1
|
Albacete S, Azpiazu C, Sancho G, Barnadas M, Alins G, Sgolastra F, Rodrigo A, Bosch J. Sublethal fungicide-insecticide co-exposure affects nest recognition and parental investment in a solitary bee. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125223. [PMID: 39481516 DOI: 10.1016/j.envpol.2024.125223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Fungicides may interact synergistically with insecticides. However, our understanding of the impacts of sublethal insecticide-fungicide combinations on solitary bees is mostly restricted to laboratory studies, providing no information about potential consequences on behavior and reproductive success. We analyzed the effects of a fungicide application, alone and in combination with sublethal levels of an insecticide, on the nesting behavior and reproductive output of the solitary bee Osmia cornuta. We released individually-marked females into oilseed rape field cages, and subsequently sprayed the plants with four treatments: control (water), fungicide (tebuconazole), insecticide (acetamiprid at a sublethal concentration), and mixture (fungicide + insecticide). We recorded nesting activity before and after the sprays and assessed post-spray individual reproductive success. Bees of the single pesticide treatments were unaffected by the sprays and did not differ from control bees in any of the parameters measured. The longevity of bees of the mixture treatment was unaffected. However, these bees showed reduced foraging activity, shorter in-nest pollen-nectar deposition times, and increased difficulty recognizing their nesting cavity, leading to a decrease in provisioning rate, parental investment, and offspring production. Our study demonstrates that co-exposure to a fungicide with otherwise harmless levels of an insecticide caused behavioral effects with consequences on reproductive success. Because longevity was unaffected, these effects would not have been easily detected in a chronic laboratory test. Our results have important implications for bee risk assessment, which should account for exposure to multiple compounds and address behavioral effects and reproductive output under semi-field and/or field conditions.
Collapse
Affiliation(s)
- Sergio Albacete
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain.
| | - Celeste Azpiazu
- Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain; Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Gonzalo Sancho
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain
| | - Marta Barnadas
- Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain
| | - Georgina Alins
- Fruit Production Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 25003, Lleida, Spain
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127, Bologna, Italy
| | - Anselm Rodrigo
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain
| | - Jordi Bosch
- Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain
| |
Collapse
|
2
|
Glinski DA, Purucker ST, Minucci JM, Richardson RT, Lin CH, Johnson RM, Henderson WM. Analysis of contaminant residues in honey bee hive matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176329. [PMID: 39304159 DOI: 10.1016/j.scitotenv.2024.176329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Pollinators provide ecological services essential to maintaining our food supply and propagating natural habitats. Populations are in decline due to environmental stressors including pesticides, pathogens, and habitat loss. To better understand the impacts of pesticide exposures on colony health, a field survey in Ohio, USA was conducted to monitor the potential contamination of honey bee colonies by pesticides. Apiaries (n = 10) were situated across an agricultural gradient and samples were collected over a 4-week period encompassing corn planting. Dead bees from entrance traps (DBT), pollen, and in-hive (IH) matrices including bee bread, honey, larvae, and nurse bees were analyzed for a whole suite of pesticides. Out of 210 pesticides targeted, 68 residues were quantified across 306 samples. Neonicotinoids, miticides, and fungicides were the dominant pesticide classes identified throughout all the matrix types. Neonicotinoids were detected at higher concentrations and at higher frequencies compared to fungicides, specifically in field pollen samples. DBT also contained high concentrations of these two contaminant classes, although detection frequencies for neonicotinoids were typically lower. Overall, herbicides and non‑neonicotinoid insecticides were found with low frequency and at low concentrations. For most pesticide classes, trends for the mean concentrations were DBT > IH nurse bees > field pollen > IH larvae > IH honey. Pesticides were detected in 100 % of samples with concentrations ranging from 0.01 ppb (diphenylamine) to 2790 ppb (clothianidin). All samples were contaminated with at least two pesticide residues, while 19 samples presented over ten detects and maximum detections of 20 in DBT. Pesticide residues were positively correlated with agricultural gradients across sites and sampling periods. These findings reveal that foraging leads to the exposure of the entire colony to a wide range of pesticides. Moreover, residues determined in DBT serve as an effective proxy for monitoring hive matrices with significantly less disturbance to active hives.
Collapse
Affiliation(s)
- Donna A Glinski
- U.S. Environmental Protection Agency, ORD/CEMM/EPD, Athens, GA 30605, USA
| | - S Thomas Purucker
- U.S. Environmental Protection Agency, ORD/CCTE/GLTED, Research Triangle Park, NC 27709, USA
| | - Jeffrey M Minucci
- U.S. Environmental Protection Agency, ORD/CPHEA/PHESD, Research Triangle Park, NC 27709, USA
| | | | - Chia-Hua Lin
- Department of Entomology, The Ohio State University, Rothenbuhler Honey Bee Research Laboratory, Columbus, OH 43210, USA
| | - Reed M Johnson
- Department of Entomology, The Ohio State University-Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | | |
Collapse
|
3
|
Schmolke A, Galic N, Roeben V, Preuss TG, Miles M, Hinarejos S. SolBeePop ecotox: A Population Model for Pesticide Risk Assessments of Solitary Bees. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2645-2661. [PMID: 39291837 DOI: 10.1002/etc.5990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024]
Abstract
In agricultural landscapes, solitary bees occur in a large diversity of species and are important for crop and wildflower pollination. They are distinguished from honey bees and bumble bees by their solitary lifestyle as well as different nesting strategies, phenologies, and floral preferences. Their ecological traits and presence in agricultural landscapes imply potential exposure to pesticides and suggest a need to conduct ecological risk assessments for solitary bees. However, assessing risks to the large diversity of managed and wild bees across landscapes and regions poses a formidable challenge. Population models provide tools to estimate potential population-level effects of pesticide exposures, can support field study design and interpretation, and can be applied to expand study data to untested conditions. We present a population model for solitary bees, SolBeePopecotox, developed for use in the context of ecological risk assessments. The trait-based model extends a previous version with the explicit representation of exposures to pesticides from relevant routes. Effects are implemented in the model using a simplified toxicokinetic-toxicodynamic model, BeeGUTS (GUTS = generalized unified threshold model for survival), adapted specifically for bees. We evaluated the model with data from semifield studies conducted with the red mason bee, Osmia bicornis, in which bees were foraging in tunnels over control and insecticide-treated oilseed rape fields. We extended the simulations to capture hypothetical semifield studies with two soil-nesting species, Nomia melanderi and Eucera pruinosa, which are difficult to test in empirical studies. The model provides a versatile tool for higher-tier risk assessments, for instance, to estimate effects of potential exposures, expanding available study data to untested species, environmental conditions, or exposure scenarios. Environ Toxicol Chem 2024;43:2645-2661. © 2024 SETAC.
Collapse
Affiliation(s)
- Amelie Schmolke
- RIFCON GmbH, Hirschberg, Germany
- Waterborne Environmental, Leesburg, Virginia, USA
| | - Nika Galic
- Syngenta Crop Protection, Basel, Switzerland
| | | | | | - Mark Miles
- Bayer Crop Science, Cambridge, United Kingdom
| | | |
Collapse
|
4
|
Ferreira LMN, Hrncir M, de Almeida DV, Bernardes RC, Lima MAP. Climatic fluctuations alter the preference of stingless bees (Apidae, Meliponini) towards food contaminated with acephate and glyphosate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175892. [PMID: 39218107 DOI: 10.1016/j.scitotenv.2024.175892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The global decline of pollinators has become a major concern for the scientific community, policymakers, and the general public. Among the main drivers of diminishing bee populations is the widespread use of agrochemicals. To gain a comprehensive understanding of the foraging dynamics of bees at agrochemical-contaminated areas, it is essential to consider both environmental conditions and the specific foraging ecology of bee species. For the first time, we conducted a semi-field study to investigate whether stingless bees exhibit a preference for food contaminated with agrochemicals compared to non- contaminated food, under natural weather conditions. Colonies of Plebeia lucii Moure, 2004 were placed in a greenhouse and subjected to a preference test, where bees were given the freedom to choose between contaminated or non-contaminated food sources following a preliminary training period. Within the greenhouse, we placed feeders containing realistic concentrations of an insecticide (acephate: 2 mg a.i./L), a herbicide (glyphosate: 31.3 mg a.i./L), or a mixture of both, alongside non-contaminated food. Environmental variables (temperature, humidity, and light intensity) were monitored throughout the experiment. At higher temperatures, the foragers preferred food containing the mixture of both agrochemicals or uncontaminated food over the other treatments. At lower temperatures, by contrast, the bees preferred food laced with a single agrochemical (acephate or glyphosate) over uncontaminated food or the agrochemical mixture. Our findings indicate that agrochemical residues in nectar pose a significant threat to P. lucii colonies, as foragers do not actively avoid contaminated food, despite the detrimental effects of acephate and glyphosate on bees. Furthermore, we demonstrate that even minor, natural fluctuations in environmental conditions can alter the colony exposure risk. Despite the interplay between temperature and bees' preference for contaminated food, foragers consistently collected contaminated food containing both agrochemicals, whether isolated or in combination, throughout the whole experiment.
Collapse
Affiliation(s)
- Lívia Maria Negrini Ferreira
- Programa de Pós-Graduação em Entomologia, Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Michael Hrncir
- Departamento de Fisiologia, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Danilo Vieira de Almeida
- Curso de Graduação em Agronomia, Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | |
Collapse
|
5
|
Siviter H, DeVore J, Gray LK, Ivers NA, Lopez EA, Riddington IM, Stuligross C, Jha S, Muth F. A novel pesticide has lethal consequences for an important pollinator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175935. [PMID: 39218110 DOI: 10.1016/j.scitotenv.2024.175935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Wild bees pollinate crops and wildflowers where they are frequently exposed to pesticides. Neonicotinoids are the most commonly used insecticide globally, but restrictions on their use and rising pest resistance have increased the demand for alternative pesticides. Flupyradifurone is a novel insecticide that has been licenced globally for use on bee-visited crops. Here, in a semi-field experiment, we exposed solitary bees (Osmia lignaria) to a commercial pesticide formulation (Sivanto Prime) containing flupyradifurone at label-recommended rates. We originally designed the experiment to examine sublethal effects, but contrary to our expectations, 100 % of bees released into pesticide-treated cages died within 3 days of exposure, compared to 0 % in control plots. Bees exposed to flupyradifurone a few days after the initial application survived but endured prolonged sublethal effects, including lower nesting success, impairment to foraging efficiency, and higher mortality. These results demonstrate that exposure to this novel insecticide poses significant threats to solitary bees and add to a growing body of evidence indicating that this pesticide can have negative impacts on wild bees at field-realistic concentrations. In the short-term, we recommend that commercial formulations containing flupyradifurone should be restricted to non-flowering crops while a reassessment of its safety can be conducted. In the long-term, environmental risk assessors should continue to develop risk assessments that are truly holistic and incorporate the ecological and life history traits of multiple pollinator species.
Collapse
Affiliation(s)
- Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; School of Biological Sciences, University of Bristol, 24, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Jennie DeVore
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Lily K Gray
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Nicholas A Ivers
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Entomology, Pennsylvania State University, 547 ASI Bldg., University Park, PA 16802, USA
| | - Elizabeth A Lopez
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Ian M Riddington
- Department of Chemistry, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Clara Stuligross
- Department of Entomology and Nematology, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA; Department of Entomology, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Shalene Jha
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Lady Bird Johnson Wildflower Center, Austin, TX 78739, USA
| | - Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neurobiology, Physiology, and Behavior, 196 Briggs Hall, University of California, Davis, CA 95616, USA
| |
Collapse
|
6
|
Willis Chan DS, Rondeau S. Understanding and comparing relative pesticide risk among North American wild bees from their association with agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175378. [PMID: 39122043 DOI: 10.1016/j.scitotenv.2024.175378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In North America, approximately 21 % (739 species) of the total wild bee diversity is known to be associated with crops, with bee species varying in the extent of this association. While current evaluations of pesticide effects on bees primarily focus on a limited subset of species, a new focus is needed to ensure comprehensive protection of all wild bees in agricultural contexts. This study introduces a novel approach to characterize and compare the relative potential pesticide risk for wild bee species of their association with crops. Using intrinsic bee vulnerability traits and extrinsic factors like crop toxic loads and association strength, we calculated Bee-Crop Risk Scores for 594 wild bee species, identifying those experiencing the highest potential risk from pesticide exposure in North American agroecosystems. We discuss the influence of intrinsic and extrinsic factors on the relative potential risk calculated and outline avenues for refining our approach. As most species facing the highest potential risk from pesticide exposure across North America are ground-nesters, our study suggests that species (e.g., Osmia spp., Megachile spp.) commonly proposed as models for pesticide risk assessments may not accurately represent risk for those bee species facing the highest potential risk in agricultural contexts.
Collapse
Affiliation(s)
- D Susan Willis Chan
- School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
| | - Sabrina Rondeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Hung KLJ, Ternest JJ, Wood TJ, Ingwell LL, Bloom EH, Szendrei Z, Kaplan I, Goodell K. Plant versus pollinator protection: balancing pest management against floral contamination for insecticide use in Midwestern US cucurbits. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae202. [PMID: 39278632 DOI: 10.1093/jee/toae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024]
Abstract
Controlling crop pests while conserving pollinators is challenging, particularly when prophylactically applying broad-spectrum, systemic insecticides such as neonicotinoids. Systemic insecticides are often used in conventional agriculture in commercial settings, but the conditions that optimally balance pest management and pollination are poorly understood. We investigated how insecticide application strategies control pests and expose pollinators to insecticides with an observational study of cucurbit crops in the Midwestern United States. To define the window of protection and potential pollinator exposure resulting from alternative insecticide application strategies, we surveyed 62 farms cultivating cucumber, watermelon, or pumpkin across 2 yr. We evaluated insecticide regimes, abundance of striped and spotted cucumber beetles (Acalymma vittatum [Fabricius] and Diabrotica undecimpunctata Mannerheim), and insecticide residues in leaves, pollen, and nectar. We found that growers used neonicotinoids (thiamethoxam and imidacloprid) at planting in all cucumber and pumpkin and approximately half of watermelon farms. In cucumber, foliar thiamethoxam levels were orders of magnitude higher than the other crops, excluding nearly all beetles from fields. In watermelon and pumpkin, neonicotinoids applied at planting resulted in 4-8 wk of protection before beetle populations increased. Floral insecticide concentrations correlated strongly with foliar concentrations across all crops, resulting in high potential exposure to pollinators in cucumber and low-moderate exposure in pumpkin and watermelon. Thus, the highest-input insecticide regimes maintained cucumber beetles far below economic thresholds while also exposing pollinators to the highest pollen and nectar insecticide concentrations. In cucurbits, reducing pesticide inputs will likely better balance crop protection and pollination, reduce costs, and improve yields.
Collapse
Affiliation(s)
- Keng-Lou James Hung
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Newark, OH, USA
- Oklahoma Biological Survey, School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - John J Ternest
- Department of Entomology, Purdue University, West Lafayette, IN, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Thomas J Wood
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- NL Biodiversity and Society, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Laura L Ingwell
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Elias H Bloom
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Ian Kaplan
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Karen Goodell
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Newark, OH, USA
| |
Collapse
|
8
|
Provase M, Schmitz Boeing GAN, Tsukada E, Salla RF, Abdalla FC. Impact of environmental concentrations of fipronil on DNA integrity and brain structure of Bombus atratus bumblebees. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104536. [PMID: 39153725 DOI: 10.1016/j.etap.2024.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Fipronil (FP) is an insecticide used in the treatment and control of pests, but it also adversely affects bees. Currently, there is no data on the genotoxic effects of FP in the brain of bumblebees. Thus, through the comet assay and routine morphological analysis, we analyzed the morphological effects and potential genotoxicity of environmentally relevant concentrations of FP on the brain of Bombus atratus. Bumblebees were exposed at concentrations of 2.5 μg/g and 3.5 μg/g for 96 hours. After the exposure, the brains were removed for morphological and morphometric analysis, and the comet assay procedure - used to detect DNA damage in individual cells using electrophoresis. Our data showed that both concentrations (2.5 μg/g and 3.5 μg/g) caused DNA damage in brain cells. These results corroborate the morphological data. We observed signs of synapse loss in the calyx structure, intercellular spaces between compact inner and non-compact inner cells, and cell swelling. This study provides unprecedented evidence of the effects of FP on DNA and cellular structures in the brain of B. atratus and reinforces the need to elucidate its toxic effects on other species to allow future risk assessments and conservation projects.
Collapse
Affiliation(s)
- Michele Provase
- Federal University of São Carlos (UFSCar), Department of Biology (DBio), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil.
| | - Guilherme Andrade Neto Schmitz Boeing
- Federal University of São Carlos (UFSCar), Department of Biology (DBio), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| | - Elisabete Tsukada
- Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| | - Raquel Fernanda Salla
- Federal University of São Carlos (UFSCar), Department of Biology (DBio), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| | - Fábio Camargo Abdalla
- Federal University of São Carlos (UFSCar), Department of Biology (DBio), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| |
Collapse
|
9
|
Rahimi E, Jung C. Spatial Modeling of Insect Pollination Services in Fragmented Landscapes. INSECTS 2024; 15:662. [PMID: 39336630 PMCID: PMC11432557 DOI: 10.3390/insects15090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Pollination mapping and modeling have opened new avenues for comprehending the intricate interactions between pollinators, their habitats, and the plants they pollinate. While the Lonsdorf model has been extensively employed in pollination mapping within previous studies, its conceptualization of bee movement in agricultural landscapes presents notable limitations. Consequently, a gap exists in exploring the effects of forest fragmentation on pollination once these constraints are addressed. In this study, our objective is to model pollination dynamics in fragmented forest landscapes using a modified version of the Lonsdorf model, which operates as a distance-based model. Initially, we generated several simulated agricultural landscapes, incorporating forested and agricultural habitats with varying forest proportions ranging from 10% to 50%, along with a range of fragmentation degrees from low to high. Subsequently, employing the modified Lonsdorf model, we evaluated the nesting suitability and consequent pollination supply capacity across these diverse scenarios. We found that as the degree of forest fragmentation increases, resulting in smaller and more isolated patches with less aggregation, the pollination services within landscapes tend to become enhanced. In conclusion, our research suggests that landscapes exhibiting fragmented forest patch patterns generally display greater nesting suitability due to increased floral resources in their vicinity. These findings highlight the importance of employing varied models for pollination mapping, as modifications to the Lonsdorf model yield distinct outcomes compared to studies using the original version.
Collapse
Affiliation(s)
- Ehsan Rahimi
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Republic of Korea;
| | - Chuleui Jung
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Republic of Korea;
- Department of Plant Medical, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
10
|
Liao LH, Wu WY, Berenbaum MR. Variation in Pesticide Toxicity in the Western Honey Bee (Apis mellifera) Associated with Consuming Phytochemically Different Monofloral Honeys. J Chem Ecol 2024; 50:397-408. [PMID: 38760625 PMCID: PMC11399171 DOI: 10.1007/s10886-024-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Insecticide toxicity to insect herbivores has long been known to vary across different host plants; this phenomenon has been widely documented in both foliage-feeders and sap-feeders. Species-specific phytochemical content of hostplant tissues is assumed to determine the pattern of induction of insect enzymes that detoxify insecticides, but specific phytochemicals have rarely been linked to host plant-associated variation in pesticide toxicity. Moreover, no studies to date have examined the effects of nectar source identity and phytochemical composition on the toxicity of insecticides to pollinators. In this study, we compared LD50 values for the insecticide bifenthrin, a frequent contaminant of nectar and pollen in agroecosystems, in the western honey bee, Apis mellifera, consuming three phytochemically different monofloral honeys: Nyssa ogeche (tupelo), Robinia pseudoacacia (black locust), and Fagopyrum esculentum (buckwheat). We found that bifenthrin toxicity (LD50) values for honey bees across different honey diets is linked to their species-specific phytochemical content. The profiles of phenolic acids and flavonoids of buckwheat and locust honeys are richer than is the profile of tupelo honey, with buckwheat honey containing the highest total content of phytochemicals and associated with the highest bifenthrin LD50 in honey bees. The vector fitting in the ordination analysis revealed positive correlations between LD50 values and two honey phytochemical richness estimates, Chao1 and Abundance-based Coverage Estimator (ACE). These findings suggest unequal effects among different phytochemicals, consistent with the interpretation that certain compounds, including ones that are rare, may have a more pronounced effect in mitigating pesticide toxicity.
Collapse
Affiliation(s)
- Ling-Hsiu Liao
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Wen-Yen Wu
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Drummond FA, Averill AL, Eitzer BD. Pesticide Contamination in Native North American Crops, Part II-Comparison of Flower, Honey Bee Workers, and Native Bee Residues in Lowbush Blueberry. INSECTS 2024; 15:567. [PMID: 39194772 DOI: 10.3390/insects15080567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
In lowbush blueberry fields, we conducted residue analysis comparing flowers, trapped pollen (honey bee and Osmia spp.), and collected bees (honey bee workers, bumble bee queens, and non-Bombus spp. wild native bees). The study was conducted from 2012 to 2014. The number of pesticide residues, total concentrations, and risk to honey bees (Risk Quotient) on flowers were not significantly different from those determined for trapped honey bee pollen (except in one study year when residues detected in flower samples were significantly lower than residue numbers detected in trapped pollen). The compositions of residues were similar on flowers and trapped pollen. The number of residues detected in honey bee pollen was significantly greater than the number detected in Osmia spp. pollen, while the total concentration of residue was not different between the two types of pollen. The risk to honey bees was higher in trapped honey bee pollen than in trapped Osmia spp. pollen. The analysis of honey bee workers, native bumble bee queens, and native solitary bees showed that although more pesticide residues were detected on honey bee workers, there were no differences among the bee taxa in total residue concentrations or risk (as estimated in terms of risk to honey bees).
Collapse
Affiliation(s)
- Francis A Drummond
- School of Biology and Ecology, and Cooperative Extension, University of Maine, Orono, ME 04469, USA
| | - Anne L Averill
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA
| | - Brian D Eitzer
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| |
Collapse
|
12
|
Strang CG, Rondeau S, Baert N, McArt SH, Raine NE, Muth F. Field agrochemical exposure impacts locomotor activity in wild bumblebees. Ecology 2024; 105:e4310. [PMID: 38828716 DOI: 10.1002/ecy.4310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 06/05/2024]
Abstract
Agricultural intensification has been identified as one of the key causes of global insect biodiversity losses. These losses have been further linked to the widespread use of agrochemicals associated with modern agricultural practices. Many of these chemicals are known to have negative sublethal effects on commercial pollinators, such as managed honeybees and bumblebees, but less is known about the impacts on wild bees. Laboratory-based studies with commercial pollinators have consistently shown that pesticide exposure can impact bee behavior, with cascading effects on foraging performance, reproductive success, and pollination services. However, these studies typically assess only one chemical, neglecting the complexity of real-world exposure to multiple agrochemicals and other stressors. In the summer of 2020, we collected wild-foraging workers of the common eastern bumblebee, Bombus impatiens, from five squash (Cucurbita) agricultural sites (organic and conventional farms), selected to represent a range of agrochemical, including neonicotinoid insecticide, use. For each bee, we measured two behaviors relevant to foraging success and previously shown to be impacted by pesticide exposure: sucrose responsiveness and locomotor activity. Following behavioral testing, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) chemical analysis to detect and quantify the presence of 92 agrochemicals in each bumblebee. Bees collected from our sites did not vary in pesticide exposure as expected. While we found a limited occurrence of neonicotinoids, two fungicides (azoxystrobin and difenoconazole) were detected at all sites, and the pesticide synergist piperonyl butoxide (PBO) was present in all 123 bees. We found that bumblebees that contained higher levels of PBO were less active, and this effect was stronger for larger bumblebee workers. While PBO is unlikely to be the direct cause of the reduction in bee activity, it could be an indicator of exposure to pyrethroids and/or other insecticides that we were unable to directly quantify, but which PBO is frequently tank-mixed with during pesticide applications on crops. We did not find a relationship between agrochemical exposure and bumblebee sucrose responsiveness. To our knowledge, this is the first evidence of a sublethal behavioral impact of agrochemical exposure on wild-foraging bees.
Collapse
Affiliation(s)
- Caroline G Strang
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Baert
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Felicity Muth
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| |
Collapse
|
13
|
Laurent M, Bougeard S, Caradec L, Ghestem F, Albrecht M, Brown MJF, DE Miranda J, Karise R, Knapp J, Serrano J, Potts SG, Rundlöf M, Schwarz J, Attridge E, Babin A, Bottero I, Cini E, DE LA Rúa P, DI Prisco G, Dominik C, Dzul D, García Reina A, Hodge S, Klein AM, Knauer A, Mand M, Martínez López V, Serra G, Pereira-Peixoto H, Raimets R, Schweiger O, Senapathi D, Stout JC, Tamburini G, Costa C, Kiljanek T, Martel AC, LE S, Chauzat MP. Novel indices reveal that pollinator exposure to pesticides varies across biological compartments and crop surroundings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172118. [PMID: 38569959 DOI: 10.1016/j.scitotenv.2024.172118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.
Collapse
Affiliation(s)
- Marion Laurent
- Anses, Sophia Antipolis laboratory, Unit of Honeybee Pathology, France
| | - Stéphanie Bougeard
- Anses, Ploufragan-Plouzané-Niort Laboratory, Epidemiology and welfare of pork, France
| | - Lucile Caradec
- CNRS, Statistics and Computer Science Department, L'Institut Agro Rennes-Angers, UMR 6625 IRMAR CNRS, 35042 Rennes Cedex, France
| | - Florence Ghestem
- CNRS, Statistics and Computer Science Department, L'Institut Agro Rennes-Angers, UMR 6625 IRMAR CNRS, 35042 Rennes Cedex, France
| | - Matthias Albrecht
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Mark J F Brown
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | | | - Reet Karise
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1a, 51006 Tartu, Estonia
| | - Jessica Knapp
- Department of Biology, Lund University, Lund, Sweden; Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - José Serrano
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Simon G Potts
- School of Agriculture, Policy and Development, Reading University, RG6 6AR, UK
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden
| | - Janine Schwarz
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | | | - Aurélie Babin
- Anses, Sophia Antipolis laboratory, Unit of Honeybee Pathology, France
| | - Irene Bottero
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Elena Cini
- School of Agriculture, Policy and Development, Reading University, RG6 6AR, UK
| | - Pilar DE LA Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Gennaro DI Prisco
- CREA - Research Centre for Agriculture and Environment, Bologna, Italy; Institute for Sustainable Plant Protection, The Italian National Research Council, Napoli, Italy
| | - Christophe Dominik
- Helmholtz Centre for Environmental Research - UFZ, Dep. Community Ecology, Theodor-Lieser-Strasse 4, 06120 Halle, Germany
| | - Daniel Dzul
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Andrés García Reina
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Simon Hodge
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Alexandra M Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, Germany
| | - Anina Knauer
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Marika Mand
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1a, 51006 Tartu, Estonia
| | - Vicente Martínez López
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Giorgia Serra
- CREA - Research Centre for Agriculture and Environment, Bologna, Italy
| | | | - Risto Raimets
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1a, 51006 Tartu, Estonia
| | - Oliver Schweiger
- Helmholtz Centre for Environmental Research - UFZ, Dep. Community Ecology, Theodor-Lieser-Strasse 4, 06120 Halle, Germany
| | - Deepa Senapathi
- School of Agriculture, Policy and Development, Reading University, RG6 6AR, UK
| | - Jane C Stout
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Giovanni Tamburini
- Nature Conservation and Landscape Ecology, University of Freiburg, Germany
| | - Cecilia Costa
- CREA - Research Centre for Agriculture and Environment, Bologna, Italy
| | - Tomasz Kiljanek
- PIWET, Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | | | - Sébastien LE
- CNRS, Statistics and Computer Science Department, L'Institut Agro Rennes-Angers, UMR 6625 IRMAR CNRS, 35042 Rennes Cedex, France
| | - Marie-Pierre Chauzat
- Anses, Sophia Antipolis laboratory, Unit of Honeybee Pathology, France; Paris-Est University, Anses, Laboratory for Animal Health, Maisons-Alfort, France.
| |
Collapse
|
14
|
Graham KK, McArt S, Isaacs R. High pesticide exposure and risk to bees in pollinator plantings adjacent to conventionally managed blueberry fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171248. [PMID: 38402956 DOI: 10.1016/j.scitotenv.2024.171248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Wildflower plantings adjacent to agricultural fields provide diverse floral resources and nesting sites for wild bees. However, their proximity to pest control activities in the crop may result in pesticide exposure if pesticides drift into pollinator plantings. To quantify pesticide residues in pollinator plantings, we sampled flowers and soil from pollinator plantings and compared them to samples from unenhanced field margins and crop row middles. At conventionally managed farms, flowers from pollinator plantings had similar exposure profiles to those from unenhanced field margins or crop row middles, with multiple pesticides and high and similar risk quotient (RQ) values (with pollinator planting RQ: 3.9; without pollinator planting RQ: 4.0). Whereas samples from unsprayed sites had significantly lower risk (RQ: 0.005). Soil samples had overall low risk to bees. Additionally, we placed bumble bee colonies (Bombus impatiens) in field margins of crop fields with and without pollinator plantings and measured residues in bee-collected pollen. Pesticide exposure was similar in pollen from sites with or without pollinator plantings, and risk was generally high (with pollinator planting RQ: 0.5; without pollinator planting RQ: 1.1) and not significant between the two field types. Risk was lower at sites where there was no pesticide activity (RQ: 0.3), but again there was no significant difference between management types. The insecticide phosmet, which is used on blueberry farms for control of Drosophila suzukii, accounted for the majority of elevated risk. Additionally, analysis of pollen collected by bumble bees found no significant difference in floral species richness between sites with or without pollinator plantings. Our results suggest that pollinator plantings do not reduce pesticide risk and do not increase pollen diversity collected by B. impatiens, further highlighting the need to reduce exposure through enhanced IPM adoption, drift mitigation, and removal of attractive flowering weeds prior to insecticide applications.
Collapse
Affiliation(s)
- Kelsey K Graham
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI 48824, USA; Pollinating Insect-Biology, Management, Systematics Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 1410 N 800 E, Logan, UT 84341, USA.
| | - Scott McArt
- Department of Entomology, Cornell University, 4129 Comstock Hall, Ithaca, NY 14853, USA
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI 48824, USA; Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Pereira RC, Vieira Júnior JOL, Barcelos JVPL, Peçanha LS, França TA, Mendonça LVP, da Silva WR, Samuels RI, Silva GA. The stingless bee Trigona spinipes (Hymenoptera: Apidae) is at risk from a range of insecticides via direct ingestion and trophallactic exchanges. PEST MANAGEMENT SCIENCE 2024; 80:2188-2198. [PMID: 38158650 DOI: 10.1002/ps.7956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The stingless bee, Trigona spinipes, is an important pollinator of numerous native and cultivated plants. Trigona spinipes populations can be negatively impacted by insecticides commonly used for pest control in crops. However, this species has been neglected in toxicological studies. Here we observed the effects of seven insecticides on the survival of bees that had fed directly on insecticide-contaminated food sources or received insecticides via trophallactic exchanges between nestmates. The effects of insecticides on flight behavior were also determined for the compounds considered to be of low toxicity. RESULTS Imidacloprid, spinosad and malathion were categorized as highly toxic to T. spinipes, whereas lambda-cyhalothrin, methomyl and chlorfenapyr were of medium to low toxicity and interfered with two aspects of flight behavior evaluated here. Chlorantraniliprole was the only insecticide tested here that had no significant effect on T. spinipes survival, although it did interfere with one aspect of flight capacity. A single bee that had ingested malathion, spinosad or imidacloprid, could contaminate three, four and nineteen other bees, respectively via trophallaxis, resulting in the death of the recipients. CONCLUSION This is the first study to evaluate the ecotoxicology of a range of insecticides that not only negatively affected T. spinipes survival, but also interfered with flight capacity, a very important aspect of pollination behavior. The toxicity of the insecticides was observed following direct ingestion and also via trophallactic exchanges between nestmates, highlighting the possibility of lethal effects of these insecticides spreading throughout the colony, reducing the survival of non-foraging individuals. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renata Cunha Pereira
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - José Olívio Lopes Vieira Júnior
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | | | - Ludimila Simões Peçanha
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Thalles Alves França
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Laís Viana Paes Mendonça
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Wanderson Rosa da Silva
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Richard Ian Samuels
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Gerson Adriano Silva
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Nicholson CC, Knapp J, Kiljanek T, Albrecht M, Chauzat MP, Costa C, De la Rúa P, Klein AM, Mänd M, Potts SG, Schweiger O, Bottero I, Cini E, de Miranda JR, Di Prisco G, Dominik C, Hodge S, Kaunath V, Knauer A, Laurent M, Martínez-López V, Medrzycki P, Pereira-Peixoto MH, Raimets R, Schwarz JM, Senapathi D, Tamburini G, Brown MJF, Stout JC, Rundlöf M. Pesticide use negatively affects bumble bees across European landscapes. Nature 2024; 628:355-358. [PMID: 38030722 PMCID: PMC11006599 DOI: 10.1038/s41586-023-06773-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species1,2, leading to restrictions on these compounds3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.
Collapse
Affiliation(s)
| | - Jessica Knapp
- Department of Biology, Lund University, Lund, Sweden.
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Tomasz Kiljanek
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | | | - Marie-Pierre Chauzat
- Laboratory for Animal Health, ANSES, Paris-Est University, Maisons-Alfort, France
| | - Cecilia Costa
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, University of Murcia, Murcia, Spain
| | - Alexandra-Maria Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Oliver Schweiger
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Irene Bottero
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Elena Cini
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gennaro Di Prisco
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
- Institute for Sustainable Plant Protection, The Italian National Research Council, Portici, Italy
| | - Christophe Dominik
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Simon Hodge
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Vera Kaunath
- Department of Biology, Lund University, Lund, Sweden
| | - Anina Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | - Marion Laurent
- Unit of Honey Bee Pathology, Sophia Antipolis Laboratory, ANSES, Sophia Antipolis, France
| | | | - Piotr Medrzycki
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
| | | | - Risto Raimets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Giovanni Tamburini
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Mark J F Brown
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Jane C Stout
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
17
|
Cappellari A, Malagnini V, Fontana P, Zanotelli L, Tonidandel L, Angeli G, Ioriatti C, Marini L. Impact of landscape composition on honey bee pollen contamination by pesticides: A multi-residue analysis. CHEMOSPHERE 2024; 349:140829. [PMID: 38042427 DOI: 10.1016/j.chemosphere.2023.140829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
The honey bee is the most common and important managed pollinator of crops. In recent years, honey bee colonies faced high mortality for multiple causes, including land-use change and the use of plant protection products (hereafter pesticides). This work aimed to explore how contamination by pesticides of pollen collected by honey bees was modulated by landscape composition and seasonality. We placed two honey bee colonies in 13 locations in Northern Italy in contrasting landscapes, from which we collected pollen samples monthly during the whole flowering season in 2019 and 2020. We searched for almost 400 compounds, including fungicides, herbicides, insecticides, and acaricides. We then calculated for each pollen sample the Pollen Hazard Quotient (PHQ), an index that provides a measure of multi-residue toxicity of contaminated pollen. Almost all pollen samples were contaminated by at least one compound. We detected 97 compounds, mainly fungicides, but insecticides and acaricides showed the highest toxicity. Fifteen % of the pollen samples had medium-high or high levels of PHQ, which could pose serious threats to honey bees. Fungicides showed a nearly constant PHQ throughout the season, while herbicides and insecticides and acaricides showed higher PHQ values in spring and early summer. Also, PHQ increased with increasing cover of agricultural and urban areas from April to July, while it was low and independent of landscape composition at the end of the season. The cover of perennial crops, i.e., fruit trees and vineyards, but not of annual crops, increased PHQ of pollen samples. Our work highlighted that the potential toxicity of pollen collected by honey bees was modulated by complex interactions among pesticide category, seasonality, and landscape composition. Due to the large number of compounds detected, our study should be complemented with additional experimental research on the potential interactive effects of multiple compounds on honey bee health.
Collapse
Affiliation(s)
- Andree Cappellari
- University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, Viale Dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Valeria Malagnini
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Paolo Fontana
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Livia Zanotelli
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Loris Tonidandel
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Gino Angeli
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Claudio Ioriatti
- Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Lorenzo Marini
- University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
18
|
Abstract
Bees are essential pollinators of many crops and wild plants, and pesticide exposure is one of the key environmental stressors affecting their health in anthropogenically modified landscapes. Until recently, almost all information on routes and impacts of pesticide exposure came from honey bees, at least partially because they were the only model species required for environmental risk assessments (ERAs) for insect pollinators. Recently, there has been a surge in research activity focusing on pesticide exposure and effects for non-Apis bees, including other social bees (bumble bees and stingless bees) and solitary bees. These taxa vary substantially from honey bees and one another in several important ecological traits, including spatial and temporal activity patterns, foraging and nesting requirements, and degree of sociality. In this article, we review the current evidence base about pesticide exposure pathways and the consequences of exposure for non-Apis bees. We find that the insights into non-Apis bee pesticide exposure and resulting impacts across biological organizations, landscapes, mixtures, and multiple stressors are still in their infancy. The good news is that there are many promising approaches that could be used to advance our understanding, with priority given to informing exposure pathways, extrapolating effects, and determining how well our current insights (limited to very few species and mostly neonicotinoid insecticides under unrealistic conditions) can be generalized to the diversity of species and lifestyles in the global bee community. We conclude that future research to expand our knowledge would also be beneficial for ERAs and wider policy decisions concerning pollinator conservation and pesticide regulation.
Collapse
Affiliation(s)
- Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada;
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden;
| |
Collapse
|
19
|
Lonsdorf EV, Rundlöf M, Nicholson CC, Williams NM. A spatially explicit model of landscape pesticide exposure to bees: Development, exploration, and evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168146. [PMID: 37914120 DOI: 10.1016/j.scitotenv.2023.168146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Pesticides represent one of the greatest threats to bees and other beneficial insects in agricultural landscapes. Potential exposure is generated through compound- and crop-specific patterns of pesticide use over space and time and unique degradation behavior among compounds. Realized exposure develops through bees foraging from their nests across the spatiotemporal mosaic of floral resources and associated pesticides throughout the landscape. Despite the recognized importance of a landscape-wide approach to assessing exposure, we lack a sufficiently-evaluated predictive framework to inform mitigation decisions and environmental risk assessment for bees. We address this gap by developing a bee pesticide exposure model that incorporates spatiotemporal pesticide use patterns, estimated rates of pesticide degradation, floral resource dynamics across habitats, and bee foraging movements. We parameterized the model with pesticide use data from a public database containing crop-field- and date-specific records of uses throughout our study region over an entire year. We evaluate the model performance in predicting bee pesticide exposure using a dataset of pesticide residues in pollens gathered by bumble bees (Bombus vosnesenskii) returning to colonies across 14 spatially independent landscapes in Northern California. We applied alternative model formulations of pesticide accumulation and degradation, floral resource seasonality, and bee foraging behavior to evaluate different levels of detail for predicting observed pesticide exposure. Our best model explained 73 % of observed variation in pesticide exposure of bumble bee colonies, with generally positive correlations for the dominant compounds. Timing and location of pesticide use were integral, but more detailed parameterizations of pesticide degradation, floral resources, and bee foraging improved the predictions little if at all. Our results suggest that this approach to predict bees' pesticide exposure has value in extending from the local field scale to the landscape in environmental risk assessment and for exploring mitigation options to support bees in agricultural landscapes.
Collapse
Affiliation(s)
- Eric V Lonsdorf
- Department of Environmental Sciences, 400 Dowman Drive, 5th floor, Math & Science Center, Emory University, Atlanta 30322, GA, United States of America.
| | - Maj Rundlöf
- Department of Entomology and Nematology, University of California, One Shields Ave., Davis, CA 95616, United States of America; Department of Biology, Lund University, Ecology Building, Sölvegatan 37, 223 62 Lund, Sweden
| | - Charlie C Nicholson
- Department of Entomology and Nematology, University of California, One Shields Ave., Davis, CA 95616, United States of America; Department of Biology, Lund University, Ecology Building, Sölvegatan 37, 223 62 Lund, Sweden
| | - Neal M Williams
- Department of Entomology and Nematology, University of California, One Shields Ave., Davis, CA 95616, United States of America
| |
Collapse
|
20
|
Paula MCD, Batista NR, Cunha DADS, Santos PGD, Antonialli-Junior WF, Cardoso CAL, Simionatto E. Impacts of the insecticide thiamethoxam on the native stingless bee Plebeia catamarcensis (Hymenoptera, Apidae, Meliponini). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122742. [PMID: 37839683 DOI: 10.1016/j.envpol.2023.122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Agricultural production and the indiscriminate use of insecticides such as thiamethoxam have put at risk the biodiversity and ecosystem services provided by bees, including native stingless species. Since most of the native species do not present economic importance, they may suffer "silent extinction", due to lack of monitoring of their colonies. Therefore, this study aimed to determine the lethal and sublethal concentrations of the insecticide thiamethoxam, with evaluation of its sublethal effects on mobility, in the stingless bee Plebeia catamarcensis (Holmberg, 1903). Foraging bees were collected and exposed to thiamethoxam to determine lethal (LC50) and sublethal concentrations. The 24 h LC50 was 0.408 ng a.i./μL, a value demonstrating that this species may be as sensitive as other stingless bees already studied. Sublethal concentrations influenced the locomotion abilities of the bees, making them hyperactive when exposed to LC50/10 and lethargic when exposed to LC50/100. The effects of sublethal concentrations on individuals may have collective consequences, especially in colonies with few individuals, as is the case of P. catamarcensis. The findings reinforce the hypothesis that thiamethoxam may contribute to the decline of native stingless bees, which can be significantly impacted when chronically exposed to agricultural production systems that use this insecticide, consequently affecting the ecosystem services provided by these bees.
Collapse
Affiliation(s)
- Michele Castro de Paula
- Laboratório de Óleos e Extratos (LAPOEX), Programa de Pós-Graduação em Recursos Naturais (PGRN), Universidade Estadual de Mato Grosso do Sul (UEMS), CEP, 79950-000, Naviraí, MS, Brazil; Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Nathan Rodrigues Batista
- Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - Dayana Alves da Silva Cunha
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil; Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Poliana Galvão Dos Santos
- Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - William Fernando Antonialli-Junior
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil; Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - Claudia Andrea Lima Cardoso
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Euclésio Simionatto
- Laboratório de Óleos e Extratos (LAPOEX), Programa de Pós-Graduação em Recursos Naturais (PGRN), Universidade Estadual de Mato Grosso do Sul (UEMS), CEP, 79950-000, Naviraí, MS, Brazil; Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| |
Collapse
|
21
|
He Q, Zhang S, Yin F, Liu Q, Gao Q, Xiao J, Huang Y, Yu L, Cao H. Risk assessment of honeybee larvae exposure to pyrethroid insecticides in beebread and honey. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115591. [PMID: 37890252 DOI: 10.1016/j.ecoenv.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Honeybee is an essential pollinator to crops, evaluation to the risk assessment of honeybee larvae exposure to pesticides residue in the bee bread and honey is an important strategy to protect the bee colony due to the mixture of these two matrices is main food for 3-day-old honeybee larvae. In this study, a continuous survey to the residue of five pyrethroid insecticides in bee bread and honey between 2018 and 2020 from 17 major cultivation provinces which can be determined as Northeast, Northwest, Eastern, Central, Southwest, and Southern of China, there was at least one type II pyrethroid insecticide was detected in 54.7 % of the bee bread samples and 43.4 % of the honey. Then, we assayed the acute toxicity of type II pyrethroid insecticides based on the detection results, the LD50 value was 0.2201 μg/larva (beta-cyhalothrin), 0.4507 μg/larva (bifenthrin), 2.0840 μg/larva (fenvalerate), 0.0530 μg/larva (deltamethrin), and 0.1640 μg/larva (beta-cypermethrin), respectively. Finally, the hazard quotient was calculated as larval oral ranged from 0.046 × 10-3 to 2.128 × 10-3. Together, these empirical findings provide further insight into the accurate contamination of honey bee colonies caused by chemical pesticides, which can be used as a valuable guidance for the beekeeping industry and pesticide regulation.
Collapse
Affiliation(s)
- Qibao He
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shiyu Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Fang Yin
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Qiongqiong Liu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jinjing Xiao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yong Huang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Linsheng Yu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
22
|
Hung CC, Yiin LM. Availability of Using Honeybees as Bioindicators of Pesticide Exposure in the Vicinity of Agricultural Environments in Taiwan. TOXICS 2023; 11:703. [PMID: 37624208 PMCID: PMC10458306 DOI: 10.3390/toxics11080703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
While pollinating, honeybees are subject to exposure to a variety of pesticides; with their characteristics of certain foraging distances, they could serve as bioindicators of pesticide exposure in a neighborhood. We conducted a study to assess availability by collecting and analyzing bee samples from 15 apiaries located in East Taiwan and dust samples from the adjacent environment, and by finding relations between both samples. Seventeen pesticides were selected for the analysis using gas or liquid chromatography coupled with mass spectrometry, and eight (three insecticides, two herbicides, and three fungicides) were more frequently detected from bee or dust samples; the levels of these pesticides were mostly under 1000 ng/g. Significant correlation results (r ≅ 0.8) between residue concentrations in bees and in dust suggest that honeybees could be a good bioindicator for exposure to herbicides and fungicides within certain ranges. The pesticide contents of sick/dead bees were much higher than those of healthy counterparts regarding any pesticide type, with the mean total concentrations of 635 ng/g and 176 ng/g, respectively. We conclude that honeybees could be used as bioindicators of pesticide exposure; sick/dead bees could serve as a warning sign of the severity of pesticide pollution.
Collapse
Affiliation(s)
| | - Lih-Ming Yiin
- Department of Public Health, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City 970374, Taiwan;
| |
Collapse
|
23
|
Schroeder H, Grab H, Poveda K. Phenotypic clines in herbivore resistance and reproductive traits in wild plants along an agricultural gradient. PLoS One 2023; 18:e0286050. [PMID: 37256895 DOI: 10.1371/journal.pone.0286050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
The conversion of natural landscapes to agriculture is a leading cause of biodiversity loss worldwide. While many studies examine how landscape modification affects species diversity, a trait-based approach can provide new insights into species responses to environmental change. Wild plants persisting in heavily modified landscapes provide a unique opportunity to examine species' responses to land use change. Trait expression within a community plays an important role in structuring species interactions, highlighting the potential implications of landscape mediated trait changes on ecosystem functioning. Here we test the effect of increasing agricultural landscape modification on defensive and reproductive traits in three commonly occurring Brassicaceae species to evaluate plant responses to landscape change. We collected seeds from populations at spatially separated sites with variation in surrounding agricultural land cover and grew them in a greenhouse common garden, measuring defensive traits through an herbivore no-choice bioassay as well as reproductive traits such as flower size and seed set. In two of the three species, plants originating from agriculturally dominant landscapes expressed a consistent reduction in flower size and herbivore leaf consumption. One species also showed reduced fitness associated with increasingly agricultural landscapes. These findings demonstrate that wild plants are responding to landscape modification, suggesting that the conversion of natural landscapes to agriculture has consequences for wild plant evolution.
Collapse
Affiliation(s)
- Hayley Schroeder
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Heather Grab
- School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
24
|
Tison L, Franc C, Burkart L, Jactel H, Monceau K, de Revel G, Thiéry D. Pesticide contamination in an intensive insect predator of honey bees. ENVIRONMENT INTERNATIONAL 2023; 176:107975. [PMID: 37216836 DOI: 10.1016/j.envint.2023.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/12/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Pesticides used for plant protection can indirectly affect target and non-target organisms and are identified as a major cause of insect decline. Depending on species interactions, pesticides can be transferred into the environment from plants to preys and predators. While the transfer of pesticides is often studied through vertebrate and aquatic exposure, arthropod predators of insects may represent valuable bioindicators of environmental exposure to pesticides. A modified QuEChERS extraction coupled with HPLC-MS/MS analysis was used to address the question of the exposure to pesticides of the invasive hornet Vespa velutina, a specialist predator of honey bees. This analytical method allows the accurate quantification of nanogram/gram levels of 42 contaminants in a sample weight that can be obtained from single individuals. Pesticide residues were analyzed in female workers from 24 different hornet nests and 13 different pesticides and 1 synergist, piperonyl butoxide, were identified and quantified. In 75 % of the explored nests, we found at least one compound and in 53 % of the positive samples we could quantify residues ranging from 0.5 to 19.5 ng.g-1. In this study, hornets from nests located in sub-urban environments were the most contaminated. Pesticide residue analysis in small and easy to collect predatory insects opens new perspectives for the study of environmental contamination and the transfer of pesticides in terrestrial trophic chains.
Collapse
Affiliation(s)
- Léa Tison
- INRAE, UMR1065 SAVE, 33140 Villenave d'Ornon, France.
| | - Céline Franc
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, 33140 Villenave d'Ornon, France
| | | | | | - Karine Monceau
- Univ. La Rochelle CEBC, UMR CNRS 7372, 79360 Villiers-en-Bois, France
| | - Gilles de Revel
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, 33140 Villenave d'Ornon, France
| | - Denis Thiéry
- INRAE, UMR1065 SAVE, 33140 Villenave d'Ornon, France
| |
Collapse
|
25
|
Morrison BA, Xia K, Stewart RD. Evaluating neonicotinoid insecticide uptake by plants used as buffers and cover crops. CHEMOSPHERE 2023; 322:138154. [PMID: 36796521 DOI: 10.1016/j.chemosphere.2023.138154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Runoff and drainage from fields planted with neonicotinoid-coated seeds often contain insecticides that adversely affect aquatic life and other non-target organisms. Management practices such as in-field cover cropping and edge-of-field buffer strips may reduce insecticide mobility, making it important to understand the ability of different plants used in these interventions to absorb neonicotinoids. In this greenhouse study we evaluated uptake of thiamethoxam, a commonly used neonicotinoid, in six plant species - crimson clover, fescue, oxeye sunflower, Maximillian sunflower, common milkweed, and butterfly milkweed - along with a native forb mixture and a native grass plus native forb mixture. All plants were irrigated with water containing 100 or 500 μg/L of thiamethoxam for 60 days, then plant tissues and soils were analyzed for thiamethoxam and its metabolite clothianidin. Crimson clover accumulated up to 50% of the applied thiamethoxam, which was significantly more than other plants and indicates this species may be a hyper-accumulator that can sequester thiamethoxam. In contrast, milkweed plants had relatively low neonicotinoid uptake (<0.5%), meaning that those species may not pose excessive risk to beneficial insects that feed on them. In all plants, accumulated masses of thiamethoxam and clothianidin were greater in above-ground tissues (leaves and stems) than in below-ground roots, with more accrual in leaves than stems. Plants treated with the higher thiamethoxam concentration retained proportionally more of the insecticides. Because thiamethoxam primarily accumulates in above-ground tissues, management strategies that include biomass removal may reduce the input of such insecticides into the environment.
Collapse
Affiliation(s)
- Benjamin A Morrison
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ryan D Stewart
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
26
|
Dong J, Huang M, Guo H, Zhang J, Tan X, Wang D. Ternary Mixture of Azoxystrobin, Boscalid and Pyraclostrobin Disrupts the Gut Microbiota and Metabolic Balance of Honeybees (Apis cerana cerana). Int J Mol Sci 2023; 24:ijms24065354. [PMID: 36982426 PMCID: PMC10049333 DOI: 10.3390/ijms24065354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
There is a growing risk of pollinators being exposed to multiple fungicides due to the widespread use of fungicides for plant protection. A safety assessment of honeybees exposed to multiple commonly used fungicides is urgently required. Therefore, the acute oral toxicity of the ternary mixed fungicide of ABP (azoxystrobin: boscalid: pyraclostrobin = 1:1:1, m/m/m) was tested on honeybees (Apis cerana cerana), and its sublethal effect on foragers’ guts was evaluated. The results showed that the acute oral median lethal concentration (LD50) of ABP for foragers was 12.6 μg a.i./bee. ABP caused disorder of the morphological structure of midgut tissue and affected the intestinal metabolism; the composition and structure of the intestinal microbial community was perturbed, which altered its function. Moreover, the transcripts of genes involved in detoxification and immunity were strongly upregulated with ABP treatment. The study implies that exposure to a fungicide mixture of ABP can cause a series of negative effects on the health of foragers. This work provides a comprehensive understanding of the comprehensive effects of common fungicides on non-target pollinators in the context of ecological risk assessment and the future use of fungicides in agriculture.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (M.H.); (D.W.)
| | - Haikun Guo
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiawen Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaodong Tan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (M.H.); (D.W.)
| |
Collapse
|
27
|
Lourencetti APS, Azevedo P, Miotelo L, Malaspina O, Nocelli RCF. Surrogate species in pesticide risk assessments: Toxicological data of three stingless bees species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120842. [PMID: 36509344 DOI: 10.1016/j.envpol.2022.120842] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Discussions about environmental risk reassessment of pesticides have grown in the last decades, especially in tropical and subtropical regions since the diversity of bee species in these places is quite different. Stingless bees are highly affected by pesticides, and toxicity information is necessary to include them in the regulatory process of countries that hosts a diversity of these species. Therefore, the present study aimed to evaluate the Median Lethal Concentration (LC50), estimate the Median Lethal Dose (LD50) and compared the sensitivity of three species of stingless bees exposed to the commercial formulation of the neonicotinoid thiamethoxam (TMX). The LD50 was estimated based on the LC50 determined in the present study (LC50 = 0.329 ng a.i./μL for Tetragonisca angustula; 0.624 ng a.i./μL for Scaptotrigona postica, and 0.215 ng a.i./μL for Melipona scutellaris). Considering these data, toxicity endpoints were used to fit species sensitive distribution curves (SSD) and determine the sensitivity ratio. The results showed that all the stingless bees tested are more sensitive to TMX than the Apis mellifera, the model organism used in ecotoxicological tests. Regarding the oral LC50, the most susceptible and most tolerant species were M. scutellaris > T. angustula > S. postica > A. mellifera. Following the same evaluated pattern, for the LD50 (considering the weight of the bees - ng a.i./g bee), we have: M. scutellaris > S. postica > T. angustula > A. mellifera, and without the weight considered (ng a.i./bee): T. angustula > M. scutellaris > S. postica > A. mellifera. The different sensitivities among stingless bee species highlight the importance of inserting more than one surrogate species with a variety of sizes in research and protocol development. Additionally, the research suggests the need to investigate patterns regarding the influence of body mass on pesticide sensitivity among stingless bee species.
Collapse
Affiliation(s)
- Ana Paula Salomé Lourencetti
- Universidade Federal de São Carlos (UFSCar), Centro de Ciências Agrárias (CCA), Departamento de Ciências da Natureza, Matemática e Educação, Grupo Abelhas e os Serviços Ambientais, Programa de Pós-Graduação em Agricultura e Ambiente, Araras, SP, Brazil.
| | - Patricia Azevedo
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia (IB), Grupo de Genética e Genômica da Conservação, Programa de Pós-Graduação em Genética e Biologia Molecular, Campinas, SP, Brazil
| | - Lucas Miotelo
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) campus Rio Claro, Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais, Programa de Pós-Graduação em Ciências Biológicas: Biologia Celular, Molecular e Microbiologia, Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) campus Rio Claro, Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais, Programa de Pós-Graduação em Ciências Biológicas: Biologia Celular, Molecular e Microbiologia, Rio Claro, SP, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Universidade Federal de São Carlos (UFSCar), Centro de Ciências Agrárias (CCA), Departamento de Ciências da Natureza, Matemática e Educação, Grupo Abelhas e os Serviços Ambientais, Programa de Pós-Graduação em Agricultura e Ambiente, Araras, SP, Brazil
| |
Collapse
|
28
|
Hladik ML, Kraus JM, Smith CD, Vandever M, Kolpin DW, Givens CE, Smalling KL. Wild Bee Exposure to Pesticides in Conservation Grasslands Increases along an Agricultural Gradient: A Tale of Two Sample Types. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:321-330. [PMID: 36573799 DOI: 10.1021/acs.est.2c07195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Conservation efforts have been implemented in agroecosystems to enhance pollinator diversity by creating grassland habitat, but little is known about the exposure of bees to pesticides while foraging in these grassland fields. Pesticide exposure was assessed in 24 conservation grassland fields along an agricultural gradient at two time points (July and August) using silicone band passive samplers (nonlethal) and bee tissues (lethal). Overall, 46 pesticides were detected including 9 herbicides, 19 insecticides, 17 fungicides, and a plant growth regulator. For the bands, there were more frequent/higher concentrations of herbicides in July (maximum: 1600 ng/band in July; 570 ng/band in August), while insecticides and fungicides had more frequent/higher concentrations in August (maximum: 110 and 65 ng/band in July; 1500 and 1700 ng/band in August). Pesticide concentrations in bands increased 16% with every 10% increase in cultivated crops. The bee tissues showed no difference in detection frequency, and concentrations were similar among months; maximum concentrations of herbicides, insecticides, and fungicides in July and August were 17, 27, and 180 and 19, 120, and 170 ng/g, respectively. Pesticide residues in bands and bee tissues did not always show the same patterns; of the 20 compounds observed in both media, six (primarily fungicides) showed a detection-concentration relationship between the two media. Together, the band and bee residue data can provide a more complete understanding of pesticide exposure and accumulation in conserved grasslands.
Collapse
Affiliation(s)
- Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, California 95819, United States
| | - Johanna M Kraus
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | - Cassandra D Smith
- U.S. Geological Survey, Oregon Water Science Center, Bend, Oregon 97701, United States
| | - Mark Vandever
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado 80526, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, United States
| | - Carrie E Givens
- U.S. Geological Survey, Upper Midwest Water Science Center, Lansing, Michigan 48911, United States
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, New Jersey 08648, United States
| |
Collapse
|