1
|
Jahanabadi S, Madvar MR. Unraveling the Interplay of 5-hydroxytryptamine-3 and N-methyl-d-aspartate Receptors in Seizure Susceptibility. Drug Res (Stuttg) 2024; 74:456-463. [PMID: 39299250 DOI: 10.1055/a-2406-5340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Epilepsy, a prevalent neurological disorder characterized by recurrent seizures, presents significant challenges in treatment and management. This study aimed to evaluate the effect of tropisetron, a selective 5-HT3 receptor antagonist on pentylenetetrazole (PTZ) - induced seizure in mice by exploring the potential role of the NMDA receptor and inflammatory responses. METHODS For this purpose, seizures were induced by intravenous PTZ infusion. Tropisetron at 1-, 2-, 3-, 5-, 10- mg/kg were administered intraperitoneally 30 minutes before PTZ. To evaluate probable role of NMDA signaling, selective NMDAR antagonists, ketamine and MK-801, were injected 15 minutes before tropisetron. Also, TNF-α level of hippocampus were measured following administration of mentioned drugs in mice. RESULTS Our results demonstrate that tropisetron displayed a dose-dependent impact on seizure threshold, with certain doses (5 and 10 mg/kg) exhibiting anticonvulsant properties. In addition, the noncompetitive NMDAR antagonists, ketamine (1 mg/kg) and MK-801 (0.5 mg/kg), at doses that had no effect on seizure threshold, augmented the anticonvulsant effect of tropisetron (3 mg/kg). Also, tropisetron led to a reduction in hippocampal TNF-α levels, indicating its anti-inflammatory potential independent of 5-HT receptor activity. CONCLUSION In conclusion, we demonstrated that the anticonvulsant effect of tropisetron is mediated by the inhibition of NMDA receptors and a decline in hippocampal TNF-α level. These findings highlight a potential connection between 5-HT3 and NMDA receptors in the pharmacological treatment of inflammatory diseases, such as seizure, warranting further investigation into their combined therapeutic effects.
Collapse
Affiliation(s)
- Samane Jahanabadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammadreza Riahi Madvar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Kjær C, Palasca O, Barzaghi G, Bak LK, Durhuus RKJ, Jakobsen E, Pedersen L, Bartels ED, Woldbye DPD, Pinborg LH, Jensen LJ. Differential Expression of the β3 Subunit of Voltage-Gated Ca 2+ Channel in Mesial Temporal Lobe Epilepsy. Mol Neurobiol 2023; 60:5755-5769. [PMID: 37341859 PMCID: PMC10471638 DOI: 10.1007/s12035-023-03426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
The purpose of this study was to identify and validate new putative lead drug targets in drug-resistant mesial temporal lobe epilepsy (mTLE) starting from differentially expressed genes (DEGs) previously identified in mTLE in humans by transcriptome analysis. We identified consensus DEGs among two independent mTLE transcriptome datasets and assigned them status as "lead target" if they (1) were involved in neuronal excitability, (2) were new in mTLE, and (3) were druggable. For this, we created a consensus DEG network in STRING and annotated it with information from the DISEASES database and the Target Central Resource Database (TCRD). Next, we attempted to validate lead targets using qPCR, immunohistochemistry, and Western blot on hippocampal and temporal lobe neocortical tissue from mTLE patients and non-epilepsy controls, respectively. Here we created a robust, unbiased list of 113 consensus DEGs starting from two lists of 3040 and 5523 mTLE significant DEGs, respectively, and identified five lead targets. Next, we showed that CACNB3, a voltage-gated Ca2+ channel subunit, was significantly regulated in mTLE at both mRNA and protein level. Considering the key role of Ca2+ currents in regulating neuronal excitability, this suggested a role for CACNB3 in seizure generation. This is the first time changes in CACNB3 expression have been associated with drug-resistant epilepsy in humans, and since efficient therapeutic strategies for the treatment of drug-resistant mTLE are lacking, our finding might represent a step toward designing such new treatment strategies.
Collapse
Affiliation(s)
- Christina Kjær
- Biomedical Laboratory Science, Department of Technology, Faculty of Health and Technology, University College Copenhagen, Sigurdsgade 26, 1St, 2200 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Oana Palasca
- Disease Systems Biology Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Guido Barzaghi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Lasse K. Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Dept. of Clinical Biochemistry, 2600 RigshospitaletCopenhagen, Denmark
| | - Rúna K. J. Durhuus
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Specific Pharma A/S, Borgmester Christiansens Gade 40, 2450 Copenhagen, SV Denmark
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Takeda Pharma A/S, Delta Park 45, 2665 Vallensbaek Strand, Denmark
| | - Louise Pedersen
- Biomedical Laboratory Science, Department of Technology, Faculty of Health and Technology, University College Copenhagen, Sigurdsgade 26, 1St, 2200 Copenhagen, Denmark
- Dept. of Clinical Biochemistry, 2600 RigshospitaletCopenhagen, Denmark
| | - Emil D. Bartels
- Dept. of Clinical Biochemistry, 2600 RigshospitaletCopenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David P. D. Woldbye
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lars H. Pinborg
- Epilepsy Clinic & Neurobiology Research Unit, Copenhagen University Hospital, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lars Juhl Jensen
- Disease Systems Biology Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Dehkordi HT, Bijad E, Saghaei E, Korrani MS, Amini-Khoei H. Chronic stress but not acute stress decreases the seizure threshold in PTZ-induced seizure in mice: role of inflammatory response and oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:973-982. [PMID: 36542120 DOI: 10.1007/s00210-022-02364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Seizure is paroxysmal abnormal electrical discharges in the cerebral cortex. Inflammatory pathways and oxidative stress are involved in the pathophysiology of seizures. Stress can induce an oxidative stress state and increase the production of inflammatory mediators in the brain. We investigated the effects of acute and chronic stresses on the seizure threshold in pentylenetetrazol (PTZ)-induced seizures in mice, considering oxidative stress and inflammatory mediators in the prefrontal cortex. In this study, 30 male Naval Medical Research Institute (NMRI) mice were divided into 3 groups, including acute stress, chronic stress, and control groups. PTZ was used for the induction of seizures. The gene expression of inflammatory markers (IL-1β, TNF-α, NLRP3, and iNOS), malondialdehyde (MDA) level, nitrite level, and total antioxidant capacity (TAC) were assessed in the prefrontal cortex and serum. Our results showed that stress could increase the expression of inflammatory cytokines genes and oxidative stress in the prefrontal cortex of the brain and serum following PTZ-induced seizures, which is associated with increased seizure sensitivity and decreased the seizure threshold. The effects of chronic stress were much more significant than acute stress. We concluded that the effects of chronic stress on seizure sensitivity and enhancement of neuroinflammation and oxidative stress are much greater than acute stress.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Saghaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Shahrani Korrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
4
|
Moradi F, Eslami F, Rahimi N, Koohfar A, Shayan M, Maadani M, Ghasemi M, Dehpour AR. Modafinil exerts anticonvulsive effects against lithium-pilocarpine-induced status epilepticus in rats: A role for tumor necrosis factor-α and nitric oxide signaling. Epilepsy Behav 2022; 130:108649. [PMID: 35344809 DOI: 10.1016/j.yebeh.2022.108649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Status epilepticus (SE) is a continuous episode of seizures which leads to hippocampal neurodegeneration, severe systemic inflammation, and extreme damage to the brain. Modafinil, a psychostimulant and wake-promoting agent, has exerted neuroprotective and anti-inflammatory effects in previous preclinical studies. The aim of this study was to assess effects of modafinil on the lithium-pilocarpine-induced SE rat model and to explore possible involvement of tumor necrosis factor-α (TNF-α) and nitric oxide (NO) pathways in this regard. METHODS Status epilepticus was provoked by injection of lithium chloride (127 mg/kg, intraperitoneally [i.p]) and pilocarpine (60 mg/kg, i.p.) in rats. Animals received different modafinil doses (50, 75, 100, and 150 mg/kg, i.p.) and SE scores were documented over 3 hours of duration. Moreover, the role of the nitrergic pathway in the effects of modafinil was evaluated by injection of the non-selective NO synthase (NOS) inhibitor L-NG-Nitro arginine methyl ester (L-NAME, 10 mg/kg, i.p.), the selective neuronal NOS inhibitor 7-nitroindazole (30 mg/kg, i.p.), and the selective inducible NOS inhibitor aminoguanidine (100 mg/kg, i.p.) 15 min before saline/vehicle or modafinil. The ELISA method was used to quantify TNF-α and NO metabolite levels in the isolated hippocampus. RESULTS Modafinil at 100 mg/kg significantly decreased SE scores (P < 0.01). Pre-treatment with L-NAME, 7-nitroindazole, and aminoguanidine significantly reversed the anticonvulsive effects of modafinil. Status epilepticus-induced animals showed significantly higher NO metabolite and TNF-α levels in their hippocampal tissues, an effect that was reversed by modafinil (100 mg/kg, i.p.) treatment. Administration of NOS inhibitors resulted in excessive NO level reduction but an escalation of TNF-α level in modafinil-treated SE-animals. CONCLUSION Our study revealed anticonvulsive effects of modafinil in the lithium-pilocarpine-induced SE rat model via possible involvement of TNF-α and nitrergic pathways.
Collapse
Affiliation(s)
- Farid Moradi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Eslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Koohfar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Maadani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Entezari Z, Jahanabadi S. Anticonvulsant Effect of Minocycline on Pentylenetetrazole-Induced Seizure in Mice: Involvement of 5-HT3 Receptor. Drug Res (Stuttg) 2022; 72:268-273. [PMID: 35426093 DOI: 10.1055/a-1783-7836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Minocycline, widely used as an antibiotic, has recently been found to have an anti-inflammatory, neuroprotective and anticonvulsant effects. This study was aimed to investigate the anticonvulsant effect of acute administration of minocycline on pentylenetetrazole (PTZ)-induced seizures considering the possible involvement of 5-HT3 receptor in this effect. For this purpose, seizures were induced by intravenous PTZ infusion. All drugs were administrated by intraperitoneal (i.p.) route before PTZ injection. Also, 1-(m-chlorophenyl)-biguanide (mCPBG, a 5-HT3 receptor agonist) and Tropisetron (a 5-HT3 receptor antagonist) were used 45 minutes before minocycline treatment. Our results demonstrate that acute minocycline treatment (80 and 120 mg/kg) increased the seizure threshold. In addition, the 5-HT3 antagonist, tropisetron, at doses that had no effect on seizure threshold, augmented the anticonvulsant effect of minocycline (40 mg/kg), while mCPBG (0.2 mg/kg) blunted the anticonvulsant effect of minocycline (80 mg/kg). In conclusion, our findings revealed that the anticonvulsant effect of minocycline is mediated, at least in part, by inhibition of 5-HT3 receptor.
Collapse
Affiliation(s)
- Zahra Entezari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samane Jahanabadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Kalati ZH, Gholami O, Amin B, Pejhan A, Sahab-Negah S, Gholami M, Azhdari-Zarmehri H, Mohammad-Zadeh M. The Role of 5-HT1A Receptors and Neuronal Nitric Oxide Synthase in a Seizur Induced Kindling Model in Rats. Neurochem Res 2022; 47:1934-1942. [PMID: 35305199 DOI: 10.1007/s11064-022-03577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Dentate gyrus (DG) has a high density of 5-HT1A receptors. It has neural nitric oxide synthase (nNOS), which is involved in neural excitability. The purpose of this study was to investigate the role of 5-HT1A receptors and nNOS of DG in perforant path kindling model of epilepsy. MATERIAL AND METHODS To achieve this purpose, a receptor antagonist (WAY100635, 0.1 mg/kg, intracerebroventricular, i.c.v) and neuronal nitric oxide synthase inhibitor (7-NI, 15 mg/kg, intraperitoneal, i.p.) were injected during kindling aquisition. Adult male Wistar rats (280 ± 20 g) were used in this study Animals were kindled through the daily administration of brief electrical stimulations (10 stimulations per day) to the perforant pathway. Field potential recordings were performed for 20 min in DG beforehand. Additionally, glial fibrillary acidic protein (GFAP) expression rate in the DG was determined using immunohistochemistry as a highly specific marker for glia. RESULTS WAY100635 (0.1 mg/kg) significantly attenuated the kindling threshold compared to the kindled + vehicle group (P < 0.001). The co-administration of WAY100635 with 7-NI, exerted a significant anticonvulsive effect. Furthermore, the slope of field Excitatory Post Synaptic Potentials (fEPSP) at the end of 10 days in the kindled + 7-NI + WAY100635 group was significantly lower than in the kindled + vehicle group (P < 0.001). Furthermore, immunohistochemistry showed that the density of GAFP+ cells in the kindled + 7-NI + WAY100635 group was significantly higher than in the kindled + vehicle group (P < 0.001). CONCLUSION Our data demonstrate that antagonists of 5-HT1A receptors have proconvulsive effects and that astrocyte cells are involved in this process, while nNOS has an inhibitory effect on neuronal excitability.
Collapse
Affiliation(s)
- Zinat Heydarnia Kalati
- Student Research Committee, Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Akbar Pejhan
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hassan Azhdari-Zarmehri
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Mohammad Mohammad-Zadeh
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Sayahi Z, Komaki A, Saidi Jam M, Karimi SA, Raoufi S, Mardani P, Naderishahab M, Sarihi A, Mirnajafi-Zadeh J. Effect of ramosetron, a 5-HT 3 receptor antagonist on the severity of seizures and memory impairment in electrical amygdala kindled rats. J Physiol Sci 2022; 72:1. [PMID: 35034601 PMCID: PMC10717980 DOI: 10.1186/s12576-022-00825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
The entorhinal cortex (EC) plays a pivotal role in epileptogenesis and seizures. EC expresses high density of serotonergic receptors, especially 5-HT3 receptors. Cognitive impairment is common among people with epilepsy. The present study investigated the role of 5-HT3 receptor on the severity of seizures and learning and memory impairment by electrical kindling of amygdala in rats. The amygdala kindling was conducted in a chronic kindling manner in male Wistar rats. In fully kindled animals, ramosetron (as a potent and selective 5-HT3 receptor antagonist) was microinjected unilaterally (ad doses of 1, 10 or 100 µg/0.5 µl) into the EC 5 min before the novel object recognition (NOR) and Y-maze tests or kindling stimulations. Applying ramosetron at the concentration of 100 μg/0.5 µl (but not at 1 and 10 µg/0.5 µl) reduced afterdischarge (AD) duration and increased stage 4 latency in the kindled rats. Moreover, the obtained data from the NOR test showed that treatment by ramosetron (10 and 100 µg/0.5 µl) increased the discrimination index in the fully kindled animals. Microinjection of ramosetron (10 and 100 µg/0.5 µl) in fully kindled animals reversed the kindling induced changes in the percentage of spontaneous alternation in Y-maze task. The findings demonstrated an anticonvulsant role for a selective 5-HT3 receptor antagonist microinjected into the EC, therefore, suggesting an excitatory role for the EC 5-HT3 receptors in the amygdala kindling model of epilepsy. This anticonvulsive effect was accompanied with a restoring effect on cognitive behavior in NOR and Y-maze tests.
Collapse
Affiliation(s)
- Zeynab Sayahi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Saidi Jam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Parastoo Mardani
- Department of Biology, Faculty of Sciences, Payame Noor University, Sanandaj, Iran
| | - Marzieh Naderishahab
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran.
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, 1411713116, Tehran, Iran.
| |
Collapse
|
8
|
Involvement of nitric oxide pathway in the acute anticonvulsant effect of salmon calcitonin in rats. Epilepsy Res 2022; 180:106864. [DOI: 10.1016/j.eplepsyres.2022.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
|
9
|
Dafe EA, Rahimi N, Javadian N, Dejban P, Komeili M, Modabberi S, Ghasemi M, Dehpour AR. Effect of Lenalidomide on Pentylenetetrazole-Induced Clonic Seizure Threshold in Mice: A Role for N-Methyl-D-Aspartic Acid Receptor/Nitric Oxide Pathway. J Epilepsy Res 2021; 11:6-13. [PMID: 34395218 PMCID: PMC8357552 DOI: 10.14581/jer.21002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose Accumulating evidence suggest that lenalidomide, a structural analog of thalidomide, has neuro-modulatory and neuroprotective properties. In the present study, we investigated effects of acute administration of lenalidomide on clonic seizure threshold in mice induced by pentylenetetrazole (PTZ) and possible role of N-methyl-D-aspartic acid receptor (NMDAR) and nitric oxide (NO) pathway. Methods We have utilized a clonic model of seizure in NMRI mice induced by PTZ to evaluate the potential effect of lenalidomide on seizure threshold. Different doses of lenalidomide (5, 10, 20, and 50 mg/kg, intraperitoneal [i.p.]) were administered 1 hour before PTZ. To evaluate probable role of NMDAR/NO signaling, the non-selective NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME; 10 mg/kg, i.p.), neuronal NOS (nNOS) inhibitor 7-nitroindazole (7-NI; 30 mg/kg, i.p.), selective inducible NOS inhibitor aminoguanidine (AG; 100 mg/kg, i.p.), selective NMDAR antagonist MK-801 (0.01 mg/kg, i.p.), and selective NMDAR agonist D-serine (30 mg/kg, i.p.) were injected 15 minutes before lenalidomide. Results Lenalidomide at 10 and 20 mg/kg significantly elevated the PTZ-induced seizure thresholds. Interestingly, L-NAME (10 mg/kg, i.p), 7-NI (30 mg/kg, i.p), and AG (100 mg/kg, i.p) reversed the anticonvulsive effect of lenalidomide (10 mg/kg). Moreover, treatment with the NMDAR agonist D-serine (30 mg/kg, i.p.) did not alter the anticonvulsive properties of lenalidomide (10 mg/kg, i.p). However, the NMDAR antagonist MK-801 (0.01 mg/kg, i.p) significantly reversed the anticonvulsive effects of lenalidomide (10 mg/kg). Conclusions Our study demonstrated a role for the NMDAR/NO pathway in the anticonvulsive effects of lenalidomide on the PTZ-induced clonic seizures in mice.
Collapse
Affiliation(s)
- Elaheh Asgari Dafe
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nina Javadian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Dejban
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, NY, USA
| | - Monika Komeili
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Modabberi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Gholizadeh R, Abdolmaleki Z, Bahremand T, Ghasemi M, Gharghabi M, Dehpour AR. Involvement of N-Methyl-D-Aspartate Receptors in the Anticonvulsive Effects of Licofelone on Pentylenetetrazole-Induced Clonic Seizure in Mice. J Epilepsy Res 2021; 11:14-21. [PMID: 34395219 PMCID: PMC8357553 DOI: 10.14581/jer.21003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Licofelone is a dual 5-lipoxygenase/cyclooxygenase inhibitor, with well-documented anti-inflammatory and analgesic effects, which is used for treatment of osteoarthritis. Recent preclinical studies have also suggested neuroprotective and anti-oxidative properties of this drug in some neurological conditions such as seizure and epilepsy. We have recently demonstrated a role for nitric oxide (NO) signaling in the anti-epileptic activity of licofelone in two seizure models in rodents. Given the important role of N-methyl-D-aspartate receptors (NMDARs) activation in the NO production and its function in the nervous system, in the present study, we further investigated the involvement of NMDAR in the effects of licofelone (1, 3, 5, 10, and 20 mg/kg, intraperitoneal [i.p.]) in an in vivo model of seizure in mice. METHODS Clonic seizures were induced in male NMRI mice by intravenous administration of pentylenetetrazol (PTZ). RESULTS Acute administration of licofelone exerted anticonvulsant effects at 10 (p<0.01) and 20 mg/kg (p<0.001). A combined treatment with sub-effective doses of the selective NMDAR antagonist MK-801 (0.05 mg/kg, i.p.) and licofelone (5 mg/kg, i.p.) significantly (p<0.001) exerted an anticonvulsant effect on the PTZ-induced clonic seizures in mice. Notably, pre-treatment with the NMDAR co-agonist D-serine (30 mg/kg, i.p.) partially hindered the anticonvulsant effects of licofelone (20 mg/kg). CONCLUSIONS Our data suggest a possible role for the NMDAR in the anticonvulsant effects of licofelone on the clonic seizures induced by PTZ in mice.
Collapse
Affiliation(s)
- Ramtin Gholizadeh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, College of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, College of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Vieira ÉLM, da Silva MCM, Gonçalves AP, Martins GL, Teixeira AL, de Oliveira ACP, Reis HJ. Serotonin and dopamine receptors profile on peripheral immune cells from patients with temporal lobe epilepsy. J Neuroimmunol 2021; 354:577534. [PMID: 33713941 DOI: 10.1016/j.jneuroim.2021.577534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 01/11/2023]
Abstract
The role of inflammation and immune cells has been demonstrated in neurological diseases, including epilepsy. Leukocytes, as well as inflammatory mediators, contribute to abnormal processes that lead to a reduction in seizure threshold and synaptic reorganization. In this sense, identifying different phenotypes of circulating immune cells is essential to understanding the role of these cells in epilepsy. Immune cells can express a variety of surface markers, including neurotransmitter receptors, such as serotonin and dopamine. Alteration in these receptors expression patterns may affect the level of inflammatory mediators and the pathophysiology of epilepsy. Therefore, in the current study, we evaluated the expression of dopamine and serotonin receptors on white blood cells from patients with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Blood samples from 17 patients with TLE-HS and 21 controls were collected. PBMC were isolated and stained ex vivo for flow cytometry. We evaluated the expression of serotonin (5-HT1A, 5-HT1B, 5-HT2, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4), and dopamine receptors (D1, D2, D3, D4, and D5) on the cell surface of lymphocytes and innate immune cells (monocytes and granulocytes). Our results demonstrated that innate cells and lymphocytes from patients with TLE-HS showed high mean fluorescent intensity (MFI) for 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 compared to controls. No difference was observed for 5-HT2B. For dopamine receptors, the expression of D1, D2, D4, and D5 receptors was higher on innate cells from patients with TLE-HS when compared to controls for the MFI. Regarding lymphocytes population, D2 expression was increased in patients with TLE-HS. In conclusion, there are alterations in the expression of serotonin and dopamine receptors on immune blood cells of patients with TLE-HS. Although the biological significance of these findings still needs to be further investigated, these changes may contribute to the understanding of TLE-HS pathophysiology.
Collapse
Affiliation(s)
| | - Maria Carolina Machado da Silva
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ana Paula Gonçalves
- Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gabriela Lopes Martins
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Antônio Lúcio Teixeira
- Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte 30260-070, Brazil; Neuropsychiatry Program and Immuno-Psychiatry Lab, Department of Psychiatry and Behavioral Sciences, UT Health Houston, 1941 East Road, Houston, TX 77054, USA
| | - Antônio Carlos Pinheiro de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Helton José Reis
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| |
Collapse
|
12
|
Vortioxetine increases absence-like seizures in WAG/Rij rats but decreases penicillin- and pentylenetetrazole-induced seizures in Wistar rats. Epilepsy Behav 2021; 116:107797. [PMID: 33561766 DOI: 10.1016/j.yebeh.2021.107797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/20/2022]
Abstract
AIM Depression is the major psychiatric disorder in patients with epilepsy. Vortioxetine is a novel antidepressant drug for the treatment of major depressive disorders. In the present study, effects of vortioxetine were evaluated in different experimental epilepsy models of rats. MATERIALS AND METHODS Fifty-six adult male Wistar rats and 28 WAG/Rij rats were divided into 12 groups of 7 rats each. Experiments were conducted with penicillin (500 IU, i.c.) and pentylenetetrazole models (50 mg/kg, intraperitoneally (i.p.)) in Wistar rats and genetic absence epileptic WAG/Rij rats. The vortioxetine (1, 5, or 10 mg/kg, i.p.) was evaluated in these three models. All groups were compared with their control groups. RESULTS In the penicillin-induced seizure model, 1, 5, or 10 mg/kg vortioxetine administration significantly decreased mean spike frequency. In the pentylenetetrazole-induced seizure model, 1, 5, or 10 mg/kg vortioxetine demonstrated a significant dose-dependent decrease in mean spike frequency, an increase in the latency to minor and major seizures, and a decrease in total duration of major seizure and convulsion stage. In genetic absence epileptic WAG/Rij rats, 1 mg/kg vortioxetine caused no significant alteration in the number and duration of SWDs compared to the controls, while 5 and 10 mg/kg doses of vortioxetine increased the number and duration of SWDs. Amplitude of the epileptiform activity did not change in any of the experimental epilepsy models. CONCLUSION The results of this study suggested that vortioxetine has anticonvulsant activity in penicillin- and pentylenetetrazole-induced seizure models. However, it exhibited proconvulsant activity in the absence epileptic WAG/Rij rats.
Collapse
|
13
|
Deidda G, Crunelli V, Di Giovanni G. 5-HT/GABA interaction in epilepsy. PROGRESS IN BRAIN RESEARCH 2021; 259:265-286. [PMID: 33541679 DOI: 10.1016/bs.pbr.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epilepsy is a neurological condition characterized by synchronous neuronal oscillations (seizures) in the electroencephalogram. Seizures are classified in focal or generalized (depending on the brain territory interested during seizures), and in convulsive and/or not convulsive (depending on the presence or not of involuntary movements). The current pharmacological treatments are mainly based on GABA modulation although different neurotransmitters are also involved in epilepsy, including serotonin. However despite much extensive progress in the understanding of epilepsy mechanisms, still, a percentage of people with epilepsy are pharmaco-resistant calling for the need for new therapeutic targets. Here we review preclinical and human evidence showing that serotonin modulates epilepsy that this likely happens via a major modulation/interaction with GABA.
Collapse
Affiliation(s)
- Gabriele Deidda
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | - Vincenzo Crunelli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
14
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
15
|
Pottoo FH, Javed MN, Barkat MA, Alam MS, Nowshehri JA, Alshayban DM, Ansari MA. Estrogen and Serotonin: Complexity of Interactions and Implications for Epileptic Seizures and Epileptogenesis. Curr Neuropharmacol 2019; 17:214-231. [PMID: 29956631 PMCID: PMC6425080 DOI: 10.2174/1570159x16666180628164432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
A burgeoning literature documents the confluence of ovarian steroids and central serotonergic systems in the in-junction of epileptic seizures and epileptogenesis. Estrogen administration in animals reduces neuronal death from seizures by up-regulation of the prosurvival molecule i.e. Bcl-2, anti-oxidant potential and protection of NPY interneurons. Serotonin modulates epileptiform activity in either direction i.e administration of 5-HT agonists or reuptake inhibitors leads to the acti-vation of 5-HT3 and 5-HT1A receptors tending to impede focal and generalized seizures, while depletion of brain 5-HT along with the destruction of serotonergic terminals leads to expanded neuronal excitability hence abatement of seizure threshold in experimental animal models. Serotonergic neurotransmission is influenced by the organizational activity of ster-oid hormones in the growing brain and the actuation effects of steroids which come in adulthood. It is further established that ovarian steroids bring induction of dendritic spine proliferation on serotonin neurons thus thawing a profound effect on sero-tonergic transmission. This review features 5-HT1A and 5-HT3 receptors as potential targets for ameliorating seizure-induced neurodegeneration and recurrent hypersynchronous neuronal activity. Indeed 5-HT3 receptors mediate cross-talk be-tween estrogenic and serotonergic pathways, and could be well exploited for combinatorial drug therapy against epileptogen-esis.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New-Delhi, India
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Javaid Ashraf Nowshehri
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India
| | - Dhafer Mahdi Alshayban
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
16
|
Yin G, Yao G, Zhang K, Li B. Editorial: Recent Advances in Pathophysiological Studies and Treatment of Epilepsy. Curr Neuropharmacol 2018; 16:3-4. [PMID: 29301484 PMCID: PMC5771380 DOI: 10.2174/1570159x1601171214093823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Guanghao Yin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Gang Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
17
|
Effects of Modafinil on Clonic Seizure Threshold Induced by Pentylenetetrazole in Mice: Involvement of Glutamate, Nitric oxide, GABA, and Serotonin Pathways. Neurochem Res 2018; 43:2025-2037. [DOI: 10.1007/s11064-018-2623-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 01/29/2023]
|
18
|
Pathology of nNOS-Expressing GABAergic Neurons in Mouse Model of Alzheimer's Disease. Neuroscience 2018; 384:41-53. [PMID: 29782905 DOI: 10.1016/j.neuroscience.2018.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia that is often accompanied by mood and emotional disturbances and seizures. There is growing body of evidence that neurons expressing γ-aminobutyric acid (GABA) play an important role in regulation of cognition, mood, and emotion as well as seizure susceptibility, but participation of GABAergic neuronal pathology in Alzheimer's disease (AD) is not understood well at present. Here, we report that transgenic mice expressing human amyloid precursor protein Swedish-Dutch-Iowa mutant (APPSweDI) exhibit early loss of neurons expressing GAD67, a GABA-synthesizing enzyme, in advance of the loss of pyramidal neurons in hippocampal CA1 region. The loss of GAD67+ neurons in APPSweDI mice accompanied with decreased spatial cognition as well as increased anxiety-like behaviors and kainic acid-induced seizure susceptibility at early phase. In the hippocampal CA1 region, GAD67+ neurons expressed high basal levels of neuronal nitric oxide synthase (nNOS) and nitrosative stress (nitrotyrosine). Similarly, GAD67+ neurons in primary cortical and hippocampal neuron cultures also expressed high basal levels of nNOS and degenerated in response to lower Aβ concentrations due to their high basal levels of nitrosative stress. Given the role of GABAergic neurons in cognitive and neuropsychiatric functions, this study reports the role of nNOS-mediated nitrosative stress in dysfunction of GABAergic neurons and its potential participation in early development of cognitive and neuropsychiatric symptoms in AD.
Collapse
|
19
|
Zhao H, Lin Y, Chen S, Li X, Huo H. 5-HT3 Receptors: A Potential Therapeutic Target for Epilepsy. Curr Neuropharmacol 2018; 16:29-36. [PMID: 28486926 PMCID: PMC5771379 DOI: 10.2174/1570159x15666170508170412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/23/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epilepsy is a syndrome of brain dysfunction caused by spontaneous, abnormal discharge. Many anti-epileptic drugs have developed in past decades. 5-HT is an important neurotransmitter in the central and peripheral nervous system of the human body which is involved in a number of physiological activities, such as sensation, movement, and behavior. 5-HT subtype have been divided into seven sub-groups from 5-HT1 to 5HT7. However, the role of 5-HT3 receptor on epilepsy is unclear. Therefore, in this article, the possible role of 5-HT3 receptor on epilepsy was systemically reviewed. METHODS Data were collected from Web of Science, Medline, Pubmed, Scopus, through searching of these keywords: "5-HT3" and "epilepsy". RESULTS An increasing number of studies have shown that the activation of the 5-HT3 receptor can inhibit epileptic seizures, while inhibition of the 5-HT3 receptor can promote spike waves. CONCLUSION In this review, we discuss the relationship between the 5HT3 receptor and epilepsy; this review may provide a new insight for clinical application of epilepsy treatment.
Collapse
Affiliation(s)
- Hongyan Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun130041, P.R. China
- School of Life Science Northeast Normal University, Changchun, Jilin130024, P.R. China
| | - Yang Lin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun130041, P.R. China
| | - Shurui Chen
- Jinzhou Medical University, Jinzhou 121000, P.R. China
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun130041, P.R. China
| | - Hongliang Huo
- School of Life Science Northeast Normal University, Changchun, Jilin130024, P.R. China
| |
Collapse
|
20
|
Pytka K, Socała K, Rapacz A, Nieoczym D, Pieróg M, Gryboś A, Siwek A, Waszkielewicz A, Wlaź P. HBK-14 and HBK-15, triple 5-HT 1A, 5-HT 7 and 5-HT 3 antagonists with potent antidepressant- and anxiolytic-like properties, increase seizure threshold in various seizure tests in mice. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:378-385. [PMID: 28729118 DOI: 10.1016/j.pnpbp.2017.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 02/02/2023]
Abstract
Most antidepressants lower seizure threshold, which might be due to the modulation of serotonergic neurotransmission. Here, we investigated the effects of two 5-HT1A, 5-HT7 and 5-HT3 antagonists, i.e., 1-(2-(2-(2,6-dimethylphenoxy)ethoxy)ethyl)-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-14) and 1-{2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-15), with antidepressant- and anxiolytic-like properties, on seizure thresholds in three acute seizure tests, i.e., the intravenous pentylenetetrazole, maximal electroshock seizure threshold (MEST), and 6-Hz corneal stimulation test in mice. We also evaluated their affinity for voltage-gated sodium channels. Our results indicate that HBK-14 increased seizure thresholds in three seizure tests in mice, while HBK-15 was active in the MEST and 6-Hz tests. None of the compounds affected neuromuscular strength or motor coordination at active doses. We showed that both compounds had high affinity for voltage-dependent sodium channels, which combined with the influence on 5-HT1A, 5-HT7 and 5-HT3 receptors, might underlie their anticonvulsant effects. Since most antidepressants lower the seizure threshold, the fact that both compounds with potent antidepressant-like activity, increased or had no influence on seizure threshold is worth investigating.
Collapse
Affiliation(s)
- Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Mateusz Pieróg
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Gryboś
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Anna Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
21
|
Amiri Gheshlaghi S, Mohammad Jafari R, Algazo M, Rahimi N, Alshaib H, Dehpour AR. Genistein modulation of seizure: involvement of estrogen and serotonin receptors. J Nat Med 2017; 71:537-544. [PMID: 28439683 DOI: 10.1007/s11418-017-1088-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/17/2017] [Indexed: 11/26/2022]
Abstract
Genistein, a major source of phytoestrogen exposure for humans and animals, has been shown to mediate neuroprotection in Alzheimer's disease and status epilepticus. In the present study, we investigated the effect of genistein on pentylenetetrazole-induced seizures in ovariectomized mice and the possible involvement of estrogenic and serotonergic pathways in the probable effects of genistein. Intraperitoneal (i.p.) administration of genistein (10 mg/kg) significantly increased the seizure threshold 30 min prior to induction of seizures 14 days after ovariectomy surgery. Administration of fulvestrant (1 mg/kg, i.p.), an estrogen receptor antagonist, completely reversed the anticonvulsant effect of genistein (10 mg/kg) in ovariectomized mice. Administration of the antagonist of serotonin receptor (5-HT3), tropisetron (10 mg/kg, i.p.), eliminated the anticonvulsant effect of genistein, whereas co-administration of m-chlorophenylbiguanide (5-HT3 receptor agonist; 1 mg/kg) and a non-effective dose of genistein (5 mg/kg) increased the seizure threshold. To conclude, it seems that estrogenic/serotonergic systems might be involved in the anticonvulsant properties of genistein.
Collapse
Affiliation(s)
- Saeed Amiri Gheshlaghi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Mohammad Algazo
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Hussein Alshaib
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran.
| |
Collapse
|
22
|
Chronic 5-HT3 receptor antagonism ameliorates seizures and associated memory deficit in pentylenetetrazole-kindled mice. Neuroscience 2016; 339:319-328. [DOI: 10.1016/j.neuroscience.2016.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 01/05/2023]
|
23
|
Haj-Mirzaian A, Kordjazy N, Amiri S, Haj-Mirzaian A, Amini-Khoei H, Ostadhadi S, Dehpour A. Involvement of nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tropisetron and ondansetron in mice forced swimming test and tail suspension test. Eur J Pharmacol 2016; 780:71-81. [PMID: 27001377 DOI: 10.1016/j.ejphar.2016.03.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/09/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023]
Abstract
Antidepressant-like effects of 5-hydroxytryptamine subtype 3 (5-HT3) antagonists including tropisetron and ondansetron have been previously demonstrated in the literature. It was reported that stimulation of 5-HT3 receptors activate the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, which is involved in regulation of behavioral and emotional functions. In our study, treating animals with tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01 and 0.1µg/kg) significantly decreased the immobility time in forced swimming test (FST) and tail-suspension test (TST). Co-administration of subeffective doses of tropisetron (1mg/kg) and ondansetron (0.001µg/kg) with subeffective dose of l-NAME (10mg/kg, nonselective NO synthase (NOS) inhibitor) and 7-nitroindazole (25mg/kg, neural NOS inhibitor) exerted antidepressant-like effect in FST and TST, while aminoguanidine (50mg/kg, inducible NOS inhibitor) did not enhance the antidepressant-like effect of 5-HT3 antagonists. Besides, l-arginine (750mg/kg, NO precursor) and sildenafil (5mg/kg, phosphodiesterase inhibitor) suppressed the anti-immobility effect of 5-HT3 antagonists. None of the treatments altered the locomotor behavior of mice in open-field test. Also, hippocampal (but not cortical) nitrite level was significantly lower in tropisetron and ondansetron-treated mice compared with saline-injected mice. Also, co-administration of 7-nitroindazole with tropisetron or ondansetron caused a significant decrease in hippocampal nitrite levels. In conclusion, we suggest that antidepressant-like effect of tropisetron and ondansetron are partially mediated by modulation of NO-cGMP pathway.
Collapse
Affiliation(s)
- Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Nastaran Kordjazy
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Shayan Amiri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Hossien Amini-Khoei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Sattar Ostadhadi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - AhmadReza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
24
|
Seizures and brain regulatory systems: consciousness, sleep, and autonomic systems. J Clin Neurophysiol 2016; 32:188-93. [PMID: 25233249 DOI: 10.1097/wnp.0000000000000133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Research into the physiologic underpinnings of epilepsy has revealed reciprocal relationships between seizures and the activity of several regulatory systems in the brain. This review highlights recent progress in understanding and using the relationships between seizures and the arousal or consciousness system, the sleep-wake and associated circadian system, and the central autonomic network.
Collapse
|
25
|
Zhu X, Dong J, Shen K, Bai Y, Chao J, Yao H. Neuronal nitric oxide synthase contributes to pentylenetetrazole-kindling-induced hippocampal neurogenesis. Brain Res Bull 2016; 121:138-47. [DOI: 10.1016/j.brainresbull.2016.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
|
26
|
McKean J, Watts H, Mokszycki R. Breakthrough Seizures after Starting Vilazodone for Depression. Pharmacotherapy 2015; 35:e6-8. [DOI: 10.1002/phar.1549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- James McKean
- Advocate Christ Medical Center; Oak Lawn Illinois
- Department of Emergency Medicine; Advocate Christ Medical Center; Oak Lawn Illinois
- Department of Emergency Medicine; Advocate BroMenn Medical Center; Normal Illinois
| | - Hannah Watts
- Advocate Christ Medical Center; Oak Lawn Illinois
- Department of Emergency Medicine; Advocate Christ Medical Center; Oak Lawn Illinois
| | - Robert Mokszycki
- Advocate Christ Medical Center; Oak Lawn Illinois
- Department of Pharmacy; Advocate Christ Medical Center; Oak Lawn Illinois
| |
Collapse
|
27
|
Li B, Shao D, Luo Y, Wang P, Liu C, Zhang X, Cui R. Role of 5-HT3 receptor on food intake in fed and fasted mice. PLoS One 2015; 10:e0121473. [PMID: 25789930 PMCID: PMC4366218 DOI: 10.1371/journal.pone.0121473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/16/2015] [Indexed: 12/15/2022] Open
Abstract
Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem.
Collapse
Affiliation(s)
- Bingjin Li
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
| | - Dongyuan Shao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yungang Luo
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
| | - Pu Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Changhong Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Xingyi Zhang
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
| | - Ranji Cui
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
- * E-mail:
| |
Collapse
|
28
|
Li B, Wang L, Sun Z, Zhou Y, Shao D, Zhao J, Song Y, Lv J, Dong X, Liu C, Wang P, Zhang X, Cui R. The anticonvulsant effects of SR 57227 on pentylenetetrazole-induced seizure in mice. PLoS One 2014; 9:e93158. [PMID: 24690630 PMCID: PMC3972186 DOI: 10.1371/journal.pone.0093158] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/28/2014] [Indexed: 01/13/2023] Open
Abstract
Recently, studies have shown that serotonin plays an important role in the control of seizure. However, the specific role of 5-HT receptor subtypes is not yet well described, in particular that of the 5-HT3 receptor. The present study was aimed to investigate the role of 5-HT3 receptor on the pentylenetetrazole (PTZ)-induced seizure in mice. Firstly, seizure latency was significantly prolonged by a 5-HT3 receptor agonist SR 57227 in a dose-dependent manner. Seizure score and mortality were also decreased by SR 57227 in PTZ-treated mice. Furthermore, these anticonvulsant effects of SR 57227 were inhibited by a 5-HT3 receptor antagonist ondansetron. However, ondansetron alone had no effect on seizure latency, seizure score or mortality at different doses. Immunohistochemical studies have also shown that c-Fos expression was significantly increased in hippocampus (dentate gyrus, CA1, CA3 and CA4) of PTZ-treated mice. Furthermore, c-Fos expression was significantly inhibited by ondansetron in mice treated with PTZ and SR 57227. An ELISA study showed that SR 57227 attenuated the PTZ-induced inhibitory effects of GABA levels in hippocampus and cortex, and the attenuated effects of SR 57227 were antagonized by ondansetron in hippocampus but not cortex. Our findings suggest that activation of 5-HT3 receptor by SR 57227, which plays an important role on the control of seizure induced by PTZ, may be related to GABA activity in hippocampus. Therefore, 5-HT3 receptor subtype is a potential target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Bingjin Li
- Second hospital of Jilin University, Changchun, China
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Liang Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
- * E-mail: (RC); (LW); (XZ)
| | - Zhihui Sun
- First hospital of Jilin University, Changchun, China
| | - Yang Zhou
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Dongyuan Shao
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Jing Zhao
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Yunong Song
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Jiayin Lv
- China-Japan Union Hospital, Changchun, China
| | - Xue Dong
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Changhong Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Pu Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Xingyi Zhang
- Second hospital of Jilin University, Changchun, China
- * E-mail: (RC); (LW); (XZ)
| | - Ranji Cui
- Second hospital of Jilin University, Changchun, China
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
- * E-mail: (RC); (LW); (XZ)
| |
Collapse
|
29
|
The role of different serotonin receptor subtypes in seizure susceptibility. Exp Brain Res 2013; 232:347-67. [PMID: 24232860 DOI: 10.1007/s00221-013-3757-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 10/27/2013] [Indexed: 10/26/2022]
Abstract
5-Hydroxytryptamine (5-HT) has the most diverse set of receptors in comparison with any other neurotransmitter or hormone in the body. To date, seven families of 5-HT receptors have been characterized. A great number of studies have been published regarding the role of 5-HT and its receptors in seizures. However, with a few exceptions, the net effect of activating or inhibiting each 5-HT receptor subtype on the development or severity of seizures remains controversial. Additionally, the results of studies, which have used knockout animals to investigate the role of 5-HT receptors in seizures, have sometimes been contradictory to those which have used pharmacological tools. The present study aims to review the available data regarding the influence of each receptor subtype on seizure development and, when possible, reconcile between the apparently different results obtained in these studies.
Collapse
|
30
|
Epilepsy, antiseizure therapy, and sleep cycle parameters. EPILEPSY RESEARCH AND TREATMENT 2013; 2013:670682. [PMID: 23997949 PMCID: PMC3749600 DOI: 10.1155/2013/670682] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/04/2013] [Accepted: 07/18/2013] [Indexed: 01/16/2023]
Abstract
A reciprocal relationship exists between sleep and epilepsy. The quality of sleep is affected by the presence and frequency of seizures, type of antiepileptic therapy utilized, and coexisting primary sleep disorders. Daytime somnolence is one of the most common adverse effects of antiepileptic therapy, with specific pharmacologic agents exhibiting a unique influence on components of sleep architecture. The newer generation of antiseizure drugs demonstrates improved sleep efficiency, greater stabilization of sleep architecture, prolongation of REM sleep duration, and increased quality of life measures. The emerging field of chronoepileptology explores the relationship between seizures and circadian rhythms, aiming for targeted use of antiseizure therapies to maximize therapeutic effects and minimize the adverse events experienced by the patients.
Collapse
|
31
|
Tricoire L, Vitalis T. Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits. Front Neural Circuits 2012; 6:82. [PMID: 23227003 PMCID: PMC3514612 DOI: 10.3389/fncir.2012.00082] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule crucial for many physiological processes such as synaptic plasticity, vasomotricity, and inflammation. Neuronal nitric oxide synthase (nNOS) is the enzyme responsible for the synthesis of NO by neurons. In the juvenile and mature hippocampus and neocortex nNOS is primarily expressed by subpopulations of GABAergic interneurons. Over the past two decades, many advances have been achieved in the characterization of neocortical and hippocampal nNOS expressing neurons. In this review, we summarize past and present studies that have characterized the electrophysiological, morphological, molecular, and synaptic properties of these neurons. We also discuss recent studies that have shed light on the developmental origins and specification of GABAergic neurons with specific attention to neocortical and hippocampal nNOS expressing GABAergic neurons. Finally, we summarize the roles of NO and nNOS-expressing inhibitory neurons.
Collapse
Affiliation(s)
- Ludovic Tricoire
- CNRS-UMR 7102, Laboratoire de Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie Paris, France
| | | |
Collapse
|
32
|
Zhu W, Zhang SH, Feng B, Zhong K, Yang LX, Sun HL, Zhang SP, Xu Y, Wang CY, Pan XH. Reactive astrocytes contribute to increased epileptic susceptibility induced by subthreshold dose of pilocarpine. Epilepsy Behav 2012; 25:426-30. [PMID: 23123923 DOI: 10.1016/j.yebeh.2012.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/02/2012] [Accepted: 08/18/2012] [Indexed: 01/18/2023]
Abstract
Seizures may influence epileptogenesis, but it is not yet clearly established whether subthreshold stimulations that are not sufficient to induce visible behavioral seizures change epileptic susceptibility, and the possible underlying mechanisms have not been completely understood. We assessed the susceptibility to epilepsy after subthreshold dose of pilocarpine, as well as glial fibrillary acidic protein (GFAP) expression using immunohistochemistry. An increase in the susceptibility to pentylenetetrazole (PTZ)-induced seizures was observed in rats previously subjected to subthreshold dose of pilocarpine. The immunoreactivity of GFAP was also increased, indicating that astrocytes became reactive in some brain subfields. The increased epileptic susceptibility was significantly reduced by L-alpha-aminoadipic acid (L-AAA), an inhibitor of astrocytic function. Our results suggest that subthreshold stimulation may increase the susceptibility to subsequent development of epilepsy, and reactive astrocytes might be an important contributor to this process. Adequate inhibition of astrocytic function may be a potential preventive approach against epileptogenesis.
Collapse
Affiliation(s)
- Wei Zhu
- Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan 250062, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Perrenoud Q, Rossier J, Férézou I, Geoffroy H, Gallopin T, Vitalis T, Rancillac A. Activation of cortical 5-HT(3) receptor-expressing interneurons induces NO mediated vasodilatations and NPY mediated vasoconstrictions. Front Neural Circuits 2012; 6:50. [PMID: 22907992 PMCID: PMC3415676 DOI: 10.3389/fncir.2012.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/10/2012] [Indexed: 11/17/2022] Open
Abstract
GABAergic interneurons are local integrators of cortical activity that have been reported to be involved in the control of cerebral blood flow (CBF) through their ability to produce vasoactive molecules and their rich innervation of neighboring blood vessels. They form a highly diverse population among which the serotonin 5-hydroxytryptamine 3A receptor (5-HT3A)-expressing interneurons share a common developmental origin, in addition to the responsiveness to serotonergic ascending pathway. We have recently shown that these neurons regroup two distinct subpopulations within the somatosensory cortex: Neuropeptide Y (NPY)-expressing interneurons, displaying morphological properties similar to those of neurogliaform cells and Vasoactive Intestinal Peptide (VIP)-expressing bipolar/bitufted interneurons. The aim of the present study was to determine the role of these neuronal populations in the control of vascular tone by monitoring blood vessels diameter changes, using infrared videomicroscopy in mouse neocortical slices. Bath applications of 1-(3-Chlorophenyl)biguanide hydrochloride (mCPBG), a 5-HT3R agonist, induced both constrictions (30%) and dilations (70%) of penetrating arterioles within supragranular layers. All vasoconstrictions were abolished in the presence of the NPY receptor antagonist (BIBP 3226), suggesting that they were elicited by NPY release. Vasodilations persisted in the presence of the VIP receptor antagonist VPAC1 (PG-97-269), whereas they were blocked in the presence of the neuronal Nitric Oxide (NO) Synthase (nNOS) inhibitor, L-NNA. Altogether, these results strongly suggest that activation of neocortical 5-HT3A-expressing interneurons by serotoninergic input could induces NO mediated vasodilatations and NPY mediated vasoconstrictions.
Collapse
Affiliation(s)
- Quentin Perrenoud
- Laboratoire de Neurobiologie, CNRS UMR 7637, ESPCI ParisTech Paris, France
| | | | | | | | | | | | | |
Collapse
|
34
|
5-HT(3) receptor mediates the dose-dependent effects of citalopram on pentylenetetrazole-induced clonic seizure in mice: involvement of nitric oxide. Epilepsy Res 2012; 101:217-27. [PMID: 22578701 DOI: 10.1016/j.eplepsyres.2012.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 03/21/2012] [Accepted: 04/07/2012] [Indexed: 01/05/2023]
Abstract
Citalopram is a selective serotonin reuptake inhibitor (SSRI), widely used in the treatment of depressive disorders. It has been shown that citalopram affects seizure susceptibility. Although the exact mechanism of these effects are not yet fully understood, recent data suggest that 5HT(3) receptors and nitric oxide (NO) might participate in the central effects of SSRIs. In this study in a mouse model of clonic seizure induced by pentylenetetrazole we investigated whether 5-HT(3) receptors are involved in the effects of citalopram on seizure threshold. In our experiments, citalopram at lower doses (0.5 and 1mg/kg, i.p) significantly increased the seizure threshold and at higher doses (≥25mg/kg) showed proconvulsive effects. Moreover, mCPBG (a 5-HT(3) receptor agonist) at low and non-effective doses augmented while non-effective doses of tropisetron prevented the anticonvulsive properties of citalopram. On the other hand, Low doses of nitric oxide synthase inhibitors l-NAME and 7-NI alone or in combination with lower doses of 5-HT(3) receptor agonist enhanced the anticonvulsive property of citalopram, while l-arginine (NO precursor) alone or in combination with tropisetron blocked the protective effect of citalopram. In summary, our findings demonstrate that 5-HT(3) receptor mediates the anticonvulsant properties of low doses of citalopram, whereas it seems that the proconvulsive effect is mostly mediated through the NO pathway and can be totally blocked by NOS inhibitors. This could propose a new approach toward finding the mechanism of citalopram activity, curtailing the adverse effects of citalopram and perhaps managing the convulsions as a vicious consequence of citalopram overdose.
Collapse
|
35
|
Fakhfouri G, Rahimian R, Ghia JE, Khan WI, Dehpour AR. Impact of 5-HT₃ receptor antagonists on peripheral and central diseases. Drug Discov Today 2012; 17:741-7. [PMID: 22390946 DOI: 10.1016/j.drudis.2012.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/27/2011] [Accepted: 02/15/2012] [Indexed: 12/18/2022]
Abstract
In this article we discuss the novel pharmacological aspects of 5-HT(3) receptor antagonists. Commonly used to counteract chemotherapy-induced emesis, these agents now appear to be reaching out for newer indications. Studies have reported neuroprotective and anti-inflammatory properties in vitro and in vivo. 5-HT(3) receptor antagonists can modulate the immune-inflammatory axis through blockade of 5-HT(3) receptors present on immune cells. We review evidence addressing the effects of these drugs on peripheral inflammatory diseases, including asthma, rheumatoid diseases, inflammatory bowel disease and sepsis in addition to diabetes and CNS disorders, including Alzheimer's disease (AD), seizure and stroke.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
36
|
Involvement of nitric oxide in granisetron improving effect on scopolamine-induced memory impairment in mice. Brain Res 2011; 1429:61-71. [PMID: 21875703 DOI: 10.1016/j.brainres.2011.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/27/2011] [Accepted: 08/03/2011] [Indexed: 11/23/2022]
Abstract
Granisetron, a serotonin 5-HT(3) receptor antagonist, widely used as an antiemetic drug following chemotherapy, has been found to improve learning and memory. In this study, effects of granisetron on spatial recognition memory and fear memory and the involvement of nitric oxide (NO) have been determined in a Y-maze and passive avoidance test. Granisetron (3, 10mg/kg, intraperitoneally) was administered to scopolamine-induced memory-impaired mice prior to acquisition, consolidation and retrieval phases, either in the presence or in the absence of a non-specific NO synthase inhibitor, l-NAME (3, 10mg/kg, intraperitoneally); a specific inducible NO synthase (iNOS) inhibitor, aminoguanidine (100mg/kg); and a NO precursor, l-arginine (750 mg/kg). It is demonstrated that granisetron improved memory acquisition in a dose-dependent manner, but it was ineffective on consolidation and retrieval phases of memory. The beneficial effect of granisetron (10mg/kg) on memory acquisition was significantly reversed by l-NAME (10mg/kg) and aminoguanidine (100mg/kg); however, l-arginine (750 mg/kg) did not potentiate the effect of sub-effective dose of granisetron (3mg/kg) in memory acquisition phase. It is concluded that nitric oxide is probably involved in improvement of memory acquisition by granisetron in both spatial recognition memory and fear memory. This article is part of a Special Issue entitled The Cognitive Neuroscience.
Collapse
|
37
|
Chronobiology of epilepsy: diagnostic and therapeutic implications of chrono-epileptology. J Clin Neurophysiol 2011; 28:146-53. [PMID: 21399517 DOI: 10.1097/wnp.0b013e31821213d4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The combination of chronobiology and epilepsy offers novel diagnostic and therapeutic management options. Knowledge of the interactions between circadian periodicity, entrainment, sleep patterns, and epilepsy may provide additional diagnostic options beyond sleep deprivation and extended release medication formulations. It may also provide novel insights into the physiologic, biochemical, and genetic regulation processes of epilepsy and the circadian clock, rendering new treatment options. Temporal fluctuations of seizure susceptibility based on sleep homeostasis and circadian phase in selected epilepsies may provide predictability based on mathematical models. Chrono-epileptology offers opportunities for individualized patient-oriented treatment paradigms based on chrono-pharmacology, differential medication dosing, chrono-drug delivery systems, and utilization of "zeitgebers" such as chronobiotics or light-therapy and desynchronization strategies among others.
Collapse
|
38
|
Bahremand A, Payandemehr B, Rahimian R, Ziai P, Pourmand N, Loloee S, Ebrahimi A, Ghasemi A, Fakhfouri G, Ghasemi M, Dehpour AR. The role of 5-HT(3) receptors in the additive anticonvulsant effects of citalopram and morphine on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav 2011; 21:122-7. [PMID: 21531632 DOI: 10.1016/j.yebeh.2011.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/28/2022]
Abstract
Citalopram, a selective serotonin reuptake inhibitor (SSRI), is frequently used in the treatment of major depressive disorders. In addition to its antidepressant features, citalopram shows some anticonvulsive properties at lower doses, whereas higher doses, ingested in cases of suicide, have been associated with seizures. Moreover, some reports support the enhancing effect of morphine on different responses of SSRIs such as analgesic and anticonvulsant properties. Although the exact mechanisms of these additive effects are not yet fully understood, 5-HT(3) receptor has recently been shown to play an important role in the central effects of SSRIs and morphine. In this regard, we used a model of clonic seizures induced by pentylenetetrazole (PTZ) in male NMRI mice to investigate whether morphine and citalopram exhibit additive anticonvulsant effects and, if so, whether this effect is mediated through modulation of 5-HT(3) receptors. In our study, citalopram at lower doses (0.5 and 1 mg/kg, ip) significantly increased the seizure threshold (P<0.01) and at a higher dose (50 mg/kg) had proconvulsive effects. Moreover, morphine at low and noneffective doses had additive effects on the anticonvulsive properties of citalopram. This additive effect was prevented by pretreatment with low and noneffective doses of tropisetron (a 5-HT(3) receptor antagonist) and augmented by 1-(m-chlorophenyl)-biguanide (mCPBG, a 5-HT(3) receptor agonist). Moreover, low doses of morphine (0.1 and 0.5 mg/kg) alone or in combination with potent doses of 5-HT(3) receptor agonist or antagonist could not alter the proconvulsive properties of citalopram at higher dose (50 mg/kg), ruling out the contribution of 5-HT(3) to this effect. In summary, our findings demonstrate that 5-HT(3) receptor mediates the additive anticonvulsant properties of morphine and low-dose citalopram. This could constitute a new approach to augmenting the efficacy and curtailing the adverse effects of citalopram.
Collapse
Affiliation(s)
- Arash Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|