1
|
Pang Q, Zhao G, Wang D, Zhu X, Xie L, Zuo D, Wang L, Tian L, Peng F, Xu B, He F, Ding J, Chu W. Water periods impact the structure and metabolic potential of the nitrogen-cycling microbial communities in rivers of arid and semi-arid regions. WATER RESEARCH 2024; 267:122472. [PMID: 39305525 DOI: 10.1016/j.watres.2024.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 11/28/2024]
Abstract
This study examined the influence of water periods on river nitrogen cycling by analysing nitrogen functional genes and bacterial communities in the Qingshui River, an upstream tributary of the Yellow River in China. Nitrate nitrogen predominated as inorganic nitrogen during the low-flow seasons, whereas salinity was highest during the high-flow seasons. Overall, the functional gene abundance increased with decreasing water volume, and nitrogen concentrations were determined by various specific gene groups. The relative abundance of bacteria carrying these genes varied significantly across water periods. The abundance of Pseudomona, Hydrogenophaga (carrying narGHI and nirB genes), and Flavobacterium (carrying nirK, norBC, and nosZ genes) significantly increased during the low-flow seasons. Nitrogen transformation bacteria exhibited both symbiotic and mutualistic relationships. Microbial network nodes and sizes decreased with decreasing water volume, whereas modularity increased. Additionally, the water period affected the functional microbial community structure by influencing specific environmental factors. Among them, SO42- primarily determined the denitrification, dissimilatory nitrate reduction to ammonium, and assimilatory nitrate reduction to ammonium communities, whereas NO2--N and Mg2+ were the main driving factors for the nitrogen-fixing and nitrifying communities, respectively. These findings have substantial implications for better understanding the reduction in river nitrogen loads in arid and semi-arid regions during different water periods.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China
| | - Guohua Zhao
- School of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Dan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Dezhi Zuo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China.
| | - Linfeng Tian
- Ecological Environment Monitoring Center of Ningxia Hui Autonomous Region, Yinchuan 750000, PR China; Environmental Monitoring Station of Shizuishan, Shizuishan 753000, PR China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Jing Ding
- Ecological Environment Monitoring Center of Ningxia Hui Autonomous Region, Yinchuan 750000, PR China
| | - Wenhai Chu
- College of Environmental Science and Engineering, Tongji University, Shanghai 20082, PR China.
| |
Collapse
|
2
|
Jiao G, Huang Y, Tang H, Chen Y, Zhou D, Yu D, Ma Z, Ni S. Unveiling the hidden impact: How human disturbances threaten aquatic microorganisms in cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175305. [PMID: 39117200 DOI: 10.1016/j.scitotenv.2024.175305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Urban activity emissions have important ecological significance to bacterial communities' spatial and temporal distribution and the mechanism of bacterial community construction. The mechanism of bacterial community construction is the key to community structure and lifestyle, and the influence of this aspect has not been thoroughly studied. This study analyzed the response of bacteria in water and sediment in different seasons to urban activities in Jinsha River. The results showed that the influence of urban activities on bacterial community structure in sediment was greater than that in water. The input of pollution in different regions changed the diversity and abundance of water and sediments bacteria and promoted bacterial community reconstruction to a certain extent. Co-network analysis found that many metal-mediated species are core species within the same module and can be used to mitigate pollution caused by metal or organic pollutants due to interspecific solid interactions. Different potential pollution sources around urban rivers affect the metabolic function of bacteria in aquatic ecosystems and promote the detoxification function of bacteria in different media. The results of this study supplement our understanding of the characteristics of microbial communities in urban river systems and provide clues for understanding the maintenance mechanism of microbial diversity in multi-pollution environments.
Collapse
Affiliation(s)
- Ganghui Jiao
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China; Yunnan Earthquake Agency, Yunnan 650000, China; Observation Station for Field Scientific Research of Crustal Tectonic Activity in Northwest Yunnan, Dali 671000, China
| | - Yi Huang
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China.
| | - Hua Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ying Chen
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| | - Dan Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Daming Yu
- Pangang Group Company Limited, Sichuan 617050, China
| | - Zhongjian Ma
- Pangang Group Company Limited, Sichuan 617050, China
| | - Shijun Ni
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| |
Collapse
|
3
|
Zhangsun X, Guo H, Du Q, Li N, Xue S, Li R, Ma W, Liu X, Zhang H, Huang T. Spatial and temporal dynamics of microbes and genes in drinking water reservoirs: Distribution and potential for taste and odor generation. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135708. [PMID: 39217936 DOI: 10.1016/j.jhazmat.2024.135708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Numerous reservoirs encounter challenges related to taste and odor issues, often attributed to odorous compounds such as geosmin (GSM) and 2-methylisoborneol (2-MIB). In this study, two large reservoirs located in northern and southern China were investigated. The Jinpen (JP) reservoir had 45.99 % Actinomycetes and 14.82 % Cyanobacteria, while the Xikeng (XK) reservoir contained 37.55 % Actinomycetes and 48.27 % Cyanobacteria. Most of the 2-MIB produced in surface layers of the two reservoirs in summer originated from Cyanobacteria, most of the 2-MIB produced in winter and in the bottom water originated from Actinomycetes. Mic gene abundance in the XK reservoir reached 5.42 × 104 copies/L in winter. The abundance of GSM synthase was notably high in the bottom layer and sediment of both reservoirs, while 2-MIB synthase was abundant in the surface layer of the XK reservoir, echoing the patterns observed in mic gene abundance. The abundance of odor-producing enzymes in the two reservoirs was inhibited by total nitrogen, temperature significantly influenced Actinomycetes abundance in the JP reservoir, whereas dissolved oxygen had a greater impact in the XK reservoir. Overall, this study elucidates the molecular mechanisms underlying odor compounding, providing essential guidance for water quality management strategies and the improvement of urban water reservoir quality.
Collapse
Affiliation(s)
- Xuanzi Zhangsun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Quanjie Du
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Na Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shuhong Xue
- Power China Northwest Engineering Corporation Limited, Xi'an 710065, PR China
| | - Rong Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Wenrui Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiang Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
4
|
Zhang H, Ni T, Liu X, Ma B, Huang T, Zhao D, Li H, Chen K, Liu T. Ignored microbial-induced taste and odor in drinking water reservoirs: Novel insight into actinobacterial community structure, assembly, and odor-producing potential. WATER RESEARCH 2024; 264:122219. [PMID: 39121820 DOI: 10.1016/j.watres.2024.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The presence of actinobacteria in reservoirs can lead to taste and odor issues, posing potential risks to the safety of drinking water supply. However, the response of actinobacterial communities to environmental factors in drinking water reservoirs remains largely unexplored. To address this gap, this study investigated the community structure and metabolic characteristics of odor-producing actinobacteria in water reservoirs across northern and southern China. The findings revealed differences in the actinobacterial composition across the reservoirs, with Mycobacterium sp. and Candidatus Nanopelagicus being the most prevalent genera. Notably, water temperature, nutrient levels, and metal concentrations were associated with differences in actinobacterial communities, with stochastic processes playing a major role in shaping the community assembly. In addition, three strains of odor-producing actinobacteria were cultured in raw reservoir water, namely Streptomyces antibioticus LJH21, Streptomyces sp. ZEU13, and Streptomyces sp. PQK19, with peak ATP concentrations of 51 nmol/L, 66 nmol/L, and 70 nmol/L, respectively, indicating that odor-producing actinobacteria could remain metabolically active under poor nutrient pressure. Additionally, Streptomyces antibioticus LJH21 produced the highest concentration of geosmin at 24.4 ng/L. These findings enhance our understanding of regional variances and reproductive metabolic mechanisms of actinobacteria in drinking water reservoirs, providing a solid foundation for improving drinking water quality control, especially for taste and odor.
Collapse
Affiliation(s)
- Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tongchao Ni
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
5
|
Xie G, Zhang Y, Gong Y, Luo W, Tang X. Extreme trophic tales: deciphering bacterial diversity and potential functions in oligotrophic and hypereutrophic lakes. BMC Microbiol 2024; 24:348. [PMID: 39277721 PMCID: PMC11401395 DOI: 10.1186/s12866-024-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Oligotrophy and hypereutrophy represent the two extremes of lake trophic states, and understanding the distribution of bacterial communities across these contrasting conditions is crucial for advancing aquatic microbial research. Despite the significance of these extreme trophic states, bacterial community characteristics and co-occurrence patterns in such environments have been scarcely interpreted. To bridge this knowledge gap, we collected 60 water samples from Lake Fuxian (oligotrophic) and Lake Xingyun (hypereutrophic) during different hydrological periods. RESULTS Employing 16S rRNA gene sequencing, our findings revealed distinct community structures and metabolic potentials in bacterial communities of hypereutrophic and oligotrophic lake ecosystems. The hypereutrophic ecosystem exhibited higher bacterial α- and β-diversity compared to the oligotrophic ecosystem. Actinobacteria dominated the oligotrophic Lake Fuxian, while Cyanobacteria, Proteobacteria, and Bacteroidetes were more prevalent in the hypereutrophic Lake Xingyun. Functions associated with methanol oxidation, methylotrophy, fermentation, aromatic compound degradation, nitrogen/nitrate respiration, and nitrogen/nitrate denitrification were enriched in the oligotrophic lake, underscoring the vital role of bacteria in carbon and nitrogen cycling. In contrast, functions related to ureolysis, human pathogens, animal parasites or symbionts, and phototrophy were enriched in the hypereutrophic lake, highlighting human activity-related disturbances and potential pathogenic risks. Co-occurrence network analysis unveiled a more complex and stable bacterial network in the hypereutrophic lake compared to the oligotrophic lake. CONCLUSION Our study provides insights into the intricate relationships between trophic states and bacterial community structure, emphasizing significant differences in diversity, community composition, and network characteristics between extreme states of oligotrophy and hypereutrophy. Additionally, it explores the nuanced responses of bacterial communities to environmental conditions in these two contrasting trophic states.
Collapse
Affiliation(s)
- Guijuan Xie
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuqing Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- The Third Construction Company of CCCC second Harbor Engineering Co., Ltd, Zhenjiang, 212000, China
| | - Yi Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenlei Luo
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- The Fuxianhu Station of Plateau Deep Lake Field Scientific Observation and Research, Yunnan, 653100, Yuxi, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
6
|
Xu Q, Jiang Y, Wang J, Deng R, Yue Z. Temperature-Driven Activated Sludge Bacterial Community Assembly and Carbon Transformation Potential: A Case Study of Industrial Plants in the Yangtze River Delta. Microorganisms 2024; 12:1454. [PMID: 39065222 PMCID: PMC11278906 DOI: 10.3390/microorganisms12071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Temperature plays a critical role in the efficiency and stability of industrial wastewater treatment plants (WWTPs). This study focuses on the effects of temperature on activated sludge (AS) communities within the A2O process of 19 industrial WWTPs in the Yangtze River Delta, a key industrial region in China. The investigation aims to understand how temperature influences AS community composition, functional assembly, and carbon transformation processes, including CO2 emission potential. Our findings reveal that increased operating temperatures lead to a decrease in alpha diversity, simplifying community structure and increasing modularity. Dominant species become more prevalent, with significant decreases in the relative abundance of Chloroflexi and Actinobacteria, and increases in Bacteroidetes and Firmicutes. Moreover, higher temperatures enhance the overall carbon conversion potential of AS, particularly boosting CO2 absorption in anaerobic conditions as the potential for CO2 emission during glycolysis and TCA cycles grows and diminishes, respectively. The study highlights that temperature is a major factor affecting microbial community characteristics and CO2 fluxes, with more pronounced effects observed in anaerobic sludge. This study provides valuable insights for maintaining stable A2O system operations, understanding carbon footprints, and improving COD removal efficiency in industrial WWTPs.
Collapse
Affiliation(s)
- Qingsheng Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Yifan Jiang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Mohammed V, Arockiaraj J. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171644. [PMID: 38471587 DOI: 10.1016/j.scitotenv.2024.171644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.
Collapse
Affiliation(s)
- Vajagathali Mohammed
- Department of Forensic Science, Yenepoya Institute of Arts, Science, Commerce, and Management, Yenepoya (Deemed to be University), Mangaluru 575013, Karnataka, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
8
|
Zhang H, Xu Y, Liu X, Ma B, Huang T, Kosolapov DB, Liu H, Guo H, Liu T, Ni T, Zhang X. Different seasonal dynamics, ecological drivers, and assembly mechanisms of algae in southern and northern drinking water reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171285. [PMID: 38423304 DOI: 10.1016/j.scitotenv.2024.171285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
The role of environmental factors on the community structure of algae has been intensively studied, but there are few analyses on the assembly mechanism of the algal community structure. Here, changes in the community structure of algae in different seasons, the effects of environmental variables on the algal community structure, and the assembly mechanism of the algal community structure in northern and southern reservoirs were investigated in this study. The study revealed that Bacillariophyta, Cyanophyta, and Chlorophyta were the predominant algal species in the reservoirs, with Bacillariophyta and Cyanophyta exhibiting seasonal outbreaks. Compared to the northern reservoirs, the algal diversity in the southern reservoirs was greater. The diversity and algal community structure could be significantly impacted by variations in water temperature and nitrogen level. According to the ecological model, the interaction among algal communities in reservoirs was primarily cooperation. The key taxa in the northern reservoirs was Aphanizomenon sp., while the outbreak in the southern reservoirs was Coelosphaerium sp. The community formation pattern of reservoirs was stochastic, with a higher degree of explanation observed in the southern reservoirs compared to the northern reservoirs. This study preliminarily explored the assembly mechanism of the algal community, providing a theoretical basis for the control of eutrophication in drinking water reservoirs.
Collapse
Affiliation(s)
- Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yue Xu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Hanyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tongchao Ni
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoli Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
9
|
Liu X, Song Y, Ni T, Yang Y, Ma B, Huang T, Chen S, Zhang H. Ecological evolution of algae in connected reservoirs under the influence of water transfer: Algal density, community structure, and assembly processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170086. [PMID: 38232825 DOI: 10.1016/j.scitotenv.2024.170086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Reservoir connectivity provides a solution for regional water shortages. Understanding the water quality of reservoirs and the response of algal communities to water transfer could provide the basis for a long-term evolutionary model of reservoirs. In this study, a water-algal community model was established to study the effects of water transfer on water quality and algal communities in reservoirs. The results showed that water transfer significantly decreased total nitrogen and nitrate concentrations. However, the water transfer resulted in an increase in the CODMn concentration and conductivity in the receiving reservoir. Additionally, the algal density and chlorophyll-a (chl-a) concentration showed an increase with water transfer. Bacillariophyta, Cyanophyta, and Chlorophyta were the dominant algal phyllum in all three reservoirs. Water transfer induced the evolution of the algal community by driving changes in the chemical parameters of the receiving reservoir and led to more complex relationships within the algal community. The effects of stochastic processes on algal communities were also enhanced in the receiving reservoirs. These results provide specific information for water quality safety management and eutrophication prevention in connected reservoirs.
Collapse
Affiliation(s)
- Xiang Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Yutong Song
- School of Future Technology, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tongchao Ni
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Yansong Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Ben Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Shengnan Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| |
Collapse
|
10
|
Zhang H, Pan S, Ma B, Huang T, Kosolapov DB, Ma M, Liu X, Liu H, Liu X. Multivariate statistical and bioinformatic analyses for the seasonal variations of actinobacterial community structures in a drinking water reservoir. J Environ Sci (China) 2024; 137:1-17. [PMID: 37979999 DOI: 10.1016/j.jes.2023.02.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 11/20/2023]
Abstract
Actinobacterial community is a conspicuous part of aquatic ecosystems and displays an important role in the case of biogeochemical cycle, but little is known about the seasonal variation of actinobacterial community in reservoir ecological environment. In this study, the high-throughput techniques were used to investigate the structure of the aquatic actinobacterial community and its inducing water quality parameters in different seasons. The results showed that the highest diversity and abundance of actinobacterial community occurred in winter, with Sporichthya (45.42%) being the most abundant genus and Rhodococcus sp. (29.32%) being the most abundant species. Network analysis and correlation analysis suggested that in autumn the dynamics of actinobacterial community were influenced by more factors and Nocardioides sp. SX2R5S2 was the potential keystone species which was negatively correlated with temperature (R = -0.72, P < 0.05). Changes in environmental factors could significantly affect the changes in actinobacterial community, and the dynamics of temperature, dissolved oxygen (DO), and turbidity are potential conspicuous factors influencing seasonal actinobacterial community trends. The partial least squares path modeling further elucidated that the combined effects of DO and temperature not only in the diversity of actinobacterial community but also in other water qualities, while the physiochemical parameters (path coefficient = 1.571, P < 0.05) was strong environmental factors in natural mixture period. These results strengthen our understanding of the dynamics and structures of actinobacterial community in the drinking water reservoirs and provide scientific guidance for further water quality management and protection in water sources.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl, 152742, Russia
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
11
|
Modra H, Ulmann V, Gersl M, Babak V, Konecny O, Hubelova D, Caha J, Kudelka J, Falkinham JO, Pavlik I. River Sediments Downstream of Villages in a Karstic Watershed Exhibited Increased Numbers and Higher Diversity of Nontuberculous Mycobacteria. MICROBIAL ECOLOGY 2023; 87:15. [PMID: 38102317 PMCID: PMC10724323 DOI: 10.1007/s00248-023-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The impact of residential villages on the nontuberculous mycobacteria (NTM) in streams flowing through them has not been studied in detail. Water and sediments of streams are highly susceptible to anthropogenic inputs such as surface water flows. This study investigated the impact of seven residential villages in a karst watershed on the prevalence and species spectrum of NTM in water and sediments. Higher NTM species diversity (i.e., 19 out of 28 detected) was recorded downstream of the villages and wastewater treatment plants (WWTPs) compared to sampling sites upstream (i.e., 5). Significantly, higher Zn and lower silicon concentrations were detected in sediments inside the village and downstream of the WWTP's effluents. Higher phosphorus concentration in sediment was downstream of WWTPs compared to other sampling sites. The effluent from the WWTPs had a substantial impact on water quality parameters with significant increases in total phosphorus, anions (Cl-and N-NH3-), and cations (Na+ and K+). The results provide insights into NTM numbers and species diversity distribution in a karst watershed and the impact of urban areas. Although in this report the focus is on the NTM, it is likely that other water and sediment microbes will be influenced as well.
Collapse
Affiliation(s)
- Helena Modra
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vit Ulmann
- Public Health Institute Ostrava, Partyzanske Nam. 7, 702 00, Ostrava, Czech Republic
| | - Milan Gersl
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vladimir Babak
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Ondrej Konecny
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dana Hubelova
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Caha
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Kudelka
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | | | - Ivo Pavlik
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
12
|
Spencer-Williams I, Meyer M, DePas W, Elliott E, Haig SJ. Assessing the Impacts of Lead Corrosion Control on the Microbial Ecology and Abundance of Drinking-Water-Associated Pathogens in a Full-Scale Drinking Water Distribution System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20360-20369. [PMID: 37970641 DOI: 10.1021/acs.est.3c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Increases in phosphate availability in drinking water distribution systems (DWDSs) from the use of phosphate-based corrosion control strategies may result in nutrient and microbial community composition shifts in the DWDS. This study assessed the year-long impacts of full-scale DWDS orthophosphate addition on both the microbial ecology and density of drinking-water-associated pathogens that infect the immunocompromised (DWPIs). Using 16S rRNA gene amplicon sequencing and droplet digital PCR, drinking water microbial community composition and DWPI density were examined. Microbial community composition analysis suggested significant compositional changes after the orthophosphate addition. Significant increases in total bacterial density were observed after orthophosphate addition, likely driven by a 2 log 10 increase in nontuberculous mycobacteria (NTM). Linear effect models confirmed the importance of phosphate addition with phosphorus concentration explaining 17% and 12% of the variance in NTM and L. pneumophila density, respectively. To elucidate the impact of phosphate on NTM aggregation, a comparison of planktonic and aggregate fractions of NTM cultures grown at varying phosphate concentrations was conducted. Aggregation assay results suggested that higher phosphate concentrations cause more disaggregation, and the interaction between phosphate and NTM is species specific. This work reveals new insight into the consequences of orthophosphate application on the DWDS microbiome and highlights the importance of proactively monitoring the DWDS for DWPIs.
Collapse
Affiliation(s)
- Isaiah Spencer-Williams
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mitchell Meyer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - William DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Emily Elliott
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
13
|
Yang S, Huang T, Zhang H, Guo H, Xu J, Cheng Y. Pollutants reduction via artificial mixing in a drinking water reservoir: Insights into bacterial metabolic activity, biodiversity, interactions and co-existence of core genera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165473. [PMID: 37454840 DOI: 10.1016/j.scitotenv.2023.165473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Endogenous pollution due to long periods of hypolimnetic anoxia in stratified reservoirs has become a worldwide concern, which can threaten metabolic activity, biodiversity, water quality security, and ultimately human health. In the present study, an artificial mixing system applied in a drinking water reservoir was developed to reduce pollutants, and the biological mechanism involved was explored. After approximately 44 days of system operation, the reservoir content was completely mixed resulting in the disappearance of anoxic layers. Furthermore, the metabolic activity estimated by the Biolog-ECO microplate technique and biodiversity was enhanced. 16S rRNA gene sequencing indicated a great variability on the composition of bacterial communities. Co-occurrence network analysis showed that interactions among bacteria were significantly affected by the proposed mixing system. Bacteria exhibited a more mutualistic state and >10 keystone genera were identified. Pollutants, including nitrogen, phosphorus, organic matter, iron, and manganese decreased by 30.63-80.15 %. Redundancy discriminant analysis revealed that environmental factors, especially the temperature and dissolved oxygen, were crucial drivers of the bacterial community structure. Furthermore, Spearman's correlation analysis between predominant genera and pollutants suggested that core genus played a vital role in pollutant reduction. Overall, our findings highlight the importance and provide insights on the artificial mixing systems' microbial mechanisms of reducing pollutants in drinking water reservoirs.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
14
|
Yang S, Huang T, Zhang H, Guo H, Hu R, Lin Z, Li Y, Cheng Y. Activation of indigenous denitrifying bacteria and enhanced nitrogen removal via artificial mixing in a drinking water reservoir: Insights into gene abundance, community structure, and co-existence model. ENVIRONMENTAL RESEARCH 2023; 236:116830. [PMID: 37543131 DOI: 10.1016/j.envres.2023.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Nitrogen pollution poses a severe threat to aquatic ecosystems and human health. This study investigated the use of water lifting aerators for in situ nitrogen reduction in a drinking water reservoir. The reservoir was thoroughly mixed and oxygenated after using water-lifting aerators for 42 days. The average total nitrogen concentration, nitrate nitrogen, and ammonium nitrogen-in all water layers-decreased significantly (P < 0.01), with a reduction efficiency of 35 ± 3%, 34 ± 2%, and 70 ± 6%, respectively. Other pollutants, including organic matter, phosphorus, iron, and manganese, were also effectively removed. Quantitative polymerase chain reactions indicated that bacterial nirS gene abundance was enhanced 26.34-fold. High-throughput sequencing, phylogenetic tree, and network analysis suggested that core indigenous nirS-type denitrifying bacteria, such as Dechloromonas, Simplicispira, Thauera, and Azospira, played vital roles in nitrogen and other pollutant removal processes. Furthermore, structural equation modeling revealed that nitrogen removal responded positively to WT, DO, and nirS gene abundance. Our findings provide a promising strategy for nitrogen removal in oligotrophic drinking water reservoirs with carbon deficiencies.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruzhu Hu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zishen Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yanqing Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
15
|
Guo H, Zhangsun X, Li N, Liu X, Zhang H, Huang T. Enhanced nitrogen removal of micropolluted source waterbodies using an iron activated carbon system with siliceous materials: Insights into metabolic activity, biodiversity, interactions of core genus and co-existence. BIORESOURCE TECHNOLOGY 2023; 387:129656. [PMID: 37595809 DOI: 10.1016/j.biortech.2023.129656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Aerobic denitrification technology can effectively abate the nitrogen pollution of water source reservoirs. In this study, 40% siliceous material was used as the carrier to replace the activated carbon in Fe/C material to enhance denitrification and purify water. The removal efficiency of new material for target pollutants were nitrate nitrogen (95.68%), total phosphorus (68.23%) and chemical oxygen demand (46.20%). Aerobic denitrification of water samples and anaerobic denitrification of sediments in three systems jointly assisted nitrogen removal. In a reactor with new material, diversity and richness of denitrifying bacterial communities were enhanced, and the symbiotic structure of aerobic denitrifying bacteria was more complex (Bacillus and Mycobacteria as the dominant bacteria); the microbial distribution better matched the Zif and Mandelbrot models. This system significantly increased the abundance of key enzymes in water samples. The new material effectively removed pollutants and represents a promising and innovative in-situ remediation method for reservoirs.
Collapse
Affiliation(s)
- Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuanzi Zhangsun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Na Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
16
|
Chen S, Liu H, Zhang H, Li K, Wang N, Sun W, Liu X, Niu L, Ma B, Yang F, Li H, Zhao D, Xing Y. Temporal patterns of algae in different urban lakes and their correlations with environmental variables in Xi'an, China. J Environ Sci (China) 2023; 133:138-151. [PMID: 37451783 DOI: 10.1016/j.jes.2022.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 07/18/2023]
Abstract
Urban lakes were critical in aquatic ecology environments, but how environmental factors affected the distribution and change characteristics of algal communities in urban lakes of Xi'an city was not clearly. Here, we investigated the algal community structure of six urban lakes in Xi'an and evaluated the effects of water quality parameters on algae. The results indicated that the significant differences on physicochemical parameters existed in different urban lakes. The maximum concentration of total phosphorus in urban lakes was (0.18 ± 0.01) mg/L and there was a phenomenon of phosphorus limitation. In addition, 51 genera of algae were identified and Chlorella sp. was the dominant algal species, which was affiliated with Chlorophyta. Network analysis elucidated that each lake had a unique algal community network and the positive correlation was dominant in the interaction between algae species, illustrating that mature microbial communities existed or occupied similar niches. Redundancy analysis illustrated that environmental factors explained 47.35% variance of algal species-water quality correlation collectively, indicating that water quality conditions had a significant influence on the temporal variations of algae. Structural equation model further verified that algal community structure was directly or indirectly regulated by different water quality conditions. Our study shows that temporal patterns of algal communities can reveal the dynamics and interactions of different urban ecosystem types, providing a theoretical basis for assessing eutrophication levels and for water quality management.
Collapse
Affiliation(s)
- Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Na Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Xing
- Shaanxi Environmental Monitoring Center, Xi'an 710054, China
| |
Collapse
|
17
|
Zhang Y, Wang M, Cheng W, Huang C, Ren J, Zhai H, Niu L. Temporal and Spatial Variation Characteristics and Influencing Factors of Bacterial Community in Urban Landscape Lakes. MICROBIAL ECOLOGY 2023; 86:2424-2435. [PMID: 37272971 DOI: 10.1007/s00248-023-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Urban landscape lakes are closely related to human activity, but there are limited studies on their bacterial community characteristics and risks to human health. In this study, four different types of urban landscape lakes in Xi'an were selected, and the bacterial community structures in different seasons were analyzed by Illumina Nova high-throughput sequencing technology. Seasonal variations in bacterial communities were analyzed by linear discriminant analysis, STAMP difference analysis, and nonmetric multidimensional scaling. Redundancy analysis was used to investigate the influencing factors. Furthermore, the metabolic functions of bacterial communities were predicted by Tax4Fun. There were clear seasonal differences in the α-diversity of bacteria, with bacterial diversity being higher in winter than in summer in the four urban landscape lakes, and the diversity of different water sources was different; the distributions of Proteobacteria, Actinobacteria, Chloroflexi, and Verrucomicrobia had significant seasonal differences; and the dominant bacteria at the genus level had obvious temporal and spatial differences. Furthermore, a variety of environmental factors had an impact on bacterial communities, and temperature, DO, and nitrogen were the primary factors affecting the seasonal variation in bacteria. There are also significant seasonal differences in the metabolic functions of bacterial communities. These results are helpful for understanding the current status of bacteria in the aquatic environments of such urban landscape lakes.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China.
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China.
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Chen Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Jiehui Ren
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Hongqin Zhai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Li Niu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
18
|
Zheng S, Lin T, Chen H, Zhang X, Jiang F. Characterization of young biofilm morphology, disinfection byproduct formation potential and toxicity of renewed water supply pipelines by phosphorus release from corroded pipes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163813. [PMID: 37121323 DOI: 10.1016/j.scitotenv.2023.163813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
The deterioration of drinking water quality due to corrosion of the water supply network has become inevitable and regular renewal of pipes has become a common means of doing so. Severely corroded pipes release certain nutrients (e.g., elemental phosphorus), however, little has been reported on the effect of old pipes on the young biofilm of new pipe sections and on ensuring water safety in the early stages of the water supply. The aim of our study was to model the effect of key phosphorus nutrients released from corroded old pipes on the morphological characteristics of young biofilms in new pipe sections, mediated disinfection byproducts (DBPs) production and their combined toxicity. Based on the experimental results, phosphorus showed significant differences in the morphological characteristics, spatial structure of extracellular polymers (EPS), functional abundance, disinfection byproduct formation potential (DBPsFP) and toxicity of young biofilms. Under residual chlorine (1.0 ± 0.2 mg/L) incubation, the functional abundance of young biofilm metabolism was dominant, particularly amino acid metabolism and carbohydrate metabolism. There is a dynamic balance between the trophic and shedding effects of phosphorus, where concentration changes affect young biofilm morphology and DBPFP. Relatively moderate phosphorus concentrations resulted in the highest density of PN/PS organic precursors in EPS and a clear advantage of DBPFP; relatively high phosphorus conditions had limited promotion of young biofilm, while membrane structure shedding was more pronounced, increasing young biofilm-mediated DBPs production. Nitrogen-containing disinfection byproducts (N-DBPs) in young biofilms had a clear toxicity advantage, with HANs and HNMs being key to controlling cytotoxicity and genotoxicity, respectively.
Collapse
Affiliation(s)
- Songyuan Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Zhang
- Suzhou Water Supply Company, Suzhou 215002, China
| | - Fuchun Jiang
- Suzhou Water Supply Company, Suzhou 215002, China
| |
Collapse
|
19
|
Bhattacharjee A, Sarma S, Sen T, Devi MV, Deka B, Singh AK. Genome mining to identify valuable secondary metabolites and their regulation in Actinobacteria from different niches. Arch Microbiol 2023; 205:127. [PMID: 36944761 DOI: 10.1007/s00203-023-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
Actinobacteria are the largest bacteria group with 18 significant lineages, which are ubiquitously distributed in all the possible terrains. They are known to produce more than 10,000 medically relevant compounds. Despite their ability to make critical secondary metabolites and genome sequences' availability, these two have not been linked with certainty. With this intent, our study aims at understanding the biosynthetic capacity in terms of secondary metabolite production in 528 Actinobacteria species from five different habitats, viz., soil, water, plants, animals, and humans. In our analysis of 9,646 clusters of 59 different classes, we have documented 64,000 SMs, of which more than 74% were of unique type, while 19% were partially conserved and 7% were conserved compounds. In the case of conserved compounds, we found the highest distribution in soil, 79.12%. We found alternate sources of antibiotics, such as viomycin, vancomycin, teicoplanin, fosfomycin, ficellomycin and patulin, and antitumour compounds, such as doxorubicin and tacrolimus in the soil. Also our study reported alternate sources for the toxin cyanobactin in water and plant isolates. We further analysed the clusters to determine their regulatory pathways and reported the prominent presence of the two component system of TetR/AcrR family, as well as other partial domains like CitB superfamily and HTH superfamily, and discussed their role in secondary metabolite production. This information will be helpful in exploring Actinobacteria from other environments and in discovering new chemical moieties of clinical significance.
Collapse
Affiliation(s)
- Abhilash Bhattacharjee
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
- Department of Botany, Dibrugarh Hanumanbax Surajmall Kanoi College, Dibrugarh, 786001, Assam, India
| | - Sangita Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Tejosmita Sen
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Moirangthem Veigyabati Devi
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Banani Deka
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India.
| |
Collapse
|
20
|
Zhang H, Li H, Ma M, Ma B, Liu H, Niu L, Zhao D, Ni T, Yang W, Yang Y. Nitrogen reduction by aerobic denitrifying fungi isolated from reservoirs using biodegradation materials for electron donor: Capability and adaptability in the lower C/N raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161064. [PMID: 36565869 DOI: 10.1016/j.scitotenv.2022.161064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Biological denitrification was considered an efficient and environmentally friendly way to remove the nitrogen in the water body. However, biological denitrification showed poor nitrogen removal performance due to the lack of electron donors in the low C/N water. In this study, three novel aerobic denitrifying fungi (Trichoderma sp., Penicillium sp., and Fusarium sp.) were isolated and enhanced the performance of aerobic denitrification of fungi in low C/N water bodies combined with polylactic acid/polybutylene adipate-co-terephthalate (PLA/PBAT). In this work, the aerobic denitrifying fungi seed were added to denitrifying liquid medium and mixed with PLA/PBAT. The result showed that Trichoderma sp., Penicillium sp., and Fusarium sp. could reduce 89.93 %, 89.20 %, and 87.76 % nitrate. Meanwhile, the nitrate removal efficiency adding PLA/PBAT exceeded 1.40, 1.68, and 1.46 times that of none. The results of material characterization suggested that aerobic denitrifying fungi have different abilities to secrete proteases or lipases to catalyze ester bonds in PLA/PBAT and utilize it as nutrients in denitrification, especially in Penicillium brasiliensis D6. Besides, the electron transport system activity and the intracellular ATP concentration were increased significantly after adding PLA/PBAT, especially in Penicillium brasiliensis D6. Finally, the highest removal efficiency of total nitrogen in landscape water by fungi combined with PLA/PBAT was >80 %. The findings of this work provide new insight into the possibility of nitrogen removal by fungi in low C/N and the recycling of degradable resources.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; An De College, Xi'an University of Architecture and Technology, Xi'an 710311, China
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tongchao Ni
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
21
|
Liu H, Chen S, Zhang H, Wang N, Ma B, Liu X, Niu L, Yang F, Xu Y, Zhang X. Effects of copper sulfate algaecide on the cell growth, physiological characteristics, the metabolic activity of Microcystis aeruginosa and raw water application. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130604. [PMID: 37056015 DOI: 10.1016/j.jhazmat.2022.130604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 06/19/2023]
Abstract
Harmful cyanobacteria blooms (HCBs) occurred frequently and become a serious scientific challenge. Copper sulfate (CuSO4) is a broad-spectrum chemical algaecide to control algae blooms. Herein, the Microcystis aeruginosa was exposed to different CuSO4 (0.0, 0.2 and 0.5 mg/L) to assess the variations in algal physiological process and metabolic profiles. The results indicated that exposure to CuSO4 of 0.5 mg/L at 72 h could significantly inhibit the cell growth and photosynthetic capacity of M. aeruginosa, including chl-a content and chlorophyll fluorescence parameters. Plasma membrane damage causing cell lysis of M. aeruginosa increased the K+ release. The increase of SOD and CAT suggested that CuSO4 treatment caused oxidative stress in algal cells. Different doses of CuSO4 modified the carbon metabolic potential, algal cells had their unique metabolic mode thereby. Moreover, the research further verified that CuSO4 would also inhibit algal growth and change algal community structure in site-collected water application. Overall, laboratory results of M. aeruginosa to CuSO4 and site-collected water application of algal responses to CuSO4 might be conducive to uncovering the controlling mechanism of algae and the potential effect of carbon cycling in an ecological environment.
Collapse
Affiliation(s)
- Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Na Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Xu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoli Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
22
|
Zhao N, Cao R, Han J, Wang S, Xu H, Wang J, Huang T, Wen G. The change of amino acids samples under metalimnetic oxygen minimum condition: Characterization and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130591. [PMID: 37055995 DOI: 10.1016/j.jhazmat.2022.130591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
The metalimnetic oxygen minimum (MOM) is a common anaerobic phenomenon that occur between 5.00 and 40.00 m of reservoirs. Amino acids (AAs) are widely found in water, but their change in MOM remain unclear. In this study, four AAs with different side chain groups were selected to explore the change of their samples and related disinfection by-products formation potential (DBPFPs) under MOM condition. The results showed that the final degradation rate of dissolved organic carbon and dissolved organic nitrogen of four AAs samples were 11.71%-59.87% and 26.50%-100.00% under MOM condition. Aspartic acid samples were the easiest to be degraded, whereas glycine samples were the opposite. While the total fluorescence intensity increased by 6.30%-113.40% for the appearance of tryptophan-like substance. The total DBPFPs of glutamic acid, arginine and aspartic acid samples were finally decreased by 4.73%, 8.00% and 98.88% (glycine sample increased by 2.30 times). Compared with the surface condition, the degradation of AAs samples and the change of DBPFPs were significantly inhibited under MOM condition. In addition, the diversities of bacterial communities were significantly reduced under MOM condition, which was very unfavorable to the degradation of AAs samples, and in turn affected the control of DBPs and deteriorated the water quality.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingru Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shuo Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
23
|
Zhang H, Yang W, Ma B, Liu X, Huang T, Niu L, Zhao K, Yang Y, Li H. Aerobic denitrifying using actinobacterial consortium: Novel denitrifying microbe and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160236. [PMID: 36427714 DOI: 10.1016/j.scitotenv.2022.160236] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The aerobic denitrifying capacity of actinomycete strain has been investigated recently, while little is known about nitrogen and carbon substrate removal by mix-cultured aerobic denitrifying actinobacteria (Mix-CADA) community. Hence, three Mix-CADA consortiums, named Y23, X21, and Y27, were isolated from urban lakes to investigate their aerobic denitrification capacity, and their removal efficiency for nitrate and dissolved organic carbon were >97 % and 90 %, respectively. Illumina Miseq sequencing revealed that Streptomyces was the most dominant genus in the Mix-CADA consortium. Network analysis indicated that Streptomyces exfoliates, as the core species in the Mix-CADA consortium, majorly contributed to dissolved organic carbon and total nitrogen reduction. Moreover, the three Mix-CADA consortiums could remove 78 % of the total nitrogen and 61 % of the permanganate index from the micro-polluted l water. Meanwhile, humic-like was significantly utilized by three Mix-CADA consortiums, whereas Mix-CADA Y27 could also utilize aromatic protein and soluble microbial by-product-like in the micro-polluted raw water purification. In summary, this study will offer a novel perspective for the purification of micro-polluted raw water using the Mix-CADA consortium.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
24
|
Zhang B, Chen L, Guo Q, Zhang Z, Lian J. Characteristics of nitrogen distribution and its response to microecosystem changes in green infrastructure with different woody plants. CHEMOSPHERE 2023; 313:137371. [PMID: 36436579 DOI: 10.1016/j.chemosphere.2022.137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
With the acceleration of urbanization, N pollution in rainfall runoff has become the primary cause of eutrophication. In order to control N pollution in rainfall runoff, green infrastructure (GI) has been widely implemented. However, little is known about the process through which plants, especially woody plants, affect N distribution and the microecosystem in GI. Limited information suggests that woody plants mainly affect N distribution and alter the microecosystem through the influence of their roots. Therefore, laboratory tests were conducted to investigate the roles of the taproot plant Sophora japonica and the fibrous root plant Malus baccata and the resultant changes at the microecosystem level regarding N removal in a column-scale GI. After one year of growth, analysis of the morphological traits of the roots revealed that the average root length and diameter of S. japonica were approximately 2.3 and 1.8 times greater than those of M. baccata, respectively. An investigation of microbial diversity revealed that in comparison to the control GI system without plants, the GI systems with S. japonica and M. baccata hosted 45.68% and 59.88% more Actinobacteria, respectively. Further, the soil urease (S-UE) activities in the GI systems with S. japonica and M. baccata were 13.6% and 98.8% higher than that in the control, respectively, and the soil acid protease (S-ALPT) activities were 20.5% and 25.4% higher than that in the control, respectively. Compared to the control and the S. japonica GI system, the NH3-N content in the soil of the M. baccata GI was 94.4% and 15.2% lower, respectively, and the NO3-N content was 57.3% and 12.7% lower, respectively. The M. baccata GI system had the lowest NH3-N and NO3-N contents because it was most abundant in Actinobacteria and Arthrobacter and had the highest S-UE and S-ALPT activities. The results may be useful for improving N removal in GI containing different woody plants, and by extension for improving control of N pollution from rainfall runoff.
Collapse
Affiliation(s)
- Bei Zhang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, PR China; School of Civil Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Liang Chen
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, PR China; School of Civil Engineering, Tianjin University, Tianjin, 300072, PR China.
| | - Qizhong Guo
- Department of Civil and Environmental Engineering, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Zhaoxin Zhang
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, PR China
| | - Jijian Lian
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, PR China; School of Civil Engineering, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
25
|
Zhang H, Yang Y, Liu X, Huang T, Ma B, Li N, Yang W, Li H, Zhao K. Novel insights in seasonal dynamics and co-existence patterns of phytoplankton and micro-eukaryotes in drinking water reservoir, Northwest China: DNA data and ecological model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159160. [PMID: 36195142 DOI: 10.1016/j.scitotenv.2022.159160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Although associations between phytoplankton and micro-eukaryotes have been studied in aquatic ecosystems, there are still knowledge gaps in comprehending their dynamics and interactions in drinking water reservoirs. Here, the seasonal dynamics of phytoplankton and micro-eukaryotic diversities and their co-existence patterns were studied in a drinking water reservoir, Northwest China. The highest phytoplankton diversity was observed in summer, and Chlorella sp. that belongs to Chlorophyta was the most abundant genus. The highest eukaryotic diversity was also detected in summer, and Rimostrombidium sp. that belongs to Ciliophora was the most dominant genus. Mantel test showed that the phytoplankton diversity was significantly correlated with ammonia nitrogen (r = 0.561, p = 0.001) and dissolved organic carbon (r = 0.267, p = 0.017), while the eukaryotic diversity was significantly associated with ammonia nitrogen (r = 0.265, p = 0.034) and temperature (r = 0.208, p = 0.046). PLS-PM (Partial Least Squares Path Modeling) further revealed that nutrients (P < 0.01) significantly affected the phytoplankton diversity, while nutrients (P < 0.01) and temperature (P < 0.01) significantly influenced the eukaryotic diversity. Co-occurrence network displayed the primarily positive interactions (77.66% positive and 22.34% negative) between phytoplankton and micro-eukaryotes. These findings could deepen our understanding of interactions between phytoplankton and micro-eukaryotes and their driving factors under changing aquatic environments of drinking water reservoirs.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
26
|
Li J, Zhai Y, Ge G, Xu Y, Wang C, Hu A, Han Y, Shan N, Liu B, Chen J, Wang W. Bacterial Community Composition and Function of Tropical River Ecosystem along the Nandu River on Hainan Island, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:382. [PMID: 36612703 PMCID: PMC9819888 DOI: 10.3390/ijerph20010382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Microorganisms play a pivotal role in nutrient cycling in aquatic ecosystems. Understanding bacterial diversity and its functional composition are crucial for aquatic ecology and protection. We investigated the bacterial community structure using 16S rRNA gene amplicons high-throughput sequencing in this study. Results showed that 105 amplicon sequence variants (ASVs) account for 43.8% of the total sequences shared by the Nandu River's lower, middle, and upper reach and the Songtao Reservoir. The dominant bacterial phylum in the Nandu River and its connected Songtao Reservoir were Proteobacteria and Actinobacteriota, respectively. The highest Chao1 and Shannon index values were found in the lower reach of the Nandu River. Beta diversity analysis showed the divergence in bacterial communities in the Nandu River and Songtao Reservoir, but not in different reaches. Among the water properties, based on the Mantel test, dissolved oxygen, total nitrogen, and nitrite significantly affected the bacterial communities. The functional profiles predicted by Tax4Fun2 showed that metabolism was the most abundant function group. The relative abundance of genetic information processing was significantly higher in the Songtao Reservoir than in the Nandu River, while the relative abundance of human diseases was significantly lower in the Songtao Reservoir than in the Nandu River. The appearance of the xenobiotics biodegradation and metabolism function group requires us to pay more attention to possible water pollution, especially at the upper reach of the Nandu River.
Collapse
Affiliation(s)
- Jinbiao Li
- School of Geographic Science, Nantong University, Nantong 226019, China
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Yangni Zhai
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Guojian Ge
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Yang Xu
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Can Wang
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Anyong Hu
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Yujie Han
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Nan Shan
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Bo Liu
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Jinlin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wenlin Wang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| |
Collapse
|
27
|
Shi J, Wang L, Yang Y, Huang T. A case study of thermal and chemical stratification in a drinking water reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157787. [PMID: 35931156 DOI: 10.1016/j.scitotenv.2022.157787] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Thermal stratification has an important impact on the cycling of reservoir water quality. Uneven vertical distribution of water quality factors, such as dissolved oxygen and nutrients, occurs during seasonal stratification, which creates chemical stratification. Typically, thermocline and chemocline characteristics vary across different reservoirs. In this study, a field study was conducted in the Zhoucun Reservoir (ZCR), China, to investigate the variation in water quality during periods of thermal stratification. The results revealed the maximum water depth as 15 m at 122 mamsl, which is relatively shallow for stratified reservoirs. However, an extremely high thermocline strength index (TSI) was recorded, which indicates that the thermal stratification of ZCR water is very stable, contrary to our common understanding that stratification is more obvious at greater water depths. The chemical stratification strength index (IC-i) was compared with the TSI and the relative water column stability (RWCS). The TSI had a high correlation with IC-i, which explains the high stability of ZCR chemical stratification. Moreover, it highlights the suitability of TSI for characterising the chemical stability of reservoir stratification. Finally, this study also found that the formation and disappearance of thermal and chemical stratification in the ZCR were synchronous. As stratification directly influences a reservoir water quality regime, this study may be a helpful reference for optimising water quality management.
Collapse
Affiliation(s)
- Jianchao Shi
- School of Civil Engineering, Yantai University, Qingquan Road No. 30, Yantai 264005, China
| | - Lianxiang Wang
- School of Civil Engineering, Yantai University, Qingquan Road No. 30, Yantai 264005, China
| | - Yongrui Yang
- School of Civil Engineering, Yantai University, Qingquan Road No. 30, Yantai 264005, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of 11 Architecture and Technology, Xi'an 710055, China; School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yanta Road No. 13, Xi'an 710055, China.
| |
Collapse
|
28
|
Huang T, Wen C, Wang S, Wen G, Li K, Zhang H, Wang Z. Controlling spring Dinoflagellate blooms in a stratified drinking water reservoir via artificial mixing: Effects, mechanisms, and operational thresholds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157400. [PMID: 35850327 DOI: 10.1016/j.scitotenv.2022.157400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Water-lifting aerators (WLAs) are often applied in stratified reservoirs to activate artificial mixing to inhibit harmful algal blooms (HABs). Here, the effects, mechanisms, and operational thresholds of spring Dinoflagellate control via artificial mixing were studied using a combination of taxonomic and functional groups and boundary line models. Algal cell density at two sampling sites (i.e., S1 and S2) decreased to below 1.0 × 106 cells/L (corresponding chlorophyll-a content under 10 μg/L) during artificial mixing, with a Dinoflagellate removal efficiency of 97.1 % at S1 and 95.5 % at S2, respectively. The succession patterns of main phytoplankton taxonomic and functional groups changed greatly during artificial mixing at the sites: from Dinoflagellate and motile Chlorophyta to Bacillariophyta from groups A/LO/P to A, respectively. Water temperature (WT), light availability (Zeu/Zmix), and mixing depth (Zmix) were more effective factors influencing phytoplankton dynamics at a short-term scale, followed by total phosphorus (TP). A decrease in surface WT and Zeu/Zmix, and increase in Zmix alongside the improvement of TP levels, which were induced by WLAs, drove the Dinoflagellate bloom control by a shift of phytoplankton structure from large, motile, and low surface to volume ratio (S/V) to small, immobile, and high S/V algae. The operational threshold values of WT, Zeu/Zmix, Zmix and TP concentration for the suppression of Dinoflagellate growth using mixing systems are recommended as 9.6 °C, 0.17, 11.5 m, and 0.020 mg/L, respectively, based on a boundary line analysis. This work can help improve the cognition of mechanisms controlling HABs using mixing and aeration techniques in reservoirs.
Collapse
Affiliation(s)
- Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chengcheng Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sai Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhi Wang
- Lijiahe Reservoir management Co., Ltd., Xi'an 710016, China
| |
Collapse
|
29
|
Zhang H, Zhao K, Liu X, Chen S, Huang T, Guo H, Ma B, Yang W, Yang Y, Liu H. Bacterial community structure and metabolic activity of drinking water pipelines in buildings: A new perspective on dual effects of hydrodynamic stagnation and algal organic matter invasion. WATER RESEARCH 2022; 225:119161. [PMID: 36191525 DOI: 10.1016/j.watres.2022.119161] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Eutrophication and algal blooms have become global issues. The drinking water treatment process suffers from pollution by algal organic matter (AOM) through cell lysis during the algal blooms. Nevertheless, it remains unclear how AOM invasion affects water quality and microbial communities in drinking water, particularly in the stagnant settings. In this study, the addition of AOM caused the residual chlorine to rapidly degrade and below the limit of 0.05 mg/L, while the NO2--N concentration ranged from 0.11 to 3.71 mg/L. Additionally, total bacterial counts increased and subsequently decreased. The results of Biolog demonstrated that the AOM significantly improved the utilization capacity of carbon sources and changed the preference for carbon sources. Full-length 16S rRNA gene sequencing and network modeling revealed a considerable reduction in the abundance of Proteobacteria, whereas that of Bacteroidetes increased significantly under the influence of AOM. Furthermore, the species abundance distributions of the Microcystis group and Scenedesmus group was most consistent with the Mandelbrot model. According to redundancy analysis and structural equation modeling, the bacterial community structure of the control group was most positively regulated by the free residual chlorine concentrations, whereas the Microcystis group and Scenedesmus group were positively correlated with the total organic carbon (TOC) concentration. Overall, these findings provide a scientific foundation for the evolution of drinking water quality under algae bloom pollution.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
30
|
Lv S, Li X, Wang R, Wang Y, Dong Z, Zhou T, Liu Y, Lin K, Liu L. Autochthonous sources and drought conditions drive anomalous oxygen-consuming pollution increase in a sluice-controlled reservoir in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156739. [PMID: 35716740 DOI: 10.1016/j.scitotenv.2022.156739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Freshwater reservoirs are an important type of inland waterbody. However, they can suffer from oxygen-consuming pollution, which can seriously threaten drinking water safety and negatively impact the health of aquatic ecosystems. Oxygen-consuming pollutants originate from both allochthonous and autochthonous sources, and have temporally and spatially heterogeneous drivers. Datanggang Reservoir, China, is located in a small agricultural watershed; it is controlled by multiple sluice gates. Anomalously high oxygen consumption indicators were observed in this reservoir in March 2021. Here, it was hypothesized that autochthonous sources were the primary drivers of oxygen-consuming pollution in the reservoir under drought conditions. Datasets of water quality, precipitation, primary productivity, and sediment were used to analyze water quality trends in the reservoir and inflow rivers, demonstrating the effects of allochthonous inputs and autochthonous pollution. No correlation was found between reservoir oxygen consumption indicators and allochthonous inputs; reservoir oxygen consumption indicators and chlorophyll-a concentration were significantly positively correlated (p < 0.05). Substantially lower precipitation and higher water temperature and pH (compared to historical levels) were also observed before the pollution event. Therefore, during this period the hydrological conditions, water temperature, pH, and other variables caused by short-term drought conditions may have facilitated phytoplankton growth in the reservoir. This contributed to a large increase in autochthonous oxygen-consuming pollutants, as reflected by the abnormally high indicators. Sediments contaminated with organic matter may also have been an important contributor. As the effects of environmental management and pollution control continue to emerge, exogenous pollutants imported from the land to reservoirs are currently effectively controlled. However, endogenous pollutants driven by a variety of factors, such as meteorology and hydrology, will likely become the main drivers of short-term changes in oxygen-consuming pollution in freshwater reservoirs in the foreseeable future.
Collapse
Affiliation(s)
- Shucong Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinghua Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhaojun Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tianpeng Zhou
- Xiangshan Water Group Co., Ltd, Ningbo 315700, China
| | - Yunlong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kuixuan Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lusan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
31
|
Xu H, Liu W, Zhang S, Wei J, Li Y, Pei H. Cyanobacterial bloom intensities determine planktonic eukaryote community structure and stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156637. [PMID: 35697213 DOI: 10.1016/j.scitotenv.2022.156637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The intensity of cyanobacterial blooms that predominate in the world's lakes and reservoirs is variable, which may lead to differing effects on the freshwater ecosystem. Planktonic eukaryotes play key roles in the structure and function of freshwater ecosystems; however, little is known about the influence of cyanobacterial blooms on eukaryotic plankton communities and their function. Herein, the dynamics of eukaryotic plankton communities in Hongze Lake, which is the fourth largest freshwater lake in China, with a range of bloom levels occurred, from low to high, were studied to reveal the effect of cyanobacterial blooms' spatial heterogeneity on planktonic eukaryotes. Results showed that the diversity, richness, and evenness of eukaryotic plankton community were not affected by low level of bloom; however, they were decreased obviously by high level of bloom. Metazoa, Ochrophyta, Chloroplastida, Cryptomonadales, and Ciliophora were the main planktonic eukaryotes in this lake. Metazoa relative abundance declined 25.1% and relative abundance of eukaryotic phytoplankton (mainly Ochrophyta, Chloroplastida, and Cryptomonadales) and Ciliophora increased 17.4% and 2.0%, respectively, during the period with low level of bloom; conversely, the site with the high bloom level manifested the opposite changes. The linkage density of planktonic eukaryotic network was 0.188 and 0.138 with low and high level of bloom, respectively, indicating the stability of planktonic eukaryotes was lower when a high level of bloom occurred compared to that of a low bloom level. Our findings indicate that cyanobacterial blooms should be controlled at low level to avoid their obvious negative impact on microeukaryotes in lakes or reservoirs.
Collapse
Affiliation(s)
- Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Wei Liu
- Huai'an Hydrological Bureau, Huai'an 223005, China
| | - Shasha Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jielin Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yizhen Li
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China.
| |
Collapse
|
32
|
Zhang H, Shi Y, Ma B, Huang T, Zhang H, Niu L, Liu X, Liu H. Mix-cultured aerobic denitrifying bacteria augmented carbon and nitrogen removal for micro-polluted water: Metabolic activity, coexistence and interactions, and immobilized bacteria for reservoir raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156475. [PMID: 35660604 DOI: 10.1016/j.scitotenv.2022.156475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Less attention has been paid on the oligotrophic water body nitrogen treatment with mix-cultured aerobic denitrifying bacteria (Mix-CADB). In this study, three Mix-CADB communities were screened from the sediments of reservoirs. The nitrate and dissolved organic carbon (DOC) removal efficiencies of Mix-CADB communities were higher than 92 % and 91 %, respectively. Biolog results suggested that Mix-CADB communities displayed excellent carbon source metabolic activity. The nirS gene sequencing indicated that Pseudomonas sp. and Pseudomonas stutzeri accounted for more proportions in the core species of three Mix-CADB communities. The network model revealed that Pseudomonas sp. and Pseudomonas stutzeri mainly drove the total nitrogen and DOC removal of Mix-CADB communities. More importantly, the immobilized Mix-CADB communities could reduce >91 % nitrate in the adjusted reservoir raw water. Overall, this study showed that the three Mix-CADB communities could be regarded as potential candidates for the nitrogen treatment in oligotrophic water body ecosystems.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
33
|
Ma B, Zhang H, Huang T, Chen S, Sun W, Yang W, Liu H, Liu X, Niu L, Yang F, Yu J. Cooperation triggers nitrogen removal and algal inhibition by actinomycetes during landscape water treatment: Performance and metabolic activity. BIORESOURCE TECHNOLOGY 2022; 356:127313. [PMID: 35577220 DOI: 10.1016/j.biortech.2022.127313] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The actinomycetes strain Streptomyces sp. XD-11-9-3 and Streptomyces sp. 5 were isolated and presented poor denitrification performance. Co-culture of actinomycetes triggers nitrogen removal capacity under aerobic conditions (reduced 96% of total nitrogen). Nitrogen balance analysis presented that 71% of initial nitrogen converted as gaseous nitrogen. Moreover, co-culture increased the concentrations of adenosine triphosphate (>2.1 folds) and electron-transmission system activity (>1.5 folds) significantly. The co-culture presented excellent carbon source metabolism activity (especially amines and carboxylic acids) compared with monoculture. The removal efficiency of total nitrogen in the micro-polluted landscape water water reached 61% in the co-culture system, and the algal survival could be inhibited significantly. However, the dominant niche of the co-culture system restrained the diversity of the indigenous nirS-type denitrifying bacterial community. This study provided a novel pathway to the research of co-culture inefficiency aerobic denitrifier and further application in the restoration of polluted water.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jimeng Yu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
34
|
Hu T, Zhen L, Gu J, Wang X, Sun W, Song Z, Xie J, An L, Luo B, Qian X. Clarifying the beneficial effects of plant growth-promoting rhizobacteria for reducing abundances of antibiotic resistance genes during swine manure composting. BIORESOURCE TECHNOLOGY 2022; 353:127117. [PMID: 35395365 DOI: 10.1016/j.biortech.2022.127117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects on antibiotic resistance genes (ARGs) and the related mechanisms of different plant growth-promoting rhizobacteria (PGPR) inoculation strategies during composting: no inoculation (CK), inoculation in initial phase (T1), inoculation in cooling phase (T2), and inoculation in both initial and cooling phases (T3). After composting, the total relative abundances (RAs) of ARGs decreased by 0.26 and 0.03 logs under T3 and T2, respectively, but increased by 0.05 and 0.22 logs under T1 and CK. The abundances of eight ARGs were lowest under T3, including some high risk ARGs with clinical importance. Bioavailable Cu significantly affected the readily removed ARGs, and PGPR inoculation decreased the bioavailability of Cu. T3 reduced the abundances of potential pathogen hosts, inhibited horizontal gene transfer by reducing the RAs of mobile gene elements (0.48 logs), and downregulated the expression of genes related to ARG propagation, thereby decreasing the ecological risk of ARGs.
Collapse
Affiliation(s)
- Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lisha Zhen
- Shaanxi Province Microbiology Institute, Xian, Shaanxi 710043, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
35
|
Pierangeli GMF, Domingues MR, Choueri RB, Hanisch WS, Gregoracci GB, Benassi RF. Spatial Variation and Environmental Parameters Affecting the Abundant and Rare Communities of Bacteria and Archaea in the Sediments of Tropical Urban Reservoirs. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02047-z. [PMID: 35610383 DOI: 10.1007/s00248-022-02047-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities in freshwater sediments play an important role in organic matter remineralization, contributing to biogeochemical cycles, nutrient release, and greenhouse gases emissions. Bacterial and archaeal communities might show spatial or seasonal patterns and were shown to be influenced by distinct environmental parameters and anthropogenic activities, including pollution and damming. Here, we determined the spatial variation and the environmental variables influencing the abundant and rare bacterial and archaeal communities in the sediments of eutrophic-hypereutrophic reservoirs from a tropical urban area in Brazil. The most abundant microbes included mainly Anaerolineae and Deltaproteobacteria genera from the Bacteria domain, and Methanomicrobia genera from the Archaea domain. Microbial communities differed spatially in each reservoir, reflecting the establishment of specific environmental conditions. Locations with better or worst water quality, or close to a dam, showed more distinct microbial communities. Besides the water column depth, microbial communities were affected by some pollution indicators, including total phosphorus, orthophosphate, electrical conductivity, and biochemical oxygen demand. Distinct proportions of variation were explained by spatial and environmental parameters for each microbial community. Furthermore, spatial variations in environmental parameters affecting these communities, especially the most distinct ones, contributed to microbial variations mediated by spatial and environmental properties together. Finally, our study showed that different pressures in each reservoir affected the sediment microbiota, promoting different responses and possible adaptations of abundant and rare bacterial and archaeal communities.
Collapse
Affiliation(s)
- Gabrielle Maria Fonseca Pierangeli
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil
| | - Mercia Regina Domingues
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Rodrigo Brasil Choueri
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil
| | | | - Gustavo Bueno Gregoracci
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil.
| | - Roseli Frederigi Benassi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, Brazil
| |
Collapse
|
36
|
Zhang H, Ma B, Huang T, Yang W, Liu X, Niu L. Nitrogen removal from low carbon/nitrogen polluted water is enhanced by a novel synthetic micro-ecosystem under aerobic conditions: Novel insight into abundance of denitrification genes and community interactions. BIORESOURCE TECHNOLOGY 2022; 351:127013. [PMID: 35306134 DOI: 10.1016/j.biortech.2022.127013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The main limiting factor in treatment of wastewater with a low carbon/nitrogen ratio is insufficient electron donors for aerobic denitrification. A novel synthetic micro-ecosystem (SM) with functional materials as the core structure was prepared to enhance nitrate removal during wastewater treatment. Nitrate removal in the reactors with SM increased by more than 40 % and reached 97.43 % under aerobic conditions. The abundance of denitrification functional genes in activated sludge increased by 2.7 folds after adding SM. Network analysis showed that the denitrifying bacterial community in the reactors with SM displayed a more abundant symbiotic structure. In the reactors with SM, bacteria with both denitrification and inorganic electron transfer capabilities (such as Paracoccus sp., Thaurea sp., and Achromobacter sp.) occupied dominant niche. A species abundance distribution model indicated more intense competition for the dominant niche for the denitrification community in the reactor with SM. Thus, SM promotes denitrification in polluted water bodies under aerobic conditions.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
37
|
Hydroecology of Argyroneta aquatica’s Habitat in Hantangang River Geopark, South Korea. SUSTAINABILITY 2022. [DOI: 10.3390/su14094988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The water spider (Argyroneta aquatic) is the only known spider to live a fully aquatic life. Therefore, it has been the subject of a series of studies on various aspects of its unique biology such as its reproductive behavior, sexual dimorphism, physiology, genetics, and silk. However, there have been relatively few studies on the hydroecology of where water spiders live. The water spider habitat in Eundae-ri, Yeoncheon is the only habitat for A. aquatica, a globally rare species, in South Korea. In this region, the water level of the wetland is automatically adjusted to groundwater owing to continued drying. Here, the surface water, wetland, and groundwater near the A. aquatica habitat were studied using hydrochemical, microbiological, and correlation analyses. The hydrochemical properties—water temperature, pH, electrical conductivity, dissolved oxygen (DO), oxidation reduction potential, and turbidity—of the surface water and wetland were similar. The Piper diagrams revealed that the wetlands, surface water, and most of the groundwater portrayed Ca-HCO3-type properties, whereas only areas where the water level of the wetland was controlled displayed Na-HCO3-type properties. Furthermore, the NO3 content was too low to be detected in the wetland, indicating clean and non-polluted water conditions; additionally, heavier oxygen-hydrogen isotopes were observed because these regions were climatically affected by the wetland. The dominant bacteria were Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, and Nitrospirae. The correlation analysis revealed that the major environmental control factors of the A. aquatica habitat were DO, temperature, and pH, and the related bacteria were Cyanobacteria, Actinobacteria, and Verrucomicrobia.
Collapse
|
38
|
Lew S, Glińska-Lewczuk K, Burandt P, Kulesza K, Kobus S, Obolewski K. Salinity as a Determinant Structuring Microbial Communities in Coastal Lakes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084592. [PMID: 35457457 PMCID: PMC9028135 DOI: 10.3390/ijerph19084592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
The response of bacterioplankton structure to salinity level in coastal lakes (n = 9) along the southern Baltic Sea coastline was studied. In terms of mean salinity levels (0.2−5.2 PSU), the lakes represented freshwater, transitional, and brackish types. Results showed that salinity determines the spatial and seasonal distribution patterns of microorganisms in costal lakes. Increased salinity contributed to a significant decline in total bacterial numbers (TBN). The TBN was lowest in brackish lakes in autumn (4 × 106 cells/mL) and highest in freshwater lakes in summer (7.11 × 106 cells/mL). The groups of Proteobacteria are appropriate bioindicators in any classifications of coastal ecosystems, particularly at low-haline stress. Alpha- and Gamma- subclasses of Proteobacteria are identifiers for brackish habitats, while Betaproteobacteria, due to their intolerance to haline stress, prefer freshwater habitats. Counts of euryhaline Actinobacteria, the dominant group of bacterioplankton (31.8%), decreased significantly with increased salinity. Actinobacteria and Deltaproteobacteria were identifiers of transitional lakes. Cytophaga-Flavobacteria showed affinity with freshwater ecosystems, but this relation was not statistically significant (p > 0.05). The bacteria groups correlated with other physico-chemical parameters of water, such as oxygenation (Actinobacteria) or organic carbon (Betaproteobacteria, Deltaproteobacteria). The impact of hydrological connectivity and salt-water interference on the microbiota structure and biogeochemistry of coastal waters should be considered in the assessment of the ecological status of coastal lakes.
Collapse
Affiliation(s)
- Sylwia Lew
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 1a, 10-719 Olsztyn, Poland;
- Correspondence:
| | - Katarzyna Glińska-Lewczuk
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Łódzki Sq. 2, 10-719 Olsztyn, Poland; (K.G.-L.); (P.B.); (S.K.)
| | - Paweł Burandt
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Łódzki Sq. 2, 10-719 Olsztyn, Poland; (K.G.-L.); (P.B.); (S.K.)
| | - Klaudia Kulesza
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 1a, 10-719 Olsztyn, Poland;
| | - Szymon Kobus
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Łódzki Sq. 2, 10-719 Olsztyn, Poland; (K.G.-L.); (P.B.); (S.K.)
| | - Krystian Obolewski
- Department of Hydrobiology, Kazimierz Wielki University in Bydgoszcz, Powstańców Wielkopolskich Str. 10, 85-090 Bydgoszcz, Poland;
| |
Collapse
|