1
|
Shi Z, Yao F, Liu Z, Zhang J. Microplastics predominantly affect gut microbiota by altering community structure rather than richness and diversity: A meta-analysis of aquatic animals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124639. [PMID: 39095000 DOI: 10.1016/j.envpol.2024.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The impacts of microplastics on the gut microbiota, a crucial component of the health of aquatic animals, remain inadequately understood. This phylogenetically controlled meta-analysis aims to identify general patterns of microplastic effects on the alpha diversity (richness and Shannon index), beta diversity, and community structure of gut microbiota in aquatic animals. Data from 63 peer-reviewed articles on the Web of Science were synthesized, encompassing 424 observations across 31 aquatic species. The analysis showed that microplastics significantly altered the community structure of gut microbiota, with between-group distances being 87.75% higher than within-group distances. This effect was significant even at environmentally relevant concentrations (≤1 mg L-1). However, their effects on richness, Shannon index, and beta diversity (community variation) were found to be insignificant. The study also indicated that the effects of microplastics were primarily dependent on their concentration and size, while the phylogeny of tested species explained limited heterogeneity. Furthermore, variations in gut microbiota alpha diversity, beta diversity, and community structure were correlated with changes in antioxidant enzyme activities from the liver and hepatopancreas. This implies that gut microbiota attributes of aquatic animals may provide insights into host antioxidant levels. In summary, this study illuminates the impacts of microplastics on the gut microbiota of aquatic animals and examines the implications of these effects for host health. It emphasizes that microplastics mainly alter the community structure of gut microbiota rather than significantly affecting richness and diversity.
Collapse
Affiliation(s)
- Zhaoji Shi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Fucheng Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Ziqiang Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Zhou C, Wang Z, Ran M, Liu Y, Song Z. Nano-selenium ameliorates microplastics-induced injury: Histology, antioxidant capacity, immunity and intestinal microbiota of grass carp (Ctenopharyngodon idella). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117128. [PMID: 39342759 DOI: 10.1016/j.ecoenv.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) are pollutants widely distributed in the aquatic environments and causing various degrees of aquatic toxicity to aquatic organisms, which has attracted global attention in recent years. Nano-selenium (NSe) has been shown to have the potential to mitigate the harmful impacts of toxic substances. However, there is currently no reported evidence regarding the protective influence of NSe against the adverse effects of MPs. The aim of this study is to determine whether NSe could ameliorate the polystyrene (PS)-MPs-induced injury in grass carp (Ctenopharyngodon idella). The individuals of grass carp were assigned into three groups: (1) the control group fed with basal diet, (2) the PS group fed with basal diet and exposed to PS-MPs, and (3) the NSe group fed with diet supplemented with NSe and exposed to PS-MPs. Our results indicated that NSe administration significantly alleviated the histological damage caused by the PS-MPs in the liver and intestine with lower goblet cell count and larger villus height in the intestine, and significantly lower damage score in the liver. Moreover, NSe mitigated PS-MPs-induced oxidative stress through restoring the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA)) except the intestinal CAT activity. Furthermore, NSe supplementation could help fish maintain lower transcriptional level of the immune-related genes (Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88)), inflammation-related genes (major histocompatibility complex class II (MHC-II) and interleukin 8 (IL-8)) and antioxidant enzyme-related genes (nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) and kelch-like ECH-associated protein 1 (Keap-1)) after PS-MPs exposure. Besides, NSe supplementation dramatically helped maintain the intestinal microbial composition, for example, the proportion of Proteobacteria in the grass carp intestine of the NSe group (41 %) was similar to that of the control group (34 %) while 85 % of the PS group. NSe also played a significant protective role in intestinal microbial diversity, effectively resisting the damage on intestinal microbial diversity due to PS-MPs exposure. PS-MPs reduced the beneficial bacteria and increased the pathogenic microorganism like Aeromonas, which was undeniable signs of intestinal dysbiosis. Functional analysis indicated that PS-MPs affected intestinal microbiota functions like inhibition of metabolism, while NSe could significantly alleviate the damage. Our findings suggested that NSe could ameliorate PS-MPs-induced injury, which could contribute to the better understanding of the ecotoxicological effects of MPs on fish and help develop relevant mitigation strategies.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhongyi Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Miling Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yi Liu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China.
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Li Y, Chen L, Zhou N, Chen Y, Ling Z, Xiang P. Microplastics in the human body: A comprehensive review of exposure, distribution, migration mechanisms, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174215. [PMID: 38914339 DOI: 10.1016/j.scitotenv.2024.174215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Microplastics (MPs) are pervasive across ecosystems, presenting substantial risks to human health. Developing a comprehensive review of MPs is crucial due to the growing evidence of their widespread presence and potential harmful effects. Despite the growth in research, considerable uncertainties persist regarding their transport dynamics, prevalence, toxicological impacts, and the potential long-term health effects they may cause. This review thoroughly evaluates recent advancements in research on MPs and their implications for human health, including estimations of human exposure through ingestion, inhalation, and skin contact. It also quantifies the distribution and accumulation of MPs in various organs and tissues. The review discusses the mechanisms enabling MPs to cross biological barriers and the role of particle size in their translocation. To ensure methodological rigor, this review adheres to the PRISMA guidelines, explicitly detailing the literature search strategy, inclusion criteria, and the quality assessment of selected studies. The review concludes that MPs pose significant toxicological risks, identifies critical gaps in current knowledge, and recommends future research directions to elucidate the prolonged effects of MPs on human health. This work aims to offer a scientific framework for mitigating MP-related hazards and establishes a foundation for ongoing investigation.
Collapse
Affiliation(s)
- Yue Li
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China.
| | - Liping Chen
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China
| | - Nonglin Zhou
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China
| | - Yuyuan Chen
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China
| | - Zhichen Ling
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
4
|
Wang J, Wu F, Dong S, Wang X, Ai S, Liu Z, Wang X. Meta-analysis of the effects of microplastic on fish: Insights into growth, survival, reproduction, oxidative stress, and gut microbiota diversity. WATER RESEARCH 2024; 267:122493. [PMID: 39321729 DOI: 10.1016/j.watres.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Aquatic ecosystems are primary repositories for microplastics (MPs), which pose significant risks to aquatic organisms. This study addresses the gap in understanding the effects of MPs pollution by analyzing 3,757 biological endpoints from 85 laboratory studies. Overall, our results indicate that MPs exposure significantly inhibits fish growth, survival, and reproductive ability, and increases oxidative damage, specifically, MPs exposure leads to elevated levels of malondialdehyde. However, MPs do not have a significant impact on the diversity of fish gut microbiota. Subgroup and correlation analyses indicate that the extent of various toxic effects is influenced by multiple factors, including MPs' type, exposure pathway, size, concentration, as well as the aquatic environment or life stage of the fish. In addition, the regression analysis revealed a relationship between the magnitude of toxic effects and the size, concentration, or duration of MPs exposure. This study provides useful information for understanding the potential impacts of MPs on aquatic organisms and offers new insights for the protection and management of aquatic ecosystems.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Shunqi Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China; College of Life Sciences, Nanchang University, Nanchang 330047, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China.
| |
Collapse
|
5
|
Mohsen M, Lin J, Lu K, Wang L, Zhang C. Microplastic pollution in aquafeed of diverse aquaculture animals. Heliyon 2024; 10:e37370. [PMID: 39296156 PMCID: PMC11408773 DOI: 10.1016/j.heliyon.2024.e37370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Microplastics have emerged as pervasive contaminants, and determining their occurrence in aquafeed is key for evaluating their risks to farmed animals and, by extension, humans. However, knowledge about microplastic in aquafeed is still limited. Herein, we determined microplastic characteristics in aquafeed for five important aquaculture animals with different feeding habits. Aquafeed samples were collected for spotted sea bass, shrimp, grass carp, Tilapia, and frogs from main companies in China. The samples were digested using chemical digestion, and the residuals were subjected to a density separation. Microplastics were identified under the microscope and characterized by their shape, color, size, and polymer type. The results showed that microplastics are highly abundant in the feed of frogs, followed by spotted sea bass, Tilapia, grass carp, and shrimp. We found that feed size contributes to the total microplastic abundance in the feed. Further, microplastics were mainly in microfiber form, and the dominant polymer type was propylene, suggesting that packaging and processing are the main sources of pollution. Additionally, the most abundant size of microplastics was 100-1000 μm. Calculating microplastic ingestion risk, the spotted sea bass had the greatest recorded risk of microplastic ingestion, followed by grass carp, frogs, Tilapia, and shrimp. This study lays a foundational step toward understanding microplastic effects on aquaculture animals and calls for further environmentally relevant laboratory experiments to assess the risk of microplastic ingestion on animals and potential transfer to humans.
Collapse
Affiliation(s)
- Mohamed Mohsen
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen City, Fujian Province, 361021, PR China
- Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Jibin Lin
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen City, Fujian Province, 361021, PR China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen City, Fujian Province, 361021, PR China
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen City, Fujian Province, 361021, PR China
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen City, Fujian Province, 361021, PR China
| |
Collapse
|
6
|
Wang X, Ding N, Liu H. Effect of microplastics on sodium hypochlorite disinfection and changes in its toxicity on zebrafish. CHEMOSPHERE 2024; 363:142594. [PMID: 38871186 DOI: 10.1016/j.chemosphere.2024.142594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The presence of microplastics (MPs) in water may affect the efficacy of the disinfection process and induce toxicity changes to MPs themselves during disinfection. Therefore, this study evaluated the two-way effects of polyethylene microplastic (MP) particles in water and wastewater during sodium hypochlorite (NaClO) disinfection. On the one hand, it has been confirmed that the presence of MPs reduced the disinfection efficiency of NaClO. The required CT (concentration of the disinfection × contact time) for a 2-4-log inactivation of Escherichia coli (E. coli) in different water samples was in the order of deionized water < turbid water (1 NTU) < water with MPs (1 mg/L) < turbid water (10 NTU). On the other hand, although exposure to MPs did induce significant changes in the activities of superoxide dismutase and glutathione, compared to pristine MPs, the MPs treated by NaClO at current conditions (0.3 and 3.0 mg/L for 30 min) did not show significant changes in their toxicity on zebrafish, at an MP exposure concentration of 1 mg/L. There was no significant difference in the survival rate and weight growth rate, neither as in the activities of the oxidative stress-related enzymes (superoxide dismutase, catalase, glutathione, glutathione peroxidase, and glutathione s-transferase) in both gut and muscle tissues of the zebrafish, between exposure to the pristine and NaClO-treated MPs. It is indicated that NaClO disinfection commonly applied for water and wastewater treatment would not pose a serious concern to effluent safety in the presence of mild levels of MPs.
Collapse
Affiliation(s)
- Xiaowei Wang
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ning Ding
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Hong Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Jiangsu Province 215000, China
| |
Collapse
|
7
|
Li J, Jong MC, Hu H, Gin KYH, He Y. Size-dependent effects of microplastics on intestinal microbiome for Perna viridis. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134658. [PMID: 38810582 DOI: 10.1016/j.jhazmat.2024.134658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Microplastics pollution threatens to marine organisms, particularly bivalves that actively ingest and accumulate microplastics of certain sizes, potentially disrupting intestinal homeostasis. This study investigated the microplastic abundance in wild and farmed mussels around Singapore, and examined the size-dependent effects of nano- to micro-scale polystyrene (0.5 µm/5 µm/50 µm) on the mussel intestinal microbiome in the laboratory. The field investigation revealed higher microplastic abundance in farmed mussels compared to wild ones. Experimentally, mussels exposed to 0.6 mg/L of microplastics for 7 days, followed by a 7-day depuration period, showed substantial impacts on Spirochaetes and Proteobacteria, facilitating the proliferation of pathogenic species and differentially affecting their pathogenic contributions. Metagenomics analysis revealed that microplastic exposure reduced Spirochaeta's contribution to virulence and pathogenicity loss, did not affect Vibrio and Oceanispirochaeta's pathogenicity, and increased Treponema and Oceanispirochaeta's contributions to pathogenicity loss. Moreover, microplastics increased transmembrane transporters and impacted oxidative phosphorylation enzymes, impairing energy metabolism. These effects persisted after depuration, indicating lack of resilience in the microbiome. Nano- and micro-scale plastics perturbed the mussel microbiome composition and functions in a size-dependent manner, with nano-plastics being the most disruptive. The increasing use and sale of aquaculture equipment of plastic may exacerbate the intestinal dysbiosis in bivalves, which threatens consumers' health.
Collapse
Affiliation(s)
- Junnan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Mui-Choo Jong
- Tsinghua Shenzhen International Graduate School, University Town, Shenzhen 518055. China
| | - Hao Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Block E1A07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore.
| |
Collapse
|
8
|
Cao Y, Bi L, Chen Q, Liu Y, Zhao H, Jin L, Peng R. Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124103. [PMID: 38734053 DOI: 10.1016/j.envpol.2024.124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
At present, the quantity of micro/nano plastics in the environment is steadily rising, and their pollution has emerged as a global environmental issue. The tendency of their bioaccumulation in aquatic organisms (especially fish) has intensified people's attention to their persistent ecotoxicology. This review critically studies the accumulation of fish in the intestines of fish through active or passive intake of micro/nano plastics, resulting in their accumulation in intestinal organs and subsequent disturbance of intestinal microflora. The key lies in the complex toxic effect on the host after the disturbance of fish intestinal microflora. In addition, this review pointed out the characteristics of micro/nano plastics and the effects of their combined toxicity with adsorbed pollutants on fish intestinal microorganisms, in order to fully understand the characteristics of micro/nano plastics and emphasize the complex interaction between MNPs and other pollutants. We have an in-depth understanding of MNPs-induced intestinal flora disorders and intestinal dysfunction, affecting the host's systemic system, including immune system, nervous system, and reproductive system. The review also underscores the imperative for future research to investigate the toxic effects of prolonged exposure to MNPs, which are crucial for evaluating the ecological risks posed by MNPs and devising strategies to safeguard aquatic organisms.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
9
|
Del Piano F, Almroth BC, Lama A, Piccolo G, Addeo NF, Paciello O, Martino G, Esposito S, Mercogliano R, Pirozzi C, Meli R, Ferrante MC. Subchronic oral exposure to polystyrene microplastics affects hepatic lipid metabolism, inflammation, and oxidative balance in gilthead seabream (Sparus aurata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116455. [PMID: 38772140 DOI: 10.1016/j.ecoenv.2024.116455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Microplastics (MPs) pose a clear threat to aquatic organisms affecting their health. Their impact on liver homeostasis, as well as on the potential onset of nonalcoholic fatty liver disease (NAFLD), is still poorly investigated and remains almost unknown. The aim of this study was to evaluate the outcomes of subchronic exposure to polystyrene MPs (PS-MPs; 1-20 μm; 0, 25, or 250 mg/kg b.w./day) on lipid metabolism, inflammation, and oxidative balance in the liver of gilthead seabreams (Sparus aurata Linnaeus, 1758) exposed for 21 days via contaminated food. PS-MPs induced an up-regulation of mRNA levels of crucial genes associated with lipid synthesis and storage (i.e., PPARy, Srebp1, Fasn) without modifications of genes involved in lipid catabolism (i.e., PPARα, HL, Pla2) or transport and metabolism (Fabp1) in the liver. The increase of CSF1R and pro-inflammatory cytokines gene expression (i.e., TNF-α and IL-1β) was also observed in exposed fish in a dose-dependent manner. These findings were confirmed by hepatic histological evaluations reporting evidence of lipid accumulation, inflammation, and necrosis. Moreover, PS-MPs caused the impairment of the hepatic antioxidant defense system through the alteration of its enzymatic (catalase, superoxide dismutase, and glutathione reductase) and non-enzymatic (glutathione) components, resulting in the increased production of reactive oxygen species (ROS) and malondialdehyde (MDA), as biomarkers of oxidative damage. The alteration of detoxifying enzymes was inferred by the decreased Ethoxyresorufin-O-deethylase (EROD) activity and the increased activity of glutathione-S-transferase (GST) at the highest PS-MP dose. The study suggests that PS-MPs affect the liver health of gilthead seabream. The liver dysfunction and damage caused by exposure to PS-MPs result from a detrimental interplay of inflammation, oxidative damage, and antioxidant and detoxifying enzymatic systems modifications, altering the gut-liver axis homeostasis. This scenario is suggestive of the involvement of MP-induced effects in the onset and progression of hepatic lipid dysfunction in gilthead seabream.
Collapse
Affiliation(s)
- Filomena Del Piano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy; Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy; Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Povo, Trento 38123, Italy
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Nicola Francesco Addeo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Giovanni Martino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Sergio Esposito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy.
| |
Collapse
|
10
|
Lin W, Hu F, Liu F, Liao L, Ling L, Li L, Yang J, Yang P. Microcystin-LR and polystyrene microplastics jointly lead to hepatic histopathological damage and antioxidant dysfunction in male zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123789. [PMID: 38490526 DOI: 10.1016/j.envpol.2024.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The co-occurrence of cyanobacterial blooms and nano-microplastic pollution in the water is becoming an emerging risk. To assess the combined hepatotoxicity of microcystin-LR (MC-LR) and polystyrene microplastics (PSMPs) on zebrafish (Danio rerio), male adult zebrafish were exposed to single MC-LR (0, 1, 5, 25 μg/L) and a mixture of MC-LR and PSMPs (100 μg/L). After 60 d exposure, the results indicated that PSMPs significantly increased the MC-LR bioaccumulation in the livers in contrast to the single 25 μg/L MC-LR treatment group. Moreover, the severity of hepatic pathological lesions was aggravated in the MC-LR + PSMPs treatment groups, which were mainly characterized by cellular vacuolar degeneration, swollen hepatocytes, and pyknotic nucleus. The ultrastructural changes also proved that PSMPs combined with MC-LR could enhance the swollen mitochondria and dilated endoplasmic reticulum. The biochemical results, including increased malondialdehyde (MDA) and decreased glutathione (GSH), indicated that PSMPs intensified the MC-LR-induced oxidative damage in the combined treatment groups. Concurrently, alterations of sod1 and keap1a mRNA levels also confirmed that PSMPs together with MC-LR jointly lead to enhanced oxidative injury. Our findings demonstrated that PSMPs enhanced the MC-LR bioavailability by acting as a vector and exacerbating the hepatic injuries and antioxidant dysfunction in zebrafish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Fang Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Liao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Ling
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China.
| |
Collapse
|
11
|
Mahmood M, Hussain SM, Sarker PK, Ali S, Arif MS, Nazish N, Riaz D, Ahmad N, Paray BA, Naeem A. Toxicological assessment of dietary exposure of polyethylene microplastics on growth, nutrient digestibility, carcass and gut histology of Nile Tilapia (Oreochromis niloticus) fingerlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:296-304. [PMID: 38498245 DOI: 10.1007/s10646-024-02749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
This study was conducted to ascertain the negative effects of dietary low-density polyethylene microplastics (LDPE-MPs) exposure on growth, nutrient digestibility, body composition and gut histology of Nile tilapia (Oreochromis niloticus). Six sunflower meal-based diets (protein 30.95%; fat 8.04%) were prepared; one was the control (0%) and five were incorporated with LDPE-MPs at levels of 2, 4, 6, 8 and 10% in sunflower meal-based diets. A total of eighteen experimental tanks, each with 15 fingerlings, were used in triplicates. Fish were fed at the rate of 5% biomass twice a day for 60 days. Results revealed that best values of growth, nutrient digestibility, body composition and gut histology were observed by control diet, while 10% exposure to LDPE-MPs significantly (P < 0.05) reduced weight gain (WG%, 85.04%), specific growth rate (SGR%, 0.68%), and increased FCR (3.92%). The findings showed that higher level of LDPE-MPs (10%) exposure in the diet of O. niloticus negatively affects nutrient digestibility. Furthermore, the results revealed that the higher concentration of LDPE-MPs (10%) had a detrimental impact on crude protein (11.92%) and crude fat (8.04%). A high number of histological lesions were seen in gut of fingerlings exposed to LDPE-MPs. Hence, LDPE-MPs potentially harm the aquatic health.
Collapse
Affiliation(s)
- Muhammad Mahmood
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot, Punjab, 51040, Pakistan
| | - Danish Riaz
- Department of Zoology, University of Education, Lahore, Punjab, 38000, Pakistan
| | - Nisar Ahmad
- Department of Zoology, University of Jhang, Jhang, Punjab, 35200, Pakistan
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Adan Naeem
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| |
Collapse
|
12
|
Sun Y, Deng Q, Zhang Q, Zhou X, Chen R, Li S, Wu Q, Chen H. Hazards of microplastics exposure to liver function in fishes: A systematic review and meta-analysis. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106423. [PMID: 38442589 DOI: 10.1016/j.marenvres.2024.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Microplastics (5 mm - 1 μm) have become one of the major pollutants in the environment. Numerous studies have shown that microplastics can have negative impacts on aquatic organisms, affecting their liver function levels. However, the extent of these effects and their potential toxicological mechanisms are largely unknown. In this study, a meta-analysis and systematic review were conducted to assess the effects of microplastics on fish liver function and summarize the potential toxicological mechanisms of microplastic-induced liver toxicity. The meta-analysis results indicate that compared to the control group, exposure to microplastics significantly affects fish liver indicators: aspartate aminotransferase (AST) (p < 0.001), alanine aminotransferase (ALT) (p < 0.001), alkaline phosphatase (ALP) (p < 0.001), total protein (TP) (p < 0.001), and lactate dehydrogenase (LDH) (p < 0.001), including oxidative stress indicators: superoxide dismutase (SOD) (p < 0.001), glutathione S-transferase (GST) (p < 0.001), glutathione (GSH) (p < 0.001), and malondialdehyde (MDA) (p < 0.001) in fish liver. For fish living in different environments, the potential toxicological mechanisms of microplastics exposure on fish liver may exhibit some differences. For freshwater fish, the mechanism may be that microplastics exposure causes overproduction of reactive oxygen species (ROS) in fish hepatocyte mitochondria. ROS promotes the expression of toll-like receptor 2 (TLR2) and activates downstream molecules myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6) of the TLR2 signaling pathway, leading to phosphorylation of NF-κB p65. This leads to the release of inflammatory factors and oxidative stress and inflammation in fish liver. In addition, for seawater fish, the mechanism may be that microplastics exposure can cause damage or death of fish hepatocytes, leading to continuous pathological changes, inflammation, lipid and energy metabolism disorders, thereby causing significant changes in liver function indexes.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qiurong Zhang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Siyu Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qing Wu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Innovation Laboratory, The Third Experiment Middle School, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
13
|
Zambrano-Pinto MV, Tinizaray-Castillo R, Riera MA, Maddela NR, Luque R, Díaz JMR. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168244. [PMID: 37923271 DOI: 10.1016/j.scitotenv.2023.168244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous and persistent presence of microplastics (MPs) in aquatic and terrestrial ecosystems has raised global concerns due to their detrimental effects on human health and the natural environment. These minuscule plastic fragments not only threaten biodiversity but also serve as vectors for contaminants, absorbing organic and inorganic pollutants, thereby causing a range of health and environmental issues. This review provides an overview of microplastics and their effects. This work highlights available analytical techniques for detecting and characterizing microplastics in different environmental matrices, assessing their advantages and limitations. Additionally, this review explores innovative remediation approaches, such as microbial degradation and other advanced methods, offering promising prospects for combatting microplastic accumulation in contaminated environments. The focus on environmentally-friendly technologies, such as the use of microorganisms and enzymes for microplastic degradation, underscores the importance of sustainable solutions in plastic pollution management. In conclusion, this article not only deepens our understanding of the microplastic issue and its impact but also advocates for the urgent need to develop and implement effective strategies to mitigate this critical environmental challenge. In this context, the crucial role of advanced technologies, like quantitative Nuclear Magnetic Resonance spectroscopy (qNMR), as promising tools for rapid and efficient microplastic detection, is emphasized. Furthermore, the potential of the enzyme PETase (polyethylene terephthalate esterase) in microplastic degradation is examined, aiming to address the growing plastic pollution, particularly in saline environments like oceanic ecosystems. These innovations offer hope for effectively addressing microplastic accumulation in contaminated environments and minimizing its adverse impacts.
Collapse
Affiliation(s)
- Maria Veronica Zambrano-Pinto
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Rolando Tinizaray-Castillo
- Departamento de Construcciones Civiles, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - María A Riera
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador.
| | - Joan Manuel Rodríguez Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| |
Collapse
|
14
|
Kim JA, Park YS, Kim JH, Choi CY. Toxic effects of polystyrene microbeads and benzo[α]pyrene on bioaccumulation, antioxidant response, and cell damage in goldfish Carassius auratus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115825. [PMID: 38101975 DOI: 10.1016/j.ecoenv.2023.115825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Microplastics (MP) are harmful, causing stress in aquatic species and acting as carriers of hydrophobicity. In aquatic environments, benzo[α]pyrene (BaP) is an endocrine-disrupting chemical that accumulates in the body and causes toxic reactions in living organisms. We investigated the effects of single and combined microbead (MB) and BaP environments on goldfish antioxidant response and apoptosis. For 120 h, goldfish were exposed to single (MB10, MB100, and BaP5) and combined (MB10+BaP5 and MB100+BaP5) environments of 10 and 100 beads/L of 0.2 µm polystyrene MB and 5 µg/L BaP. We measured MB and BaP bioaccumulation as well as plasma parameters including ALT, AST, and glucose. The level of oxidative stress was determined by evaluating lipid peroxidation (LPO) and total antioxidant capacity (TAC) in plasma, as well as antioxidant-related genes for superoxide dismutase and catalase (SOD and CAT) and caspase-3 (Casp3) mRNA expression in liver tissue. The TUNEL assay was used to examine SOD in situ hybridization and apoptosis in goldfish livers. Except for the control group, plasma LPO levels increased at the end of the exposure period in all experimental groups. TAC increased up to 24 h of exposure and then maintained a similar level until the trial ended. SOD, CAT, and Casp3 mRNA expression increased substantially up to 120 h as the exposure concentration and time increased. The TUNEL assay revealed more signals and apoptotic signals in the combined exposure environments as a consequence of SOD in situ hybridization than in single exposure environments. These results suggest that combined exposure to toxic substances causes oxidative stress in organisms, which leads to apoptosis.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan 46252, Korea
| | - Jun-Hwan Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| | - Cheol Young Choi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea; Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Korea.
| |
Collapse
|
15
|
Zhang X, Chen X, Gao L, Zhang HT, Li J, Ye Y, Zhu QL, Zheng JL, Yan X. Transgenerational effects of microplastics on Nrf2 signaling, GH/IGF, and HPI axis in marine medaka Oryzias melastigma under different salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167170. [PMID: 37730060 DOI: 10.1016/j.scitotenv.2023.167170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Little information is available on the toxicity of microplastics (MPs) under different salinities in aquatic organisms. Consequently, the effects of larvae exposure to 180 μg/L MPs with 5.0 μm diameter on growth, antioxidant capacity and stress response were investigated in exposed F1 larvae and unexposed F2 larvae in marine medaka Oryzias melastigma at 5 ‰ and 25 ‰ salinities. Poor growth performance of F1 and F2 larvae and F1 adult fish was merely found under high salinity, as well as changes in the growth hormone/insulin-like growth factor-I (GH/IGF). Although malondialdehyde (MDA) content and antioxidant capacity remained constant in F1 larvae under high salinity, MPs increased MDA content and reduced antioxidant capacity in F2 larvae. Contrarily, MDA and antioxidant capacity increased in F1 and F2 larvae under low salinity. The mRNA expression levels of genes in the NF-E2-related factor 2 (Nrf2) pathway were dysregulated. Cortisol levels in the whole body increased in F1 larvae and recovered to the control level under low salinity while cortisol levels declined in F1 larvae and increased in F2 larvae under high salinity, which was related to the transcriptional regulation of the hypothalamus-pituitary-interrenal (HPI) axis genes. To summary, the present study determined the toxic effects of MPs on growth, antioxidant capacity, and stress response by disturbing Nrf2, HPI, and GH/IGF signaling in exposed larvae and unexposed offspring of marine medaka in a salinity-dependent manner. For the first time, our results highlight the interference effects of salinity on MPs toxicity in fish.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Xiao Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Lu Gao
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Hai-Ting Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jiji Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yingying Ye
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qing-Ling Zhu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Xiaojun Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| |
Collapse
|
16
|
Subaramaniyam U, Allimuthu RS, Vappu S, Ramalingam D, Balan R, Paital B, Panda N, Rath PK, Ramalingam N, Sahoo DK. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front Physiol 2023; 14:1217666. [PMID: 37435307 PMCID: PMC10331820 DOI: 10.3389/fphys.2023.1217666] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023] Open
Abstract
Microplastics and pesticides are emerging contaminants in the marine biota, which cause many harmful effects on aquatic organisms, especially on fish. Fish is a staple and affordable food source, rich in animal protein, along with various vitamins, essential amino acids, and minerals. Exposure of fish to microplastics, pesticides, and various nanoparticles generates ROS and induces oxidative stress, inflammation, immunotoxicity, genotoxicity, and DNA damage and alters gut microbiota, thus reducing the growth and quality of fish. Changes in fish behavioral patterns, swimming, and feeding habits were also observed under exposures to the above contaminants. These contaminants also affect the Nrf-2, JNK, ERK, NF-κB, and MAPK signaling pathways. And Nrf2-KEAP1 signalling modulates redox status marinating enzymes in fish. Effects of pesticides, microplastics, and nanoparticles found to modulate many antioxidant enzymes, including superoxide dismutase, catalase, and glutathione system. So, to protect fish health from stress, the contribution of nano-technology or nano-formulations was researched. A decrease in fish nutritional quality and population significantly impacts on the human diet, influencing traditions and economics worldwide. On the other hand, traces of microplastics and pesticides in the habitat water can enter humans by consuming contaminated fish which may result in serious health hazards. This review summarizes the oxidative stress caused due to microplastics, pesticides and nano-particle contamination or exposure in fish habitat water and their impact on human health. As a rescue mechanism, the use of nano-technology in the management of fish health and disease was discussed.
Collapse
Affiliation(s)
- Udayadharshini Subaramaniyam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Rethi Saliya Allimuthu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Shanu Vappu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Divya Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ranjini Balan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Niranjan Panda
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Nirmaladevi Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Huang L, Zhang W, Zhou W, Chen L, Liu G, Shi W. Behaviour, a potential bioindicator for toxicity analysis of waterborne microplastics: A review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|