1
|
Liang D, Li C, Chen H, Sørmo E, Cornelissen G, Gao Y, Reguyal F, Sarmah A, Ippolito J, Kammann C, Li F, Sailaukhanuly Y, Cai H, Hu Y, Wang M, Li X, Cui X, Robinson B, Khan E, Rinklebe J, Ye T, Wu F, Zhang X, Wang H. A critical review of biochar for the remediation of PFAS-contaminated soil and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174962. [PMID: 39059650 DOI: 10.1016/j.scitotenv.2024.174962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) present significant environmental and health hazards due to their inherent persistence, ubiquitous presence in the environment, and propensity for bioaccumulation. Consequently, the development of efficacious remediation strategies for soil and water contaminated with PFAS is imperative. Biochar, with its unique properties, has emerged as a cost-effective adsorbent for PFAS. Despite this, a comprehensive review of the factors influencing PFAS adsorption and immobilization by biochar is lacking. This narrative review examines recent findings indicating that the application of biochar can effectively immobilize PFAS, thereby mitigating their environmental transport and subsequent ecological impact. In addition, this paper reviewed the sorption mechanisms of biochar and the factors affecting its sorption efficiency. The high effectiveness of biochars in PFAS remediation has been attributed to their high porosity in the right pore size range (>1.5 nm) that can accommodate the relatively large PFAS molecules (>1.02-2.20 nm), leading to physical entrapment. Effective sorption requires attraction or bonding to the biochar framework. Binding is stronger for long-chain PFAS than for short-chain PFAS, as attractive forces between long hydrophobic CF2-tails more easily overcome the repulsion of the often-anionic head groups by net negatively charged biochars. This review summarizes case studies and field applications highlighting the effectiveness of biochar across various matrices, showcasing its strong binding with PFAS. We suggest that research should focus on improving the adsorption performance of biochar for short-chain PFAS compounds. Establishing the significance of biochar surface electrical charge in the adsorption process of PFAS is necessary, as well as quantifying the respective contributions of electrostatic forces and hydrophobic van der Waals forces to the adsorption of both short- and long-chain PFAS. There is an urgent need for validation of the effectiveness of the biochar effect in actual environmental conditions through prolonged outdoor testing.
Collapse
Affiliation(s)
- Dezhan Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Caibin Li
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jim Ippolito
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Kammann
- Department of Applied Ecology, Geisenheim University, 65366 Geisenheim, Germany
| | - Fangbai Li
- Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yerbolat Sailaukhanuly
- Laboratory of Engineering Profile, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Heqing Cai
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Yan Hu
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Maoxian Wang
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xinglan Cui
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Resources and Environmental Technology Corporation Limited, Beijing 101407, China
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Tingjin Ye
- IronMan Environmental Technology Co., Ltd., Foshan 528041, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
2
|
Zhao Z, Lou W, Zhong D, Shi Y, Zhang F, Wang L, Wu X, Sheng A, Chen J. Time-varying contributions of Fe II and Fe III to As V immobilization under anoxic/oxic conditions: The impacts of biochar and dissolved organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175241. [PMID: 39098410 DOI: 10.1016/j.scitotenv.2024.175241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Engineering black carbon (e.g. biochar) has been widely found in natural environments due to natural processes and extensive applications in engineering systems, and could influence the geochemical processes of coexisting arsenic (AsV) and FeII, especially when they are exposed to oxic conditions. Here, we studied time-varying kinetics and efficiencies of AsV immobilization by solid-phase FeII (FeIIsolid) and FeIII (FeIIIsolid) in FeII-AsV-biochar systems under both anoxic and oxic conditions at pH 7.0, with focuses on the effects of biochar surface and biochar-derived dissolved organic carbon (DOC). Under anoxic conditions, FeII could rapidly immobilize AsV via co-adsorption onto biochar surfaces, which also serves as the dominant pathway of AsV immobilization at the initial stage of reaction (0-5 min) under oxic conditions at high biochar concentrations. Subsequently, with increasing biochar concentrations, FeIIIsolid precipitation from aqueous FeII (FeIIaq) oxidation (5-60 min) starts to play an important role in AsV immobilization but in decreased efficiencies of AsV immobilization per unit iron. In the following stage (60-300 min), FeIIsolid oxidation is suppressed and leads to AsV release into solutions at >1.0 g·L-1 biochar. The decreasing efficiency of AsV immobilization over time is attributed to the gradual release of DOC into solution from biochar particles, which significantly inhibit AsV immobilization when FeIIIsolid is generated from FeIIsolid oxidation in the vicinity of biochar surfaces. Specifically, 4.06 mg·L of biochar-derived DOC can completely inhibit the immobilization of AsV in the 100 μM FeII system under oxic conditions. The findings are crucial to comprehensively understand and predict the behavior of FeII and AsV with coexisting engineering black carbon in natural environments.
Collapse
Affiliation(s)
- Zezhou Zhao
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Lou
- Hunan Provincial Engineering Research Center for Resource Recovery and Safe Disposal of Industrial Solid Waste, Hunan Heqing Environmental Technology Company Limited, Changsha 410032, China
| | - Delai Zhong
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yao Shi
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fengjiao Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linling Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohui Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anxu Sheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jing Chen
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
C T, Athira ST, Santina, K K, M V, E M, Rajakannan V, Nasr M, Chandrasekaran M, Chung WJ, Chang SW, Ravindran B. Effective reduction of carbon-containing pollutants in coffee cherry pulping wastewater using natural polysaccharide from Tamarindus indica L. seeds. ENVIRONMENTAL RESEARCH 2024; 259:119527. [PMID: 38977155 DOI: 10.1016/j.envres.2024.119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/04/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
The wastewater produced during coffee cherry pulping is known for containing harmful pollutants, particularly organic compounds containing carbon, which pose significant risks to the environment and human health. This research aimed to evaluate the effectiveness of Tamarindus indica L. seed polysaccharides in treating coffee effluent. Varying doses (ranging from 0.05 to 0.30 g) of the isolated polysaccharides were added to samples of the effluent to determine their ability to remove contaminants, especially those of organic carbon origin. Notably, a dosage of 0.10 g demonstrated optimal efficacy, resulting in a 55% decrease in total dissolved solids and an 80% decrease in chemical oxygen demand. Additionally, Fourier-transform infrared and zeta potential analysis of both the polysaccharides and the treated effluent samples revealed the presence of functional groups potentially pivotal for the pollutant removal activity of the isolated polysaccharides. This provides insights into the coagulation mechanism of Tamarindus indica L. seed polysaccharides in eliminating organic carbon-based pollutants. These findings highlight the potential of Tamarindus polysaccharides as a sustainable alternative to chemical agents for removing pollutants, thus promoting environmental sustainability and human well-being.
Collapse
Affiliation(s)
- Thamaraiselvi C
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, 624101, TamilNadu, India.
| | - S T Athira
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, 624101, TamilNadu, India
| | - Santina
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, 624101, TamilNadu, India
| | - Kala K
- Mother Teresa Women's University, Kodaikanal, 624101, Tamil Nadu, India
| | - Vasanthy M
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Manikandan E
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605014, India
| | - V Rajakannan
- Department of Crystallography and Biophysics, University of Madras, 600025, Tamil Nadu, India
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, 209-Neundong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Woo Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Gyeonggi-Do, 16227, South Korea.
| | - Soon Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Gyeonggi-Do, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Gyeonggi-Do, 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
4
|
Liu H, Long J, Zhang K, Li M, Zhao D, Song D, Zhang W. Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174180. [PMID: 38936738 DOI: 10.1016/j.scitotenv.2024.174180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The widespread use of pesticides that are inevitable to keep the production of food grains brings serious environmental pollution problems. Turning agricultural biomass/wastes into materials addressing the issues of pesticide contaminants is a feasible strategy to realize the reuse of wastes. Several works summarized the current applications of agricultural biomass/waste materials in the remediation of environmental pollutants. However, few studies systematically take the pesticides as an unitary target pollutant. This critical review comprehensively described the remediation effects of crop-derived waste (cereal crops, cash crops) and animal-derived waste materials on pesticide pollution. Adsorption is considered a superior and highlighted effect between pesticides and materials. The review generalized the sources, preparation, characterization, condition optimization, removal efficiency and influencing factors analysis of agricultural biomass/waste materials. Our work mainly emphasized the promising results in lab experiments, which helps to clarify the current application status of these materials in the field of pesticide remediation. In the meantime, rigorous pros and cons of the materials guide to understand the research trends more comprehensively. Overall, we hope to achieve a large-scale use of agricultural biomass/wastes.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jun Long
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| | - Kexin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Miqi Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Danyang Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Dongkai Song
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Weiyin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
5
|
Masud MAA, Shin WS. Advanced carbo-catalytic degradation of antibiotics using conductive polymer-seaweed biochar composite: Exploring N/S functionalization and non-radical dynamics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135449. [PMID: 39137546 DOI: 10.1016/j.jhazmat.2024.135449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Polyaniline (PANI) and Saccharina Japanica seaweed (kelp) biochar (KBC) composites were synthesized in-situ through polymerization. This study presents a novel approach to the degradation of sulfamethoxazole (SMX), a prevalent antibiotic, using a PANI-KBC composite to activate peroxymonosulfate (PMS). Extensive characterizations of the PANI-KBC composite were conducted, resulting in successful synthesis, uniform distribution of PANI on the biochar surface, and the multifunctional role of PANI-KBC in SMX degradation. A removal efficiency of 97.24% for SMX (10 mg L-1) was attained in 60 min with PANI-KBC (0.1 g L-1) and PMS (1.0 mM) at pH 5.2, with PANI-KBC showing effectiveness (>92%) across a pH range of 3.0-9.0. In the degradation of SMX, both radical (SO4•- and •OH) and non-radical (1O2 and electron transfer) pathways are involved. The reaction processes are critically influenced by the roles of SO4•-, 1O2 and electron transfer mechanisms. It was suggested that pyrrolic N, oxidized sulfur (-C-SO2-C-), structural defects, and O-CO were implicated in the production of 1O2 and electron transfer processes, respectively, and a portion of 1O2 originated from the conversion of O2•-. The study evaluated by-product toxicity, composite reusability, and stability, confirming its practical potential for sustainable groundwater remediation.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
6
|
Aryee AA, Masud MAA, Shin WS. Enhanced simazine degradation via peroxymonosulfate activation using hemin-doped rice husk biochar as a novel Fe/N-C catalyst. CHEMOSPHERE 2024; 366:143549. [PMID: 39419332 DOI: 10.1016/j.chemosphere.2024.143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The presence of herbicides, including simazine (SIM), in aquatic environments pose significant threats to these ecosystems, necessitating a method for their removal. In this study, a hemin-doped rice husk-derived biochar (RBC@Hemin20%) was synthesized using a simple, one-step pyrolysis, and its degradation efficiency towards SIM via peroxymonosulfate (PMS) was assessed. Under optimized conditions (hemin loading = 20 wt%, SIM = 0.5 ppm, RBC@Hemin20% catalyst = 0.2 g L-1, PMS = 2.0 mM, and pH = 5.84 [unadjusted]), RBC@Hemin20%, as an Fe/N-C catalyst, could activate PMS to achieve >99% degradation of SIM. Based on radical scavenger and electron spin resonance spectroscopy (ESR) experiments, both radical (•OH and SO4•-) and non-radical (such as singlet oxygen, 1O2) mechanisms and electron transfer were involved in the degradation system. Significant mineralization (97.3%) and reusability efficiency (∼74.1% SIM degradation after 4 applications) were exhibited by the RBC@Hemin20%/PMS system, which also maintained a remarkable degradation efficiency in tap-, river-, and ground-water. Additionally, the RBC@Hemin20%/PMS system exhibited rapid degradation of tetracycline (TC) and diclofenac (DCF), indicating its prospects in the degradation of other organic pollutants of aquatic environments. The plausible degradation mechanism pathways of SIM are proposed based on identified intermediates. Finally, the toxicity of these intermediate products is analysed using the Ecological Structure Activity Relationship (ECOSAR) software. It is expected that this study will expand the current knowledge on the synthesis of efficient biomass-based Fe/N-C composites for the removal of organic pollutants in water.
Collapse
Affiliation(s)
- Aaron Albert Aryee
- Department of Chemistry, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana; School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Md Abdullah Al Masud
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama, 35487, United States; School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
7
|
Bashir M, Ahanger MA, Gani KM. Investigations on adsorptive removal of PVC microplastics from aqueous solutions using Pinus roxburghii-derived biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59416-59429. [PMID: 39352640 DOI: 10.1007/s11356-024-35166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
This study investigates the adsorption mechanisms of pine bark biochar (BC) and modified pine bark biochar (MBC) in the removal of polyvinyl chloride (PVC) microplastics from aqueous solutions, with a significant focus on resource recovery from pine residues which is one of the key Himalayan Forest byproducts. The research findings highlighted the optimal adsorption capacity of biochar at 131.5 mg/g achieved after 6 h of contact time, with a pH of 10 and a PVC microplastic concentration of 200 mg/L. The primary mechanisms of PVC microplastic adsorption involved ion exchange and physical adsorption, driven by forces such as Vander-Waals, London forces, and electrostatic forces. Thermodynamic analysis showed the exothermic nature of the PVC and BC/MBC interaction, with spontaneous adsorption occurring within the temperature range of 10 to 40 °C. Isotherm and kinetic models fit well with Temkin model and PSO kinetics, as indicated by R2 values exceeding 0.9. Particularly, MBC exhibited superior removal efficiency and adsorption capacity compared to its precursor, reaching an optimum adsorption capacity of 156.08 mg/g with a removal efficiency of 78%, surpassing the performance of BC. This research contributes valuable insights into potential applications of BC for PVC removal and underscores the effectiveness of MBC in achieving enhanced adsorption outcomes.
Collapse
Affiliation(s)
- Misbah Bashir
- Department of Civil Engineering, National Institute of Technology, Jammu, and Kashmir, Srinagar, India, 190006
| | - Manzoor Ahmad Ahanger
- Department of Civil Engineering, National Institute of Technology, Jammu, and Kashmir, Srinagar, India, 190006
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Jammu, and Kashmir, Srinagar, India, 190006.
| |
Collapse
|
8
|
Wang M, Yuan X, Zhu C, Lu H, Han J, Ji R, Cheng H, Xue J, Zhou D. Sequential carbonization of pig manure biogas residue into engineered biochar for diethyl phthalate removal toward environmental sustainability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:45-53. [PMID: 39265431 DOI: 10.1016/j.wasman.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Manure biogas residue has attracted increasing attention in waste recycling but faces substantial challenges because of its low carbon content, high ash content, and high heavy metal content. A novel sequential carbonization approach was proposed for recycling biogas residue; this approach consisted of pre-pyrolysis, activation with Ca(OH)2, and then activation with KOH. Pig manure-derived biogas residue was upcycled into engineered biochar (EB) with a high yield (26 %) and showed excellent performance in removing a typical plasticizer, diethyl phthalate (DEP). The proportion of carbon content greatly increased from 18 % (biogas residue) to 67 % (EB); however, the ash content decreased from 50 % (biogas residue) to 24 % (EB). The concentration of heavy metals decreased, and Zn had the largest decrease from 713 mg kg-1 to 61 mg kg-1 (p < 0.001). The sorption of DEP onto EB was rapid and reached equilibrium within 20 h. The developed specific surface area of EB was 1247 m2/g and provided abundant sorption sites for DEP; additionally, the sorption quantity reached 309 mg/g. The sorption capacity was dominated by surface adsorption. The oxygen-containing functional groups, graphene structure, porous structure, and hydrophobicity of EB contributed to the pore filling, hydrogen bonding, π-π stacking, and partitioning processes. Furthermore, the EB showed excellent practical application potential and great cycling stability. A sequential carbonization strategy was proposed to upcycle manure biogas residue into the EB for DEP removal; moreover, this strategy can aid in the attainment of environmental sustainability, including sustainable waste management and environmental pollution mitigation.
Collapse
Affiliation(s)
- Min Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangzhou Yuan
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Changyin Zhu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Haiying Lu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rongting Ji
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Hu Cheng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianming Xue
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Vadakkan K, Sathishkumar K, Raphael R, Mapranathukaran VO, Mathew J, Jose B. Review on biochar as a sustainable green resource for the rehabilitation of petroleum hydrocarbon-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173679. [PMID: 38844221 DOI: 10.1016/j.scitotenv.2024.173679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Petroleum pollution is one of the primary threats to the environment and public health. Therefore, it is essential to create new strategies and enhance current ones. The process of biological reclamation, which utilizes a biological agent to eliminate harmful substances from polluted soil, has drawn much interest. Biochars are inexpensive, environmentally beneficial carbon compounds extensively employed to remove petroleum hydrocarbons from the environment. Biochar has demonstrated an excellent capability to remediate soil pollutants because of its abundant supply of the required raw materials, sustainability, affordability, high efficacy, substantial specific surface area, and desired physical-chemical surface characteristics. This paper reviews biochar's methods, effectiveness, and possible toxic effects on the natural environment, amended biochar, and their integration with other remediating materials towards sustainable remediation of petroleum-polluted soil environments. Efforts are being undertaken to enhance the effectiveness of biochar in the hydrocarbon-based rehabilitation approach by altering its characteristics. Additionally, the adsorption, biodegradability, chemical breakdown, and regenerative facets of biochar amendment and combined usage culminated in augmenting the remedial effectiveness. Lastly, several shortcomings of the prevailing methods and prospective directions were provided to overcome the constraints in tailored biochar studies for long-term performance stability and ecological sustainability towards restoring petroleum hydrocarbon adultered soil environments.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| | - Rini Raphael
- Department of Zoology, Carmel College (Autonomous), Mala, Kerala 680732, India
| | | | - Jennees Mathew
- Department of Chemistry, Morning Star Home Science College, Angamaly, Kerala 683589, India
| | - Beena Jose
- Department of Chemistry, Vimala College (Autonomous), Thrissur 680009, Kerala, India
| |
Collapse
|
10
|
Jacob MM, Ponnuchamy M, Kapoor A, Sivaraman P. Adsorptive membrane separation for eco-friendly decontamination of chlorpyrifos via biochar-impregnated cellulose acetate mixed matrix membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56314-56331. [PMID: 39271613 DOI: 10.1007/s11356-024-34912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
In this work, the phase inversion approach is used to synthesize a blended mixed matrix membrane from cellulose acetate polymer and sugarcane bagasse biochar. The experiments were carried out to estimate the extent of chlorpyrifos (CPS) pesticide removal. The results showed that the removal rate was more than 99% in making the filtered water suitable enough for domestic use. The physical and functional characteristics of the membranes, such as permeability, and contact angle were identified. The changes in the membrane characteristics were observed using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction both before and after the experimental trials. Experiments were conducted to assess not only the rejection characteristics of CPS, as a function feed concentration, but also the effect co-ions on the rejection used to analyze the composition both before and after filtration. The effects of initial CPS concentration, biochar loading, and co-ions on the membrane were investigated. The membranes showed contact angles between 70° and 97° and a permeability between 0.25 × 1010 m Pa-1 s-1 and 0.31 × 1010 m Pa-1 s-1. The effective removal of CPS from the contaminated aqueous stream was attributed to a combination of adsorptive uptake and membrane-based separation. CPS was found to get adsorbed onto the membrane matrix through an intraparticle diffusion mechanism along with an irreversible monolayer adsorption. The membrane-solute adsorptive interaction was represented by Langmuir isotherm and intraparticle diffusion models with a maximum adsorption capacity of 192.3 mg g-1. The findings indicated the efficacy of biochar-cellulose acetate mixed matrix membrane for sustainable and eco-friendly treatment of chlorpyrifos contaminated water.
Collapse
Affiliation(s)
- Meenu Mariam Jacob
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 202, Tamil Nadu, India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 202, Tamil Nadu, India.
| | - Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj, 208 002, Kanpur, UP, India
| | - Prabhakar Sivaraman
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 202, Tamil Nadu, India
| |
Collapse
|
11
|
Song H, Chen SF, Si G, Bhatt K, Chen SH, Chen WJ. Removal of environmental pollutants using biochar: current status and emerging opportunities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:384. [PMID: 39167116 DOI: 10.1007/s10653-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
In recent times, biochar has emerged as a novel approach for environmental remediation due to its exceptional adsorption capacity, attributed to its porous structure formed by the pyrolysis of biomass at elevated temperatures in oxygen-restricted conditions. This characteristic has driven its widespread use in environmental remediation to remove pollutants. When biochar is introduced into ecosystems, it usually changes the makeup of microbial communities by offering a favorable habitat. Its porous structure creates a protective environment that shields them from external pressures. Consequently, microorganisms adhering to biochar surfaces exhibit increased resilience to environmental conditions, thereby enhancing their capacity to degrade pollutants. During this process, pollutants are broken down into smaller molecules through the collaborative efforts of biochar surface groups and microorganisms. Biochar is also often used in conjunction with composting techniques to enhance compost quality by improving aeration and serving as a carrier for slow-release fertilizers. The utilization of biochar to support sustainable agricultural practices and combat environmental contamination is a prominent area of current research. This study aims to examine the beneficial impacts of biochar application on the absorption and breakdown of contaminants in environmental and agricultural settings, offering insights into its optimization for enhanced efficacy.
Collapse
Affiliation(s)
- Haoran Song
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guiling Si
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Kalpana Bhatt
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Hua Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Flafel HM, Rafatullah M, Lalung J, Kapoor RT, Siddiqui MR, Qutob M. A novel combination of wetland plants ( Eichhornia crassipes) and biochar derived from palm kernel shells modified with melamine for the removal of paraquat from aqueous medium: a green and sustainable approach. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2378-2391. [PMID: 39138934 DOI: 10.1080/15226514.2024.2390192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herbicide contamination in aquatic systems has become a global concern due to their long- term persistence, accumulation and health risks to humans. Paraquat, a widely used and cost-effective nonselective herbicide, is frequently applied in agricultural fields for pest control. Consequently, the removal of paraquat from contaminated water is crucial. This research presents a sustainable and environmentally benign method for paraquat removal from aqueous system by integrating wetland plants (Eichhornia crassipes) with biochar derived from melamine-modified palm kernel shells. The prepared biochar was characterized by using various analytical techniques. The effectiveness of biochar in enhancing phytoremediation was evaluated through a series of experiments, showing significant paraquat removal efficiencies of 99.7, 98.3, and 82.8% at different paraquat concentrations 50, 100, and 150 mg L-1, respectively. Additionally, present study examined the impact of biochar on the growth of E. crassipes, highlighting its potential to reduce the toxic effects of paraquat even present at higher concentrations. The paraquat removal mechanism was elucidated, focusing on the synergistic role of biochar adsorption and phytoremediation capability of E. crassipes. This innovative approach is an effective, feasible, sustainable and eco-friendly technique that can contribute to the development of advanced and affordable water remediation processes for widespread application.
Collapse
Affiliation(s)
- Hamza Mohamed Flafel
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- Libyan Center for Studies and Research in Environmental Science and Technology, Brack Al-Shatti, Libya
- Department of Environmental Science, Faculty of Environment & Natural Resources, Wadi Al-Shatti University, Brack Al-Shatti, Libya
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Japareng Lalung
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
13
|
Manikandan S, Deena SR, Subbaiya R, Vijayan DS, Vickram S, Preethi B, Karmegam N. Waves of change: Electrochemical innovations for environmental management and resource recovery from water - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121879. [PMID: 39043086 DOI: 10.1016/j.jenvman.2024.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/27/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Environmental electrochemistry and water resource recovery are covered in this review. The study discusses the growing field's scientific basis, methods, and applications, focusing on innovative remediation tactics. Environmental electrochemistry may solve water pollution and extract resources. Electrochemical methods may effectively destroy or convert pollutants. This method targets heavy metals, organic compounds, and emerging water contaminants such as pharmaceuticals and microplastics, making it versatile. Environmental electrochemistry and resource recovery synergize to boost efficiency and sustainability. Innovative electrochemical methods can extract or synthesise metals, nutrients, and energy from wastewater streams, decreasing treatment costs and environmental effect. The study discusses electrocoagulation, electrooxidation, and electrochemical advanced oxidation processes and their mechanics and performance. Additionally, it discusses current electrode materials, reactor designs, and process optimisation tactics to improve efficiency and scalability. Resource recovery in electrochemical remediation methods is also examined for economic and environmental feasibility. Through critical examination of case studies and techno-economic evaluations, it explains the pros and cons of scaling up these integrated techniques. This study covers environmental electrochemistry and resource recovery's fundamental foundations, technology advances, and sustainable water management consequences.
Collapse
Affiliation(s)
- S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - S R Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia; Oliver R. Tambo Africa Research Chair Initiative (ORTARChI) Environment and Development, The Copperbelt University, P.O. Box 21692, Kitwe, Zambia
| | - D S Vijayan
- Department of Civil Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission Research Foundation (VMRF - DU), Paiyanur, Chennai, 603104, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - B Preethi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
14
|
Tran TK, Huynh L, Nguyen HL, Nguyen MK, Lin C, Hoang TD, Hung NTQ, Nguyen XH, Chang SW, Nguyen DD. Applications of engineered biochar in remediation of heavy metal(loid)s pollution from wastewater: Current perspectives toward sustainable development goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171859. [PMID: 38518825 DOI: 10.1016/j.scitotenv.2024.171859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Environmental pollution of heavy metal(loid)s (HMs) caused adverse impacts, has become one of the emerging concerns and challenges worldwide. Metal(loid)s can pose significant threats to living organisms even when present in trace levels within environmental matrices. Extended exposure to these substances can lead to adverse health consequences in humans. Removing HM-contaminated water and moving toward sustainable development goals (SDGs) is critical. In this mission, biochar has recently gained attention in the environmental sector as a green and alternative material for wastewater removal. This work provides a comprehensive analysis of the remediation of typical HMs by biochars, associated with an understanding of remediation mechanisms, and gives practical solutions for ecologically sustainable. Applying engineered biochar in various fields, especially with nanoscale biochar-aided wastewater treatment approaches, can eliminate hazardous metal(loid) contaminants, highlighting an environmentally friendly and low-cost method. Surface modification of engineered biochar with nanomaterials is a potential strategy that positively influences its sorption capacity to remove contaminants. The research findings highlighted the biochars' ability to adsorb HM ions based on increased specific surface area (SSA), heightened porosity, and forming inner-sphere complexes with oxygen-rich groups. Utilizing biochar modification emerged as a viable approach for addressing lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), and chromium (Cr) pollution in aqueous environments. Most biochars investigated demonstrated a removal efficiency >90 % (Cd, As, Hg) and can reach an impressive 99 % (Pb and Cr). Furthermore, biochar and advanced engineered applications are also considered alternative solutions based on the circular economy.
Collapse
Affiliation(s)
- Thien-Khanh Tran
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Loan Huynh
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi - School of Interdisciplinary Sciences and Arts, 144 Xuan Thuy Street, Cau Giay District, Hanoi 100000, Viet Nam
| | - Nguyen Tri Q Hung
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - X Hoan Nguyen
- Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
15
|
Masud MAA, Shin WS, Septian A, Samaraweera H, Khan IJ, Mohamed MM, Billah MM, López-Maldonado EA, Rahman MM, Islam ARMT, Rahman S. Exploring the environmental pathways and challenges of fluoroquinolone antibiotics: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171944. [PMID: 38527542 DOI: 10.1016/j.scitotenv.2024.171944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Fluoroquinolone (FQ) antibiotics have become a subject of growing concern due to their increasing presence in the environment, particularly in the soil and groundwater. This review provides a comprehensive examination of the attributes, prevalence, ecotoxicity, and remediation approaches associated with FQs in environmental matrices. The paper discusses the physicochemical properties that influence the fate and transport of FQs in soil and groundwater, exploring the factors contributing to their prevalence in these environments. Furthermore, the ecotoxicological implications of FQ contamination in soil and aquatic ecosystems are reviewed, shedding light on the potential risks to environmental and human health. The latter part of the review is dedicated to an extensive analysis of remediation approaches, encompassing both in-situ and ex-situ methods employed to mitigate FQ contamination. The critical evaluation of these remediation strategies provides insights into their efficacy, limitations, and environmental implications. In this investigation, a correlation between FQ antibiotics and climate change is established, underlining its significance in addressing the Sustainable Development Goals (SDGs). The study further identifies and delineates multiple research gaps, proposing them as key areas for future investigational directions. Overall, this review aims to consolidate current knowledge on FQs in soil and groundwater, offering a valuable resource for researchers, policymakers, and practitioners engaged in environmental management and public health.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ardie Septian
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Badan Riset dan Inovasi Nasional, BRIN, Serpong 15314, Indonesia
| | - Hasara Samaraweera
- Department of Civil and Environmental Engineering, Western University, London, Ontario, Canada
| | | | - Mohamed Mostafa Mohamed
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates; National Water and Energy Center, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates.
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Italy
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, Mexico
| | | | | | - Saidur Rahman
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia; School of Engineering, Lancaster University, Lancaster LA1 4YW, UK
| |
Collapse
|
16
|
Devendrapandi G, Balu R, Ayyappan K, Ayyamperumal R, Alhammadi S, Lavanya M, Senthilkumar R, Karthika PC. Unearthing Earth's secrets: Exploring the environmental legacy of contaminants in soil, water, and sediments. ENVIRONMENTAL RESEARCH 2024; 249:118246. [PMID: 38278509 DOI: 10.1016/j.envres.2024.118246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
The Earth's history is documented in human civilizations, soil layers, river movement, and quiet sediments throughout millennia. This investigation explores the significant legacy of environmental toxins in these key planet components. Understanding how ancient activity shaped the terrain is crucial as mankind faces environmental issues. This interdisciplinary study uses environmental science, archaeology, and geology to uncover Earth's mysteries. It illuminates the dynamic processes that have built our globe by studying pollutants and soil, water, and sediments. This research follows human actions, both intentional and unintentional, from ancient civilizations through contemporary industrialization and their far-reaching effects. Environmental destiny examines how contaminants affect ecosystems and human health. This study of past contamination helps solve modern problems including pollution cleanup, sustainable land management, and water conservation. This review studies reminds us that our previous activities still affect the ecosystem in a society facing rapid urbanisation and industrialization. It emphasises the importance of environmental stewardship and provides a framework for making educated choices to reduce toxins in soil, water, and sediments. Discovery of Earth's secrets is not only a historical curiosity; it's a necessary step towards a sustainable and peaceful cohabitation with our home planet.
Collapse
Affiliation(s)
- Gautham Devendrapandi
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, Thandalam, Chennai 602 105, India.
| | - Ranjith Balu
- Research and Development Cell, Lovely Professional University, Phagwara, 144411, India.
| | - K Ayyappan
- School of Maritime Studies of Vels Institute of Science, Technology & Advanced Studies, Chennai, India
| | - Ramamoorthy Ayyamperumal
- Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou 13 University, Lanzhou, 730000, China
| | - Salh Alhammadi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyongsanbuk-do, 38541, Republic of Korea.
| | - Mahimaluru Lavanya
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - R Senthilkumar
- Department of Naval Architecture and Offshore Engineering, AMET University, Chennai, India
| | - P C Karthika
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
17
|
Bae S, Masud MAA, Annamalai S, Shin WS. The inherent nature of N/P heteroatoms in Sargassum fusiforme seaweed biochar enhanced the nonradical activation of peroxymonosulfate for acetaminophen degradation in aquatic environments. CHEMOSPHERE 2024; 356:141877. [PMID: 38579948 DOI: 10.1016/j.chemosphere.2024.141877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
This study investigated the catalytic activity of biochar materials derived from algal biomass Sargassum fusiforme (S. fusiforme) for groundwater remediation. A facile single-step pyrolysis process was used to prepare S. fusiforme biochar (SFBCX), where x denotes pyrolysis temperatures (600 °C-900 °C). The surface characterization revealed that SFBC800 possesses intrinsic N and P heteroatoms. The optimum experimental condition for acetaminophen (AAP) degradation (>98.70%) was achieved in 60 min using 1.0 mM peroxymonosulfate (PMS), 100 mg L-1 SFBC800, and pH 5.8 (unadjusted). Moreover, the degradation rate constant (k) was evaluated by the pseudo-first-order kinetic model. The maximum degradation (>98.70%) of AAP was achieved within 60 min of oxidation. Subsequently, the k value was calculated to be 6.7 × 10-2 min-1. The scavenger tests showed that radical and nonradical processes are involved in the SFBC800/PMS system. Moreover, the formation of reactive oxygen species (ROS) in the SFBC800/PMS system was confirmed using electron spin resonance (ESR) spectroscopy. Intriguingly, both radical (O2•-, •OH, and SO4•-) and nonradical (1O2) ROS were formed in the SFBC800/PMS system. In addition, electrochemical studies were conducted to verify the electron transfer process of the nonradical mechanism in the SFBC800/PMS system. The scavenger and electron spin resonance (ESR) spectroscopy showed that singlet oxygen (1O2) is the predominant component in AAP degradation. Under optimal condition, the SFBC800/PMS system reached ∼81% mineralization of AAP within 5 min and continued to ∼85% achieved over 60 min of oxidation. Coexisting ions and different aqueous matrices were investigated to examine the feasibility of the catalyst system, and the SFBC800/PMS system was found to be effective in the remediation of AAP-contaminated groundwater, river water, and effluent water obtained from wastewater treatment plants. Moreover, the SFBC800-activated PMS system demonstrated reusability. Our findings indicate that the SFBC800 catalyst has excellent catalytic activity for AAP degradation in aquatic environments.
Collapse
Affiliation(s)
- Soohyun Bae
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sivasankar Annamalai
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
18
|
Amalina F, Krishnan S, Zularisam AW, Nasrullah M. Pristine and modified biochar applications as multifunctional component towards sustainable future: Recent advances and new insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169608. [PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
Collapse
Affiliation(s)
- Farah Amalina
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
19
|
Sarker A, Shin WS, Masud MAA, Nandi R, Islam T. A critical review of sustainable pesticide remediation in contaminated sites: Research challenges and mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122940. [PMID: 37984475 DOI: 10.1016/j.envpol.2023.122940] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Incidental pesticide application on farmlands can result in contamination of off-target biota, soil, groundwater, and surrounding ecosystems. To manage these pesticide contaminations sustainably, it is important to utilize advanced approaches to pesticide decontamination. This review assesses various innovative strategies applied for remediating pesticide-contaminated sites, including physical, chemical, biological, and nanoremediation. Integrated remediation approaches appear to be more effective than singular technologies. Bioremediation and chemical remediation are considered suitable and sustainable strategies for decontaminating contaminated soils. Furthermore, this study highlights key mechanisms underlying advanced pesticide remediation that have not been systematically studied. The transformation of applied pesticides into metabolites through various biotic and chemical triggering factors is well documented. Ex-situ and in-situ technologies are the two main categories employed for pesticide remediation. However, when selecting a remediation technique, it is important to consider factors such as application sites, cost-effectiveness, and specific purpose. In this review, the sustainability of existing pesticide remediation strategies is thoroughly analyzed as a pioneering effort. Additionally, the study summarizes research uncertainties and technical challenges associated with different remediation approaches. Lastly, specific recommendations and policy advocacy are suggested to enhance contemporary remediation approaches for cleaning up pesticide-contaminated sites.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55356, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh.
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| |
Collapse
|
20
|
Neve S, Sarkar D, Warke M, Bandosz T, Datta R. Valorization of Spent Vetiver Roots for Biochar Generation. Molecules 2023; 29:63. [PMID: 38202646 PMCID: PMC10779468 DOI: 10.3390/molecules29010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Vetiver root is widely used to produce essential oils in the aromatherapy industry. After the extraction of oil, the roots are disposed of as waste. The central objective of this research was to explore the conversion of this waste into a resource using a circular economy framework. To generate biochar, vetiver roots were pyrolyzed at different temperatures (300, 500, and 700 °C) and residence times (30, 60, and 120 min). Analysis showed the root biochar generated at 500 °C and held for 60 min had the highest surface area of 308.15 m2/g and a yield of 53.76%, in addition to other favorable characteristics. Comparatively, the surface area and the yield of shoot biochar were significantly lower compared to those of the roots. Repurposing the spent root biomass for environmental and agronomic benefits, our circular economy concept prevents the plant tissue from entering landfills or the waste stream.
Collapse
Affiliation(s)
- Sameer Neve
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Dibyendu Sarkar
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Manas Warke
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (M.W.); (R.D.)
| | - Teresa Bandosz
- Department of Chemistry, City College of New York, New York, NY 10031, USA;
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (M.W.); (R.D.)
| |
Collapse
|
21
|
Plenča K, Cvetnić S, Prskalo H, Kovačić M, Cvetnić M, Kušić H, Matusinović Z, Kraljić Roković M, Genorio B, Lavrenčič Štangar U, Lončarić Božić A. Biomass Pyrolysis-Derived Biochar: A Versatile Precursor for Graphene Synthesis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7658. [PMID: 38138800 PMCID: PMC10744795 DOI: 10.3390/ma16247658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Graphene, a two-dimensional carbon allotrope with a honeycomb structure, has emerged as a material of immense interest in diverse scientific and technical domains. It is mainly produced from graphite by mechanical, chemical and electrochemical exfoliation. As renewable energy and source utilization increase, including bioenergy from forest and woody residues, processed, among other methods, by pyrolysis treatment, it can be expected that biochar production will increase too. Thus, its useful applications, particularly in obtaining high-added-value products, need to be fully explored. This study aims at presenting a comprehensive analysis derived from experimental data, offering insights into the potential of biomass pyrolysis-derived biochar as a versatile precursor for the controlled synthesis of graphene and its derivatives. This approach comprehended the highest energy output and lowest negative environmental footprint, including the minimization of both toxic gas emissions during processing and heavy metals' presence in the feedstock, toward obtaining biochar suitable to be modified, employing the Hummers and intercalation with persulfate salts methods, aiming at deriving graphene-like materials. Material characterization has revealed that besides morphology and structural features of the original wooden biomass, graphitized structures are present as well, which is proven clearly by Raman and XPS analyses. Electrochemical tests revealed higher conductivity in modified samples, implying their graphene-like nature.
Collapse
Affiliation(s)
- Karla Plenča
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (K.P.); (M.K.); (M.C.); (M.K.R.)
| | - Sara Cvetnić
- Department for Safety and Protection Engineering, Karlovac University of Applied Sciences, Trg J.J. Strossmayera 9, 47000 Karlovac, Croatia; (S.C.); (H.P.); (Z.M.)
| | - Helena Prskalo
- Department for Safety and Protection Engineering, Karlovac University of Applied Sciences, Trg J.J. Strossmayera 9, 47000 Karlovac, Croatia; (S.C.); (H.P.); (Z.M.)
| | - Marin Kovačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (K.P.); (M.K.); (M.C.); (M.K.R.)
| | - Matija Cvetnić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (K.P.); (M.K.); (M.C.); (M.K.R.)
| | - Hrvoje Kušić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (K.P.); (M.K.); (M.C.); (M.K.R.)
- Department for Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Zvonimir Matusinović
- Department for Safety and Protection Engineering, Karlovac University of Applied Sciences, Trg J.J. Strossmayera 9, 47000 Karlovac, Croatia; (S.C.); (H.P.); (Z.M.)
| | - Marijana Kraljić Roković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (K.P.); (M.K.); (M.C.); (M.K.R.)
| | - Boštjan Genorio
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (B.G.); (U.L.Š.)
| | - Urška Lavrenčič Štangar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (B.G.); (U.L.Š.)
| | - Ana Lončarić Božić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (K.P.); (M.K.); (M.C.); (M.K.R.)
| |
Collapse
|