1
|
Liu X, Dong H, Wang Q, Yang J, Zhai X, Lin M, Liu K, Yang Q. Efficient nitrate removal via microorganism-iron oxide co-evolution on biocathode surface. Bioelectrochemistry 2025; 163:108889. [PMID: 39729970 DOI: 10.1016/j.bioelechem.2024.108889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Sediment microbial fuel cell (SMFC) is a device for biological denitrification, in which electrons produced by sediment microorganisms can be transferred to the upper layer of the water column lacking electron donors. However, the low efficiency of denitrifying bacteria in acquiring electrons and enriching at the cathode greatly hinders the application of SMFC for nitrogen removal. In this study, we report a novel method of constructing a high-performance biocathode by modifying electrodes with zero-valent iron to enhance the enrichment and electron transfer of electroactive bacteria. The surface chemical and biological analysis of the biocathode revealed that the ZVI gradually oxidized to form magnetite and goethite, and finally stabilized into better crystallized lepidocrocite. On the other hand, the microbial community of the biocathode gradually evolved into a community dominated by denitrifying bacteria, specifically Clostridium. The co-evolved "Clostridium-lepidocrocite" composite endows the sediment microbial fuel cell with a 99% nitrate removal capacity. These results indicate that the cathode constructed by using ZVI modified electrode achieves efficient nitrate reduction by denitrifying bacteria. Furthermore, the construction method of biocathode may also have the potential application in water remediation and the geochemical cycling of elements.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| | - Huihui Dong
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| | - Qinyu Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| | - Jing Yang
- International school for optoelectronic engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, PR China.
| | - Xinru Zhai
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China
| | - Mingzhen Lin
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| | - Kaixin Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China
| | - Qinzheng Yang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China.
| |
Collapse
|
2
|
Yu D, Jiang Q, Zhu H, Chen Y, Xu L, Ma H, Pu S. Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives. WATER RESEARCH 2025; 274:123149. [PMID: 39854779 DOI: 10.1016/j.watres.2025.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H⁎) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity. It reveals the affinity characteristics of chlorinated hydrocarbon pollutants, the active dechlorination sites, and the roles of substituent groups. It also comprehensively discusses the current progress on electrochemical reductive dechlorination using metal, carbon-based, and 3D electrode catalysts, with an emphasis on the design and optimization of electrode materials and the impact of catalyst microstructure regulation on dechlorination performance. It delves into the current application status of coupling electrochemical reduction technology with biodegradation and electrochemical circulating well technology for the remediation of groundwater contaminated by chlorinated hydrocarbons. The paper discusses practical application challenges such as electron transfer, electrode corrosion, water chemistry environment, and aquifer heterogeneity. Finally, considerations are presented from the perspectives of environmental impact and sustainable application, along with a summary and analysis of potential future research directions and technological prospects.
Collapse
Affiliation(s)
- Dong Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Qing Jiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Ying Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Lanxin Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| |
Collapse
|
3
|
Li J, Feng C, Chen C, Pan Y, Liu Y. Support electron inductive effect of Pd-Mn/Ni foam catalyst for robust electrocatalytic hydrodechlorination. J Environ Sci (China) 2025; 149:288-300. [PMID: 39181643 DOI: 10.1016/j.jes.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 01/27/2024] [Indexed: 08/27/2024]
Abstract
Structural regulation of Pd-based electrocatalytic hydrodechlorination (EHDC) catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging. Herein, a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam (NF), which can inductive regulation of Pd for improving the EHDC performance. The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound, respectively. The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface, which optimizied the binding of EHDC intermediates. Additionally, the Mn-doped interlayer acted as a promoter for generating H* and accelerating the EHDC reaction. This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.
Collapse
Affiliation(s)
- Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Chao Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chong Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
4
|
Li F, Qu G, Dai Y, Zhao C, Xu C. Optimizing FeS crystallinity of sulfidated nZVI to enhance electron transport capacity for clothianidin efficient degradation: Regulation of biochar pyrolysis temperature. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137256. [PMID: 39837039 DOI: 10.1016/j.jhazmat.2025.137256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
Clothianidin (CTD), a highly water soluble neonicotinoid insecticide, easily enters water through runoff. Developing eco-friendly materials to degrade CTD is essential. Nano zero valent iron (nZVI) is effective for contaminant removal, but it deactivates due to agglomeration. Biochar supported sulfidated nano zero valent iron (S-nZVI-BC) can effectively mitigate nZVI aggregation while enhancing anti-passivation and electron transfer. However, the regulation of BC preparation conditions on S-nZVI-BC performance and contaminant degradation mechanism remains elusive. This work systematically investigated the effects of BC pyrolysis temperature on FeS formation in S-nZVI-BC and CTD degradation mechanism. BC enhanced FeS crystallinity and increased Fe0 lattice constants, facilitating electron transfer. Compared to S-ZVI, the CTD removal kinetics constants of S-nZVI-BC was 2.30 folds higher. Competitive dynamics model revealed BC pyrolysis temperature and S modulated the competition between O2 and CTD, enhancing electron utilization efficiency and improving nZVI anti-passivation under oxic conditions. Quenching experiment and electrochemical tests indicated S incorporation and changes in BC pyrolysis temperature modulated nZVI active reduced species (H*) production and contribution to CTD degradation. Additionally, increasing FeS crystallinity by adjusting BC pyrolysis temperature improved the electron transfer efficiency of S-nZVI-BC, enabling efficient CTD degradation. Density functional theory (DFT) calculations revealed CTD preferentially underwent nitro-reduction over dechlorination. All these findings can provide guidance for the application of S-nZVI-BC.
Collapse
Affiliation(s)
- Fengmin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Guanjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chengxuan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Zheng T, Fei W, Hou D, Li P, Wu N, Wang M, Feng Y, Luo H, Luo N, Wei W. Characteristic study of biological CaCO 3-supported nanoscale zero-valent iron: stability and migration performance. ENVIRONMENTAL TECHNOLOGY 2025; 46:553-566. [PMID: 38853645 DOI: 10.1080/09593330.2024.2361487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
nZVI has attracted much attention in the remediation of contaminated soil and groundwater, but the application is limited due to its aggregation, poor stability, and weak migration performance. The biological CaCO3 was used as the carrier material to support nZVI and solved the nZVI agglomeration, which had the advantages of biological carbon fixation and green environmental protection. Meanwhile, the distribution of nZVI was characterised by SEM-EDS and TEM carefully. Subsequently, the dispersion stability of bare nZVI and CaCO3@nZVI composite was studied by the settlement experiment and Zeta potential. Sand column and elution experiments were conducted to study the migration performance of different materials in porous media, and the adhesion coefficient and maximum migration distances of different materials in sand columns were explored. SEM-EDS and TEM results showed that nZVI could be uniformly distributed on the surface of biological CaCO3. Compared with bare nZVI, CaCO3@nZVI composite suspension had better stability and higher absolute value of Zeta potential. The migration performance of nZVI was poor, while CaCO3@nZVI composite could penetrate the sand column and have good migration performance. What's more, the elution rates of bare nZVI and CaCO3@nZVI composite in quartz sand columns were 5.8% and 51.6%, and the maximum migration distances were 0.193 and 0.885 m, respectively. In summary, this paper studies the stability and migration performance of bare nZVI and CaCO3@nZVI composite, providing the experimental and theoretical support for the application of CaCO3@nZVI composite, which is conducive to promoting the development of green remediation functional materials.
Collapse
Affiliation(s)
- Tianwen Zheng
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Wenbo Fei
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Peizhong Li
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Naijin Wu
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Moxi Wang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Yangfan Feng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Huilong Luo
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Nan Luo
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Wenxia Wei
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| |
Collapse
|
6
|
Yang Y, Zhang S, Dong W, Hu X. Laccase immobilized on amino modified magnetic biochar as a recyclable biocatalyst for efficient degradation of trichloroethylene. Int J Biol Macromol 2024; 282:136709. [PMID: 39437952 DOI: 10.1016/j.ijbiomac.2024.136709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Bioremediation of trichloroethylene (TCE) contaminated groundwater has recently attracted considerable attention. In this study, laccase was immobilized on amino modified magnetic pine biochar (MBC-NH2) by adsorption-crosslinking-covalent binding method, and its application in the degradation of TCE was evaluated. MBC-NH2 was obtained from pine sawdust by calcination, magnetic modification and amino modification. MBC-NH2 had high specific surface area (71.3 m2/g), rich surface functional groups and good magnetism. Under the conditions of 25 °C, pH = 4, glutaraldehyde (GA) concentration of 7 %, crosslinking time of 1 h, laccase concentration of 0.75 mg/mL, and immobilization time of 7 h, the loading capacity of laccase on MBC-NH2 carrier was as high as 782 mg/g. Compared with free laccase, immobilized laccase showed higher pH stability and thermal stability, and its activity remained 48.5 % after being reused for 10 times, and 80.8 % after being stored at 4 °C for 30 days. The immobilized laccase exhibited a good degradation effect on TCE. At 25 °C, pH = 4, immobilized laccase concentration of 0.35 g/L, and initial TCE concentration of 10 mg/L, the degradation efficiency of TCE by immobilized laccase was as high as 92.1 % within 48 h. In addition, the degradation products of TCE were analyzed, and the results showed that immobilized laccase could degrade TCE into non-toxic products through epoxidation, hydroxylation, and dechlorination. The immobilized laccase biocatalyst prepared in this study can achieve efficient degradation of TCE, which provides a feasible solution for chlorinated pollution of water resources. These research results are of great significance for the synthesis of biocatalysts for the efficient degradation of chlorinated hydrocarbons.
Collapse
Affiliation(s)
- Yaoyu Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Shaobin Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Wenya Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
7
|
Chen SH, Li ZT, Lai CY, Zhao HP. Enhancing reductive dechlorination of trichloroethylene in bioelectrochemical systems with conductive materials. ENVIRONMENTAL RESEARCH 2024; 261:119773. [PMID: 39128662 DOI: 10.1016/j.envres.2024.119773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
The incorporation of conductive materials to enhance electron transfer in bioelectrochemical systems (BES) is considered a promising approach. However, the specific effects and mechanisms of these materials on trichloroethylene (TCE) reductive dechlorination in BES remains are not fully understood. This study investigated the use of magnetite nanoparticles (MNP) and biochars (BC) as coatings on biocathodes for TCE reduction. Results demonstrated that the average dechlorination rates of MNP-Biocathode (122.89 μM Cl·d-1) and BC-Biocathode (102.88 μM Cl·d-1) were greatly higher than that of Biocathode (78.17 μM Cl·d-1). Based on MATLAB calculation, the dechlorination rate exhibited a more significantly increase in TCE-to-DCE step than the other dechlorination steps. Microbial community analyses revealed an increase in the relative abundance of electroactive and dechlorinating populations (e.g., Pseudomonas, Geobacter, and Desulfovibrio) in MNP-Biocathode and BC-Biocathode. Functional gene analysis via RT-qPCR showed the expression of dehalogenase (RDase) and direct electron transfer (DET) related genes was upregulated with the addition of MNP and BC. These findings suggest that conductive materials might accelerate reductive dechlorination by enhancing DET. The difference of physicochemical characteristics (e.g. particle size and specific surface area), electron transfer enhancement mechanism between MNP and BC as well as the reduction of Fe(III) by hydrogen may explain the superior dechlorination rate observed with MNP-Biocathode.
Collapse
Affiliation(s)
- Su-Hao Chen
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Yu Z, Zhou Y, Zhang H, Zhang M, Gong S, Yin H, Sun T. Oxygen vacancy-rich β-Bi 2O 3/Bi 2O 2SiO 3 Z-Scheme heterojunction: A strategy to enhance visible light-driven photocatalytic removal of ARB and ARGs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124500. [PMID: 38964641 DOI: 10.1016/j.envpol.2024.124500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Oxygen vacancy-rich β-Bi2O3/Bi2O2SiO3 (BO/BOS) Z-Scheme heterojunction was prepared by hydrothermal method-assisted calcination. Under visible light, β-Bi2O3/Bi2O2SiO3 photocatalyst demonstrated superior photocatalytic efficacy in degrading antibiotics and antibiotic-resistant Escherichia coli (AR E. coli) compared to individual β-Bi2O3 and Bi2O2SiO3. The experimental results showed that BO/BOS-450 sample possessed the best photocatalytic activity against tetracycline (2 h, 80.8%), amoxicillin (4 h, 57.9%) and AR E. coli (3 h, 107.43 CFU·mL-1). BO/BOS-450 sample showed 91.8% electrostatic capture of AR E. coli in the bacterial capture experiment. In the antibiotic-resistant genes (ARGs) degradation experiment, BO/BOS-450 sample was able to bring the log10 (Ct/C0) value of tetA to -3.49 after 2 h. Oxygen vacancies (OVs) were verified through HR-TEM, XPS and EPR analyses. ESR experiments aligned with the quenching experiment results, confirming that the crucial active species were ‧O2- and h+ during photocatalytic sterilization. A small-scale sewage treatment equipment was designed for the effective removal of ARB from real water samples.
Collapse
Affiliation(s)
- Zhengkun Yu
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China.
| | - Haowei Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Miao Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Shuqi Gong
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China.
| | - Tianyi Sun
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| |
Collapse
|
9
|
Lin CW, Chen FY, Liu SH, Ma CY. Optimized combination of zero-valent iron and oxygen-releasing biochar as cathodes of microbial fuel cells to enhance copper migration in sediment. Bioelectrochemistry 2024; 158:108699. [PMID: 38574450 DOI: 10.1016/j.bioelechem.2024.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Membrane-less single-medium sediment microbial fuel cells (single-SMFC) can remove Cu2+ from sediment through electromigration. However, the high mass transfer resistance of the sediment and amount of oxygen at the cathode of the SMFC limit its Cu2+ removal ability. Therefore, this study used an oxygen-releasing bead (ORB) for slow oxygen release to increase oxygen at the SMFC cathode and improve the mass transfer property of the sediment. Resultantly, the copper removal efficiency of SMFC increased significantly. Response surface methodology was used to optimize the nano zero-valent iron (nZVI)-modified biochar as the catalyst to enhance the ability of the modified ORB (ORBm) to remove Cu2+ and slow release of O2. The maximum Cu2+ removal (95 %) and the slowest O2 release rate (0.41 mg O2/d·g ORBm) were obtained when the CaO2 content and ratio of nZVI-modified biochar to unmodified biochar were 0.99 g and 4.95, respectively. When the optimized ORBm was placed at the single-SMFC cathode, the voltage output and copper removal increased by 4.6 and 2.1 times, respectively, compared with the system without ORBm. This shows that the ORBm can improve the migration of Cu2+ in the sediment, providing a promising remediation method for Cu-contaminated sediments.
Collapse
Affiliation(s)
- Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC; Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Fung-Yu Chen
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC.
| | - Chih-Yu Ma
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Niu S, Li C, Gao S, Tian J, Zhang C, Li L, Huang Y, Lyu H. Biochar, microbes, and biochar-microbe synergistic treatment of chlorinated hydrocarbons in groundwater: a review. Front Microbiol 2024; 15:1443682. [PMID: 39091302 PMCID: PMC11291464 DOI: 10.3389/fmicb.2024.1443682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Dehalogenating bacteria are still deficient when targeted to deal with chlorinated hydrocarbons (CHCs) contamination: e.g., slow metabolic rates, limited substrate range, formation of toxic intermediates. To enhance its dechlorination capacity, biochar and its composites with appropriate surface activity and biocompatibility are selected for coupled dechlorination. Because of its special surface physical and chemical properties, it promotes biofilm formation by dehalogenating bacteria on its surface and improves the living environment for dehalogenating bacteria. Next, biochar and its composites provide active sites for the removal of CHCs through adsorption, activation and catalysis. These sites can be specific metal centers, functional groups or structural defects. Under microbial mediation, these sites can undergo activation and catalytic cycles, thereby increasing dechlorination efficiency. However, there is a lack of systematic understanding of the mechanisms of dechlorination in biogenic and abiogenic systems based on biochar. Therefore, this article comprehensively summarizes the recent research progress of biochar and its composites as a "Taiwan balm" for the degradation of CHCs in terms of adsorption, catalysis, improvement of microbial community structure and promotion of degradation and metabolism of CHCs. The removal efficiency, influencing factors and reaction mechanism of the degraded CHCs were also discussed. The following conclusions were drawn, in the pure biochar system, the CHCs are fixed to its surface by adsorption through chemical bonds on its surface; the biochar composite material relies on persistent free radicals and electron shuttle mechanisms to react with CHCs, disrupting their molecular structure and reducing them; biochar-coupled microorganisms reduce CHCs primarily by forming an "electron shuttle bridge" between biological and non-biological organisms. Finally, the experimental directions to be carried out in the future are suggested to explore the optimal solution to improve the treatment efficiency of CHCs in water.
Collapse
Affiliation(s)
- Shixin Niu
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Changsuo Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chao Zhang
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Lixia Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
11
|
Ouyang Q, Tobler DJ, Deng J, Huang L, Jakobsen R, Hansen HCB. Fast degradation of vinyl chloride by green rust and nitrogen-doped graphene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172825. [PMID: 38692311 DOI: 10.1016/j.scitotenv.2024.172825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Carbonaceous materials catalyze reductive dechlorination of chlorinated ethylenes (CEs) by iron(II) materials providing a new approach for the remediation of CE polluted groundwater. While most CEs are reduced via β-elimination, vinyl chloride (VC), the most toxic and recalcitrant CE, degrades by hydrogenolysis. The significance of carbon catalysts for reduction of VC is well documented for iron(0) systems, but hardly investigated with iron(II) materials as reductants. In this study, a layered iron(II)‑iron(III) hydroxide sulfate (green rust) was used as reductant for VC, with an N-doped graphene (NG), prepared by co-pyrolysis of graphene and urea, as catalyst. VC (80 μM) was completely reduced to ethylene within 336 h in the presence of 5 g Fe/L GR and 5 g/L NG pyrolyzed at 950 °C, following pseudo-first-order kinetics with a rate constant of 0.017 h-1. Dosing experiments demonstrated that dechlorination of VC takes place on the NG phase. Monitoring of hydrogen formation, cyclic voltammetry, and quenching experiments demonstrated that atomic hydrogen contributes significantly to the dehalogenation reaction, where NG is critical for formation of atomic hydrogen. CE competition experiments demonstrated the presence of specific VC reduction sites with hydrogenolysis being unaffected by concurrent β-elimination reactions. The system exhibited excellent performance in natural groundwaters and in comparison with iron(0) systems. This study demonstrates that GR + NG is a promising system for remediation of VC contaminated groundwater, and the mechanistic part of the study can be used as a reference for subsequent studies.
Collapse
Affiliation(s)
- Qiong Ouyang
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Dominique J Tobler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jia Deng
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China
| | - Rasmus Jakobsen
- Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 København K, Denmark
| | - Hans Chr B Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Wang X, Zheng Y, Ning P, Lynch I, Guo Z, Zhang P, Wu L. Synergetic effect of green synthesized NZVI@Chitin-modified ZSM-5 for efficient oxidative degradation of tetracycline. ENVIRONMENTAL RESEARCH 2024; 258:119360. [PMID: 38852830 DOI: 10.1016/j.envres.2024.119360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The aggregation and limited activity of nanoscale zero-valent iron (NZVI) in aqueous media hinder its practical application. In this study, a cost-effective, environmentally friendly, robust, and efficient synthesis method for NZVI-based composite was developed. NZVI@Chitin-modified ZSM-5 (NZVI@C-ZSM) composite was facilely and greenly synthesized by loading NZVI into alkali-modified ZSM-5 molecular sieves after modifying with chitin as a surfactant and binder. NZVI@C-ZSM exhibited remarkable efficacy in TC removal, achieving a removal efficiency of 97.72% within 60 min. Compared with pristine NZVI, NZVI@C-ZSM demonstrated twice the removal efficiency, indicating that NZVI@C-ZSM effectively improved the dispersion and stability of NZVI. This enhancement provided more reactive sites for generating reactive oxygen species (ROS), significantly boosting catalytic activity and durability while reducing the potential risk of secondary pollution. An improved two-parameter pseudo-first-order kinetic model was used to effectively characterize the reaction kinetics. The mechanism for TC removal primarily involved an adsorption process and chemical oxidation-reduction reactions induced by hydroxyl radicals (•OH) and superoxide radicals (•O2-). Three potential degradation pathways for TC were suggested. Furthermore, NZVI@C-ZSM exhibited good resistance to interference, suggesting its broad potential for practical applications in complex environmental conditions. This study offers a viable material and method for addressing the issue of antibiotic-contaminated water, with potential applications in water resource management.
Collapse
Affiliation(s)
- Xiangyu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yimin Zheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lisi Wu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
13
|
Hou D, Cui X, Liu M, Qie H, Tang Y, Xu R, Zhao P, Leng W, Luo N, Luo H, Lin A, Wei W, Yang W, Zheng T. The effects of iron-based nanomaterials (Fe NMs) on plants under stressful environments: Machine learning-assisted meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120406. [PMID: 38373376 DOI: 10.1016/j.jenvman.2024.120406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mitigating the adverse effects of stressful environments on crops and promoting plant recovery in contaminated sites are critical to agricultural development and environmental remediation. Iron-based nanomaterials (Fe NMs) can be used as environmentally friendly nano-fertilizer and as a means of ecological remediation. A meta-analysis was conducted on 58 independent studies from around the world to evaluate the effects of Fe NMs on plant development and antioxidant defense systems in stressful environments. The application of Fe NMs significantly enhanced plant biomass (mean = 25%, CI = 20%-30%), while promoting antioxidant enzyme activity (mean = 14%, CI = 10%-18%) and increasing antioxidant metabolite content (mean = 10%, CI = 6%-14%), reducing plant oxidative stress (mean = -15%, CI = -20%∼-10%), and alleviating the toxic effects of stressful environments. The observed response was dependent on a number of factors, which were ranked in terms of a Random Forest Importance Analysis. Plant species was the most significant factor, followed by Fe NM particle size, duration of application, dose level, and Fe NM type. The meta-analysis has demonstrated the potential of Fe NMs in achieving sustainable agriculture and the future development of phytoremediation.
Collapse
Affiliation(s)
- Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenpeng Leng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Nan Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Huilong Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenxia Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| | - Wenjie Yang
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China.
| | - Tianwen Zheng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| |
Collapse
|