1
|
Pan Y, Sha A, Han W, Liu C, Liu G, Welsch E, Zeng M, Xu S, Zhao Y, Tian S, Li Y, Deng R, Zhang X, Shi H, Cui Y, Huang C, Peng H. Identifying spatial drivers of soil heavy metal pollution risk integrating positive matrix factorization, machine learning, and multi-scale geographically weighted regression. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136841. [PMID: 39689561 DOI: 10.1016/j.jhazmat.2024.136841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Soil heavy metal (HMs) contamination poses significant ecological and health risks, yet the spatial drivers of HMs pollution remain poorly understood. This study integrates pollution risk assessment, positive matrix factorization, machine learning, and multi-scale geographically weighted regression to develop a framework for identifying the spatial drivers of soil HMs contamination risk in Yangtze River New City, China. Analysis of 7152 samples revealed that although average HMs concentrations were below national standards, As, Cd, Cr, Cu, Hg, and Ni exceeded local background levels. Four key factors were identified as drivers of HMs contamination: natural sources (30.36 %, influenced by soil type), mixed agricultural and transportation sources (29.56 %, driven by cropland, aquaculture, and road density), human activities (12.68 %, including population density and community activities), and industrial sources (27.42 %, linked to factories and enterprises). Regional variations indicated that industrial activities, transportation, and human activities primarily influenced health risks, while agriculture and natural factors had a greater impact on ecological and environmental capacity risks. These findings underscore the importance of considering spatial heterogeneity in HMs pollution risk assessments and offer insights for developing targeted, region-specific policies to mitigate pollution risks of soil HMs.
Collapse
Affiliation(s)
- Yujie Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Anmeng Sha
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjing Han
- Geological Survey Research Institute, China University of Geosciences, Wuhan 430074, China
| | - Chang Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guowangchen Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Emily Welsch
- Department of Geography and Environment, The London School of Economics and Political Science, London WC2A 2AE, UK
| | - Min Zeng
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan 430205, China
| | - Shasha Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shang Tian
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yiyi Li
- College of Electronic Science and Control Engineering, Institute of Disaster Prevention, Hebei 065201, China
| | - Rui Deng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Huanhuan Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yu Cui
- International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria
| | - Changsheng Huang
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan 430205, China.
| | - Hongxia Peng
- School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
2
|
Luo J, Feng S, Ning W, Liu Q, Cao M. Integrated source analysis and network ecological risk assessment of soil heavy metals in Qinghai-Tibet plateau pastoral regions. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137780. [PMID: 40022937 DOI: 10.1016/j.jhazmat.2025.137780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Soil heavy metals and their associated ecological risks are significant environmental issues, yet comprehensive studies are limited in ecologically sensitive regions such as the Qinghai-Tibet Plateau. This study focuses on Yushu County and utilizes principal component analysis-multiple linear regression (PCA-MLR) and network environmental analysis (NEA) models to identify pollution sources and ecological risk transmission pathways. The results indicated that the heavy-metal content in the soil of the study area predominantly reflects natural background levels, with minimal anthropogenic influence. The PCA-MLR model identified five main factors influencing soil composition: acidic rocks, basic rocks, agricultural/pastoral activities, hydrothermal processes, and crustal backgrounds. The NEA model revealed that cadmium and arsenic posed the highest ecological risks, primarily accumulating in soil microorganisms (67.1 %), while vegetation, herbivores, and carnivores accounted for 25.2 %, 4.6 %, and 3.1 % of the potential risk, respectively. Acidic and basic rock sources were major contributors, with acidic rocks posing the highest risk of arsenic input to soil microorganisms. The environmental capacity of soil to absorb Cd and As is approaching its limit, highlighting the urgent need to address their pollution risks. This study provides critical insights into geogenic heavy-metal risks, offering a framework for sustainable management in fragile ecosystems.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China.
| | - Wenjing Ning
- School of Environment, Nanjing University, Nanjing, China
| | - Qingyu Liu
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, China
| | - Min Cao
- University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
3
|
Li T, Chen X, Weng R, Manga M, Cheng S. Reintegrating human excreta into the agriculture of rural China: Ecological risks and application strategies. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137683. [PMID: 40007365 DOI: 10.1016/j.jhazmat.2025.137683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Treating and valorizing human excreta in rural China is challenging because of its high hazardous element content. Moreover, studies on the concentrations and ecological risks of human excreta in different regions are limited. To address this gap, we conducted a cross-sectional study using data from rural China. We assessed the concentrations of six heavy metals-Cd, Cr, Cu, Hg, Pb, Zn-and the metalloid As in the samples and evaluated their contamination levels and potential ecological risks. An improved model for the safe use of human excreta was developed based on the input-output equilibrium of hazardous elements in soils, which allowed for the calculation of safe application limits for each province. The results showed that the Zn concentrations were consistently high, but Cd was the most concerning contaminant. In most provinces, the use of human excreta was found to pose potential ecological risks, with Cd and Hg identified as the primary risk factors. The safe limit for human excreta in each province ranged from 39.77 to 212.02 t∙hm⁻2 over a 100-year control period. These results can guide human excreta usage strategies and provide theoretical support and a reference for the safe application of human excreta in China and other low- and middle-income countries.
Collapse
Affiliation(s)
- Tianxin Li
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xi Chen
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Weng
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Scientific Research Academy of Guangxi Environmental Protection, Guangxi 530022, China
| | - Musa Manga
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, USA
| | - Shikun Cheng
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs P. R. China, 100125, China.
| |
Collapse
|
4
|
Al Yeamin A, Mia MY, Khan SR, Rahman MS, Senapathi V, Islam ARMT, Choudhury TR. Innovative strategies for pollution assessment in Northern Bangladesh: Mapping pollution areas and tracing metal(loid)s sources in various soil types. PLoS One 2025; 20:e0311270. [PMID: 39899537 PMCID: PMC11790134 DOI: 10.1371/journal.pone.0311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/11/2024] [Indexed: 02/05/2025] Open
Abstract
This study assessed the risks of soil pollution by heavy metals in Chilmari Upazila, northern Bangladesh, using the static environmental resilience (Pi) model of soil. Geostatistical modeling and self-organizing maps (SOM) identified pollution areas and spatial patterns, while a positive matrix factorization (PMF) model revealed pollution sources. The results showed that the average concentrations of Cr, Pb and As were well above background levels. Agricultural and industrial soils were mainly contaminated with Cr, Pb and As according to the Nemerow Pollution Index (NPI), Ecological Risk (ER) and Pi Index. Over 70% of the sites were contaminated with Pb and Cr, while co-contamination was particularly high. A one-way ANOVA showed significant correlations between Pb, Cu and Zn levels and human activities. The PMF analysis revealed that industrial effluents, agrochemicals and lithogenic sources were the main contributors to soil contamination with 16%, 41% and 43%, respectively. The SOM analysis revealed three distinct spatial patterns (Pb-Zn, Cr-Cu-Ni and Co-Mn-As), which are consistent with the PMF results. These results emphasize the need for stringent measures to reduce industrial emissions and remediate soil contamination in order to improve soil quality and food security.
Collapse
Affiliation(s)
- Abdullah Al Yeamin
- Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh
| | - Md. Yousuf Mia
- Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh
| | - Shahidur R. Khan
- Chemistry Division, Analytical Chemistry Laboratory, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - M. Safiur Rahman
- Chemistry Division, Water Quality Research Laboratory, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Venkatramanan Senapathi
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Abu Reza Md. Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh
- Department of Development Studies, Daffodil International University, Dhaka, Bangladesh
- Department of Earth and Environmental Science, College of Science, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Tasrina Rabia Choudhury
- Chemistry Division, Analytical Chemistry Laboratory, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
- Chemistry Division, Water Quality Research Laboratory, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| |
Collapse
|
5
|
Han S, Wang B, Yao Z, Dai L, Wei Y, Niu Y, Qian L. Heavy metals impact environmental capacity of oasis soils in Qinghai-Tibet Plateau dry zone. Sci Rep 2025; 15:2176. [PMID: 39821122 PMCID: PMC11739594 DOI: 10.1038/s41598-025-86059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
The Tibetan Plateau is known as the "third pole of the world," and plateau oases are a key component of plateau ecosystems. Under natural conditions, the ecosystems on the Tibetan Plateau contain relatively low levels of heavy metals. However, the overexploitation of resources by humans for production and living has affected the quality of soils in the Qinghai-Tibet region, whereby the environmental capacity is decreasing. The oases in the arid zone of Delingha-Wulan County were selected as the study area for determining the environmental capacity of soil heavy metals in the Tibetan Plateau. The results indicated that the six key heavy metals in the study region ranked in the following overall order of static environmental capacity: Zn > Pb > Cu > As > Hg > Cd. High values of the elemental residual capacity occurred mainly in the Chachaxiangka area, whereas low values occurred mainly in the Wulan area. The geological background of the research area had a statistically significant on the residual capabilities of all six elements. Except for Pb, the other five elements were significantly affected by soil type and land use. This study revealed the soil-carrying capacity of oases in arid zones. The findings reported herein provide a scientific foundation for safeguarding the ecosystem in the oases of the arid zone in the Qinghai-Tibetan region.
Collapse
Affiliation(s)
- Siqi Han
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Bin Wang
- First Geological Exploration Institute of Qinghai Province, Pingan, 810600, China
| | - Zhen Yao
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Lu Dai
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Youning Wei
- Qinghai Geological Survey, Xining, 810000, China
| | - Yao Niu
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China.
| | - Ling Qian
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
6
|
Niu S, Wang R, Jiang Y. Quantification of heavy metal contamination and source in urban water sediments using a statistically determined geochemical baseline. ENVIRONMENTAL RESEARCH 2024; 263:120080. [PMID: 39343342 DOI: 10.1016/j.envres.2024.120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Geochemical baselines (GBs) play a crucial role in discerning natural variability from anthropogenic impacts on elemental composition within the environment. However, their applicability in quantifying the contribution of pollution sources to heavy metal contamination in sediments remains understudied. This research aimed to assess the degree of contamination and local pollution source attribution by leveraging geochemical baselines derived from statistical techniques, specifically the relative cumulative frequency (RCF) and 2σ-iterative (2σ-I) methods. In the urban water systems of Ma'anshan City, the major iron ore centre in eastern China, we observed concentration ranges of Cr, Cu, Ni, Pb and Zn in 36 sediment samples ranging from 66.89 to 352.08 mg/kg, 22.01 to 133.37 mg/kg, 22.66 to 50.80 mg/kg, 14.66to 264.37 mg/kg and 73.30 to 2707.46 mg/kg, respectively. RCF and 2σ-I techniques yielded similar GBs with no significant differences (p > 0.05). The geo-accumulation index and contamination factor analysis showed a sediment heavy metal accumulation rank of Zn > Pb > Cr > Cu > Ni. The contribution percentage of pollution sources varied with land functional type of watershed. For industry-influenced sediments, the contribution of local sources to Cr, Cu, Pb and Zn was significant, with shares of 43%-88%. Overall, this study highlights the valuable insights provided by GBs for effective management of urban aquatic environments.
Collapse
Affiliation(s)
- Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China.
| | - Ruiqi Wang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China
| | - Yun Jiang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China
| |
Collapse
|
7
|
Yao Z, Zhang H, Zhang H, Wei Y, Niu Y. Enrichment and sources of major and trace elements in the Qinghai-Tibetan Plateau: a case study of the Golog Prefecture. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:1. [PMID: 39621284 DOI: 10.1007/s10661-024-13451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/16/2024] [Indexed: 01/23/2025]
Abstract
The Qinghai-Tibet Plateau (QTP) is a vital region for global atmospheric circulation and biodiversity. This study aims to evaluate the contents and enrichment status of 25 soil elements, namely Al, As, Ca, Cd, Co, Cr, Cu, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Sc, Si, Sn, Sr, Fe, Ti, V, and Zn, in the plateau region. Specifically, our analysis revealed that As exhibited significant enrichment near fault zones and intrusive rocks, while Ca was mainly enriched due to the dissolution of carbonate rocks. Additionally, Principal Component Analysis and Multiple Linear Regression (PCA-MLR) were used to examine the origins of these elements. The potential ecological risk posed by Cd and Pb was evaluated and found to be negligible. Soil element enrichment in the QTP was mainly influenced by lithology, and high spatial variability was observed in As, Ca, and S, which were mainly affected by geological processes and grazing activities. Six sources of elements in the plateau region were identified, namely geological mixed sources, grazing activities, alkaline granite, ultrabasic rocks, fault zones and intrusive rocks, as well as atmospheric deposition. Among these, geological mixed sources and grazing activities were determined to be the priority contributors. Although grazing activities on the QTP as well as atmospheric deposition at long distances caused the enrichment of elements in the area, the ecological risk was negligible. The outcomes of this work can be used as a theoretical basis for prospective investigation on the stability of high-altitude ecosystems, species diversity, and geochemical background.
Collapse
Affiliation(s)
- Zhen Yao
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
- Engineering Technology Research Center for Selenium-Rich Resource Utilization of Qinghai Province, Xining, 810000, China
| | - Haixu Zhang
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
- Engineering Technology Research Center for Selenium-Rich Resource Utilization of Qinghai Province, Xining, 810000, China
| | - Hao Zhang
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
- Engineering Technology Research Center for Selenium-Rich Resource Utilization of Qinghai Province, Xining, 810000, China
| | - Youning Wei
- Qinghai Geological Survey, Xining, 810000, China
| | - Yao Niu
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China.
- Engineering Technology Research Center for Selenium-Rich Resource Utilization of Qinghai Province, Xining, 810000, China.
| |
Collapse
|
8
|
Zhou H, Huang S, Zhang Z, Li T, Li Y, Zhuang G, Liu G, Fu B, Kuang X. Network and stoichiometry analysis revealed a fast magnesium and calcium deficiency of mulched Phyllostachys violascens. FRONTIERS IN PLANT SCIENCE 2024; 15:1492137. [PMID: 39665104 PMCID: PMC11632225 DOI: 10.3389/fpls.2024.1492137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 12/13/2024]
Abstract
The imbalanced fertilization and the consequential deterioration on the rhizosphere microbial community (RMC) were two potential reasons for the quick yielding degradation of Phyllostachys violascens (Lei-bamboo), a high-value shoot-oriented bamboo. However, most research only focused on nitrogen, phosphorus, and potassium; the studies on the dynamics of other nutrients, such as calcium and magnesium; and their driving mechanisms, lags far behind. Thus, Lei-bamboo fields of different mulching and recovery ages were selected to investigate the dynamics of calcium and magnesium in both soil and bamboo tissue, and to explore their relationship to RMC composition and network patterns. The results showed that mulching increased the content of soil acidification, total organic carbon, alkali-hydrolysable nitrogen, available phosphorus, and available potassium but reduced soil exchangeable magnesium and calcium in soil as well as the magnesium and calcium content in rhizome, stem, and leaf of Lei-bamboo, which indicated an increased relative limitation on magnesium and calcium. Mulching also enhanced the α-diversity and reshaped the composition of RMC, which had a close link to Mg rather than nitrogen, phosphorus, and potassium. As the mulching years increased, the RMC network became bigger and more complex, and the magnesium and calcium gradually appeared in the network center, which further support the magnesium and calcium deficiency to RMC. Nearly all the variation mentioned above could be revered after the removing of mulching. Structural equation modeling showed two main pathways that mulching leads to magnesium and calcium deficiency in Lei-bamboo, one is directly by lowering soil magnesium and calcium content, the other one is indirectly by improving RMC network interactions, a sign of weakened mutualism between RMC and plant roots that hampering the uptake of nutrients. This research highlights the quick magnesium and calcium deficiency caused by mulching in Lei-bamboo forest and the contribution of RMC in amplify the effects of soil magnesium and calcium deficiency, which offers valuable information on balancing fertilization pattern for future sustainable Lei-bamboo cultivation.
Collapse
Affiliation(s)
- Hanchang Zhou
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Siyuan Huang
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ziying Zhang
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ting Li
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
| | - Guohua Liu
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
| | - Bojie Fu
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
| | - Xiaobao Kuang
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Hu Z, Wu Z, Luo W, Liu S, Tu C. Spatial distribution, risk assessment, and source apportionment of soil heavy metals in a karst county based on grid survey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176049. [PMID: 39241872 DOI: 10.1016/j.scitotenv.2024.176049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Soil in karst areas commonly exhibits characteristics of heavy metal enrichment. Accurate identification of soil heavy metal distribution, risks, and sources are crucial for preventing soil heavy metal pollution in karst areas. In this study, 2467 topsoil samples (0-20 cm) and 620 subsoil samples (150-200 cm) were collected using a grid-based sampling method in Tianyang County. Statistics, geo-statistics, correlation analysis, principal component analysis, and the absolute principal component-multiple linear regression model were utilized to analyze the content, spatial distribution and sources of heavy metals. The geo-accumulation index and the potential ecological risk index were employed to assess the ecological risks of heavy metals in the topsoil, with the subsoil content as baseline. The results showed that the study area's soil exhibited high heavy metal content, significantly exceeding Chinese background values. The content of heavy metals in the karst area's soil was notably higher than that in the non-karst area. The fitted semi-variogram models and the spatial distribution map revealed that the heavy metals' content was generally dominated by the geological background. As, Cr, Cu, Hg, Ni, Pb, and Zn displayed low levels of pollution in the topsoil and posed low ecological risk, with over 90 % of samples classified as unpolluted and low risk. Cd exhibited high levels of pollution and ecological risks, with 52.28 % of samples classified as polluted and 60.81 % classified as moderate to high risk. For Hg, despite only 6.94 % of samples showing polluted, the ecological risks were not negligible, with 40.65 % of samples in moderate to high risk. Natural source and anthropogenic source contribute to the heavy metals on average by 81.49 % and 18.51 %, respectively. This study provides a reference for the risk assessment of soil heavy metals, and its findings offer valuable scientific insights for the prevention of heavy metal pollution in the study area.
Collapse
Affiliation(s)
- Zhaoxin Hu
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station/Pingguo Baise, Karst Ecosystem, Guangxi Observation and Research Station, Pingguo 531406, China; Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi/International Research Centre on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin 541004, China.
| | - Zeyan Wu
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station/Pingguo Baise, Karst Ecosystem, Guangxi Observation and Research Station, Pingguo 531406, China; Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi/International Research Centre on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin 541004, China
| | - Weiqun Luo
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station/Pingguo Baise, Karst Ecosystem, Guangxi Observation and Research Station, Pingguo 531406, China; Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi/International Research Centre on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin 541004, China
| | - Shaohua Liu
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station/Pingguo Baise, Karst Ecosystem, Guangxi Observation and Research Station, Pingguo 531406, China; Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi/International Research Centre on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin 541004, China
| | - Chun Tu
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station/Pingguo Baise, Karst Ecosystem, Guangxi Observation and Research Station, Pingguo 531406, China; Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi/International Research Centre on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin 541004, China
| |
Collapse
|
10
|
Xie X, Wang S, Li M, Zhou Z, Zhang Z, Tang Z. Assessment of soil environmental capacity for heavy metals in Shantou City, Guangdong Province, China: source analysis and enrichment evaluation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:978. [PMID: 39320654 DOI: 10.1007/s10661-024-13146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Most studies assessing soil environmental capacity (EC) often overlook the impact of heavy metal sources. Analyzing the sources of heavy metals (HMs) provides a better understanding of regional environmental capacity characteristics and their dynamic changes. The current study focuses on the surface soil of Shantou, using 511 soil samples to assess the soil environmental capacity. Results indicate that the contents of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in Shantou's surface soil are notable, with lead moderately enriched and other metals lightly enriched. The principal component analysis (PCA) identifies five primary sources of heavy metals: mixed natural and agricultural sources, mixed agricultural and industrial sources, industrial sources, mining sources, and quarrying sources. The primary source contributing significantly to soil HM concentrations in Shantou City is a complex interplay between natural geological processes and extensive agricultural practices. In terms of static environmental capacity, Zn, Cr, Ni, Pb, Cu, As, Hg, and Cd are ranked in descending order. The overall environmental capacity for heavy metals in the soil is at a medium level, influenced by geological backgrounds. However, regions such as Yanhong Town, Guiyu Town, and Chendian Town face lower environmental capacities due to comprehensive human activities, posing certain risks. This study provides a scientific reference for forecasting, controlling soil heavy metal pollution, and improving soil quality and environmental capacity in Shantou City.
Collapse
Affiliation(s)
- Xianming Xie
- Guangdong Hydrogeology Battalion, Guangzhou, China
| | - Song Wang
- Guangdong Hydrogeology Battalion, Guangzhou, China.
| | - Ming Li
- Guangdong Hydrogeology Battalion, Guangzhou, China
| | | | - Zhe Zhang
- Guangdong Hydrogeology Battalion, Guangzhou, China
| | - Zhenhua Tang
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
11
|
Jia H, Luo J, Feng S, Ke X, Zhu Q, Zhang Y. The environmental capacity of rare heavy metal calculation in the Qinghai‒Tibet Plateau region via multifractal analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:919. [PMID: 39256236 DOI: 10.1007/s10661-024-13075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
Accurate assessments of the soil environmental capacity are important for evaluating heavy metal pollution levels, facilitating effective prevention and control measures against such pollution. However, due to the lack of risk screening values for certain key elements, such as Rb, Sn, and Th, the assessment of the soil environmental capacity is not comprehensive. Therefore, in this study, the Menyuan-Huangzhong area of Qinghai Province was selected as the research area, and local background and risk values were established via multifractal analysis, thereby systematically examining the environmental capacity. The findings indicated that within the study area, the static environmental capacity values of 15 elements could be ranked as follows: Ba, Cu, Zn, Cr, Rb, Ni, La, Pb, Th, As, U, Sn, Tl, Cd, and Hg. In general, the residual capacity distribution of the various elements varied across the study area, with lower values primarily found in the northern and central regions and higher values obtained in the northwestern and southwestern regions. Between 2018 and 2068, there was a notable and rapid decline in the dynamic environmental capacity of Hg, Cu, and Cd in the study area. In the Menyuan-Huangzhong area of Qinghai, the average comprehensive soil environmental capacity index reached 0.91, indicating a moderate environmental capacity and slight associated health risks. The findings of this study could serve as a valuable reference for soil heavy metal pollution assessment, early warning, and management in this area; enhance the study of soil environmental capacity methods; and provide a theoretical foundation for subsequent research.
Collapse
Affiliation(s)
- Heran Jia
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Xinying Ke
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Qiaohui Zhu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yuqi Zhang
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
12
|
Han S, Dai L, Liu Q, Wei Y, Niu Y, Xu K. Investigating the environmental capacity of soil heavy metals and its determinants in agro-pastoral regions of the qinghai-tibetan plateau. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:407. [PMID: 39212814 DOI: 10.1007/s10653-024-02199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Environmental capacity (EC) serves as the basis for environmental planning and management, as a key indicator for assessing environmental risk and quality, and as a foundation for achieving sustainable development. Studies on EC typically address agricultural or urban rather than pastoral areas, with few examining agro-pastoral areas. The EC of the Tibetan Plateau is particularly important, considering its importance as an agricultural area and ecological reserve. To address this gap, the Qingshizui area in Menyuan County, a typical agro-pastoral area on the Tibetan Plateau, was selected to quantify soil EC and its spatial distribution. In terms of the dynamic and static annual soil EC for this region, the heavy metals were ranked as follows, in ascending order: Cd, Hg, Co, As, Sb, Ni, Cu, Pb, Cr, and Zn. Most of the areas with high residual EC were in the west. For the 10 heavy metals, residual EC was significantly affected by geological background. For all the heavy metals except Zn and Hg, residual EC was significantly affected by soil type. The heavy metal elements in the agro-pastoral area's soil are mildly enriched, suggesting minimal human impact. The composite EC index of this soil is 0.98, indicating an intermediate EC and low health risk. This study underscores that integrating agriculture and pastoralism can optimize land use and mitigate ecological pressures associated with these practices when done separately. Our research provides valuable insights for resource optimization, environmental conservation, and enhancing the welfare of farmers and herders in the Qinghai-Tibet region.
Collapse
Affiliation(s)
- Siqi Han
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Lu Dai
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Qingyu Liu
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Youning Wei
- Qinghai Geological Survey, Xining, 810000, China
| | - Yao Niu
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Kaili Xu
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
13
|
Qu M, Guang X, Chen J, Zhao Y, Huang B, Wang M, Wang H, Wang Y. Soil environmental carrying capacity and its spatial high-precision accounting framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173620. [PMID: 38815834 DOI: 10.1016/j.scitotenv.2024.173620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Human activity intensity should be controlled within the carrying capacity of soil units, which is crucial for environmental sustainability. However, the existing assessment methods for soil environmental carrying capacity (SECC) rarely consider the relationship between human activity intensity and pollutant emissions, making it difficult to provide effective early warning of human activity intensity. Moreover, there is a lack of spatial high-precision accounting methods for SECC. This study first established a spatial soil environmental capacity (SEC) model based on the pollutant thresholds corresponding to the specific protection target. Next, a spatial net-input flux model was proposed based on soil pollutants' input/output fluxes. Then, the quantitative relationship between human activity intensity and pollutant emissions was established and further incorporated into the SECC model. Finally, the spatial high-precision accounting framework of SECC was proposed. The methodology was used to assess the SECC for the copper production capacity in a typical copper smelting area in China. The results showed that (i) the average SECs for Cu, Cd, Pb, Zn, As and Cr are 427.89, 16.84, 306.41, 376.8, 71.63, and 392.7 kg hm-2, respectively; (ii) heavy metal (HM) concentrations and land-use types jointly influence the spatial distribution pattern of SEC; (iii) atmospheric deposition is the dominant HM input pathway and the high net-input fluxes are mainly located in the southeast of the study area; (iv) with the current human activity intensity for 50 years, the average SECs for Cu, Cd, Pb, Zn, As and Cr are 202.31, 1.71, 20.9, 66.15, 36.73, and 3 kg hm-2, respectively; and (v) to maintain the protection target at the acceptable risk level within 50 years, the SECC for the increased copper production capacity is 1.53 × 106 t. This study provided an effective tool for early warning of human activity intensity.
Collapse
Affiliation(s)
- Mingkai Qu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Xu Guang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Jian Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Yongcun Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Biao Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongmei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| |
Collapse
|
14
|
Li JL, Gan CD, Du XY, Yuan XY, Zhong WL, Yang MQ, Liu R, Li XY, Wang H, Liao YL, Wang Z, Xu MC, Yang JY. Distribution, risk evaluation, and source allocation of cesium and strontium in surface soil in a mining city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:270. [PMID: 38954122 DOI: 10.1007/s10653-024-02046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Radioactive nuclides cesium (Cs) and strontium (Sr) possess long half-lives, with 135Cs at approximately 2.3 million years and 87Sr at about 49 billion years. Their persistent accumulation can result in long-lasting radioactive contamination of soil ecosystems. This study employed geo-accumulation index (Igeo), pollution load index (PLI), potential ecological risk index (PEPI), health risk assessment model (HRA), and Monte Carlo simulation to evaluate the pollution and health risks of Cs and Sr in the surface soil of different functional areas in a typical mining city in China. Positive matrix factorization (PMF) model was used to elucidate the potential sources of Cs and Sr and the respective contribution rates of natural and anthropogenic sources. The findings indicate that soils in the mining area exhibited significantly higher levels of Cs and Sr pollution compared to smelting factory area, agricultural area, and urban residential area. Strontium did not pose a potential ecological risk in any studied functional area. The non-carcinogenic health risk of Sr to the human body in the study area was relatively low. Because of the lack of parameters for Cs, the potential ecological and human health risks of Cs was not calculated. The primary source of Cs in the soil was identified as the parent material from which the soil developed, while Sr mainly originated from associated contamination caused by mining activities. This research provides data for the control of Cs and Sr pollution in the surface soil of mining city.
Collapse
Affiliation(s)
- Jia-Li Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Xin-Yue Du
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Xue-Ying Yuan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Wen-Lin Zhong
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Meng-Qi Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Rui Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Xiao-Yu Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Hao Wang
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
- College of Forestry, Northeast Forestry University, Haerbin, 150000, China
| | - Yu-Liang Liao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zheng Wang
- College of Civil Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Mu-Cheng Xu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China.
| |
Collapse
|
15
|
Wang S, He X, Tian J, Wu R, Liu H, Fang Z, Du S. NRT1.2 overexpression enhances the synergistic interplay between ABA-generating bacteria and biochars in reducing heavy metal accumulation in pak choi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171276. [PMID: 38417500 DOI: 10.1016/j.scitotenv.2024.171276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The agricultural sector faces severe challenges owing to heavy metal (HM) contamination of farmlands, requiring urgent preventive measures. To address this, we investigated the impact of the synergistic application of Azospirillum brasilense, a growth-promoting rhizobacterium producing abscisic acid (ABA), and biochar to minimize HM accumulation in pak choi, using three distinct expression levels of the ABA transporter NRT1.2 in pak choi and three different types of contaminated soils as experimental materials. The results revealed that pak choi with low, medium, and high NRT1.2 expression intensity, when subjected to bacterial strain-biochar treatment, exhibited an increasing trend in ABA content compared to the control. Correspondingly, the aboveground HM content decreased by 1-49 %, 22-52 %, and 15-96 %, whereas the fresh weight increased by 12-38 %, 88-126 %, and 152-340 %, respectively, showing a significant correlation with NRT1.2 expression. Pearson correlation analysis demonstrated that NRT1.2 expression intensity was inversely associated with the combined treatment's reduction in HM accumulation and positively correlated with the promotional effect. Simultaneously, soil discrepancies significantly affected the combined treatment, which was likely associated with variations in the active forms of HM in each soil. Consequently, when employing ABA-producing bacteria for mitigating crop HM accumulation, selecting plants with higher relative NRT1.2 expression intensity, combined with biochar, is recommended.
Collapse
Affiliation(s)
- Shengtao Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaolin He
- Jiangxi Province Agricultural Technology Extension Center, Nanchang 330045, China
| | - Jiaying Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
16
|
Pan Y, Han W, Shi H, Liu X, Xu S, Li J, Peng H, Zhao X, Gu T, Huang C, Peng K, Wang S, Zeng M. Incorporating environmental capacity considerations to prioritize control factors for the management of heavy metals in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119820. [PMID: 38113783 DOI: 10.1016/j.jenvman.2023.119820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Heavy metals (HMs) pollution threatens food security and human health. While previous studies have evaluated source-oriented health risk assessments, a comprehensive integration of environmental capacity risk assessments with pollution source analysis to prioritize control factors for soil contamination is still lacking. Herein, we collected 837 surface soil samples from agricultural land in the Nansha District of China in 2019. We developed an improved integrated assessment model to analyze the pollution sources, health risks, and environmental capacities of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. The model graded pollution source impact on environmental capacity risk to prioritize control measures for soil HMs. All HMs except Pb exceeded background values and were sourced primarily from natural, transportation, and industrial activities (31.26%). Approximately 98.92% (children), 97.87% (adult females), and 97.41% (adult males) of carcinogenic values exceeded the acceptable threshold of 1E-6. HM pollution was classified as medium capacity (3.41 kg/hm2) with mild risk (PI = 0.52). Mixed sources of natural backgrounds, transportation, and industrial sources were identified as priority sources, and As a priority element. These findings will help prioritize control factors for soil HMs and direct resources to the most critical pollutants and sources of contamination, particularly when resources are limited.
Collapse
Affiliation(s)
- Yujie Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Wenjing Han
- Geological Survey Research Institute, China University of Geosciences, Wuhan, 430074, China
| | - Huanhuan Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xiaorui Liu
- China Electric Power Research Institute, Beijing, 100192, China
| | - Shasha Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Hongxia Peng
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.
| | - Xinwen Zhao
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China
| | - Tao Gu
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China
| | - Chansgheng Huang
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China
| | - Ke Peng
- Survey Affairs Center for Natural Resources and Planning of Yongzhou City, Yongzhou, 425000, China
| | - Simiao Wang
- College of Information Science and Engineering, Northeastern University, Shenyang, 314001, China
| | - Min Zeng
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China.
| |
Collapse
|
17
|
Sun Y, Yang J, Li K, Gong J, Gao J, Wang Z, Cai Y, Zhao K, Hu S, Fu Y, Duan Z, Lin L. Differentiating environmental scenarios to establish geochemical baseline values for heavy metals in soil: A case study of Hainan Island, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165634. [PMID: 37474065 DOI: 10.1016/j.scitotenv.2023.165634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Soil heavy metal distributions exhibit regional heterogeneity due to the complex characteristics of parent materials and soil formation processes, emphasizing the need for appropriate regional standards prior to assessing soil risks. This study focuses on Hainan Island and employs the Multi-purpose Regional Geochemical Survey dataset to establish heavy metal geochemical baseline and background values for soil using an iterative method. Geographical detector analysis reveals that parent materials are the primary factor influencing heavy metal distribution, followed by soil types and land use. Heavy metal geochemical baseline values are established for the island's three environments and administrative regions. Notably, a universal geochemical baseline value cannot adequately represent regional variations in heavy metal distribution, with parent materials playing a crucial role in various scenarios. Locally applicable values based on parent material are the most representative for Hainan Island. This study provides a reference framework for developing region-specific environmental baseline values for soil heavy metal assessments.
Collapse
Affiliation(s)
- Yanling Sun
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China; UNESCO International Centre on Global-scale Geochemistry, Langfang 065000, PR China; Faculty of Earth Sciences, China University of Geoscience, Wuhan 430074, PR China
| | - Jianzhou Yang
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China.
| | - Kai Li
- Radiation Environmental Monitoring Center of GDNGB, Guangzhou 510800, PR China
| | - Jingjing Gong
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Jianweng Gao
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Zhenliang Wang
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China.
| | - Yongwen Cai
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Keqiang Zhao
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China.
| | - Shuqi Hu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Yangang Fu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Zhuang Duan
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Lujun Lin
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| |
Collapse
|
18
|
Xu J, Wu Y, Wang S, Wang Y, Dong S, Chen Z, He L. Source identification and health risk assessment of heavy metals with mineralogy: the case of soils from a Chinese industrial and mining city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7255-7274. [PMID: 37004580 DOI: 10.1007/s10653-023-01548-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Understanding the precise sources of heavy metals (HMs) in soil and the contribution of these sources to health risks has positive effects in terms of risk management. This study focused on the HMs in the soil of five land uses in an industrial and mining city. The sources of HMs in soils were identified, and the soil mineralogical characteristics and health risks of HMs were discussed. The results showed that the HMs (Cu, Zn, Ni, Cd, Pb) found in the soil of the five land uses were affected by human activities. For example, the Cu in grassland, gobi beach, woodland, green belt, and farmland is 22.3, 3.5, 22.5, 16.7, and 21.3 times higher than the soil background values in Gansu Province, respectively. The Positive Matrix Factorization model (PMF) results revealed that traffic emissions and industrial and agricultural activities were the primary sources of HMs in the soil, with industrial sources accounting for the largest share at 55.79%. Furthermore, various characteristics proved that the studied HMs were closely related to smelting products. Concentration-oriented health risk assessments showed that HMs in the different soil types held non-carcinogenic and carcinogenic risks for children and adults. Contamination source-oriented health risk assessments of children and adults found that industrial activities controlled non-carcinogenic and carcinogenic risks. This study highlighted the critical effects of smelting on urban soil and the contribution of pollution sources to health risks. Furthermore, this work is significant in respect of the risk control of HMs in urban soils.
Collapse
Affiliation(s)
- Jun Xu
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Yi Wu
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
| | - Yufan Wang
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Suhuang Dong
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhaoming Chen
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Liang He
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| |
Collapse
|
19
|
Kuang Z, Wang H, Han B, Rao Y, Gong H, Zhang W, Gu Y, Fan Z, Wang S, Huang H. Coastal sediment heavy metal(loid) pollution under multifaceted anthropogenic stress: Insights based on geochemical baselines and source-related risks. CHEMOSPHERE 2023; 339:139653. [PMID: 37516321 DOI: 10.1016/j.chemosphere.2023.139653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Contamination and risk assessments generally ignore the potential bias in results caused by the variation of background values at different spatial scales due to the spatial heterogeneity of sediments. This study aims to perform quantitative source-ecological risk assessment via establishing geochemical baselines values (GBVs) of heavy metal(loid)s (HMs) in Daya Bay, China. Cumulative frequency distribution (CFD) curves determined the GBVs of 12.44 (Cu), 30.88 (Pb), 69.89 (Zn), 0.06 (Cd), 47.85 (Cr), 6.80 (As), and 0.056 mg kg-1 (Hg), which were comparable to the background values of Guangdong Province surface soils, and implied a potential terrestrial origin of the coastal sediments. Principal component analysis (PCA) and positive matrix factorization (PMF) identified three sources (F1: natural processes; F2: anthropogenic impacts; F3: specific sources) with contributions of 51.7%, 29.2%, and 19.1%, respectively. The source-specific risk assessment revealed an ecological risk contribution potential of 73.8% for the mixed anthropogenic sources (F2 + F3) and only 26.2% for natural processes. Cd and Hg were the priority management of metallic elements, occupying 63.5% and 72.5% of the contribution weights of F2 and F3, respectively, which showed multi-level pollution potentials and ecological risk levels. The spatial distribution patterns demonstrated the hotspot features of HM pollution, and priority concerns should be given to the management of marine traffic and industrial point source pollution in Daya Bay. The results of the study provide a scientific approach and perspective for pollution treatment and risk management in the coastal environment.
Collapse
Affiliation(s)
- Zexing Kuang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Beibei Han
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Yiyong Rao
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Haixing Gong
- Department of Atmosphere and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, 200438, China.
| | - Wanru Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Yangguang Gu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| | - Shoubing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| | - Honghui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
20
|
Wang Y, Cheng H. Soil heavy metal(loid) pollution and health risk assessment of farmlands developed on two different terrains on the Tibetan Plateau, China. CHEMOSPHERE 2023:139148. [PMID: 37290519 DOI: 10.1016/j.chemosphere.2023.139148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
The quality of farmland soils on the Tibetan Plateau is important because of the region's ecological vulnerability and their close link with local food security. Investigation on the pollution status of heavy metal (loid)s (HMs) in the farmlands of Lhasa and Nyingchi on the Tibetan Plateau, China revealed that Cu, As, Cd, Tl, and Pb were apparently enriched, with the soil parent materials being the primary sources of the soil HMs. Overall, the farmlands in Lhasa had higher contents of HMs compared to those in the farmlands of Nyingchi, which could be attributed to the fact that the former were mainly developed on river terraces while the latter were mainly developed on the alluvial fans in mountainous areas. As displayed the most apparent enrichment, with the average concentrations in the vegetable field soils and grain field soils of Lhasa being 2.5 and 2.2 times higher compared to those of Nyingchi. The soils of vegetable fields were more heavily polluted than those of grain fields, probably due to the more intensive input of agrochemicals, particularly the use of commercial organic fertilizers. The overall ecological risk of the HMs in the Tibetan farmlands was low, while Cd posed medium ecological risk. Results of health risk assessment show that ingestion of the vegetable field soils could pose elevated health risk, with children facing greater risk than adults. Among all the HMs targeted, Cd had relatively high bioavailability of up to 36.2% and 24.9% in the vegetable field soils of Lhasa and Nyingchi, respectively. Cd also showed the most significant ecological and human health risk. Thus, attention should be paid to minimize further anthropogenic input of Cd to the farmland soils on the Tibetan Plateau.
Collapse
Affiliation(s)
- Yafeng Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Li Q, Li X, Bu C, Wu P. Distribution, Risk Assessment, and Source Apportionment of Heavy Metal Pollution in Cultivated Soil of a Typical Mining Area in Southwest China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:888-900. [PMID: 36799334 DOI: 10.1002/etc.5586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/28/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The present study investigates heavy metal pollution and its sources in cultivated soils in Bijie City, Guizhou Province, China. The ground accumulation index method was used to evaluate the associated risks, while correlation, principal component, and positive matrix factor model analyses were used to identify sources. The results show that the overall contamination levels, except for Cd, were not serious. Agricultural materials, industrial activities, transportation, coal combustion and atmospheric deposition, parent rock, and irrigation accounted for 19.66%, 14.11%, 14.54%, 16.33%, 20.70%, and 14.67% of the total accumulation of metals, respectively. Copper, Ni, Zn, and Cr came mainly from parent rocks; Pb was mainly from traffic emissions; Hg was mainly from coal deposition; As was mainly from irrigation; and Cd was mainly from industrial activities. The main sources of soil metals were irrigation, agricultural activities, and coal deposition in the east and industrial activities and soil-forming parent rocks in the west. Environ Toxicol Chem 2023;42:888-900. © 2023 SETAC.
Collapse
Affiliation(s)
- Qihang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, China
| | - Xuexian Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Chujie Bu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
22
|
Zeng W, Wan X, Gu G, Lei M, Yang J, Chen T. An interpolation method incorporating the pollution diffusion characteristics for soil heavy metals - taking a coke plant as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159698. [PMID: 36309258 DOI: 10.1016/j.scitotenv.2022.159698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The existing spatial interpolation methods in the prediction of soil heavy metal distribution are generally based on spatial auto correlation theory, rarely considering the pollution patterns. By contrast, in polluted sites, heavy metals have a strong heterogeneity even within a very small area, which is not exactly in line with auto correlation theory. This contradiction may lead to inaccuracy in spatial prediction. Atmospheric diffusion and deposition are one of the main sources of soil heavy metal pollution caused by coal-related production activities. To improve the prediction accuracy, the diffusion patterns of pollutants were considered in this paper by integrating Geodetector, Co-Kriging (COK), and partition interpolation. Geodetector was used to identify the main driving factors of soil pollution, based on which, the main driving factors were used as covariates introduced into the interpolation method (COK). Specifically, the amount of particulate matter deposition obtained by a pollutant diffusion model (AERMOD) was used as a covariate. For comparison, the distances to quenching, coke oven, and ammonium sulfate section were also used as covariates. Compared with the Ordinary Kriging method, the method COK-AERMOD established here decreased the root mean square error values of As (2.05 reduced to 1.89), Cd (0.18 reduced to 0.16), Cr (19.07 reduced to 12.97), Cu (6.92 reduced to 4.72), Hg (0.32 reduced to 0.28), Ni (16.92 reduced to 16.10), Pb (18.29 reduced to 16.62), and Zn (159.68 reduced to 153.66). This method in this paper is informative for the interpolation of soil elements in contaminated areas with known pollution source and diffusion patterns.
Collapse
Affiliation(s)
- Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gaoquan Gu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Zhao L, Sun ZF, Pan XW, Tan JY, Yang SS, Wu JT, Chen C, Yuan Y, Ren NQ. Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions. WATER RESEARCH X 2023; 18:100167. [PMID: 37250290 PMCID: PMC10214287 DOI: 10.1016/j.wroa.2023.100167] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 05/31/2023]
Abstract
With the rapid growth yield of global sewage sludge, rational and effective treatment and disposal methods are becoming increasingly needed. Biochar preparation is an attractive option for sewage sludge treatment, the excellent physical and chemical properties of sludge derived biochar make it an attractive option for environmental improvement. Here, the current application state of sludge derived biochar was comprehensively reviewed, and the advances in the mechanism and capacity of sludge biochar in water contaminant removal, soil remediation, and carbon emission reduction were described, with particular attention to the key challenges involved, e.g., possible environmental risks and low efficiency. Several new strategies for overcoming sludge biochar application barriers to realize highly efficient environmental improvement were highlighted, including biochar modification, co-pyrolysis, feedstock selection and pretreatment. The insights offered in this review will facilitate further development of sewage sludge derived biochar, towards addressing the obstacles in its application in environmental improvement and global environmental crisis.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhong-Fang Sun
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Wen Pan
- Power China Huadong Engineering Corporation Limited, China
| | - Jing-Yan Tan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie-Ting Wu
- School of Environment, Liaoning University, Shenyang, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
24
|
Li T, Zhang X, Jia L, Zhu X, Xu M. Eco-geochemical evaluation of the Leizhou Peninsula (southern China) and the prediction of heavy metal content in soils. MARINE POLLUTION BULLETIN 2022; 185:114275. [PMID: 36327934 DOI: 10.1016/j.marpolbul.2022.114275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/15/2023]
Abstract
The Leizhou Peninsula is an important base for tropical and subtropical cash crops in China, but still lacks systematic research on regional eco-geochemical characteristics. Here the elemental results show that risk-free soils accounted for 9168 km2 and were mainly concentrated in the northern Leizhou Peninsula, while risk-controllable soils occupied 3318 km2 and were mostly distributed in the southern part. The contributor of the heavy metals in soils was mainly natural rocks, while the road traffic dust and coal combustion were also responsible for the origin of anomalous elements Cd, Cr, and Ni (0.004-1.8, 0.76-590, and 0.14-372 mg/kg, respectively). 90.15 % of the Leizhou Peninsula plants were not obviously contaminated, yet the comparison between the data collected in 1997 and 2018 allows us to speculate that Ni in the studied soils will reach the risk screening value in 7 years, followed by Cr and Cu in 39 and 92 years, respectively.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Geological Survey Institute, Guangzhou 510080, China.
| | - Xinchang Zhang
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Lili Jia
- Guangdong Geological Survey Institute, Guangzhou 510080, China
| | - Xin Zhu
- Guangdong Geological Survey Institute, Guangzhou 510080, China
| | - Min Xu
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
25
|
Afra Z, Rezapour S, Sabbaghtazeh E, Dalalian MR, Rafieyan O. Long-term orchard practice affects the ecological and human health risk of soil heavy metals in a calcareous environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:433. [PMID: 35575815 DOI: 10.1007/s10661-022-10084-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The contamination of agroecosystems with heavy metals, caused by the long-term agricultural practices (e.g., the application of extensive agrochemical), has become a high-priority issue for soil-food-human health. Our study aimed to estimate the effect of the agricultural activities on contamination severity and health risk potential of heavy metals in the soil-urban apple orchards versus control soils across various soil types and apple cultivars. This research assessed pollution index (PI), pollution load index (PLI), ecological risk (ER), bio-concentration factor (BCF), hazard quotient (HQ), and overall hazard index (HI). The results revealed a significant increase in the concentration of all metals of the orchard soils, ranging 30-51%, 19-24%, 70-137%, 25-33%, and 16-23% for Zn, Cu, Cd, Pb, and Ni, respectively, versus those in the control soils. Compared to the control soils, PI, PLI, and ER reflected a significant increase in the orchard soils ranging 13-67%, 18-45%, and 18-33%, respectively, which has downgraded their scoring class by one grade. Cd and Pb were not detected in the samples collected from the apple cultivars 'Golden Delicious' (GD) and 'Red Delicious' (RD), indicating no toxic levels of Cd and Pb. Compared to the GD, the concentration of Zn, Cu, and Ni was comparatively higher in RD, implying varying heavy metal accumulation potentials in two different apple cultivars. The mean HQ and HI were in the low category (0.1 ≤ HQ and HI < 1) in both GD and RD cultivars, meaning that GD and RD are safe for local residents to be consumed and do not pose a significant potential risk to the health of consumers. However, HQ and HI were significantly higher in the RD cultivar than in the GD cultivar in most apple samples.
Collapse
Affiliation(s)
- Zhleh Afra
- Department of Soil Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Salar Rezapour
- Soil Science Department, Urmia University, P. O. Box 165, 57134, Urmia, Iran.
| | - Elnaz Sabbaghtazeh
- Department of Soil Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | - Omid Rafieyan
- Department of Environmental Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|