
| | - Robert Bilott
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510, United States
| | - Linda S Birnbaum
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510, United States
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510, United States
| |
Collapse
|
17
|
Ferreira T, Homem V, Cereceda-Balic F, Fadic X, Alves A, Ratola N. Are volatile methylsiloxanes in downcycled tire microplastics? Levels and human exposure estimation in synthetic turf football fields. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11950-11967. [PMID: 38228949 PMCID: PMC10869416 DOI: 10.1007/s11356-024-31832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
Downcycled rubber, derived from end-of-life tires (ELTs), is frequently applied as crumb rubber (CR) as infill of synthetic turf in sports facilities. This practice has been questioned in recent years as numerous studies have reported the presence of potentially hazardous chemicals in this material. CR particles fall into the category of microplastics (MPs), making them possible vectors for emerging micropollutants. A preliminary study where volatile methylsiloxanes (VMSs) were found in CR originated the hypothesis that VMSs are present in this material worldwide. Consequently, the present work evaluates for the first time the levels and trends of seven VMSs in CR from synthetic turf football fields, while attempting to identify the main sources and impacts of these chemicals. A total of 135 CR samples and 12 other of alternative materials were analyzed, employing an ultrasound-assisted dispersive solid-phase extraction followed by gas chromatography-mass spectrometry (GC-MS), and the presence of VMSs was confirmed in all samples, in total concentrations ranging from 1.60 to 5089 ng.g-1. The levels were higher in commercial CR (before field application), a reflection of the use of VMS-containing additives in tire production and/or the degradation of silicone polymers employed in vehicles. The VMSs generally decreased over time on the turf, as expected given their volatile nature and the wearing of the material. Finally, the human exposure doses to VMSs in CR (by dermal absorption and ingestion) for people in contact with synthetic turf in football fields were negligible (maximum total exposure of 20.5 ng.kgBW-1.year-1) in comparison with the European Chemicals Agency (ECHA) reference doses: 1.35 × 109 ng.kgBW-1.year-1 for D4 and 1.83 × 109 ng.kgBW-1.year-1 for D5. Nevertheless, more knowledge on exposure through inhalation and the combined effects of all substances is necessary to provide further corroboration. This work proved the presence of VMSs in CR from ELTs, another family of chemical of concern to take into account when studying MPs as vectors of other contaminants.
Collapse
Affiliation(s)
- Tiago Ferreira
- LEPABE-Laboratory for Process Engineering, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vera Homem
- LEPABE-Laboratory for Process Engineering, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Francisco Cereceda-Balic
- Centre for Environmental Technologies (CETAM) and Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Ximena Fadic
- Centre for Environmental Technologies (CETAM) and Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Arminda Alves
- LEPABE-Laboratory for Process Engineering, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Nuno Ratola
- LEPABE-Laboratory for Process Engineering, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
18
|
Moreno T, Balasch A, Bartrolí R, Eljarrat E. A new look at rubber recycling and recreational surfaces: The inorganic and OPE chemistry of vulcanised elastomers used in playgrounds and sports facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161648. [PMID: 36669664 DOI: 10.1016/j.scitotenv.2023.161648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
We revisit current understanding of the chemical complexity of different kinds of particulate vulcanised elastomers widely used in playgrounds and sports fields, adding new data on trace element and organophosphate ester contents of used tyre and EDPM crumb rubber. Enrichments in elements such as Zn, S, Co, Bi and Nd relate to the vulcanised mixtures created during manufacture. Zinc concentrations vary across an order of magnitude, being highest in our used tyre particulate samples (up to 2.4 %). In contrast, other trace element variations are due to coloured pigments causing increases in Cu and Zr (blue), Cr (green), and Fe and Sn (red and yellow) concentrations. The use of pale fillers such as CaCO3 and clay minerals (rather than carbon black) strongly influences Ca and Al concentrations, which are much higher in the coloured EPDM than in black used tyre crumb rubber. Representatives from all three of the main organophosphate ester (OPE) groups, namely chlorinated (e.g. TCEP, TCIPP, TDCPP), alkyl (e.g. TEHP, TEP, TNBP, TBOEP) and aryl (e.g. TPHP, EHDPP, TCP) were identified, confirming how these chemicals are commonly used in modern rubber compounding as flame retardants and plasticisers. Elevated concentrations of TEHP (up to 117 μg/g) in coloured-coated used tyre turf infill crumb rubbers were traced to the coating rather than the crumb rubber itself. The presence and weathering behaviour of OPEs in recreational crumb rubber materials deserve closer investigation. The ecological "onehealth" impact of potentially toxic substances present in recreational crumb rubbers will depend on if and how they are released during play and sports activities, maintenance procedures, and natural weathering. We argue that detailed chemical data on these materials should be available to buyers, as manufacturers strive to reduce ecotoxin content as part of the quest towards sustainable use and recycling of vulcanised elastomers.
Collapse
Affiliation(s)
- Teresa Moreno
- Institute for Environmental Assessment and Water Studies (IDAEA), CSIC, 18-26 Jordi Girona, Barcelona 08034, Spain.
| | - Aleix Balasch
- Institute for Environmental Assessment and Water Studies (IDAEA), CSIC, 18-26 Jordi Girona, Barcelona 08034, Spain
| | - Rafael Bartrolí
- Institute for Environmental Assessment and Water Studies (IDAEA), CSIC, 18-26 Jordi Girona, Barcelona 08034, Spain
| | - Ethel Eljarrat
- Institute for Environmental Assessment and Water Studies (IDAEA), CSIC, 18-26 Jordi Girona, Barcelona 08034, Spain
| |
Collapse
|
19
|
Zhao HN, Hu X, Gonzalez M, Rideout CA, Hobby GC, Fisher MF, McCormick CJ, Dodd MC, Kim KE, Tian Z, Kolodziej EP. Screening p-Phenylenediamine Antioxidants, Their Transformation Products, and Industrial Chemical Additives in Crumb Rubber and Elastomeric Consumer Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2779-2791. [PMID: 36758188 DOI: 10.1021/acs.est.2c07014] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recently, roadway releases of N,N'-substituted p-phenylenediamine (PPD) antioxidants and their transformation products (TPs) received significant attention due to the highly toxic 6PPD-quinone. However, the occurrence of PPDs and TPs in recycled tire rubber products remains uncharacterized. Here, we analyzed tire wear particles (TWPs), recycled rubber doormats, and turf-field crumb rubbers for seven PPD antioxidants, five PPD-quinones (PPDQs), and five other 6PPD TPs using liquid chromatography-tandem mass spectrometry. PPD antioxidants, PPDQs, and other TPs were present in all samples with chemical profiles dominated by 6PPD, DTPD, DPPD, and their corresponding PPDQs. Interestingly, the individual [PPDQ]/[PPD] and [TP]/[PPD] ratios significantly increased as total concentrations of the PPD-derived chemical decreased, indicating that TPs (including PPDQs) dominated the PPD-derived compounds with increased environmental weathering. Furthermore, we quantified 15 other industrial rubber additives (including bonding agents, vulcanization accelerators, benzotriazole and benzothiazole derivatives, and diphenylamine antioxidants), observing that PPD-derived chemical concentrations were 0.5-6 times higher than these often-studied additives. We also screened various other elastomeric consumer products, consistently detecting PPD-derived compounds in lab stoppers, sneaker soles, and rubber garden hose samples. These data emphasize that PPD antioxidants, PPDQs, and related TPs are important, previously overlooked contaminant classes in tire rubbers and elastomeric consumer products.
Collapse
Affiliation(s)
- Haoqi Nina Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Urban Waters, Tacoma, Washington 98421, USA
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Urban Waters, Tacoma, Washington 98421, USA
| | | | | | - Grant C Hobby
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Matthew F Fisher
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Carter J McCormick
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Kelly E Kim
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, Washington 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Edward P Kolodziej
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Urban Waters, Tacoma, Washington 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| |
Collapse
|
20
|
Armada D, Martinez-Fernandez A, Celeiro M, Dagnac T, Llompart M. Assessment of the bioaccessibility of PAHs and other hazardous compounds present in recycled tire rubber employed in synthetic football fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159485. [PMID: 36257444 DOI: 10.1016/j.scitotenv.2022.159485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Recycled tire crumb rubber (RTCR) surfaces contain harmful and carcinogenic substances, which can be ingested by the users of these facilities, mainly athletes and children. In this work, the potential in-vitro oral bioaccessibility of eighteen polycyclic aromatic hydrocarbons (PAHs) from RTCR employed as infill in synthetic football fields was studied in human synthetic body fluids (saliva, gastric, duodenal and bile), prepared according the Unified Bioaccessibility Method. Solid-phase extraction (SPE) using commercial sorbents and a new green material based on cork (cork industry by-product) were used to isolate the bioaccessible PAHs before gas chromatography-tandem mass spectrometry analysis. The method was optimized and validated attending the analytical figures of merit. The feasibility of cork biosorbent for the extraction of the compounds was demonstrated, as well as the suitability of the UBM method to perform the digestion with good precision. The application to real samples collected from football fields demonstrated the presence of 17 of the 18 target PAHs in the biofluids. Most volatile PAHs such as NAP, ACY, ACE, FLU, PHN and ANC, achieved the highest bioaccessibility percentage levels. The carcinogenic B[a]P was detected in 75 % of the samples at concentrations up to 2.5 ng g-1 (bioaccessible fraction). Children exposure assessment was carried out to identify potential risk. Other hazardous and environmentally problematic compounds such as N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone), recently related with the dead of coho salmon, and hexamethoxymethylmelamine (HMMM), among others, were also detected. This is the first study in which the bioaccesibility from real crumb rubber samples of 15 out of the 16 PAHs considered as priority pollutants by the United States Environmental Protection Agency (EPA) and the presence of 6PPD-quinone and HMMM in the bioaccessible fractions is reported.
Collapse
Affiliation(s)
- Daniel Armada
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Antia Martinez-Fernandez
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Maria Celeiro
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Thierry Dagnac
- Agronomic Research Centre (AGACAL-CIAM), Unit of Organic Contaminants, Apartado 10, E-15080 A Coruña, Spain
| | - Maria Llompart
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Pyshyev S, Lypko Y, Chervinskyy T, Fedevych O, Kułażyński M, Pstrowska K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Zuccaro P, Thompson DC, de Boer J, Watterson A, Wang Q, Tang S, Shi X, Llompart M, Ratola N, Vasiliou V. Artificial turf and crumb rubber infill: An international policy review concerning the current state of regulations. ENVIRONMENTAL CHALLENGES (AMSTERDAM, NETHERLANDS) 2022; 9:100620. [PMID: 36644410 PMCID: PMC9838222 DOI: 10.1016/j.envc.2022.100620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Although artificial turf fields are utilized widely around the world, sufficient research has not yet been conducted to assess the potential human and environmental health risks posed by the chemicals contained in the fields' fibers, backing, and often-used crumb rubber infill. Consequently, there is wide variation in governmental policies. OBJECTIVE Review the notable policies concerning artificial turf and crumb rubber infill in the European Union, United Kingdom, United States of America, Canada, China, Qatar, and the Global Stockholm Convention of the United Nations. METHODS Information was collected that included published papers, technical and policy reports, and grey literature. These were then analyzed by a collaborative group familiar with the environmental policies in their respective countries to extract the pertinent legislative or regulatory information. The group members were primarily identified through their involvement in publications pertinent to artificial turf and crumb rubber infill health research and included environmental health professors, active researchers, and governmental agency officials. Most information on direct policies was taken directly from reports provided to the public by various governmental agencies responsible for their countries' regulations, often available within the respective agency's online archives. RESULTS There are significant differences in the regulatory approaches adopted by the investigated countries with regards to artificial turf and its crumb rubber infill. Some regions, such as the European Union, have taken substantial steps to limit the fields' chemical components to which the public and environment are exposed. Other regions and countries have done far less to address the issue. Most policies relate directly to (i) the fields themselves, (ii) the microplastic components of crumb rubber infill, or (iii) the concentrations of harmful polycyclic aromatic hydrocarbons (PAHs), perfluoroalkyl and polyfluoroalkyl substances (PFAS), and heavy metals. CONCLUSION While nearly every country acknowledges the potential health risks posed by heavy metals, microplastics, PAHs, and PFAS chemicals, very few have actually implemented artificial turf and crumb rubber infill regulations and/or established adequate surveillance measures to protect those regularly exposed to the fields.
Collapse
Affiliation(s)
| | - David C. Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Jacob de Boer
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Andrew Watterson
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, Scotland
| | - Qiong Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Maria Llompart
- CRETUS, Department of Analytical Chemistry, Nutrition, and Food Sciences, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nuno Ratola
- LEPABE- Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
23
|
Nishi I, Kawakami T, Sakai S, Obama T, Kubota R, Inoue K, Ikarashi Y. Characterization of synthetic turf rubber granule infill in Japan: Polyaromatic hydrocarbons and related compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156684. [PMID: 35750166 DOI: 10.1016/j.scitotenv.2022.156684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Although the health effects of artificial turf fillings have been investigated in Europe and the United States, the actual situation in Japan is unclear. To address this issue, the concentrations of 46 polyaromatic hydrocarbons (PAHs) and related compounds in rubber infills were analyzed prior to their use in synthetic turf fields in Japan. Based on information obtained from the sample suppliers, the investigated samples were divided into five categories: discarded tires, industrial rubber, combinations of these products or unidentified components (mixture/unknown), synthetic rubber specifically manufactured for synthetic turf, and special-purpose thermoplastic elastomers (TPEs). The industrial rubber samples were mixtures of styrene butadiene rubber, natural rubber, and ethylene propylene diene rubber (EPDM). The synthetic rubber samples consisted only of EPDM. A few or none of the PAHs were detected in the synthetic rubber and TPE samples. However, in the discarded tire and industrial rubber samples, benzo[a]pyrene, cyclopenta[cd]pyrene, and 30 other compounds were detected. A comparison between these two categories indicated that the discarded tire samples exhibited higher concentrations of the target compounds than the industrial rubber samples. This finding can be attributed to the presence of EPDM in almost all of the industrial rubber samples, which were not present in the discarded tire samples. The maximum PAH concentrations obtained in the present study were equivalent to or lower than the previously reported PAH concentrations. The total concentrations of the eight PAHs included in the European Chemical Agency (ECHA) assessment of health risks were lower in the present study than those reported by the ECHA. Furthermore, elution testing was performed with four simulated biofluids (gastric and intestinal juices, saliva, and perspiration). The actual elution amounts of all compounds were less than the limits. This report provides basic data for the risk assessment of PAHs in rubber infills.
Collapse
Affiliation(s)
- Iwaki Nishi
- Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan
| | - Tsuyoshi Kawakami
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| | - Shinobu Sakai
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Tomoko Obama
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Reiji Kubota
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Kaoru Inoue
- Division of Risk Assessment, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Yoshiaki Ikarashi
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
24
|
Murphy M, Warner GR. Health impacts of artificial turf: Toxicity studies, challenges, and future directions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119841. [PMID: 35948114 PMCID: PMC10262297 DOI: 10.1016/j.envpol.2022.119841] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 05/26/2023]
Abstract
Many communities around the country are undergoing contentious battles over the installation of artificial turf. Opponents are concerned about exposure to hazardous chemicals leaching from the crumb rubber cushioning fill made of recycled tires, the plastic carpet, and other synthetic components. Numerous studies have shown that chemicals identified in artificial turf, including polycyclic aromatic hydrocarbons (PAHs), phthalates, and per- and polyfluoroalkyl substances (PFAS), are known carcinogens, neurotoxicants, mutagens, and endocrine disruptors. However, few studies have looked directly at health outcomes of exposure to these chemicals in the context of artificial turf. Ecotoxicology studies in invertebrates exposed to crumb rubber have identified risks to organisms whose habitats have been contaminated by artificial turf. Chicken eggs injected with crumb rubber leachate also showed impaired development and endocrine disruption. The only human epidemiology studies conducted related to artificial turf have been highly limited in design, focusing on cancer incidence. In addition, government agencies have begun their own risk assessment studies to aid community decisions. Additional studies in in vitro and in vivo translational models, ecotoxicological systems, and human epidemiology are strongly needed to consider exposure from both field use and runoff, components other than crumb rubber, sensitive windows of development, and additional physiological endpoints. Identification of potential health effects from exposures due to spending time at artificial turf fields and adjacent environments that may be contaminated by runoff will aid in risk assessment and community decision making on the use of artificial turf.
Collapse
Affiliation(s)
- Maire Murphy
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
25
|
Kawakami T, Sakai S, Obama T, Kubota R, Inoue K, Ikarashi Y. Characterization of synthetic turf rubber granule infill in Japan: Rubber additives and related compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156716. [PMID: 35710016 DOI: 10.1016/j.scitotenv.2022.156716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
We have conducted several studies with an overall goal of assessing the effects of rubber granules in synthetic turf on the health of athletes, other players, and children in Japan. As part of these studies, the investigation reported herein was aimed at analyzing the concentrations of rubber additives (vulcanization accelerators, antioxidants, and cross-linking agents) and related chemicals in 46 rubber infills prior to their use in synthetic turf fields in Japan. Of the 36 chemicals selected for targeted analysis, 26 were detected and quantified. Nontargeted analyses further identified and quantified 16 compounds derived from vulcanization accelerators, plasticizers, and other additives. The types and concentrations of the detected compounds varied both between products and within the same product; in the case of rubber infill products made from recycled rubber, this variation was caused by the different types of rubber products recycled as raw materials. Elution tests with four simulated biofluids (gastric juice, intestinal juice, saliva, and perspiration) revealed that the elution rates varied between compounds and were affected by the presence of coatings. Most compounds had low elution rates in all the simulated biofluids, with many at or below the limit of quantification. The data reported herein will be utilized in the risk characterization part of our subsequent study on the health risk assessment of rubber infill.
Collapse
Affiliation(s)
- Tsuyoshi Kawakami
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| | - Shinobu Sakai
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Tomoko Obama
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Reiji Kubota
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Kaoru Inoue
- Division of Risk Assessment, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Yoshiaki Ikarashi
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
26
|
Sakai S, Tahara M, Kubota R, Kawakami T, Inoue K, Ikarashi Y. Characterization of synthetic turf rubber granule infill in Japan: Volatile organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156400. [PMID: 35660619 DOI: 10.1016/j.scitotenv.2022.156400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
There has been extensive studies on the composition of tires and industrial rubber. However, there is insufficient information on volatile organic compounds (VOCs) emitted from rubber granule products used to fill synthetic turf fields. In this study, we applied a passive sampling method for assessing the VOCs emitted from rubber granule products used for filling synthetic turf fields. We also performed a quantitative component analysis using a gas chromatography-mass spectrometer (GC-MS). The component analysis results of 46 rubber granule-based products showed the predominant presence of benzothiazole and methyl isobutyl ketone. The level of benzene, which the International Agency for Research on Cancer classifies as a substance with sufficient evidence for carcinogenicity to humans, was below the lower quantification limit in the products tested in this study. Our study included most of the rubber granule products used for synthetic turf fields in Japan (>95% of the products in the current domestic market of Japan). Therefore, we obtained a comprehensive overview of the VOCs emitted from the rubber granule-based products used in Japan's synthetic turf fields. Estimating the exposure to these airborne VOCs is essential to evaluate the adverse health effects of the VOCs emitted from these rubber granule-based products. Our sampling method and results can help provide key data for such risk assessment studies in the future.
Collapse
Affiliation(s)
- Shinobu Sakai
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| | - Maiko Tahara
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Reiji Kubota
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Tsuyoshi Kawakami
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Kaoru Inoue
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Yoshiaki Ikarashi
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
27
|
Armada D, Celeiro M, Dagnac T, Llompart M. Green methodology based on active air sampling followed by solid phase microextraction and gas chromatography-tandem mass spectrometry analysis to determine hazardous substances in different environments related to tire rubber. J Chromatogr A 2022; 1668:462911. [DOI: 10.1016/j.chroma.2022.462911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
|