1
|
Diwan R, Gaytan SL, Bhatt HN, Pena-Zacarias J, Nurunnabi M. Liver fibrosis pathologies and potentials of RNA based therapeutics modalities. Drug Deliv Transl Res 2024; 14:2743-2770. [PMID: 38446352 DOI: 10.1007/s13346-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
Liver fibrosis (LF) occurs when the liver tissue responds to injury or inflammation by producing excessive amounts of scar tissue, known as the extracellular matrix. This buildup stiffens the liver tissue, hinders blood flow, and ultimately impairs liver function. Various factors can trigger this process, including bloodborne pathogens, genetic predisposition, alcohol abuse, non-steroidal anti-inflammatory drugs, non-alcoholic steatohepatitis, and non-alcoholic fatty liver disease. While some existing small-molecule therapies offer limited benefits, there is a pressing need for more effective treatments that can truly cure LF. RNA therapeutics have emerged as a promising approach, as they can potentially downregulate cytokine levels in cells responsible for liver fibrosis. Researchers are actively exploring various RNA-based therapeutics, such as mRNA, siRNA, miRNA, lncRNA, and oligonucleotides, to assess their efficacy in animal models. Furthermore, targeted drug delivery systems hold immense potential in this field. By utilizing lipid nanoparticles, exosomes, nanocomplexes, micelles, and polymeric nanoparticles, researchers aim to deliver therapeutic agents directly to specific biomarkers or cytokines within the fibrotic liver, increasing their effectiveness and reducing side effects. In conclusion, this review highlights the complex nature of liver fibrosis, its underlying causes, and the promising potential of RNA-based therapeutics and targeted delivery systems. Continued research in these areas could lead to the development of more effective and personalized treatment options for LF patients.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Samantha Lynn Gaytan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Himanshu Narendrakumar Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Jacqueline Pena-Zacarias
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biological Sciences, College of Science, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA.
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA.
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA.
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
2
|
Ahmadzada B, Felgendreff P, Minshew AM, Amiot BP, Nyberg SL. Producing Human Livers From Human Stem Cells Via Blastocyst Complementation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100537. [PMID: 38854436 PMCID: PMC11160964 DOI: 10.1016/j.cobme.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The need for organ transplants exceeds donor organ availability. In the quest to solve this shortage, the most remarkable area of advancement is organ production through the use of chimeric embryos, commonly known as blastocyst complementation. This technique involves the combination of different species to generate chimeras, where the extent of donor cell contribution to the desired tissue or organ can be regulated. However, ethical concerns arise with the use of brain tissue in such chimeras. Furthermore, the ratio of contributed cells to host animal cells in the chimeric system is low in the production of chimeras associated with cell apoptosis. This review discusses the latest innovations in blastocyst complementation and highlights the progress made in creating organs for transplant.
Collapse
Affiliation(s)
- Boyukkhanim Ahmadzada
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Philipp Felgendreff
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Anna M Minshew
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Bruce P Amiot
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Scott L Nyberg
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Liu H, Zhou M, Dong X, Tan B, Zhang S, Yang Y, Chi S, Liu H, Yan X, Li Z. Transcriptomic Analysis of Liver in Silver sillago, Sillago sihama Fed with High-Level Low-Gossypol Cottonseed Meal in Replacement of Fishmeal Diet. Animals (Basel) 2023; 13:ani13071194. [PMID: 37048450 PMCID: PMC10093045 DOI: 10.3390/ani13071194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Understanding the molecular mechanisms involved in adaptation to alternate diets has become a significant concern, as increasing amounts of fishmeal (FM) protein in aquafeeds are being substituted with plant protein. Thus, the goal of this study was to assess growth performance, quality, and liver function of juvenile Sillago sihama (S. sihama) through growth indices, whole-body composition, histology of the liver, and RNA-sequencing (RNA-seq), after they were fed a formulated diet with 64% low-gossypol cottonseed meal (LCSM) for 56 days, compared to those fed a traditional FM-based diet. Indicators of growth, including final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio (PER), and condition factor (CF), were considerably lower in the 64% LCSM (R64) group than in the FM diet group. In the R64 diet, the whole crude lipid was significantly lower than in the FM diet. The hematoxylin–eosin section showed that dietary high levels of LCSM resulted in diffuse lipid vacuolation in the liver of S. sihama. According to a liver transcriptome analysis, high LCSM intake in the diet significantly impacted lipid synthesis and catabolism, elevated pathways for cholesterol synthesis, blocked several amino acid metabolic pathways, and adversely affected hepatic gluconeogenesis and glycolysis. The findings of this study indicate that feeding high levels of LCSM in S. sihama is harmful to the growth of the organism and can harm the liver’s structural integrity, as well as obstruct the normal metabolism of amino acids, lipids, and carbohydrates. Therefore, it is not recommended to substitute LCSM for high levels of FM in the diet of S. sihama.
Collapse
|
4
|
Zhang W, Wauthier E, Lanzoni G, Hani H, Yi X, Overi D, Shi L, Simpson S, Allen A, Suitt C, Ezzell JA, Alvaro D, Cardinale V, Gaudio E, Carpino G, Prestwich G, Dominguez-Bendala J, Gerber D, Mathews K, Piedrahita J, Adin C, Sethupathy P, He Z, Reid LM. Patch grafting of organoids of stem/progenitors into solid organs can correct genetic-based disease states. Biomaterials 2022; 288:121647. [PMID: 36030102 PMCID: PMC10495116 DOI: 10.1016/j.biomaterials.2022.121647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Patch grafting, a novel strategy for transplantation of stem/progenitor organoids into porcine livers, has been found successful also for organoid transplantation into other normal or diseased solid organs in pigs and mice. Each organoid contained ∼100 cells comprised of biliary tree stem cells (BTSCs), co-hepato/pancreatic stem/progenitors, and partnered with early lineage stage mesenchymal cells (ELSMCs), angioblasts and precursors to endothelia and stellate cells. Patch grafting enabled transplantation into livers or pancreases of ≥108th (pigs) or ≥106th-7th (mice) organoids/patch. Graft conditions fostered expression of multiple matrix-metalloproteinases (MMPs), especially secretory isoforms, resulting in transient loss of the organ's matrix-dictated histological features, including organ capsules, and correlated with rapid integration within a week of organoids throughout the organs and without emboli or ectopic cell distribution. Secondarily, within another week, there was clearance of graft biomaterials, followed by muted expression of MMPs, restoration of matrix-dictated histology, and maturation of donor cells to functional adult fates. The ability of patch grafts of organoids to rescue hosts from genetic-based disease states was demonstrated with grafts of BTSC/ELSMC organoids on livers, able to rescue NRG/FAH-KO mice from type I tyrosinemia, a disease caused by absence of fumaryl acetoacetate hydrolase. With the same grafts, if on pancreas, they were able to rescue NRG/Akita mice from type I diabetes, caused by a mutation in the insulin 2 gene. The potential of patch grafting for cell therapies for solid organs now requires translational studies to enable its adaptation and uses for clinical programs.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| | - Homayoun Hani
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Xianwen Yi
- Department of Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Diletta Overi
- Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Lei Shi
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Sean Simpson
- Department of Molecular Biomedical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; The Comparative Medicine Institute, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; Department of Comparative Veterinary Anatomy, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Amanda Allen
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Carolyn Suitt
- Center on Gastrointestinal Disease Biology (CGIBD) Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Jennifer Ashley Ezzell
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Domenico Alvaro
- Center on Gastrointestinal Disease Biology (CGIBD) Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Eugenio Gaudio
- Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Guido Carpino
- Translational and Precision Medicine, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Glenn Prestwich
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, 00135, Italy.
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| | - David Gerber
- Department of Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Kyle Mathews
- Department of Clinical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Jorge Piedrahita
- Department of Molecular Biomedical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; The Comparative Medicine Institute, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; Department of Comparative Veterinary Anatomy, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Christopher Adin
- Department of Clinical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Praveen Sethupathy
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
| | - Lola M Reid
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA; Cornell University College of Veterinary Medicine, T7 006D Veterinary Research Tower, Box 17, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Nicolas CT, VanLith CJ, Hickey RD, Du Z, Hillin LG, Guthman RM, Cao WJ, Haugo B, Lillegard A, Roy D, Bhagwate A, O'Brien D, Kocher JP, Kaiser RA, Russell SJ, Lillegard JB. In vivo lentiviral vector gene therapy to cure hereditary tyrosinemia type 1 and prevent development of precancerous and cancerous lesions. Nat Commun 2022; 13:5012. [PMID: 36008405 PMCID: PMC9411607 DOI: 10.1038/s41467-022-32576-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional therapy for hereditary tyrosinemia type-1 (HT1) with 2-(2-nitro-4-trifluoromethylbenzoyl)−1,3-cyclohexanedione (NTBC) delays and in some cases fails to prevent disease progression to liver fibrosis, liver failure, and activation of tumorigenic pathways. Here we demonstrate cure of HT1 by direct, in vivo administration of a therapeutic lentiviral vector targeting the expression of a human fumarylacetoacetate hydrolase (FAH) transgene in the porcine model of HT1. This therapy is well tolerated and provides stable long-term expression of FAH in pigs with HT1. Genomic integration displays a benign profile, with subsequent fibrosis and tumorigenicity gene expression patterns similar to wild-type animals as compared to NTBC-treated or diseased untreated animals. Indeed, the phenotypic and genomic data following in vivo lentiviral vector administration demonstrate comparative superiority over other therapies including ex vivo cell therapy and therefore support clinical application of this approach. Hereditary tyrosinemia type 1 (HT1) is an inborn error of metabolism caused by a deficiency in fumarylacetoacetate hydrolase (FAH). Here, the authors show in an animal model that HT1 can be treated via in vivo portal vein administration of a lentiviral vector carrying the human FAH transgene.
Collapse
Affiliation(s)
- Clara T Nicolas
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Department of Surgery, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Raymond D Hickey
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zeji Du
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lori G Hillin
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Rebekah M Guthman
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Medical College of Wisconsin, Wausau, WI, USA
| | - William J Cao
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Diya Roy
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Aditya Bhagwate
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Daniel O'Brien
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre Kocher
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Robert A Kaiser
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | | | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN, USA. .,Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA. .,Pediatric Surgical Associates, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Zhao H, Ye W, Guo J, Wang J, Jiao D, Xu K, Yang C, Chen S, Jamal MA, Bai Z, Wei T, Cai J, Nguyen TD, Qing Y, Cheng W, Jia B, Li H, Zhao HY, Chen Q, Wei HJ. Development of RAG2-/-IL2Rγ-/Y immune deficient FAH-knockout miniature pig. Front Immunol 2022; 13:950194. [PMID: 36032112 PMCID: PMC9400017 DOI: 10.3389/fimmu.2022.950194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human hepatocyte transplantation for liver disease treatment have been hampered by the lack of quality human hepatocytes. Pigs with their large body size, longevity and physiological similarities with human are appropriate animal models for the in vivo expansion of human hepatocytes. Here we report on the generation of RAG2-/-IL2Rγ-/YFAH-/- (RGFKO) pigs via CRISPR/Cas9 system and somatic cell nuclear transfer. We showed that thymic and splenic development in RGFKO pigs was impaired. V(D)J recombination processes were also inactivated. Consequently, RGFKO pigs had significantly reduced numbers of porcine T, B and NK cells. Moreover, due to the loss of FAH, porcine hepatocytes continuously undergo apoptosis and consequently suffer hepatic damage. Thus, RGFKO pigs are both immune deficient and constantly suffer liver injury in the absence of NTBC supplementation. These results suggest that RGFKO pigs have the potential to be engrafted with human hepatocytes without immune rejection, thereby allowing for large scale expansion of human hepatocytes.
Collapse
Affiliation(s)
- Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Jiaoxiang Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Shuhan Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | | | - Zhongbin Bai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Jie Cai
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Tien Dat Nguyen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yubo Qing
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Wenmin Cheng
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Baoyu Jia
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| |
Collapse
|
7
|
Hou N, Du X, Wu S. Advances in pig models of human diseases. Animal Model Exp Med 2022; 5:141-152. [PMID: 35343091 PMCID: PMC9043727 DOI: 10.1002/ame2.12223] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
Animal models of human diseases play a critical role in medical research. Pigs are anatomically and physiologically more like humans than are small rodents such as mice, making pigs an attractive option for modeling human diseases. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, and various genetic diseases. We also discuss areas that need to be improved. Animal models of human diseases play a critical role in medical research. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, various genetic diseases and xenotransplantation.
Collapse
Affiliation(s)
- Naipeng Hou
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China
| | - Xuguang Du
- Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Ren J, Yu D, Wang J, Xu K, Xu Y, Sun R, An P, Li C, Feng G, Zhang Y, Dai X, Zhao H, Wang Z, Han Z, Zhu H, Ding Y, You X, Liu X, Wu M, Luo L, Li Z, Yang YG, Hu Z, Wei HJ, Ge L, Hai T, Li W. Generation of immunodeficient pig with hereditary tyrosinemia type 1 and their preliminary application for humanized liver. Cell Biosci 2022; 12:26. [PMID: 35255981 PMCID: PMC8900390 DOI: 10.1186/s13578-022-00760-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/08/2022] [Indexed: 01/17/2023] Open
Abstract
Background Mice with humanized livers are important models to study drug toxicology testing, development of hepatitis virus treatments, and hepatocyte transplantation therapy. However, the huge difference between mouse and human in size and anatomy limited the application of humanized mice in investigating human diseases. Therefore, it is urgent to construct humanized livers in pigs to precisely investigate hepatocyte regeneration and human hepatocyte therapy. CRISPR/Cas9 system and somatic cell cloning technology were used to generate two pig models with FAH deficiency and exhibiting severe immunodeficiency (FAH/RAG1 and FAH/RAG1/IL2RG deficiency). Human primary hepatocytes were then successfully transplanted into the FG pig model and constructed two pigs with human liver. Results The constructed FAH/RAG1/IL2RG triple-knockout pig models were characterized by chronic liver injury and severe immunodeficiency. Importantly, the FG pigs transplanted with primary human hepatocytes produced human albumin in a time dependent manner as early as 1 week after transplantation. Furthermore, the colonization of human hepatocytes was confirmed by immunochemistry staining. Conclusions We successfully generated pig models with severe immunodeficiency that could construct human liver tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00760-3.
Collapse
Affiliation(s)
- Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yanan Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renren Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Peipei An
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Chongyang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Hongye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhengzhu Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Zhiqiang Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Haibo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China.,Center of Reproductive Medicine and Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Xiaoyan You
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Xueqin Liu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Lin Luo
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China.
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China. .,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China.
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Decreased SLC27A5 Suppresses Lipid Synthesis and Tyrosine Metabolism to Activate the Cell Cycle in Hepatocellular Carcinoma. Biomedicines 2022; 10:biomedicines10020234. [PMID: 35203444 PMCID: PMC8869743 DOI: 10.3390/biomedicines10020234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Tyrosine is an essential ketogenic and glycogenic amino acid for the human body, which means that tyrosine is not only involved in protein metabolism, but also participates in the metabolism of lipids and carbohydrates. The liver is an important place for metabolism of lipids, carbohydrates, and proteins. The metabolic process of biological macro-molecules is a basis for maintaining the physiological activities of organisms, but the cross-linking mechanism of these processes is still unclear. Here, we found that the tyrosine-metabolizing enzymes, which were specifically and highly expressed in the liver, were significantly down-regulated in hepatocellular carcinoma (HCC), and had a correlation with a poor prognosis of HCC patients. Further analysis found that the reduction of tyrosine metabolism would activate the cell cycle and promote cell proliferation. In addition, we also found that the solute carrier family 27 member 5 (SLC27A5) regulates the expression of tyrosine-metabolizing enzymes through nuclear factor erythroid 2-related factor 2 (NRF2). Therefore, the SLC27A5 and tyrosine-metabolizing enzymes that we have identified coordinate lipid and tyrosine metabolism, regulate the cell cycle, and are potential targets for cancer treatment.
Collapse
|
10
|
Larson EL, Joo DJ, Nelson ED, Amiot BP, Aravalli RN, Nyberg SL. Fumarylacetoacetate hydrolase gene as a knockout target for hepatic chimerism and donor liver production. Stem Cell Reports 2021; 16:2577-2588. [PMID: 34678209 PMCID: PMC8581169 DOI: 10.1016/j.stemcr.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
A reliable source of human hepatocytes and transplantable livers is needed. Interspecies embryo complementation, which involves implanting donor human stem cells into early morula/blastocyst stage animal embryos, is an emerging solution to the shortage of transplantable livers. We review proposed mutations in the recipient embryo to disable hepatogenesis, and discuss the advantages of using fumarylacetoacetate hydrolase knockouts and other genetic modifications to disable hepatogenesis. Interspecies blastocyst complementation using porcine recipients for primate donors has been achieved, although percentages of chimerism remain persistently low. Recent investigation into the dynamic transcriptomes of pigs and primates have created new opportunities to intimately match the stage of developing animal embryos with one of the many varieties of human induced pluripotent stem cell. We discuss techniques for decreasing donor cell apoptosis, targeting donor tissue to endodermal structures to avoid neural or germline chimerism, and decreasing the immunogenicity of chimeric organs by generating donor endothelium.
Collapse
Affiliation(s)
- Ellen L Larson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dong Jin Joo
- Department of Surgery, Division of Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Erek D Nelson
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bruce P Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Zhang L, Ge J, Zheng Y, Sun Z, Wang C, Peng Z, Wu B, Fang M, Furuya K, Ma X, Shao Y, Ohkohchi N, Oda T, Fan J, Pan G, Li D, Hui L. Survival-Assured Liver Injury Preconditioning (SALIC) Enables Robust Expansion of Human Hepatocytes in Fah -/- Rag2 -/- IL2rg -/- Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101188. [PMID: 34382351 PMCID: PMC8498896 DOI: 10.1002/advs.202101188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Although liver-humanized animals are desirable tools for drug development and expansion of human hepatocytes in large quantities, their development is restricted to mice. In animals larger than mice, a precondition for efficient liver humanization remains preliminary because of different xeno-repopulation kinetics in livers of larger sizes. Since rats are ten times larger than mice and widely used in pharmacological studies, liver-humanized rats are more preferable. Here, Fah-/- Rag2-/- IL2rg-/- (FRG) rats are generated by CRISPR/Cas9, showing accelerated liver failure and lagged liver xeno-repopulation compared to FRG mice. A survival-assured liver injury preconditioning (SALIC) protocol, which consists of retrorsine pretreatment and cycling 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) administration by defined concentrations and time intervals, is developed to reduce the mortality of FRG rats and induce a regenerative microenvironment for xeno-repopulation. Human hepatocyte repopulation is boosted to 31 ± 4% in rat livers at 7 months after transplantation, equivalent to approximately a 1200-fold expansion. Human liver features of transcriptome and zonation are reproduced in humanized rats. Remarkably, they provide sufficient samples for the pharmacokinetic profiling of human-specific metabolites. This model is thus preferred for pharmacological studies and human hepatocyte production. SALIC may also be informative to hepatocyte transplantation in other large-sized species.
Collapse
Affiliation(s)
- Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Jian‐Yun Ge
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
| | - Yun‐Wen Zheng
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
- Institute of Regenerative MedicineAffiliated Hospital of Jiangsu UniversityJiangsu UniversityZhenjiangJiangsu212001China
- Yokohama City University School of MedicineYokohamaKanagawa234‐0006Japan
| | - Zhen Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Zhaoliang Peng
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Mei Fang
- Institute of Regenerative MedicineAffiliated Hospital of Jiangsu UniversityJiangsu UniversityZhenjiangJiangsu212001China
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Xiaolong Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Yanjiao Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Jianglin Fan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
- Department of Molecular Pathology, Faculty of MedicineInterdisciplinary Graduate School of MedicineUniversity of YamanashiShimokatoYamanashi409‐3898Japan
| | - Guoyu Pan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Bio‐Research Innovation CenterShanghai Institute of Biochemistry and Cell BiologySuzhouJiangsu215121China
| |
Collapse
|
12
|
Nelson ED, Larson E, Joo DJ, Mao S, Glorioso J, Abu Rmilah A, Zhou W, Jia Y, Mounajjed T, Shi M, Bois M, Wood A, Jin F, Whitworth K, Wells K, Spate A, Samuel M, Minshew A, Walters E, Rinaldo P, Lillegard J, Johnson A, Amiot B, Hickey R, Prather R, Platt JL, Nyberg SL. Limited Expansion of Human Hepatocytes in FAH/RAG2-Deficient Swine. Tissue Eng Part A 2021; 28:150-160. [PMID: 34309416 PMCID: PMC8892989 DOI: 10.1089/ten.tea.2021.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The mammalian liver's regenerative ability has led researchers to engineer animals as incubators for expansion of human hepatocytes. The expansion properties of human hepatocytes in immunodeficient mice are well known. However, little has been reported about larger animals that are more scalable and practical for clinical purposes. Therefore, we engineered immunodeficient swine to support expansion of human hepatocytes and identify barriers to their clinical application. METHODS Immunodeficient swine were engineered by knockout of recombinase activating gene 2 (RAG2) and fumarylacetoacetate hydrolase (FAH). Immature human hepatocytes (ihHCs) were injected into fetal swine by intrauterine cell transplantation (IUCT) at day 40 of gestation. Human albumin was measured as a marker of engraftment. Cytotoxicity against ihHCs was measured in transplanted piglets and control swine. RESULTS Higher levels of human albumin were detected in cord blood of newborn FAH/RAG2-deficient (FR) pigs compared to immunocompetent controls (196.26 ng/dL vs 39.29 ng/dL, p = 0.008), indicating successful engraftment of ihHC after IUCT and adaptive immunity in the fetus. Although rare hepatocytes staining positively for human albumin were observed, levels of human albumin did not rise after birth but declined suggesting rejection of xenografted ihHCs. Cytotoxicity against ihHCs increased after birth 3.8% (95% CI: [2.1%, 5.4%], p < 0.001) and correlated inversely to declining levels of human albumin (p = 2.1 x 10-5, R2 = 0.17). Circulating numbers of T-cells and B-cells were negligible in FR pigs. However, circulating natural killer (NK) cells exerted cytotoxicity against ihHCs. NK cell activity was lower in immunodeficient piglets after IUCT than naive controls (30.4% vs 40.1% (p = 0.011, 95% CI for difference [2.7%, 16.7%]). CONCLUSION Immature human hepatocytes successfully engrafted in FR swine after IUCT. NK cells were a significant barrier to expansion of hepatocytes. New approaches are needed to overcome this hurdle and allow large scale expansion of human hepatocytes in immunodeficient swine.
Collapse
Affiliation(s)
- Erek David Nelson
- Mayo Clinic Minnesota, 4352, Surgery, 100 First St NW, Rochester, Rochester, Minnesota, United States, 55905-0002;
| | - Ellen Larson
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Dong Jin Joo
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Shennen Mao
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Jaime Glorioso
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Anan Abu Rmilah
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Wei Zhou
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Yao Jia
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Taofic Mounajjed
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Min Shi
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Melanie Bois
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Adam Wood
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Fang Jin
- Mayo Clinic Minnesota, 4352, Immunology, Rochester, Minnesota, United States;
| | - Kristin Whitworth
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Kevin Wells
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Anna Spate
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Melissa Samuel
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Anna Minshew
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Eric Walters
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Piero Rinaldo
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Joeseph Lillegard
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Aaron Johnson
- Mayo Clinic Minnesota, 4352, Immunology, Rochester, Minnesota, United States;
| | - Bruce Amiot
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Raymond Hickey
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Randall Prather
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Jeffrey L Platt
- University of Michigan Michigan Medicine, 21614, Surgery, Ann Arbor, Michigan, United States;
| | - Scott Lyle Nyberg
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| |
Collapse
|
13
|
Cell Therapy and Bioengineering in Experimental Liver Regenerative Medicine: In Vivo Injury Models and Grafting Strategies. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Purpose of Review
To describe experimental liver injury models used in regenerative medicine, cell therapy strategies to repopulate damaged livers and the efficacy of liver bioengineering.
Recent Findings
Several animal models have been developed to study different liver conditions. Multiple strategies and modified protocols of cell delivery have been also reported. Furthermore, using bioengineered liver scaffolds has shown promising results that could help in generating a highly functional cell delivery system and/or a whole transplantable liver.
Summary
To optimize the most effective strategies for liver cell therapy, further studies are required to compare among the performed strategies in the literature and/or innovate a novel modifying technique to overcome the potential limitations. Coating of cells with polymers, decellularized scaffolds, or microbeads could be the most appropriate solution to improve cellular efficacy. Besides, overcoming the problems of liver bioengineering may offer a radical treatment for end-stage liver diseases.
Collapse
|
14
|
Hu C, Huang L, Chen Y, Liu J, Wang Z, Gao B, Zhu Q, Ren C. Fumarylacetoacetate hydrolase is required for fertility in rice. PLANTA 2021; 253:122. [PMID: 34003383 DOI: 10.1007/s00425-021-03632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
The rice OsFAH gene functions identically to that of Arabidopsis SSCD1 encoding FAH. Loss of OsFAH causes rice sterility. Fumarylacetoacetate hydrolase (FAH) is the last enzyme in the tyrosine (Tyr) degradation pathway that is crucial for animals. By genetic analysis of the mutant of Short-day Sensitive Cell Death 1 gene encoding Arabidopsis FAH, we first found the pathway also plays a critical role in plants (Han et al., Plant Physiol 162:1956-1964, 2013). To further understand the role of the Tyr degradation pathway in plants, we investigated a biological function of the rice FAH. Firstly, the cDNA of rice FAH gene (OsFAH) was cloned and confirmed to be able to rescue the Arabidopsis Short-day Sensitive Cell Death 1 mutant defective in the FAH. Then, we identified the OsFAH T-DNA insertion mutant and generated the OsFAH RNA interference lines, and found that loss of OsFAH results in rice sterility. Furthermore, we analyzed expression of the OsFAH gene in roots, stems, leaves and young panicles at booting stage of rice and found that its transcript level was highest in young panicles and lowest in roots. In addition, the expression analysis of β-glucuronidase driven by OsFAH promoter in transgenic Arabidopsis showed that the OsFAH promoter was highly active in aerial tissues in vegetative stage, and sepals, filaments and stigma in reproductive stage. These results suggested that FAH plays an important role in rice fertility.
Collapse
Affiliation(s)
- Chao Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lihua Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Yancheng Chen
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Hunan Rice Research Institute, Changsha, 410125, China
| | - Jinling Liu
- Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Zhilong Wang
- Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Bida Gao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Qi Zhu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Chunmei Ren
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
15
|
Gu P, Yang Q, Chen B, Bie YN, Liu W, Tian Y, Luo H, Xu T, Liang C, Ye X, Liu Y, Tang X, Gu W. Genetically blocking HPD via CRISPR-Cas9 protects against lethal liver injury in a pig model of tyrosinemia type I. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:530-547. [PMID: 33997102 PMCID: PMC8099604 DOI: 10.1016/j.omtm.2021.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Hereditary tyrosinemia type I (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury (LLI). Therapeutic options for HT1 remain limited. The FAH−/− pig, a well-characterized animal model of HT1, represents a promising candidate for testing novel therapeutic approaches to treat this condition. Here, we report an improved single-step method to establish a biallelic (FAH−/−) mutant porcine model using CRISPR-Cas9 and cytoplasmic microinjection. We also tested the feasibility of rescuing HT1 pigs through inactivating the 4-hydroxyphenylpyruvic acid dioxygenase (HPD) gene, which functions upstream of the pathogenic pathway, rather than by directly correcting the disease-causing gene as occurs with traditional gene therapy. Direct intracytoplasmic delivery of CRISPR-Cas9 targeting HPD before intrauterine death reprogrammed the tyrosine metabolism pathway and protected pigs against FAH deficiency-induced LLI. Characterization of the F1 generation revealed consistent liver-protective features that were germline transmissible. Furthermore, HPD ablation ameliorated oxidative stress and inflammatory responses and restored the gene profile relating to liver metabolism homeostasis. Collectively, this study not only provided a novel large animal model for exploring the pathogenesis of HT1, but also demonstrated that CRISPR-Cas9-mediated HPD ablation alleviated LLI in HT1 pigs and represents a potential therapeutic option for the treatment of HT1.
Collapse
Affiliation(s)
- Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bangzhu Chen
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Ya-Nan Bie
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen Liu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yuguang Tian
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Hongquan Luo
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Tao Xu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Chunjin Liang
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Xing Ye
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Yan Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiangwu Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Weiwang Gu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,Songshan Lake Pearl Laboratory Animal Science & Technology Co., Ltd., Dongguan 523808, China
| |
Collapse
|
16
|
Fontes P, Komori J, Lopez R, Marsh W, Lagasse E. Development of Ectopic Livers by Hepatocyte Transplantation Into Swine Lymph Nodes. Liver Transpl 2020; 26:1629-1643. [PMID: 32810371 PMCID: PMC7756213 DOI: 10.1002/lt.25872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Orthotopic liver transplantation continues to be the only effective therapy for patients with end-stage liver disease. Unfortunately, many of these patients are not considered transplant candidates, lacking effective therapeutic options that would address both the irreversible progression of their hepatic failure and the control of their portal hypertension. In this prospective study, a swine model was exploited to induce subacute liver failure. Autologous hepatocytes, isolated from the left hepatic lobe, were transplanted into the mesenteric lymph nodes (LNs) by direct cell injection. At 30-60 days after transplantation, hepatocyte engraftment in LNs was successfully identified in all transplanted animals with the degree of ectopic liver mass detected being proportional to the induced native liver injury. These ectopic livers developed within the LNs showed remarkable histologic features of swine hepatic lobules, including the formation of sinusoids and bile ducts. On the basis of our previous tyrosinemic mouse model and the present pig models of induced subacute liver failure, the generation of auxiliary liver tissue using the LNs as hepatocyte engraftment sites represents a potential therapeutic approach to supplement declining hepatic function in the treatment of liver disease.
Collapse
Affiliation(s)
- Paulo Fontes
- WVU MedicineDepartment of SurgerySchool of MedicineWest Virginia UniversityMorgantownWV,LyGenesis, Inc.PittsburghPA
| | - Junji Komori
- McGowan Institute for Regenerative MedicineDepartment of PathologySchool of MedicineUniversity of PittsburghPittsburghPA,Department of SurgeryTakamatsu Red Cross HospitalKagawaJapan
| | - Roberto Lopez
- WVU MedicineDepartment of SurgerySchool of MedicineWest Virginia UniversityMorgantownWV,LyGenesis, Inc.PittsburghPA
| | - Wallis Marsh
- WVU MedicineDepartment of SurgerySchool of MedicineWest Virginia UniversityMorgantownWV
| | - Eric Lagasse
- LyGenesis, Inc.PittsburghPA,McGowan Institute for Regenerative MedicineDepartment of PathologySchool of MedicineUniversity of PittsburghPittsburghPA
| |
Collapse
|
17
|
Li N, Gou S, Wang J, Zhang Q, Huang X, Xie J, Li L, Jin Q, Ouyang Z, Chen F, Ge W, Shi H, Liang Y, Zhuang Z, Zhao X, Lian M, Ye Y, Quan L, Wu H, Lai L, Wang K. CRISPR/Cas9-Mediated Gene Correction in Newborn Rabbits with Hereditary Tyrosinemia Type I. Mol Ther 2020; 29:1001-1015. [PMID: 33221434 DOI: 10.1016/j.ymthe.2020.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022] Open
Abstract
Patients with hereditary tyrosinemia type I (HT1) present acute and irreversible liver and kidney damage during infancy. CRISPR-Cas9-mediated gene correction during infancy may provide a promising approach to treat patients with HT1. However, all previous studies were performed on adult HT1 rodent models, which cannot authentically recapitulate some symptoms of human patients. The efficacy and safety should be verified in large animals to translate precise gene therapy to clinical practice. Here, we delivered CRISPR-Cas9 and donor templates via adeno-associated virus to newborn HT1 rabbits. The lethal phenotypes could be rescued, and notably, these HT1 rabbits reached adulthood normally without 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione administration and even gave birth to offspring. Adeno-associated virus (AAV)-treated HT1 rabbits displayed normal liver and kidney structures and functions. Homology-directed repair-mediated precise gene corrections and non-homologous end joining-mediated out-of-frame to in-frame corrections in the livers were observed with efficiencies of 0.90%-3.71% and 2.39%-6.35%, respectively, which appeared to be sufficient to recover liver function and decrease liver and kidney damage. This study provides useful large-animal preclinical data for rescuing hepatocyte-related monogenetic metabolic disorders with precise gene therapy.
Collapse
Affiliation(s)
- Nan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaowei Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Xingyun Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingke Xie
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Qin Jin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Ouyang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Fangbing Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weikai Ge
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhui Liang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenpeng Zhuang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhu Zhao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Lian
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yinghua Ye
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Longquan Quan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Han Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| | - Kepin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
18
|
Nicolas CT, Kaiser RA, Hickey RD, Allen KL, Du Z, VanLith CJ, Guthman RM, Amiot B, Suksanpaisan L, Han B, Francipane MG, Cheikhi A, Jiang H, Bansal A, Pandey MK, Garg I, Lowe V, Bhagwate A, O’Brien D, Kocher JPA, DeGrado TR, Nyberg SL, Lagasse E, Lillegard JB. Ex Vivo Cell Therapy by Ectopic Hepatocyte Transplantation Treats the Porcine Tyrosinemia Model of Acute Liver Failure. Mol Ther Methods Clin Dev 2020; 18:738-750. [PMID: 32913881 PMCID: PMC7452193 DOI: 10.1016/j.omtm.2020.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
The effectiveness of cell-based therapies to treat liver failure is often limited by the diseased liver environment. Here, we provide preclinical proof of concept for hepatocyte transplantation into lymph nodes as a cure for liver failure in a large-animal model with hereditary tyrosinemia type 1 (HT1), a metabolic liver disease caused by deficiency of fumarylacetoacetate hydrolase (FAH) enzyme. Autologous porcine hepatocytes were transduced ex vivo with a lentiviral vector carrying the pig Fah gene and transplanted into mesenteric lymph nodes. Hepatocytes showed early (6 h) and durable (8 months) engraftment in lymph nodes, with reproduction of vascular and hepatic microarchitecture. Subsequently, hepatocytes migrated to and repopulated the native diseased liver. The corrected cells generated sufficient liver mass to clinically ameliorate the acute liver failure and HT1 disease as early as 97 days post-transplantation. Integration site analysis defined the corrected hepatocytes in the liver as a subpopulation of hepatocytes from lymph nodes, indicating that the lymph nodes served as a source for healthy hepatocytes to repopulate a diseased liver. Therefore, ectopic transplantation of healthy hepatocytes cures this pig model of liver failure and presents a promising approach for the development of cures for liver disease in patients.
Collapse
Affiliation(s)
- Clara T. Nicolas
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL, USA
| | - Robert A. Kaiser
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Children’s Hospitals and Clinics of Minnesota, Midwest Fetal Care Center, Minneapolis, MN, USA
| | | | - Kari L. Allen
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Zeji Du
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rebekah M. Guthman
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Medical College of Wisconsin, Wausau, WI, USA
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bing Han
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Ri.MED Foundation, Palermo, Italy
| | - Amin Cheikhi
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huailei Jiang
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Ishan Garg
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Aditya Bhagwate
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Daniel O’Brien
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre A. Kocher
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric Lagasse
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph B. Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Children’s Hospitals and Clinics of Minnesota, Midwest Fetal Care Center, Minneapolis, MN, USA
- Pediatric Surgical Associates, Minneapolis, MN, USA
| |
Collapse
|
19
|
Li Y, Wu Q, Yang Z, He Y, Weng C, Gao M, Zhang B, Wang Y, Li L, Chen F, Bu H, Bao J. Heterotopic vascularization and functionalization of implantable bio engineered hepatic tissue alleviates liver injury in rats. Liver Int 2020; 40:712-726. [PMID: 31571356 DOI: 10.1111/liv.14267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The challenge of using bioengineered liver lies in sustaining the quantity of high-quality hepatocytes and the vasculature for blood perfusion. We characterized the heparinization of a porcine decellularized liver scaffold (DLS) as a carrier to support hepatocyte angiogenesis, thereby developing functional and vascularized hepatic tissue useful to treat liver injury. METHOD The porcine DLS was obtained by the removal of cellular components and then subjected to heparinization by the end-point attachment technique. The heparinized DLSs were recellularized with rat hepatocyte spheroids to construct engineered hepatic tissue. The hepatic tissue was heterotopically implanted in the omentum majus of a rat model with liver injury induced by carbon tetrachloride (CCl4 ). RESULTS Hepatocyte spheroids in the heparinized DLS remained viable for at least 10 weeks in vivo. The entire scaffold was populated with hepatocytes and arranged well. The volume of the heparinized DLS group was expanded over 400-fold. Liver-specific functions such as albumin synthesis, glycogen storage and cytochrome P 3A4 activity were highly expressed in the hepatic tissue. In addition, endothelial cells were recruited, as shown by CD31 staining, and new blood vessels formed, as visualized by fluorescein isothiocyanate-labelled dextran intravital confocal microscopy. The heparinized bioengineered hepatic tissue alleviated CCl4 -induced liver injury by regulating the deposition and degradation of the extracellular matrix. CONCLUSION Primary hepatocyte spheroids survived for an extended time on the heparinized DLS and expanded to generate vascularized and functional bioengineered hepatic tissue that can alleviate liver injury in rats.
Collapse
Affiliation(s)
- Yi Li
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Qiong Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Yang
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Yuting He
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Chengxin Weng
- Department of Vascular Surgery, West China School of Medicine, Sichuan University, Chengdu, China
| | - Mengyu Gao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Bingqi Zhang
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Wang
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Bu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ji Bao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Li Y, Wu Q, Wang Y, Bu H, Bao J. Porcine Hepatocytes: Isolation and Liver Tissue Engineering for Xenotransplantation. Xenotransplantation 2020; 2110:267-287. [DOI: 10.1007/978-1-0716-0255-3_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
21
|
van Ginkel WG, Rodenburg IL, Harding CO, Hollak CEM, Heiner-Fokkema MR, van Spronsen FJ. Long-Term Outcomes and Practical Considerations in the Pharmacological Management of Tyrosinemia Type 1. Paediatr Drugs 2019; 21:413-426. [PMID: 31667718 PMCID: PMC6885500 DOI: 10.1007/s40272-019-00364-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tyrosinemia type 1 (TT1) is a rare metabolic disease caused by a defect in tyrosine catabolism. TT1 is clinically characterized by acute liver failure, development of hepatocellular carcinoma, renal and neurological problems, and consequently an extremely poor outcome. This review showed that the introduction of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) in 1992 has revolutionized the outcome of TT1 patients, especially when started pre-clinically. If started early, NTBC can prevent liver failure, renal problems, and neurological attacks and decrease the risk for hepatocellular carcinoma. NTBC has been shown to be safe and well tolerated, although the long-term effectiveness of treatment with NTBC needs to be awaited. The high tyrosine concentrations caused by treatment with NTBC could result in ophthalmological and skin problems and requires life-long dietary restriction of tyrosine and its precursor phenylalanine, which could be strenuous to adhere to. In addition, neurocognitive problems have been reported since the introduction of NTBC, with hypothesized but as yet unproven pathophysiological mechanisms. Further research should be done to investigate the possible relationship between important clinical outcomes and blood concentrations of biochemical parameters such as phenylalanine, tyrosine, succinylacetone, and NTBC, and to develop clear guidelines for treatment and follow-up with reliable measurements. This all in order to ultimately improve the combined NTBC and dietary treatment and limit possible complications such as hepatocellular carcinoma development, neurocognitive problems, and impaired quality of life.
Collapse
Affiliation(s)
- Willem G van Ginkel
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Iris L Rodenburg
- Department of Dietetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Carla E M Hollak
- Deparment of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Francjan J van Spronsen
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
22
|
|
23
|
Kaiser RA, Nicolas CT, Allen KL, Chilton JA, Du Z, Hickey RD, Lillegard JB. Hepatotoxicity and Toxicology of In Vivo Lentiviral Vector Administration in Healthy and Liver-Injury Mouse Models. HUM GENE THER CL DEV 2019; 30:57-66. [PMID: 30860398 PMCID: PMC6589498 DOI: 10.1089/humc.2018.249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
General safety and toxicology assessments supporting in vivo lentiviral vector-based therapeutic development are sparse. We have previously demonstrated the efficacy of a lentiviral vector expressing fumarylacetoacetate hydrolase (LV-FAH) to cure animal models of hereditary tyrosinemia type 1. Therefore, we performed a complete preclinical toxicological evaluation of LV-FAH, in a large cohort (n = 20/group) of wildtype mice and included matched groups of N-nitrosodiethylamine/carbon tetrachloride (DEN/CCl4)-induced liver injury mice to assess specific toxicity in fibrotic liver tissue. Mice receiving LV-FAH alone (109 TU/mouse) or in combination with DEN/CCl4 presented clinically similar to control animals, with only slight reductions in total body weight gains over the study period (3.2- to 3.7-fold vs. 4.2-fold). There were no indications of toxicity attributed to administration of LV-FAH alone over the duration of this study. The known hepatotoxic combination of DEN/CCl4 induced fibrotic liver injury, and co-administration with LV-FAH was associated with exaggeration of some findings such as an increased liver:body weight ratio and progression to focal hepatocyte necrosis in some animals. Hepatocellular degeneration/regeneration was present in DEN/CCl4-dosed animals regardless of LV-FAH as evaluated by Ki-67 immunohistochemistry and circulating alpha fetoprotein levels, but there were no tumors identified in any tissue in any dose group. These data demonstrate the inherent safety of LV-FAH and support broader clinical development of lentiviral vectors for in vivo administration.
Collapse
Affiliation(s)
- Robert Allen Kaiser
- Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, Minnesota
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Kari Lynn Allen
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Zeji Du
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Joseph Benjamin Lillegard
- Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, Minnesota
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
- Pediatric Surgical Associates, Minneapolis, Minnesota
| |
Collapse
|
24
|
In vitro and in vivo translational models for rare liver diseases. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1003-1018. [DOI: 10.1016/j.bbadis.2018.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
25
|
Agarwal N, Popovic B, Martucci NJ, Fraunhoffer NA, Soto-Gutierrez A. Biofabrication of Autologous Human Hepatocytes for Transplantation: How Do We Get There? Gene Expr 2019; 19:89-95. [PMID: 30143060 PMCID: PMC6466180 DOI: 10.3727/105221618x15350366478989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directed differentiation of hepatocytes from induced pluripotent stem cells (iPSCs) holds promise as source material for treating some liver disorders. The unlimited availability of perfectly differentiated iPSC-derived hepatocytes will dramatically facilitate cell therapies. While systems to manufacture large quantities of iPSC-derived cells have been developed, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. This short review highlights important challenges and possible solutions to the current state of hepatocyte biofabrication for cellular therapies to treat liver diseases. Successful cell transplantation will require optimizing the best cell function, overcoming limitations to cell numbers and safety, as well as a number of other challenges. Collaboration among scientists, clinicians, and industry is critical for generating new autologous stem cell-based therapies to treat liver diseases.
Collapse
Affiliation(s)
- Nandini Agarwal
- *School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Branimir Popovic
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicole J. Martucci
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicolas A. Fraunhoffer
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- §Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | | |
Collapse
|
26
|
Li Y, Chen HS, Shaheen M, Joo DJ, Amiot BP, Rinaldo P, Nyberg SL. Cold storage of porcine hepatocyte spheroids for spheroid bioartificial liver. Xenotransplantation 2019; 26:e12512. [PMID: 30968460 DOI: 10.1111/xen.12512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Cell-based therapies for liver disease such as bioartificial liver rely on a large quantity and high quality of hepatocytes. Cold storage was previously shown to be a better way to preserve the viability and functionality of hepatocytes during transportation rather than freezing, but this was only proved at a lower density of rat hepatocytes spheroids. The purpose of this study was to optimize conditions for cold storage of high density of primary porcine hepatocyte spheroids. METHODS Porcine hepatocytes were isolated by a three-step perfusion method; hepatocyte spheroids were formed by a 24 hours rocked culture technique. Hepatocyte cell density was 5 × 106 /mL in 1000 mL spheroid forming medium. Spheroids were then maintained in rocked culture at 37°C (control condition) or cold stored at 4°C for 24, 48 or 72 hours in four different cold storage solutions: histidine-tryptophan-ketoglutarate (HTK) alone; HTK + 1 mM deferoxamine (DEF); HTK + 5 mM N-acetyl-L-cysteine (NAC); and HTK + 1 mM DEF + 5 mM NAC. The viability, ammonia clearance, albumin production, gene expression, and functional activity of cytochrome P450 enzymes were measured after recovery from the cold storage. RESULTS In this study, we observed that cold-induced injury was reduced by the addition of the iron chelator. Viability of HTK + DEF group hepatocyte spheroids was increased compared with other cold storage groups (P < 0.05). Performance metrics of porcine hepatocyte spheroids cold stored for 24 hours were similar to those in control conditions. The hepatocyte spheroids in control conditions started to lose their ability to clear ammonia while production of albumin was still active at 48 and 72 hours (P < 0.05). In contrast, the viability and functionality of hepatocyte spheroids including ammonia clearance and albumin secretion were preserved in HTK + DEF group at both 48- and 72-hour time points (P < 0.05). CONCLUSIONS The beneficial effects of HTK supplemented with DEF were more obvious after cold storage of high density of porcine hepatocyte spheroids for 72 hours. The porcine hepatocyte spheroids were above the cutoff criteria for use in a spheroid-based bioartificial liver.
Collapse
Affiliation(s)
- Yi Li
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Department of Surgery, Mayo Clinic, Rochester, Minnesota.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Harvey S Chen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Mohammed Shaheen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Dong Jin Joo
- Department of Surgery, Mayo Clinic, Rochester, Minnesota.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Bruce P Amiot
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Piero Rinaldo
- Department Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Scott L Nyberg
- Department of Surgery, Mayo Clinic, Rochester, Minnesota.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
27
|
Gao M, Zhang B, He Y, Yang Q, Deng L, Zhu Y, Lai E, Wang M, Wang L, Yang G, Liao G, Bao J, Bu H. Efficient Generation of an Fah/Rag2 Dual-Gene Knockout Porcine Cell Line Using CRISPR/Cas9 and Adenovirus. DNA Cell Biol 2019; 38:314-321. [PMID: 30762444 DOI: 10.1089/dna.2018.4493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Mengyu Gao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Bingqi Zhang
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting He
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Yang
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Lihong Deng
- Laboratory of Pathology, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuqi Zhu
- Laboratory of Pathology, West China School of Medicine, Sichuan University, Chengdu, China
| | - Enjiang Lai
- Laboratory of Pathology, West China School of Medicine, Sichuan University, Chengdu, China
| | - Menghua Wang
- Laboratory of Pathology, West China School of Medicine, Sichuan University, Chengdu, China
| | - Laduona Wang
- Laboratory of Pathology, West China School of Medicine, Sichuan University, Chengdu, China
| | - Guang Yang
- Department of Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Department of Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ji Bao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Bu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Abu Rmilah A, Zhou W, Nelson E, Lin L, Amiot B, Nyberg SL. Understanding the marvels behind liver regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e340. [PMID: 30924280 DOI: 10.1002/wdev.340] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Tissue regeneration is a process by which the remaining cells of an injured organ regrow to offset the missed cells. This field is relatively a new discipline that has been a focus of intense research by clinicians, surgeons, and scientists for decades. It constitutes the cornerstone of tissue engineering, creation of artificial organs, and generation and utilization of therapeutic stem cells to undergo transformation to different types of mature cells. Many medical experts, scientists, biologists, and bioengineers have dedicated their efforts to deeply comprehend the process of liver regeneration, striving for harnessing it to invent new therapies for liver failure. Liver regeneration after partial hepatectomy in rodents has been extensively studied by researchers for many years. It is divided into three important distinctive phases including (a) Initiation or priming phase which includes an overexpression of specific genes to prepare the liver cells for replication, (b) Proliferation phase in which the liver cells undergo a series of cycles of cell division and expansion and finally, (c) termination phase which acts as brake to stop the regenerative process and prevent the liver tissue overgrowth. These events are well controlled by cytokines, growth factors, and signaling pathways. In this review, we describe the function, embryology, and anatomy of human liver, discuss the molecular basis of liver regeneration, elucidate the hepatocyte and cholangiocyte lineages mediating this process, explain the role of hepatic progenitor cells and elaborate the developmental signaling pathways and regulatory molecules required to procure a complete restoration of hepatic lobule. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Signaling Pathways > Global Signaling Mechanisms Gene Expression and Transcriptional Hierarchies > Cellular Differentiation.
Collapse
Affiliation(s)
- Anan Abu Rmilah
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Wei Zhou
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Erek Nelson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Li Lin
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Bruce Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
29
|
Hickey RD, Nicolas CT, Allen K, Mao S, Elgilani F, Glorioso J, Amiot B, VanLith C, Guthman R, Du Z, Chen H, Harding CO, Kaiser RA, Nyberg SL, Lillegard JB. Autologous Gene and Cell Therapy Provides Safe and Long-Term Curative Therapy in A Large Pig Model of Hereditary Tyrosinemia Type 1. Cell Transplant 2018; 28:79-88. [PMID: 30477316 PMCID: PMC6322137 DOI: 10.1177/0963689718814188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Orthotopic liver transplantation remains the only curative therapy for inborn errors of metabolism. Given the tremendous success for primary immunodeficiencies using ex-vivo gene therapy with lentiviral vectors, there is great interest in developing similar curative therapies for metabolic liver diseases. We have previously generated a pig model of hereditary tyrosinemia type 1 (HT1), an autosomal recessive disorder caused by deficiency of fumarylacetoacetate hydrolase (FAH). Using this model, we have demonstrated curative ex-vivo gene and cell therapy using a lentiviral vector to express FAH in autologous hepatocytes. To further evaluate the long-term clinical outcomes of this therapeutic approach, we continued to monitor one of these pigs over the course of three years. The animal continued to thrive off the protective drug NTBC, gaining weight appropriately, and maintaining sexual fecundity for the course of his life. The animal was euthanized 31 months after transplantation to perform a thorough biochemical and histological analysis. Biochemically, liver enzymes and alpha-fetoprotein levels remained normal and abhorrent metabolites specific to HT1 remained corrected. Liver histology showed no evidence of tumorigenicity and Masson's trichrome staining revealed minimal fibrosis and no evidence of cirrhosis. FAH-immunohistochemistry revealed complete repopulation of the liver by transplanted FAH-positive cells. A complete histopathological report on other organs, including kidney, revealed no abnormalities. This study is the first to demonstrate long-term safety and efficacy of hepatocyte-directed gene therapy in a large animal model. We conclude that hepatocyte-directed ex-vivo gene therapy is a rational choice for further exploration as an alternative therapeutic approach to whole organ transplantation for metabolic liver disease, including HT1.
Collapse
Affiliation(s)
- Raymond D Hickey
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA.,2 Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Kari Allen
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Shennen Mao
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Jaime Glorioso
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bruce Amiot
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Caitlin VanLith
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA.,2 Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rebekah Guthman
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA.,2 Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zeji Du
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Harvey Chen
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Cary O Harding
- 3 Department of Molecular and Medical Genetics, and Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Robert A Kaiser
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA.,4 Midwest Fetal Care Center, Children's Hospital and Clinics of Minnesota, Minneapolis, MN, USA
| | - Scott L Nyberg
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA.,5 William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Joseph B Lillegard
- 1 Department of Surgery, Mayo Clinic, Rochester, MN, USA.,4 Midwest Fetal Care Center, Children's Hospital and Clinics of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
30
|
Kaiser RA, Mao SA, Glorioso J, Amiot B, Nicolas CT, Allen KL, Du Z, VanLith CJ, Hickey RD, Nyberg SL, Lillegard JB. Lentiviral Vector-mediated Gene Therapy of Hepatocytes Ex Vivo for Autologous Transplantation in Swine. J Vis Exp 2018. [PMID: 30451238 DOI: 10.3791/58399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gene therapy is an ideal choice to cure many inborn errors of metabolism of the liver. Ex-vivo, lentiviral vectors have been used successfully in the treatment of many hematopoietic diseases in humans, as their use offers stable transgene expression due to the vector's ability to integrate into the host genome. This method demonstrates the application of ex vivo gene therapy of hepatocytes to a large animal model of hereditary tyrosinemia type I. This process consists of 1) isolation of primary hepatocytes from the autologous donor/recipient animal, 2) ex vivo gene delivery via hepatocyte transduction with a lentiviral vector, and 3) autologous transplant of corrected hepatocytes via portal vein injection. Success of the method generally relies upon efficient and sterile removal of the liver resection, careful handling of the excised specimen for isolation of viable hepatocytes sufficient for re-engrafting, high-percentage transduction of the isolated cells, and aseptic surgical procedures throughout to prevent infection. Technical failure at any of these steps will result in low yield of viable transduced hepatocytes for autologous transplant or infection of the donor/recipient animal. The pig model of human type 1 hereditary tyrosinemia (HT-1) chosen for this approach is uniquely amenable to such a method, as even a small percentage of engraftment of corrected cells will lead to repopulation of the liver with healthy cells based on a powerful selective advantage over native-diseased hepatocytes. Although this growth selection will not be true for all indications, this approach is a foundation for expansion into other indications and allows for manipulation of this environment to address additional diseases, both within the liver and beyond, while controlling for exposure to viral vector and opportunity for off-target toxicity and tumorigenicity.
Collapse
Affiliation(s)
- Robert A Kaiser
- Department of Surgery, Mayo Clinic; Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota
| | | | | | | | | | | | - Zeji Du
- Department of Surgery, Mayo Clinic
| | | | | | | | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic; Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota; Pediatric Surgical Associates;
| |
Collapse
|
31
|
A Pre-Clinical Large Animal Model of Sustained Liver Injury and Regeneration Stimulus. Sci Rep 2018; 8:14987. [PMID: 30301901 PMCID: PMC6177392 DOI: 10.1038/s41598-018-32889-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/17/2018] [Indexed: 01/15/2023] Open
Abstract
A feasible large animal model to evaluate regenerative medicine techniques is vital for developing clinical applications. One such appropriate model could be to use retrorsine (RS) together with partial hepatectomy (PH). Here, we have developed the first porcine model using RS and PH. RS or saline control was administered intraperitoneally to Göttingen miniature pigs twice, two weeks apart. Four weeks after the second dose, animals underwent PH. Initially, we tested different doses of RS and resection of different amounts of liver, and selected 50 mg/kg RS with 60% hepatectomy as our model for further testing. Treated animals were sacrificed 3, 10, 17 or 28 days after PH. Blood samples and resected liver were collected. Serum and liver RS content was determined by Liquid Chromatograph-tandem Mass Spectrometer. Blood analyses demonstrated liver dysfunction after PH. Liver regeneration was significantly inhibited 10 and 17 days after PH in RS-treated animals, to the extent of 20%. Histological examination indicated hepatic injury and regenerative responses after PH. Immunohistochemical staining demonstrated accumulation of Cyclin D1 and suppression of Ki-67 and PCNA in RS-treated animals. We report the development of the first large animal model of sustained liver injury with suppression of hepatic regeneration.
Collapse
|
32
|
Nicolas CT, Hickey RD, Allen KL, Du Z, Guthman RM, Kaiser RA, Amiot B, Bansal A, Pandey MK, Suksanpaisan L, DeGrado TR, Nyberg SL, Lillegard JB. Hepatocyte spheroids as an alternative to single cells for transplantation after ex vivo gene therapy in mice and pig models. Surgery 2018; 164:473-481. [PMID: 29884476 PMCID: PMC6573031 DOI: 10.1016/j.surg.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/31/2018] [Accepted: 04/12/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Autologous hepatocyte transplantation after ex vivo gene therapy is an alternative to liver transplantation for metabolic liver disease. Here we evaluate ex vivo gene therapy followed by transplantation of single-cell or spheroid hepatocytes. METHODS Pig and mouse hepatocytes were isolated, labeled with zirconium-89 and returned to the liver as single cells or spheroids. Biodistribution was evaluated through positron emission tomography-computed tomography. Fumarylacetoacetate hydrolase-deficient pig hepatocytes were isolated and transduced with a lentiviral vector containing the Fah gene. Animals received portal vein infusion of single-cell or spheroid autologous hepatocytes after ex vivo gene delivery. Portal pressures were measured and ultrasound was used to evaluate for thrombus. Differences in engraftment and expansion of ex vivo corrected single-cell or spheroid hepatocytes were followed through histologic analysis and animals' ability to thrive off 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione. RESULTS Positron emission tomography-computed tomography imaging showed spheroid hepatocytes with increased heterogeneity in biodistribution as compared with single cells, which spread more uniformly throughout the liver. Animals receiving spheroids experienced higher mean changes in portal pressure than animals receiving single cells (P < .01). Additionally, two animals from the spheroid group developed portal vein thrombi that required systemic anticoagulation. Immunohistochemical analysis of spheroid- and single-cell-transplanted animals showed similar engraftment and expansion rates of fumarylacetoacetate hydrolase-positive hepatocytes in the liver, correlating with similar weight stabilization curves. CONCLUSION Ex vivo gene correction of autologous hepatocytes in fumarylacetoacetate hydrolase-deficient pigs can be performed using hepatocyte spheroids or single-cell hepatocytes, with spheroids showing a more heterogeneous distribution within the liver and higher risks for portal vein thrombosis and increased portal pressures.
Collapse
Affiliation(s)
- Clara T Nicolas
- Department of Surgery, Mayo Clinic, Rochester, MN; Faculty of Medicine, University of Barcelona, Spain
| | - Raymond D Hickey
- Department of Surgery, Mayo Clinic, Rochester, MN; Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Kari L Allen
- Department of Surgery, Mayo Clinic, Rochester, MN
| | - Zeji Du
- Department of Surgery, Mayo Clinic, Rochester, MN
| | | | - Robert A Kaiser
- Department of Surgery, Mayo Clinic, Rochester, MN; Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN
| | - Aditya Bansal
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | | | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN; Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN; Pediatric Surgical Associates, Minneapolis, MN.
| |
Collapse
|
33
|
Hickey RD, Mao SA, Glorioso J, Elgilani F, Amiot B, Chen H, Rinaldo P, Marler R, Jiang H, DeGrado TR, Suksanpaisan L, O'Connor MK, Freeman BL, Ibrahim SH, Peng KW, Harding CO, Ho CS, Grompe M, Ikeda Y, Lillegard JB, Russell SJ, Nyberg SL. Curative ex vivo liver-directed gene therapy in a pig model of hereditary tyrosinemia type 1. Sci Transl Med 2017; 8:349ra99. [PMID: 27464750 DOI: 10.1126/scitranslmed.aaf3838] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/05/2016] [Indexed: 12/23/2022]
Abstract
We tested the hypothesis that ex vivo hepatocyte gene therapy can correct the metabolic disorder in fumarylacetoacetate hydrolase-deficient (Fah(-/-)) pigs, a large animal model of hereditary tyrosinemia type 1 (HT1). Recipient Fah(-/-) pigs underwent partial liver resection and hepatocyte isolation by collagenase digestion. Hepatocytes were transduced with one or both of the lentiviral vectors expressing the therapeutic Fah and the reporter sodium-iodide symporter (Nis) genes under control of the thyroxine-binding globulin promoter. Pigs received autologous transplants of hepatocytes by portal vein infusion. After transplantation, the protective drug 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione (NTBC) was withheld from recipient pigs to provide a selective advantage for expansion of corrected FAH(+) cells. Proliferation of transplanted cells, assessed by both immunohistochemistry and noninvasive positron emission tomography imaging of NIS-labeled cells, demonstrated near-complete liver repopulation by gene-corrected cells. Tyrosine and succinylacetone levels improved to within normal range, demonstrating complete correction of tyrosine metabolism. In addition, repopulation of the Fah(-/-) liver with transplanted cells inhibited the onset of severe fibrosis, a characteristic of nontransplanted Fah(-/-) pigs. This study demonstrates correction of disease in a pig model of metabolic liver disease by ex vivo gene therapy. To date, ex vivo gene therapy has only been successful in small animal models. We conclude that further exploration of ex vivo hepatocyte genetic correction is warranted for clinical use.
Collapse
Affiliation(s)
- Raymond D Hickey
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA. Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Jaime Glorioso
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Faysal Elgilani
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bruce Amiot
- Brami Biomedical Inc., Coon Rapids, MN 55433, USA
| | - Harvey Chen
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Piero Rinaldo
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ronald Marler
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Huailei Jiang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Lukkana Suksanpaisan
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA. Imanis Life Sciences, Rochester, MN 55902, USA
| | | | - Brittany L Freeman
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Samar H Ibrahim
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Cary O Harding
- Department of Molecular and Medical Genetics and Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Chak-Sum Ho
- Histocompatibility Laboratory, Gift of Life Michigan, Ann Arbor, MI 48108, USA
| | - Markus Grompe
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA. Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN 55404, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott L Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Zakikhan K, Pournasr B, Vosough M, Nassiri-Asl M. In Vitro Generated Hepatocyte-Like Cells: A Novel Tool in Regenerative Medicine and Drug Discovery. CELL JOURNAL 2017; 19:204-217. [PMID: 28670513 PMCID: PMC5412779 DOI: 10.22074/cellj.2016.4362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022]
Abstract
Hepatocyte-like cells (HLCs) are generated from either various human pluripotent stem
cells (hPSCs) including induced pluripotent stem cells (iPSCs) and embryonic stem cells
(ESCs), or direct cell conversion, mesenchymal stem cells as well as other stem cells like
gestational tissues. They provide potential cell sources for biomedical applications. Liver
transplantation is the gold standard treatment for the patients with end stage liver disease,
but there are many obstacles limiting this process, like insufficient number of donated
healthy livers. Meanwhile, the number of patients receiving a liver organ transplant for
a better life is increasing. In this regard, HLCs may provide an adequate cell source to
overcome these shortages. New molecular engineering approaches such as CRISPR/
Cas system applying in iPSCs technology provide the basic principles of gene correction
for monogenic inherited metabolic liver diseases, as another application of HLCs. It has
been shown that HLCs could replace primary human hepatocytes in drug discovery and
hepatotoxicity tests. However, generation of fully functional HLCs is still a big challenge;
several research groups have been trying to improve current differentiation protocols to
achieve better HLCs according to morphology and function of cells. Large-scale generation
of functional HLCs in bioreactors could make a new opportunity in producing enough
hepatocytes for treating end-stage liver patients as well as other biomedical applications
such as drug studies. In this review, regarding the biomedical value of HLCs, we focus
on the current and efficient approaches for generating hepatocyte-like cells in vitro and
discuss about their applications in regenerative medicine and drug discovery.
Collapse
Affiliation(s)
- Kobra Zakikhan
- Cellular and Molecular Research Center, Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behshad Pournasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.,Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
35
|
Li L, Zhang Q, Yang H, Zou Q, Lai C, Jiang F, Zhao P, Luo Z, Yang J, Chen Q, Wang Y, Newsome PN, Frampton J, Maxwell PH, Li W, Chen S, Wang D, Siu TS, Tam S, Tse HF, Qin B, Bao X, Esteban MA, Lai L. Fumarylacetoacetate Hydrolase Knock-out Rabbit Model for Hereditary Tyrosinemia Type 1. J Biol Chem 2017; 292:4755-4763. [PMID: 28053091 PMCID: PMC5377789 DOI: 10.1074/jbc.m116.764787] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/31/2016] [Indexed: 11/06/2022] Open
Abstract
Hereditary tyrosinemia type 1 (HT1) is a severe human autosomal recessive disorder caused by the deficiency of fumarylacetoacetate hydroxylase (FAH), an enzyme catalyzing the last step in the tyrosine degradation pathway. Lack of FAH causes accumulation of toxic metabolites (fumarylacetoacetate and succinylacetone) in blood and tissues, ultimately resulting in severe liver and kidney damage with onset that ranges from infancy to adolescence. This tissue damage is lethal but can be controlled by administration of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), which inhibits tyrosine catabolism upstream of the generation of fumarylacetoacetate and succinylacetone. Notably, in animals lacking FAH, transient withdrawal of NTBC can be used to induce liver damage and a concomitant regenerative response that stimulates the growth of healthy hepatocytes. Among other things, this model has raised tremendous interest for the in vivo expansion of human primary hepatocytes inside these animals and for exploring experimental gene therapy and cell-based therapies. Here, we report the generation of FAH knock-out rabbits via pronuclear stage embryo microinjection of transcription activator-like effector nucleases. FAH-/- rabbits exhibit phenotypic features of HT1 including liver and kidney abnormalities but additionally develop frequent ocular manifestations likely caused by local accumulation of tyrosine upon NTBC administration. We also show that allogeneic transplantation of wild-type rabbit primary hepatocytes into FAH-/- rabbits enables highly efficient liver repopulation and prevents liver insufficiency and death. Because of significant advantages over rodents and their ease of breeding, maintenance, and manipulation compared with larger animals including pigs, FAH-/- rabbits are an attractive alternative for modeling the consequences of HT1.
Collapse
Affiliation(s)
- Li Li
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Quanjun Zhang
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huaqiang Yang
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qingjian Zou
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chengdan Lai
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fei Jiang
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ping Zhao
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiwei Luo
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiayin Yang
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China.,Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
| | - Qian Chen
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yan Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Research Center for Liver Fibrosis, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital and.,Biomedical Research Center, Southern Medical University, Guangzhou 510515, China
| | - Philip N Newsome
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences.,National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit and Centre for Liver Research, and
| | - Jon Frampton
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building, Cambridge CB2 0XY, United Kingdom
| | - Wenjuan Li
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shuhan Chen
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Dongye Wang
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tak-Shing Siu
- Department of Clinical Biochemistry Unit, Queen Mary Hospital, Hong Kong SAR, China
| | - Sidney Tam
- Department of Clinical Biochemistry Unit, Queen Mary Hospital, Hong Kong SAR, China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China.,Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China.,Department of Medicine, University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, Guangdong, China, and
| | - Baoming Qin
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of Metabolism and Cell Fate, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - Xichen Bao
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Miguel A Esteban
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China, .,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
| | - Liangxue Lai
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China, .,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
36
|
Liu Y, Jin L, Lou P, Gu Y, Li M, Li X. Dynamic microRNAome profiles in the developing porcine liver. Biosci Biotechnol Biochem 2017; 81:127-134. [DOI: 10.1080/09168451.2016.1240602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Increasing evidence suggests that micro (mi)RNAs play important roles in various biological process. To evaluate the roles of miRNA in the porcine liver, we investigated the dynamic profiles of microRNAomes using liver tissue from pigs during the embryonic period (embryonic day 90), weaning stage (postnatal day 30), and adult stage (7 years old). A total of 186 unique miRNAs were differentially expressed during liver development. We also identified that 17, 13, and 6 miRNAs were specifically abundant at embryonic day 90, postnatal day 30, and at 7 years, respectively. Besides regulating basic cellular roles in development, miRNAs expressed at the three developmental stages also participated in regulating “embryonic liver development,” “early hepatic growth and generating a functioning liver,” and “energy metabolic processes,” respectively. Our study indicates that miRNAs are extensively involved in liver development, and provides a valuable resource for the further elucidation of miRNA regulatory roles during liver development.
Collapse
Affiliation(s)
- Yihui Liu
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Pengbo Lou
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Yiren Gu
- Genetics of the Pigs, Sichuan Animal Science Academy, Chengdu, China
| | - Mingzhou Li
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Grompe M. Fah Knockout Animals as Models for Therapeutic Liver Repopulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 959:215-230. [PMID: 28755199 DOI: 10.1007/978-3-319-55780-9_20] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several animal models of Fah deficiency have been developed, including mice, pigs and most recently rats. Initially, the murine models were developed with the intent to mirror the human disease for pathophysiologic and therapeutic studies. However, it soon became apparent that Fah-positive hepatocytes have a potent selective growth advantage in mutant liver and can extensively repopulate the diseased organ. For this reason, Fah mutant mice have become a workhorse for liver biology and are widely used in liver stem cell and hepatic gene therapy research. Immune deficient Fah-knockout mice can be repopulated with human hepatocytes, creating "mice with human livers". These chimeric animals have become an important preclinical model for infectious diseases, metabolism and gene therapy. The potent expansion of human hepatocytes in Fah knockout mice has given rise to the concept of using Fah mutants as living bioreactors to produce large quantities of fully mature hepatocytes. As a consequence, larger animal models of Fah deficiency have recently been developed.
Collapse
Affiliation(s)
- Markus Grompe
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239-3098, USA.
| |
Collapse
|
38
|
Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. Stem Cells 2017; 35:42-50. [PMID: 27641427 PMCID: PMC5529050 DOI: 10.1002/stem.2500] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Donor organ shortage is the main limitation to liver transplantation as a treatment for end-stage liver disease and acute liver failure. Liver regenerative medicine may in the future offer an alternative form of therapy for these diseases, be it through cell transplantation, bioartificial liver (BAL) devices, or bioengineered whole organ liver transplantation. All three strategies have shown promising results in the past decade. However, before they are incorporated into widespread clinical practice, the ideal cell type for each treatment modality must be found, and an adequate amount of metabolically active, functional cells must be able to be produced. Research is ongoing in hepatocyte expansion techniques, use of xenogeneic cells, and differentiation of stem cell-derived hepatocyte-like cells (HLCs). HLCs are a few steps away from clinical application, but may be very useful in individualized drug development and toxicity testing, as well as disease modeling. Finally, safety concerns including tumorigenicity and xenozoonosis must also be addressed before cell transplantation, BAL devices, and bioengineered livers occupy their clinical niche. This review aims to highlight the most recent advances and provide an updated view of the current state of affairs in the field of liver regenerative medicine. Stem Cells 2017;35:42-50.
Collapse
Affiliation(s)
- Clara T Nicolas
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymond D Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Harvey S Chen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Manuela Lopera Higuita
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujia Wang
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott L Nyberg
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
39
|
Halac U, Dubois J, Mitchell GA. The Liver in Tyrosinemia Type I: Clinical Management and Course in Quebec. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 959:75-83. [PMID: 28755185 DOI: 10.1007/978-3-319-55780-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HT1 is a severe autosomal recessive disorder due to the deficiency of fumarylacetoacetate hydrolase (FAH), the final enzyme in the degradation of tyrosine. Before the era of treatment with 2-(2-N-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), even with newborn screening and optimal diet therapy, HT1 patients often developed liver failure. Death was common in patients who did not undergo liver transplantation. For the last two decades, NTBC has revolutionized the management of HT1 patients. In screened newborns treated within the first month of life, we have not observed hepatocarcinoma. If patients are not detected at birth by neonatal screening, the diagnosis and treatment must be performed on an emergency basis, and patients are at risk for complications. Long term adhesion to treatment and reliable early detection of hepatocellular carcinoma (HCC) are two important challenges. In this chapter, we describe the clinical, biological, histo-pathological and imaging findings of HT1 in Québec before the era of NTBC. We also describe the hepatic status of nontransplanted tyrosinemic patients in Quebec and current management practices in the Quebec NTBC Study.
Collapse
Affiliation(s)
- Ugur Halac
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, CHU Sainte-Justine and Research Center, Université de Montréal, Montreal, QC, Canada.
| | - Josée Dubois
- Departments of Nutrition (MB) and Radiology (JD), Divisions of Gastroenterology, Hepatology and Nutrition (FA, UH), Medical Genetics (CBG, MG, GAM) and Nephrology (AM, VP), Department of Pediatrics and Department of Pharmacy (SA, JFB), CHU Sainte-Justine and Université de Montréal, Montreal, Canada
| | - Grant A Mitchell
- Departments of Nutrition (MB) and Radiology (JD), Divisions of Gastroenterology, Hepatology and Nutrition (FA, UH), Medical Genetics (CBG, MG, GAM) and Nephrology (AM, VP), Department of Pediatrics and Department of Pharmacy (SA, JFB), CHU Sainte-Justine and Université de Montréal, Montreal, Canada
| |
Collapse
|
40
|
Elgilani F, Mao SA, Glorioso JM, Yin M, Iankov ID, Singh A, Amiot B, Rinaldo P, Marler RJ, Ehman RL, Grompe M, Lillegard JB, Hickey RD, Nyberg SL. Chronic Phenotype Characterization of a Large-Animal Model of Hereditary Tyrosinemia Type 1. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:33-41. [PMID: 27855279 DOI: 10.1016/j.ajpath.2016.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023]
Abstract
Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disease caused by deficiency in fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolic pathway. In this study, we investigated whether fumarylacetoacetate hydrolase deficient (FAH-/-) pigs, a novel large-animal model of HT1, develop fibrosis and cirrhosis characteristic of the human disease. FAH-/- pigs were treated with the protective drug 2-(2-nitro-4-trifluoromethylbenzoyl)-1, 3 cyclohexandione (NTBC) at a dose of 1 mg/kg per day initially after birth. After 30 days, they were assigned to one of three groups based on dosing of NTBC. Group 1 received ≥0.2 mg/kg per day, group 2 cycled on/off NTBC (0.05 mg/kg per day × 1 week/0 mg/kg per day × 3 weeks), and group 3 received no NTBC thereafter. Pigs were monitored for features of liver disease. Animals in group 1 continued to have weight gain and biochemical analyses comparable to wild-type pigs. Animals in group 2 had significant cessation of weight gain, abnormal biochemical test results, and various grades of fibrosis and cirrhosis. No evidence of hepatocellular carcinoma was detected. Group 3 animals declined rapidly, with acute liver failure. In conclusion, the FAH-/- pig is a large-animal model of HT1 with clinical characteristics that resemble the human phenotype. Under conditions of low-dose NTBC, FAH-/- pigs developed liver fibrosis and portal hypertension, and thus may serve as a large-animal model of chronic liver disease.
Collapse
Affiliation(s)
- Faysal Elgilani
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Ianko D Iankov
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Anisha Singh
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Bruce Amiot
- Brami Biomedical, Inc., Minneapolis, Minnesota
| | - Piero Rinaldo
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ronald J Marler
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, Arizona
| | | | - Markus Grompe
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, Minnesota; Midwest Fetal Care Center, Children's Hospital and Clinics of Minnesota, Minneapolis, Minnesota
| | - Raymond D Hickey
- Department of Surgery, Mayo Clinic, Rochester, Minnesota; Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Scott L Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota; Department of Surgery, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
41
|
Wertheim JA. Novel technology for liver regeneration and replacement. Liver Transpl 2016; 22:41-46. [PMID: 27611337 PMCID: PMC5244428 DOI: 10.1002/lt.24635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Jason A. Wertheim
- Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL; Chemistry of Life Processes Institute and Biomedical Engineering Department, Northwestern University, Evanston, IL; and Simpson Querrey, Institute, Northwestern University, Chicago, IL; Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
42
|
Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I. Sci Rep 2016; 6:31460. [PMID: 27510266 PMCID: PMC4980609 DOI: 10.1038/srep31460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Hereditary tyrosinemia type I (HT1) is caused by a deficiency in the enzyme fumarylacetoacetate hydrolase (Fah). Fah-deficient mice and pigs are phenotypically analogous to human HT1, but do not recapitulate all the chronic features of the human disorder, especially liver fibrosis and cirrhosis. Rats as an important model organism for biomedical research have many advantages over other animal models. Genome engineering in rats is limited till the availability of new gene editing technologies. Using the recently developed CRISPR/Cas9 technique, we generated Fah(-/-) rats. The Fah(-/-) rats faithfully represented major phenotypic and biochemical manifestations of human HT1, including hypertyrosinemia, liver failure, and renal tubular damage. More importantly, the Fah(-/-) rats developed remarkable liver fibrosis and cirrhosis, which have not been observed in Fah mutant mice or pigs. Transplantation of wild-type hepatocytes rescued the Fah(-/-) rats from impending death. Moreover, the highly efficient repopulation of hepatocytes in Fah(-/-) livers prevented the progression of liver fibrosis to cirrhosis and in turn restored liver architecture. These results indicate that Fah(-/-) rats may be used as an animal model of HT1 with liver cirrhosis. Furthermore, Fah(-/-) rats may be used as a tool in studying hepatocyte transplantation and a bioreactor for the expansion of hepatocytes.
Collapse
|
43
|
Yao J, Huang J, Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet 2016; 135:1093-105. [DOI: 10.1007/s00439-016-1710-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/06/2016] [Indexed: 01/03/2023]
|
44
|
Genetically engineered livestock for biomedical models. Transgenic Res 2016; 25:345-59. [PMID: 26820410 DOI: 10.1007/s11248-016-9928-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022]
Abstract
To commemorate Transgenic Animal Research Conference X, this review summarizes the recent progress in developing genetically engineered livestock species as biomedical models. The first of these conferences was held in 1997, which turned out to be a watershed year for the field, with two significant events occurring. One was the publication of the first transgenic livestock animal disease model, a pig with retinitis pigmentosa. Before that, the use of livestock species in biomedical research had been limited to wild-type animals or disease models that had been induced or were naturally occurring. The second event was the report of Dolly, a cloned sheep produced by somatic cell nuclear transfer. Cloning subsequently became an essential part of the process for most of the models developed in the last 18 years and is stilled used prominently today. This review is intended to highlight the biomedical modeling achievements that followed those key events, many of which were first reported at one of the previous nine Transgenic Animal Research Conferences. Also discussed are the practical challenges of utilizing livestock disease models now that the technical hurdles of model development have been largely overcome.
Collapse
|
45
|
Stem Cell Therapies for Treatment of Liver Disease. Biomedicines 2016; 4:biomedicines4010002. [PMID: 28536370 PMCID: PMC5344247 DOI: 10.3390/biomedicines4010002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
Cell therapy is an emerging form of treatment for several liver diseases, but is limited by the availability of donor livers. Stem cells hold promise as an alternative to the use of primary hepatocytes. We performed an exhaustive review of the literature, with a focus on the latest studies involving the use of stem cells for the treatment of liver disease. Stem cells can be harvested from a number of sources, or can be generated from somatic cells to create induced pluripotent stem cells (iPSCs). Different cell lines have been used experimentally to support liver function and treat inherited metabolic disorders, acute liver failure, cirrhosis, liver cancer, and small-for-size liver transplantations. Cell-based therapeutics may involve gene therapy, cell transplantation, bioartificial liver devices, or bioengineered organs. Research in this field is still very active. Stem cell therapy may, in the future, be used as a bridge to either liver transplantation or endogenous liver regeneration, but efficient differentiation and production protocols must be developed and safety must be demonstrated before it can be applied to clinical practice.
Collapse
|
46
|
New Tools in Experimental Cellular Therapy for the Treatment of Liver Diseases. CURRENT TRANSPLANTATION REPORTS 2015; 2:202-210. [PMID: 26317066 DOI: 10.1007/s40472-015-0059-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The current standard of care for end stage liver disease is orthotopic liver transplantation (OLT). Through improvement in surgical techniques, immunosuppression, and general medical care, liver transplantation has become an effective treatment over the course of the last half-century. Unfortunately, due to the limited availability of donor organs, there is a finite limit to the number of patients who will benefit from this therapy. This review will discuss current research in experimental cellular therapies for acute, chronic, and metabolic liver failure that may be appropriate when liver transplantation is not an immediate option.
Collapse
|
47
|
Hickey RD, Mao SA, Amiot B, Suksanpaisan L, Miller A, Nace R, Glorioso J, Peng KW, Ikeda Y, Russell SJ, Nyberg SL. Noninvasive 3-dimensional imaging of liver regeneration in a mouse model of hereditary tyrosinemia type 1 using the sodium iodide symporter gene. Liver Transpl 2015; 21:442-53. [PMID: 25482651 PMCID: PMC5957080 DOI: 10.1002/lt.24057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/30/2014] [Indexed: 12/24/2022]
Abstract
Cell transplantation is a potential treatment for the many liver disorders that are currently only curable by organ transplantation. However, one of the major limitations of hepatocyte (HC) transplantation is an inability to monitor cells longitudinally after injection. We hypothesized that the thyroidal sodium iodide symporter (NIS) gene could be used to visualize transplanted HCs in a rodent model of inherited liver disease: hereditary tyrosinemia type 1. Wild-type C57Bl/6J mouse HCs were transduced ex vivo with a lentiviral vector containing the mouse Slc5a5 (NIS) gene controlled by the thyroxine-binding globulin promoter. NIS-transduced cells could robustly concentrate radiolabeled iodine in vitro, with lentiviral transduction efficiencies greater than 80% achieved in the presence of dexamethasone. Next, NIS-transduced HCs were transplanted into congenic fumarylacetoacetate hydrolase knockout mice, and this resulted in the prevention of liver failure. NIS-transduced HCs were readily imaged in vivo by single-photon emission computed tomography, and this demonstrated for the first time noninvasive 3-dimensional imaging of regenerating tissue in individual animals over time. We also tested the efficacy of primary HC spheroids engrafted in the liver. With the NIS reporter, robust spheroid engraftment and survival could be detected longitudinally after direct parenchymal injection, and this thereby demonstrated a novel strategy for HC transplantation. This work is the first to demonstrate the efficacy of NIS imaging in the field of HC transplantation. We anticipate that NIS labeling will allow noninvasive and longitudinal identification of HCs and stem cells in future studies related to liver regeneration in small and large preclinical animal models.
Collapse
Affiliation(s)
- Raymond D. Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Amber Miller
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
48
|
Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: From liver transplantation to cell factory. J Hepatol 2015; 62:S157-69. [PMID: 25920085 DOI: 10.1016/j.jhep.2015.02.040] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023]
Abstract
Work over several decades has laid solid foundations for the advancement of liver cell therapy. To date liver cell therapy in people has taken the form of hepatocyte transplantation for metabolic disorders with a hepatic basis, and for acute or chronic liver failure. Although clinical trials using various types of autologous cells have been implemented to promote liver regeneration or reduce liver fibrosis, clear evidence of therapeutic benefits have so far been lacking. Cell types that have shown efficacy in preclinical models include hepatocytes, liver sinusoidal endothelial cells, mesenchymal stem cells, endothelial progenitor cells, and macrophages. However, positive results in animal models have not always translated through to successful clinical therapies and more realistic preclinical models need to be developed. Studies defining the optimal repopulation by transplanted cells, including routes of cell transplantation, superior engraftment and proliferation of transplanted cells, as well as optimal immunosuppression regimens are required. Tissue engineering approaches to transplant cells in extrahepatic locations have also been proposed. The derivation of hepatocytes from pluripotent or reprogrammed cells raises hope that donor organ and cell shortages could be overcome in the future. Critical hurdles to be overcome include the production of hepatocytes from pluripotent cells with equal functional capacity to primary hepatocytes and long-term phenotypic stability in vivo.
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh EH16 4UU, United Kingdom.
| | - Sanjeev Gupta
- Departments of Medicine and Pathology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Ullmann Building, Room 625, Bronx, NY 10461, United States
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Center and NIHR/Wellcome Cell Therapy Unit, King's College Hospital at King's College, London SE59RS, United Kingdom
| |
Collapse
|
49
|
Yu Y, Wang X, Nyberg SL. Potential and Challenges of Induced Pluripotent Stem Cells in Liver Diseases Treatment. J Clin Med 2014; 3:997-1017. [PMID: 26237490 PMCID: PMC4449640 DOI: 10.3390/jcm3030997] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 01/14/2023] Open
Abstract
Tens of millions of patients are affected by liver disease worldwide. Many of these patients can benefit from cell therapy involving living metabolically active cells, either by treatment of their liver disease, or by prevention of their disease phenotype. Cell therapies, including hepatocyte transplantation and bioartificial liver (BAL) devices, have been proposed as therapeutic alternatives to the shortage of transplantable livers. Both BAL and hepatocyte transplantation are cellular therapies that avoid use of a whole liver. Hepatocytes are also widely used in drug screening and liver disease modelling. However, the demand for human hepatocytes, heavily outweighs their availability by conventional means. Induced pluripotent stem cells (iPSCs) technology brings together the potential benefits of embryonic stem cells (ESCs) (i.e., self-renewal, pluripotency) and addresses the major ethical and scientific concerns of ESCs: embryo destruction and immune-incompatibility. It has been shown that hepatocyte-like cells (HLCs) can be generated from iPSCs. Furthermore, human iPSCs (hiPSCs) can provide an unlimited source of human hepatocytes and hold great promise for applications in regenerative medicine, drug screening and liver diseases modelling. Despite steady progress, there are still several major obstacles that need to be overcome before iPSCs will reach the bedside. This review will focus on the current state of efforts to derive hiPSCs for potential use in modelling and treatment of liver disease.
Collapse
Affiliation(s)
- Yue Yu
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province 210029, China.
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| | - Xuehao Wang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province 210029, China.
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| | - Scott L Nyberg
- Division of Experimental Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|