1
|
Agarwal N, Klein W, O'Gorman Tuura R. MR Imaging of Neurofluids in the Developing Brain. Neuroimaging Clin N Am 2025; 35:287-302. [PMID: 40210384 DOI: 10.1016/j.nic.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
The different fluid compartments in the developing brain work together to facilitate the delivery of nutrients, neurotransmitters, and neuromodulators. The cerebrospinal fluid and interstitial fluid are essential for clearing macromolecules from the brain, a process that involves the recently discovered meningeal lymphatics. Disruptions in these interactions can hinder normal brain development. Additionally, alterations in systemic fluid dynamics may contribute to neurologic complications, highlighting the need for a more holistic approach to understanding and treating neurologic diseases. MR imaging techniques show potential for detecting these pathologic processes in pediatric neurologic disorders.
Collapse
Affiliation(s)
- Nivedita Agarwal
- Head of the Neuroradiology Service, Diagnostic Imaging and Neuroradiology Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini (LC), Italy.
| | - Willemijn Klein
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | | |
Collapse
|
2
|
Qiu L, Wang M, Liu S, Peng B, Hua Y, Wang J, Hu X, Qiu A, Dai Y, Jiang H. Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children. Korean J Radiol 2025; 26:485-497. [PMID: 40307202 PMCID: PMC12055269 DOI: 10.3348/kjr.2024.0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVE To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE). MATERIALS AND METHODS We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson's partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation. RESULTS In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r ≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%). CONCLUSION Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
Collapse
Affiliation(s)
- Lu Qiu
- Department of Diagnostic Radiology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China
| | - Miaoyan Wang
- Department of Diagnostic Radiology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China
| | - Surui Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Bo Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Ying Hua
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China
| | - Jianbiao Wang
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China
| | - Xiaoyue Hu
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China
| | - Anqi Qiu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Haoxiang Jiang
- Department of Diagnostic Radiology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Cho S, Song S, Yum J, Kim EH, Roh YH, Kim W, Heo K, Na HK, Kim KM. Enlarged perivascular space in the temporal lobe as a prognostic marker in temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2025; 66:1665-1676. [PMID: 39985382 PMCID: PMC12097466 DOI: 10.1111/epi.18301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE This study was undertaken to investigate the regional burden of enlarged perivascular spaces (EPVSs) in patients with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) and explore its prognostic relevance. METHODS In this retrospective observational study, EPVSs in the temporal lobe (T-EPVS), centrum semiovale (CS-EPVS), basal ganglia (BG-EPVS), midbrain, and hippocampus were visually rated in 68 treatment-naïve patients with TLE-HS. Regional EPVS burden was dichotomized into high and low degrees (cutoff: >10 for BG-EPVS/T-EPVS; >20 for CS-EPVS). Cox proportional hazards models were used to determine the potential predictors of seizure freedom (SF; no seizure for >1 year) and delayed SF (SF achieved >6 months after initiating antiseizure medication [ASM]). Multivariate logistic regression using stepwise variable selection based on the Akaike information criterion was performed to investigate whether EPVS burden was associated with medical refractoriness (never achieving SF). RESULTS Of the 68 patients, 20 were classified into the refractory group (29.4%). The high T-EPVS group had an older epilepsy onset (37.3 ± 12.3 vs. 26.5 ± 13.0 years, p = .005), higher pretreatment seizure density (median = 12.0, interquartile range [IQR] = 5.0-20.0 vs. 4.0, IQR = 2.0-10.5, p = .008), and lower focal to bilateral tonic-clonic seizure prevalence (13.3% vs. 73.6%, p < .001) than the low T-EPVS group. High T-EPVS burden (odds ratio [OR] = 10.908, 95% confidence interval [CI] = 1.895-62.789) was an independent predictor of medial refractoriness, along with female sex (OR = 12.906, 95% CI = 2.214-75.220) and ASM treatment duration (OR = .985, 95% CI = .971-.999). The low T-EPVS group had higher probability of achieving delayed SF than the high T-EPVS group (pLog-rank = .030, pCox regression = .038), whereas the probability of achieving SF was comparable between the two groups (pLog-rank = .053, pCox regression = .146). SIGNIFICANCE Increased T-EPVS burden may serve as an imaging marker of unfavorable prognosis in patients with TLE-HS, underscoring the potential role of perivascular dysfunction in diminished ASM response.
Collapse
Affiliation(s)
- Soomi Cho
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Seungwon Song
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Jungyon Yum
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Eun Hwa Kim
- Biostatistics Collaboration Unit, Department of Biomedical Systems InformaticsYonsei University College of MedicineSeoulKorea
| | - Yun Ho Roh
- Biostatistics Collaboration Unit, Department of Biomedical Systems InformaticsYonsei University College of MedicineSeoulKorea
| | - Won‐Joo Kim
- Department of NeurologyGangnam Severance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Kyoung Heo
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Han Kyu Na
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Kyung Min Kim
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| |
Collapse
|
4
|
Wang J, Xia X, Zhang B, Ma X, Shi F, Wei Y, Li L, Meng X. Association of glymphatic system dysfunction with cognitive impairment in temporal lobe epilepsy. Front Aging Neurosci 2024; 16:1459580. [PMID: 39493279 PMCID: PMC11527717 DOI: 10.3389/fnagi.2024.1459580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives To explore the relationship between glymphatic dysfunction and cognitive impairment in unilateral temporal lobe epilepsy (TLE). Methods This study retrospectively included 38 patients with unilateral TLE and 26 age- and gender-matched healthy controls (HCs). The diffusion tensor image analysis along the perivascular space (DTI-ALPS) index, choroid plexus volume (CPV), and cognitive assessment were obtained for each participant. Neuropsychological test batteries included Montreal Cognitive Assessment (MoCA), Minimum Mental State Examination, Arithmetic Test (AT), Digit Symbol Substitution Test (DSST), Digit Span Test (DST), Boston Naming Test, Block design, Phonological Fluency Test (PFT), and Semantic Verbal Fluency (SVF). Results Compared to HCs, TLE patients had lower scores of MoCA, AT, DSST, DST, Block design, PFT and SVF (all p < 0.05) and lower values of mean DTI-ALPS index (1.491 ± 0.142 vs. 1.642 ± 0.123, p < 0.001). Significantly lower DTI-ALPS index values were observed in the ipsilateral hemisphere than in the contralateral hemisphere (1.466 ± 0.129 vs. 1.517 ± 0.175, p = 0.013) for patients with unilateral TLE. Correlation analyses found that SVF performance was significantly or borderline significantly associated with glymphatic function (FDR-corrected p < 0.05 for all DTI-ALPS index and FDR-corrected p = 0.057 for CPV) in TLE patients. Linear regression analyses showed that increased CPV and decreased DTI-ALPS index were independent risk factors for semantic fluency impairment (all p < 0.05). Furthermore, mediation analyses found the mediator role of the mean DTI-ALPS index in the relationship between choroid plexus enlargement and semantic fluency impairment (indirect effect: β = -0.182, 95%CI = -0.486 to -0.037). Conclusion These findings reveal the important role of the DTI-ALPS index and CPV in SVF performance in unilateral TLE. Decreased DTI-ALPS index and increased CPV are the independent risk factors for semantic fluency impairment. The DTI-ALPS index may fully mediate the relationship between CP enlargement and SVF performance. These insights provide a radiological foundation for further investigations into the mechanism of the glymphatic system in TLE pathophysiology.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaona Xia
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Bin Zhang
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaotian Ma
- Department of Medicine Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Ying Wei
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Ling Li
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiangshui Meng
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Waymont JMJ, Valdés Hernández MDC, Bernal J, Duarte Coello R, Brown R, Chappell FM, Ballerini L, Wardlaw JM. Systematic review and meta-analysis of automated methods for quantifying enlarged perivascular spaces in the brain. Neuroimage 2024; 297:120685. [PMID: 38914212 DOI: 10.1016/j.neuroimage.2024.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Research into magnetic resonance imaging (MRI)-visible perivascular spaces (PVS) has recently increased, as results from studies in different diseases and populations are cementing their association with sleep, disease phenotypes, and overall health indicators. With the establishment of worldwide consortia and the availability of large databases, computational methods that allow to automatically process all this wealth of information are becoming increasingly relevant. Several computational approaches have been proposed to assess PVS from MRI, and efforts have been made to summarise and appraise the most widely applied ones. We systematically reviewed and meta-analysed all publications available up to September 2023 describing the development, improvement, or application of computational PVS quantification methods from MRI. We analysed 67 approaches and 60 applications of their implementation, from 112 publications. The two most widely applied were the use of a morphological filter to enhance PVS-like structures, with Frangi being the choice preferred by most, and the use of a U-Net configuration with or without residual connections. Older adults or population studies comprising adults from 18 years old onwards were, overall, more frequent than studies using clinical samples. PVS were mainly assessed from T2-weighted MRI acquired in 1.5T and/or 3T scanners, although combinations using it with T1-weighted and FLAIR images were also abundant. Common associations researched included age, sex, hypertension, diabetes, white matter hyperintensities, sleep and cognition, with occupation-related, ethnicity, and genetic/hereditable traits being also explored. Despite promising improvements to overcome barriers such as noise and differentiation from other confounds, a need for joined efforts for a wider testing and increasing availability of the most promising methods is now paramount.
Collapse
Affiliation(s)
- Jennifer M J Waymont
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK.
| | - José Bernal
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK; German Centre for Neurodegenerative Diseases (DZNE), Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | | | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| |
Collapse
|
6
|
Gao L, Li X, Li H, Zhang H, Liu X, Yang J. Associations of glymphatic function with structural network and cognition in self-limited epilepsy with centrotemporal spikes. Seizure 2024; 120:104-109. [PMID: 38941800 DOI: 10.1016/j.seizure.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
PURPOSE To investigate glymphatic function by Virchow-Robin space (VRS) counts and volume in patients with newly diagnosed self-limited epilepsy with centrotemporal spikes (SeLECTS) and evaluate its relationship with structural connectivity and cognitive impairment. METHODS Thirty-two children with SeLECTS and thirty-two age- and sex-matched typically developing (TD) children were enrolled in this study. VRS counts and volume were quantified. Structural networks were constructed and the topological metrics were analyzed. Wechsler Intelligence Scale (WISC) was used to assess cognitive function in all participants. Correlation analysis assessed the association between VRS counts and volume, network connectivity, and cognitive impairment. Mediation effects of topological metrics of the structural networks on the relationship between glymphatic function and cognitive impairment were explored. RESULTS Patients with SeLECTS showed a higher VRS counts, VRS volume, and global shortest path length (Lp); they also showed a lower global efficiency (Eg). VRS counts and volume were significantly correlated with full-scale intelligence quotient (FIQ) (r_VRS counts = -0.520, r_VRS volume = -0.639), performance intelligence quotient (PIQ) (r_VRS counts = -0.693, r_VRS volume = -0.597), verbal intelligence quotient (VIQ) (r_VRS counts = -0.713, r_VRS volume = -0.699), Eg (r_VRS counts = -0.499, r_VRS volume = -0.490), and Lp (r_VRS volume = 0.671) in patients with SeLECTS. Eg mediated 24.59% of the effects for the relationship between VRS volume and FIQ. CONCLUSION Glymphatic function may be impaired in SeLECTS reflected by VRS counts and volume. Glymphatic dysfunction may result in cognitive impairment by disrupting structural connectivity in SeLECTS.
Collapse
Affiliation(s)
- Lu Gao
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huanfa Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hua Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaohong Liu
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
7
|
Xie F, Zhou C, Jin H, Xing W, Wang D. Bilateral glymphatic dysfunction and its association with disease duration in unilateral temporal lobe epilepsy patients with hippocampal sclerosis. Epilepsy Behav 2024; 155:109777. [PMID: 38640726 DOI: 10.1016/j.yebeh.2024.109777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024]
Abstract
OBJECTIVE In this study, the diffusion tensor imaging along perivascular space analysis (DTI-ALPS) technique was utilized to evaluate the functional changes in the glymphatic system of the bilateral hemispheres in patients with unilateral temporal lobe epilepsy (TLE) accompanied by hippocampal sclerosis (HS). The aim was to gain insights into the alterations in the glymphatic system function in TLE patients. METHODS A total of 61 unilateral TLE patients with HS and 53 healthy controls (HCs) from the Department of Neurosurgery at Xiangya Hospital were included in the study. All subjects underwent DTI using the same 3 T MR Scanner, and the DTI-ALPS index was calculated. Differences in the DTI-ALPS index between TLE patients and HCs were evaluated, along with the correlation between the DTI-ALPS index of TLE and clinical features of epilepsy. These features included age, age of onset, seizure duration, and neuropsychological scores. RESULTS Compared to the bilateral means of the HCs, both the ipsilateral and contralateral DTI-ALPS index of the TLE patients were significantly decreased (TLE ipsilateral 1.41 ± 0.172 vs. HC bilateral mean: 1.49 ± 0.116, p = 0.006; TLE contralateral: 1.42 ± 0.158 vs. HC bilateral mean: 1.49 ± 0.116, p = 0.015). The ipsilateral DTI-ALPS index in TLE patients showed a significant negative correlation with disease duration (r = -0.352, p = 0.005). CONCLUSIONS The present study suggests the presence of bilateral dysfunctions in the glymphatic system and also highlight a laterality feature in these dysfunctions. Additionally, the study found a significant negative correlation between the ipsilateral DTI-ALPS index and disease duration, underscoring the significance of early effective interventions and indicating potential for the development of innovative treatments targeting the glymphatic system.
Collapse
Affiliation(s)
- Fangfang Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyao Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Li X, Lin Z, Liu C, Bai R, Wu D, Yang J. Glymphatic Imaging in Pediatrics. J Magn Reson Imaging 2024; 59:1523-1541. [PMID: 37819198 DOI: 10.1002/jmri.29040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The glymphatic system, which facilitates cerebrospinal fluid (CSF) flow through the brain parenchyma, is important for brain development and waste clearance. Advances in imaging techniques, particularly magnetic resonance imaging, have make it possible to evaluate glymphatic structures and functions in vivo. Recently, several studies have focused on the development and alterations of the glymphatic system in pediatric disorders. This review discusses the development of the glymphatic system, advances of imaging techniques and their applications in pediatric disorders. First, the results of the reviewed studies indicate that the development of the glymphatic system is a long-lasting process that continues into adulthood. Second, there is a need for improved glymphatic imaging techniques that are non-invasive and fast to improve suitability for pediatric applications, as some of existing methods use contrast injection and are susceptible to motion artifacts from long scanning times. Several novel techniques are potentially feasible for pediatric patients and may be used in the future. Third, the glymphatic dysfunction is associated with a large number of pediatric disorders, although only a few have recently been investigated. In conclusion, research on the pediatric glymphatic system remains an emerging field. The preliminary applications of glymphatic imaging techniques have provided unique insight into the pathological mechanism of pediatric diseases, but mainly limited in visualization of enlarged perivascular spaces and morphological measurements on CSF volumes. More in-depth studies on glymphatic functions are required to improve our understanding of the mechanisms underlying brain development and pediatric diseases. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zixuan Lin
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Valdés Hernández MDC, Duarte Coello R, Xu W, Bernal J, Cheng Y, Ballerini L, Wiseman SJ, Chappell FM, Clancy U, Jaime García D, Arteaga Reyes C, Zhang JF, Liu X, Hewins W, Stringer M, Doubal F, Thrippleton MJ, Jochems A, Brown R, Wardlaw JM. Influence of threshold selection and image sequence in in-vivo segmentation of enlarged perivascular spaces. J Neurosci Methods 2024; 403:110037. [PMID: 38154663 DOI: 10.1016/j.jneumeth.2023.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Growing interest surrounds perivascular spaces (PVS) as a clinical biomarker of brain dysfunction given their association with cerebrovascular risk factors and disease. Neuroimaging techniques allowing quick and reliable quantification are being developed, but, in practice, they require optimisation as their limits of validity are usually unspecified. NEW METHOD We evaluate modifications and alternatives to a state-of-the-art (SOTA) PVS segmentation method that uses a vesselness filter to enhance PVS discrimination, followed by thresholding of its response, applied to brain magnetic resonance images (MRI) from patients with sporadic small vessel disease acquired at 3 T. RESULTS The method is robust against inter-observer differences in threshold selection, but separate thresholds for each region of interest (i.e., basal ganglia, centrum semiovale, and midbrain) are required. Noise needs to be assessed prior to selecting these thresholds, as effect of noise and imaging artefacts can be mitigated with a careful optimisation of these thresholds. PVS segmentation from T1-weighted images alone, misses small PVS, therefore, underestimates PVS count, may overestimate individual PVS volume especially in the basal ganglia, and is susceptible to the inclusion of calcified vessels and mineral deposits. Visual analyses indicated the incomplete and fragmented detection of long and thin PVS as the primary cause of errors, with the Frangi filter coping better than the Jerman filter. COMPARISON WITH EXISTING METHODS Limits of validity to a SOTA PVS segmentation method applied to 3 T MRI with confounding pathology are given. CONCLUSIONS Evidence presented reinforces the STRIVE-2 recommendation of using T2-weighted images for PVS assessment wherever possible. The Frangi filter is recommended for PVS segmentation from MRI, offering robust output against variations in threshold selection and pathology presentation.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK.
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - William Xu
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - José Bernal
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yajun Cheng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Lucia Ballerini
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; University for Foreigner of Perugia, Perugia, Italy
| | - Stewart J Wiseman
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Una Clancy
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniela Jaime García
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Carmen Arteaga Reyes
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Jun-Fang Zhang
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodi Liu
- Division of Neurology, Department of Medicine, The University of Hong Kong, Hong Kong
| | - Will Hewins
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael Stringer
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Fergus Doubal
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Angela Jochems
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Hlauschek G, Nicolo J, Sinclair B, Law M, Yasuda CL, Cendes F, Lossius MI, Kwan P, Vivash L. Role of the glymphatic system and perivascular spaces as a potential biomarker for post-stroke epilepsy. Epilepsia Open 2024; 9:60-76. [PMID: 38041607 PMCID: PMC10839409 DOI: 10.1002/epi4.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023] Open
Abstract
Stroke is one of the most common causes of acquired epilepsy, which can also result in disability and increased mortality rates particularly in elderly patients. No preventive treatment for post-stroke epilepsy is currently available. Development of such treatments has been greatly limited by the lack of biomarkers to reliably identify high-risk patients. The glymphatic system, including perivascular spaces (PVS), is the brain's waste clearance system, and enlargement or asymmetry of PVS (ePVS) is hypothesized to play a significant role in the pathogenesis of several neurological conditions. In this article, we discuss potential mechanisms for the role of perivascular spaces in the development of post-stroke epilepsy. Using advanced MR-imaging techniques, it has been shown that there is asymmetry and impairment of glymphatic function in the setting of ischemic stroke. Furthermore, studies have described a dysfunction of PVS in patients with different focal and generalized epilepsy syndromes. It is thought that inflammatory processes involving PVS and the blood-brain barrier, impairment of waste clearance, and sustained hypertension affecting the glymphatic system during a seizure may play a crucial role in epileptogenesis post-stroke. We hypothesize that impairment of the glymphatic system and asymmetry and dynamics of ePVS in the course of a stroke contribute to the development of PSE. Automated ePVS detection in stroke patients might thus assist in the identification of high-risk patients for post-stroke epilepsy trials. PLAIN LANGUAGE SUMMARY: Stroke often leads to epilepsy and is one of the main causes of epilepsy in elderly patients, with no preventative treatment available. The brain's waste removal system, called the glymphatic system which consists of perivascular spaces, may be involved. Enlargement or asymmetry of perivascular spaces could play a role in this and can be visualised with advanced brain imaging after a stroke. Detecting enlarged perivascular spaces in stroke patients could help identify those at risk for post-stroke epilepsy.
Collapse
Affiliation(s)
- Gernot Hlauschek
- Division of Clinical Neuroscience, National Centre for Epilepsy, member of ERN EpicareOslo University HospitalNorway
- The University of OsloOsloNorway
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - John‐Paul Nicolo
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe AlfredMelbourneVictoriaAustralia
- Departments of Medicine and NeurologyThe University of Melbourne, Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - Benjamin Sinclair
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe AlfredMelbourneVictoriaAustralia
| | - Meng Law
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of RadiologyThe AlfredMelbourneVictoriaAustralia
| | | | | | - Morten Ingvar Lossius
- Division of Clinical Neuroscience, National Centre for Epilepsy, member of ERN EpicareOslo University HospitalNorway
- The University of OsloOsloNorway
| | - Patrick Kwan
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe AlfredMelbourneVictoriaAustralia
- Departments of Medicine and NeurologyThe University of Melbourne, Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - Lucy Vivash
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe AlfredMelbourneVictoriaAustralia
- Departments of Medicine and NeurologyThe University of Melbourne, Royal Melbourne HospitalParkvilleVictoriaAustralia
| |
Collapse
|
11
|
Parillo M, Vaccarino F, Di Gennaro G, Kumar S, Van Goethem J, Beomonte Zobel B, Quattrocchi CC, Parizel PM, Mallio CA. Overview of the Current Knowledge and Conventional MRI Characteristics of Peri- and Para-Vascular Spaces. Brain Sci 2024; 14:138. [PMID: 38391713 PMCID: PMC10886993 DOI: 10.3390/brainsci14020138] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Brain spaces around (perivascular spaces) and alongside (paravascular or Virchow-Robin spaces) vessels have gained significant attention in recent years due to the advancements of in vivo imaging tools and to their crucial role in maintaining brain health, contributing to the anatomic foundation of the glymphatic system. In fact, it is widely accepted that peri- and para-vascular spaces function as waste clearance pathways for the brain for materials such as ß-amyloid by allowing exchange between cerebrospinal fluid and interstitial fluid. Visible brain spaces on magnetic resonance imaging are often a normal finding, but they have also been associated with a wide range of neurological and systemic conditions, suggesting their potential as early indicators of intracranial pressure and neurofluid imbalance. Nonetheless, several aspects of these spaces are still controversial. This article offers an overview of the current knowledge and magnetic resonance imaging characteristics of peri- and para-vascular spaces, which can help in daily clinical practice image description and interpretation. This paper is organized into different sections, including the microscopic anatomy of peri- and para-vascular spaces, their associations with pathological and physiological events, and their differential diagnosis.
Collapse
Affiliation(s)
- Marco Parillo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Federica Vaccarino
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, Chair of Medical Statistics, University of Catanzaro "Magna Græcia", 88100 Catanzaro, Italy
| | - Sumeet Kumar
- Department of Neuroradiology, National Neuroscience Institute, Singapore 308433, Singapore
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Johan Van Goethem
- Department of Radiology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Bruno Beomonte Zobel
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Carlo Cosimo Quattrocchi
- Centre for Medical Sciences-CISMed, University of Trento, Via S. Maria Maddalena 1, 38122 Trento, Italy
| | - Paul M Parizel
- Royal Perth Hospital & University of Western Australia, Perth, WA 6000, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
12
|
Kim S, Kim SE, Lee DA, Lee H, Park KM. Anti-seizure medication response and the glymphatic system in patients with focal epilepsy. Eur J Neurol 2024; 31:e16097. [PMID: 37823697 PMCID: PMC11235655 DOI: 10.1111/ene.16097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND PURPOSE We aimed to evaluate (i) glymphatic system function in patients with focal epilepsy in comparison with healthy controls, and (ii) the association between anti-seizure medication (ASM) response and glymphatic system function by using diffusion tensor image analysis along the perivascular space (DTI-ALPS). METHODS We retrospectively enrolled 100 patients with focal epilepsy who had normal brain magnetic resonance imaging (MRI) findings, and classified them as "poor" or "good" ASM responders according to their seizure control at the time of brain MRI. We also included 79 age- and sex-matched healthy controls. All patients and healthy controls underwent conventional brain MRI and diffusion tensor imaging. The DTI-ALPS index was calculated using the DSI studio program. RESULTS Of the 100 patients with focal epilepsy, 38 and 62 were poor and good ASM responders, respectively. The DTI-ALPS index differed significantly between patients with focal epilepsy and healthy controls and was significantly lower in patients with focal epilepsy (1.55 vs. 1.70; p < 0.001). The DTI-ALPS index also differed significantly according to ASM response and was lower in poor ASM responders (1.48 vs. 1.59; p = 0.047). Furthermore, the DTI-ALPS index was negatively correlated with age (r = -0.234, p = 0.019) and duration of epilepsy (r = -0.240, p = 0.016) in patients with focal epilepsy. CONCLUSION Our study is the first to identify, in focal epilepsy patients, a greater reduction in glymphatic system function among poor ASM responders compared to good responders. To confirm our results, further prospective multicenter studies with large sample sizes are needed.
Collapse
Affiliation(s)
- Sung‐Tae Kim
- Department of NeurosugeryInje University Busan Paik HospitalBusanKorea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| | - Ho‐Joon Lee
- Department of Radiology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| |
Collapse
|
13
|
Peng T, Xie Y, Liu F, Lian Y, Xie Y, Ma Y, Wang C, Xie N. The cerebral lymphatic drainage system and its implications in epilepsy. J Neurosci Res 2024; 102:e25267. [PMID: 38284855 DOI: 10.1002/jnr.25267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/18/2023] [Accepted: 10/08/2023] [Indexed: 01/30/2024]
Abstract
The central nervous system has long been thought to lack a clearance system similar to the peripheral lymphatic system. Therefore, the clearance of metabolic waste in the central nervous system has been a subject of great interest in neuroscience. Recently, the cerebral lymphatic drainage system, including the parenchymal clearance system and the meningeal lymphatic network, has attracted considerable attention. It has been extensively studied in various neurological disorders. Solute accumulation and neuroinflammation after epilepsy impair the blood-brain barrier, affecting the exchange and clearance between cerebrospinal fluid and interstitial fluid. Restoring their normal function may improve the prognosis of epilepsy. However, few studies have focused on providing a comprehensive overview of the brain clearance system and its significance in epilepsy. Therefore, this review addressed the structural composition, functions, and methods used to assess the cerebral lymphatic system, as well as the neglected association with epilepsy, and provided a theoretical basis for therapeutic approaches in epilepsy.
Collapse
Affiliation(s)
- Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, P.R. China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, P.R. China
| | - Fengxia Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yunqing Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Cui Wang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
14
|
Ota M, Sone D, Shigemoto Y, Kimura Y, Matsuda H, Sato N. Glymphatic System Activity and Brain Morphology in Patients With Psychogenic Non-epileptic Seizures. Cureus 2024; 16:e53072. [PMID: 38410305 PMCID: PMC10896675 DOI: 10.7759/cureus.53072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND To clarify the neural correlates underlying psychogenic non-epileptic seizures (PNES), we compared glymphatic system activity between patients with PNES and healthy participants using diffusion tensor imaging (DTI)-analysis along the perivascular space (ALPS) method. METHODS The DTI scans were acquired from 16 patients with PNES and 25 healthy participants. We computed the DTI-ALPS index as an index of glymphatic system function and estimated the disease-related changes in the DTI-ALPS index and brain structures in PNES patients. RESULTS There were no significant differences in the DTI-ALPS index between patients with PNES and healthy participants. On the other hand, patients with PNES had decreased fractional anisotropy values in the bilateral posterior cingula, a higher mean diffusivity value around the left insula, and a lower gray matter volume in the bilateral amygdalae compared with healthy participants. CONCLUSIONS Patients with PNES exhibited an impairment of white matter integrity and a reduction of gray matter volume, but no glymphatic-system changes. These findings will play a significant role in our comprehension of this complex illness.
Collapse
Affiliation(s)
- Miho Ota
- Neuropsychiatry, University of Tsukuba, Tsukuba, JPN
| | - Daichi Sone
- Radiology, National Center of Neurology and Psychiatry, Kodaira, JPN
| | - Yoko Shigemoto
- Radiology, National Center of Neurology and Psychiatry, Kodaira, JPN
| | - Yukio Kimura
- Radiology, National Center of Neurology and Psychiatry, Kodaira, JPN
| | - Hiroshi Matsuda
- Radiology, National Center of Neurology and Psychiatry, Kodaira, JPN
| | - Noriko Sato
- Radiology, National Center of Neurology and Psychiatry, Kodaira, JPN
| |
Collapse
|
15
|
Zhao X, Zhou Y, Li Y, Huang S, Zhu H, Zhou Z, Zhu S, Zhu W. The asymmetry of glymphatic system dysfunction in patients with temporal lobe epilepsy: A DTI-ALPS study. J Neuroradiol 2023; 50:562-567. [PMID: 37301366 DOI: 10.1016/j.neurad.2023.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND PURPOSE While the occurrence of glymphatic system dysfunction has been observed in temporal lobe epilepsy (TLE), the potential asymmetry of this system has yet to be investigated in the TLE context. We aimed to investigate the glymphatic system function in both hemispheres and to analyze asymmetric features of the glymphatic system in TLE patients using diffusion tensor image analysis along the perivascular space (DTI-ALPS) method. MATERIALS AND METHODS 43 patients (left TLE (LTLE), n = 20; right TLE (RTLE), n = 23) and 39 healthy controls (HC) were enrolled in this study. The DTI-ALPS index was calculated for the left (left ALPS index) and right (right ALPS index) hemispheres respectively. An asymmetry index (AI) was calculated by AI = (Right - Left)/ [(Right + Left)/2] to represent the asymmetric pattern. Independent two sample t-test, two-sample paired t-test or one-way ANOVA with Bonferroni correction were conducted to compare the differences in ALPS indices and AI among the groups. RESULTS Both left ALPS index (p = 0.040) and right ALPS index (p = 0.001) of RTLE patients were significantly decreased, while only left ALPS index of LTLE patients (p = 0.005) was reduced. Compared to contralateral ALPS index, the ipsilateral ALPS index was significantly decreased in TLE (p = 0.008) and RTLE (p = 0.009) patients. Leftward asymmetry of the glymphatic system was found in HC (p = 0.045) and RTLE (p = 0.009) patients. The LTLE patients presented reduced asymmetric traits when compared to RTLE patients (p = 0.029). CONCLUSION The TLE patients exhibited altered ALPS indices, which could be triggered by glymphatic system dysfunction. Altered ALPS indices were more severe in ipsilateral than in the contralateral hemisphere. Moreover, LTLE and RTLE patients exhibited different change patterns of the glymphatic system. In addition, glymphatic system function presented asymmetric patterns in both normal adult brain and RTLE patients.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Zhang C, Xu K, Zhang H, Sha J, Yang H, Zhao H, Chen N, Li K. Recovery of glymphatic system function in patients with temporal lobe epilepsy after surgery. Eur Radiol 2023; 33:6116-6123. [PMID: 37010581 DOI: 10.1007/s00330-023-09588-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 04/04/2023]
Abstract
OBJECTIVES To investigate the recovery of human glymphatic system (GS) function in patients with temporal lobe epilepsy (TLE) after successful anterior temporal lobectomy (ATL) using diffusion tensor image analysis along the perivascular space (DTI-ALPS). METHODS We retrospectively analysed DTI-ALPS index in 13 patients with unilateral TLE before and after ATL, and compared the index with 20 healthy controls (HCs). Two-sample t tests and paired t tests were performed to analyse differences in the DTI-ALPS index between patients and HCs. The Pearson correlation analysis was used to observe the relationship between the disease duration and GS function. RESULTS The DTI-ALPS index before ATL was significantly lower in the hemisphere ipsilateral to the epileptogenic foci than in the contralateral hemisphere of the patients (p < 0.001, t = - 4.81) and in the ipsilateral hemisphere of the HCs (p = 0.007, t = - 2.90). A significant increase in the DTI-ALPS index was found in the hemisphere ipsilateral to the epileptogenic foci after successful ATL (p = 0.01, t = - 3.01). In addition, the DTI-ALPS index of the lesion side before ATL was significantly correlated with disease duration (p = 0.04, r = - 0.59). CONCLUSIONS DTI-ALPS may be used as a quantitative biomarker evaluating surgical outcomes and TLE disease duration. DTI-ALPS index may also help localise epileptogenic foci in unilateral TLE. Overall, our study suggests that GS may potentially serve as a new method for the management of TLE and a new direction for investigating the mechanism of epilepsy. KEY POINTS • DTI-ALPS index may contribute to epileptogenic foci lateralisation in TLE. • DTI-ALPS index is a potential quantitative feature evaluating surgical outcomes and TLE disease duration. • The GS provides a new perspective for the study of TLE.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China
| | - Kai Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China.
| | - Haiyan Zhang
- Department of Radiology, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221006, People's Republic of China
| | - Jingyun Sha
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China
| | - Hongyu Yang
- Department of Radiology, Luhe Hospital, Capital Medical University, Beijing, 101100, People's Republic of China
| | - Houliang Zhao
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China.
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China.
| |
Collapse
|
17
|
Sotgiu MA, Lo Jacono A, Barisano G, Saderi L, Cavassa V, Montella A, Crivelli P, Carta A, Sotgiu S. Brain perivascular spaces and autism: clinical and pathogenic implications from an innovative volumetric MRI study. Front Neurosci 2023; 17:1205489. [PMID: 37425010 PMCID: PMC10328421 DOI: 10.3389/fnins.2023.1205489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Our single-center case-control study aimed to evaluate the unclear glymphatic system alteration in autism spectrum disorder (ASD) through an innovative neuroimaging tool which allows to segment and quantify perivascular spaces in the white matter (WM-PVS) with filtering of non-structured noise and increase of the contrast-ratio between perivascular spaces and the surrounding parenchyma. Methods Briefly, files of 65 ASD and 71 control patients were studied. We considered: ASD type, diagnosis and severity level and comorbidities (i.e., intellectual disability, attention-deficit hyperactivity disorder, epilepsy, sleep disturbances). We also examined diagnoses other than ASD and their associated comorbidities in the control group. Results When males and females with ASD are included together, WM-PVS grade and WM-PVS volume do not significantly differ between the ASD group and the control group overall. We found, instead, that WM-PVS volume is significantly associated with male sex: males had higher WM-PVS volume compared to females (p = 0.01). WM-PVS dilation is also non-significantly associated with ASD severity and younger age (< 4 years). In ASD patients, higher WM-PVS volume was related with insomnia whereas no relation was found with epilepsy or IQ. Discussion We concluded that WM-PVS dilation can be a neuroimaging feature of male ASD patients, particularly the youngest and most severe ones, which may rely on male-specific risk factors acting early during neurodevelopment, such as a transient excess of extra-axial CSF volume. Our findings can corroborate the well-known strong male epidemiological preponderance of autism worldwide.
Collapse
Affiliation(s)
| | - Alessandro Lo Jacono
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giuseppe Barisano
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Laura Saderi
- Clinical Epidemiology and Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Vanna Cavassa
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Paola Crivelli
- Radiology Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alessandra Carta
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Stefano Sotgiu
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
18
|
Sugai Y, Niino K, Shibata A, Hiraka T, Kobayashi A, Suzuki K, Iseki C, Ohta Y, Kanoto M. Association between visualization of the perivascular space and morphological changes in the brain among the community-dwelling elderly. Eur J Radiol 2023; 162:110792. [PMID: 36965287 DOI: 10.1016/j.ejrad.2023.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
PURPOSE We aimed to investigate the association between perivascular space (PVS) visible on MRI and brain atrophy or morphological change using quantitative indexes. METHOD This population-based cohort study included 216 older participants. The PVS in basal ganglia (BG-PVS) and cerebral white matter (WM-PVS) was evaluated using a four-point visual rating scale. We segmented brain parenchyma and CSF, and calculated the CSF/intracranial volume ratio, which represents atrophic change. WM lesions were classified using the Fazekas scale. We introduced a new category "idiopathic normal pressure hydrocephalus (iNPH)-like conformation", which was based on two quantitative indexes: Evans index and callosal angle. The association between PVS grade and demographic or morphological factors was evaluated. RESULTS A stepwise increase in the CSF/intracranial volume ratio with BG-PVS grade progression and a stepwise decrease with WM-PVS grade progression were observed. A higher CSF/intracranial volume ratio was significantly related to a higher BG-PVS grade in a univariate analysis, but this significance disappeared in a multivariate analysis. The iNPH-like group was significantly related to a lower WM-PVS grade in a univariate analysis, and this significance remained in a multivariate analysis. CONCLUSIONS The association between BG-PVS enlargement and atrophic changes was verified. On the contrary, WM-PVS showed a different trend, and a lower WM-PVS grade was associated with an iNPH-like conformation. This result implies that the less-visible WM-PVS on imaging as well as BG-PVS enlargement would reflect abnormal brain change.
Collapse
Affiliation(s)
- Yasuhiro Sugai
- Division of Diagnostic Radiology, Department of Radiology, Yamagata University Faculty of Medicine, Japan.
| | - Kazuho Niino
- Division of Diagnostic Radiology, Department of Radiology, Yamagata University Faculty of Medicine, Japan
| | - Akiko Shibata
- Division of Diagnostic Radiology, Department of Radiology, Yamagata University Faculty of Medicine, Japan
| | - Toshitada Hiraka
- Division of Diagnostic Radiology, Department of Radiology, Yamagata University Faculty of Medicine, Japan
| | - Atsunori Kobayashi
- Division of Diagnostic Radiology, Department of Radiology, Yamagata University Faculty of Medicine, Japan
| | - Keisuke Suzuki
- Division of Diagnostic Radiology, Department of Radiology, Yamagata University Faculty of Medicine, Japan
| | - Chifumi Iseki
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University Faculty of Medicine, Japan
| | - Yasuyuki Ohta
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University Faculty of Medicine, Japan
| | - Masafumi Kanoto
- Division of Diagnostic Radiology, Department of Radiology, Yamagata University Faculty of Medicine, Japan
| |
Collapse
|
19
|
Kim J, Lee DA, Lee HJ, Park KM. Glymphatic system dysfunction in patients with occipital lobe epilepsy. J Neuroimaging 2023; 33:455-461. [PMID: 36627235 DOI: 10.1111/jon.13083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE We aimed to investigate the glymphatic system function in patients with occipital lobe epilepsy (OLE) and healthy controls using diffusion tensor image analysis along the perivascular space (DTI-ALPS) index. METHODS We retrospectively included 23 patients with OLE and 30 healthy controls. The participants underwent brain MRI, which was normal, and diffusion tensor imaging. We used the DSI Studio for data preprocessing, obtained the fiber orientation and diffusivities, and calculated the DTI-ALPS index from the diffusivity values associated with the projection and association fibers in the left hemisphere. RESULTS There were no differences in mean age (31.6 years [range: 13-58] vs. 31.3 years [range: 20-57], p = .912) and male sex ratio (10/23 [43.5%] vs. 15/30 [50.0%]) between the groups. Compared to healthy controls, the diffusivities in patients with OLE were higher along the Y-axis in the projection fiber and along the Z-axis in the association fiber and lower along the Y-axis in the association fiber. The DTI-ALPS index in patients with OLE was lower than that in the healthy controls (1.421 ± 0.171 vs. 1.667 ± 0.271, p < .001, 95% confidence interval of difference = 0.117-0.376, Test statistic t = 3.823). We found no association between the DTI-ALPS index and clinical characteristics in OLE. CONCLUSION The DTI-ALPS index in patients with OLE was significantly lower than that in healthy controls, suggesting glymphatic system dysfunction in OLE. The DTI-ALPS index could help assess the glymphatic system function in patients with epilepsy.
Collapse
Affiliation(s)
- Jinseung Kim
- Department of Family Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
20
|
Moses J, Sinclair B, Law M, O'Brien TJ, Vivash L. Automated Methods for Detecting and Quantitation of Enlarged Perivascular spaces on MRI. J Magn Reson Imaging 2023; 57:11-24. [PMID: 35866259 PMCID: PMC10083963 DOI: 10.1002/jmri.28369] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023] Open
Abstract
The brain's glymphatic system is a network of intracerebral vessels that function to remove "waste products" such as degraded proteins from the brain. It comprises of the vasculature, perivascular spaces (PVS), and astrocytes. Poor glymphatic function has been implicated in numerous diseases; however, its contribution is still unknown. Efforts have been made to image the glymphatic system to further assess its role in the pathogenesis of different diseases. Numerous imaging modalities have been utilized including two-photon microscopy and contrast-enhanced magnetic resonance imaging (MRI). However, these are associated with limitations for clinical use. PVS form a part of the glymphatic system and can be visualized on standard MRI sequences when enlarged. It is thought that PVS become enlarged secondary to poor glymphatic drainage of metabolites. Thus, quantitating PVS could be a good surrogate marker for glymphatic function. Numerous manual rating scales have been developed to measure the PVS number and size on MRI scans; however, these are associated with many limitations. Instead, automated methods have been created to measure PVS more accurately in different diseases. In this review, we discuss the imaging techniques currently available to visualize the glymphatic system as well as the automated methods currently available to measure PVS, and the strengths and limitations associated with each technique. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Jasmine Moses
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Ben Sinclair
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Meng Law
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia.,Department of Radiology, Alfred Health, Melbourne, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia.,Department of Neurology, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Lucy Vivash
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia.,Department of Neurology, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Li X, Ruan C, Wu Y, Musa M, Zibrila AI, Zhang Z, Salimeen M. Variances of quantifying of Virchow-Robin spaces detecting the different functional status of glymphatic system in simple febrile seizures affected by seizures duration. Medicine (Baltimore) 2022; 101:e32606. [PMID: 36596055 PMCID: PMC9803500 DOI: 10.1097/md.0000000000032606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Virchow-Robin spaces (VRs) in the cerebral glymphatic system play a vital role in waste clearance from the brain. Simple febrile seizures (SFS) are a common type of seizures marked by an inappropriate fluid exchange. The mechanism of evident differences in glymphatic function among SFS with varying seizure duration is unknown. Therefore, the goal of this study was to see whether there were any variations in glymphatic function among SFS based on seizures duration. We retrospectively studied 30 children with SFS lasting more than 5 minutes (SFS > 5M), 40 children with SFS lasting 5 minutes or less (SFS ≤ 5M), and 35 healthy controls aged 6 to 60 months who underwent magnetic resonance imaging (MRI). A custom-designed automated method that used T2-weighted imaging (T2WI) to segment the visible VRs. The VRs metrics were measured and compared studied groups. The VRs metrics, seizure duration the time gap between seizure onset and MRI scan were studied as well. VRs counts were lower (P < .001) in the SFS ≤ 5M (445.80 ± 66.10) and the control (430.77 ± 182.55) groups in comparison to SFS > 5M (642.70 ± 100.62). Similar results were found for VRs volume (VRsvol_SFS > 5M, 8514.63 ± 835.33mm3, VRsvol_SFS ≤ 5M, 6390.43 ± 692.74 mm3, VRsvol_control, 6048.37 ± 111.50 mm3; P < .001). However, in the SFS ≤ 5M, VRs measurements were lower than in the SFS > 5M (P < .001). VRs measurements were positively connected with seizure duration and inversely correlated with the course following seizure onset and MRI scan time in both SFS groups. SFS are positively correlated to glymphatic dysfunction since they cause enlarged VRs; additionally, VRs can be used as a biomarker in SFS > 5M and contribute to the mechanism.
Collapse
Affiliation(s)
- Xin Li
- Department of anesthesiology, School of Medicine, Yan’an University, Yanan,China
| | - Cailian Ruan
- Anatomy Department, School of Medicine, Yan’an University, Yanan City, China
| | - Yifan Wu
- MD Undergraduate Program, School of Medicine, Yan’an University, Yan’an City, China
| | - Mazen Musa
- Department of Orthodontics, Al Tegana Dental Teaching Hospital, Faculty of Dentistry, University of Science and Technology, Omdurman, Khartoum, Sudan
| | - Abdoulaye Issotina Zibrila
- Laboratory of Experimental Pharmacology, Department of Animal Physiology, Faculty of Science and Technology, University of Abomey-Calavi, Benin
| | - Zhengxiang Zhang
- Department of Pharmacology, School of Medicine, Yan’an University, Yan’an City, China
| | - Mustafa Salimeen
- Department of Radiology, Affiliated Hospital, School of Medicine, Yan’an University, Yan’an City, China
- Department of Radiology, Dongola Teaching Hospital, Faculty of Medicine and Health Sciences, University of Dongola, Dongola City, Sudan
- * Correspondence: Mustafa Salimeen, Radiology Department, Affiliated Hospital, School of Medicine, Yan’an University, Yan’an City, China (e-mail: )
| |
Collapse
|
22
|
Li X, Ruan C, Zibrila AI, Musa M, Wu Y, Zhang Z, Liu H, Salimeen M. Children with autism spectrum disorder present glymphatic system dysfunction evidenced by diffusion tensor imaging along the perivascular space. Medicine (Baltimore) 2022; 101:e32061. [PMID: 36482590 PMCID: PMC9726346 DOI: 10.1097/md.0000000000032061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study used diffusion tensor imaging (DTI) along the perivascular space (DTI-ALPS) to assess glymphatic system function in autism spectrum disorder (ASD) compared to healthy controls. Patients with ASD may have glymphatic system dysfunction, which is related to age. We retrospectively included 30 children with ASD and 25 healthy controls in this study. 3T magnetic resonance imaging scanner was used to perform DTI magnetic resonance imaging on all participants, and the DTI-ALPS index was calculated from the DTI data. Additionally, we evaluated how the DTI-ALPS index differed between the 2 groups. Moreover, we examined the relationships between the bilateral DTI-ALPS index and the age of the participants. The DTI-ALPS index considerably differed between groups. In the left index (1.02 ± 0.12 vs. 1.27 ± 0.25, P < .001) and in the right index (1.03 ± 0.12 vs. 1.32 ± 0.20, P < .001), the DTI-ALPS in ASD patients was significantly lower than that in healthy controls. Furthermore, the DTI-ALPS index was strongly and positively associated with age. In patients with ASD, there is a glymphatic system dysfunction. This is intimately correlated to age. Our findings suggest the importance of the DTI-ALPS approach in assessing the function of the glymphatic system in ASD.
Collapse
Affiliation(s)
- Xin Li
- Department of Anaesthesiology, School of Medicine, Yan’an University, Yanan, China
| | - Cailian Ruan
- Anatomy Department, School of Medicine, Yan’an University, Yanan City, China
| | - Abdoulaye Issotina Zibrila
- Laboratory of Experimental Pharmacology, Department of Animal Physiology, Faculty of Science and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Mazen Musa
- Department of Orthodontics, Al Tegana Dental Teaching Hospital, Faculty of Dentistry, University of Science and Technology, Omdurman, Sudan
| | - Yifan Wu
- MD Undergraduate Program, School of Medicine, Yan’an University, Yan’an City, China
| | - Zhengxiang Zhang
- Department of Pharmacology, School of Medicine, Yan’an University, Yan’an City, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi City, China
| | - Mustafa Salimeen
- Department of Radiology, Affiliated Hospital, School of Medicine, Yan’an University, Yan’an City, China
- Department of Radiology, Dongola Teaching Hospital Faculty of Medicine and Health Sciences, University of Dongola, Dongola, Republic of Sudan, Dongola, Sudan
- * Correspondence: Mustafa Salimeen, Radiology Department, Affiliated Hospital, School of Medicine, Yana’an University, Yan’an City, China (e-mail: )
| |
Collapse
|
23
|
Jaballah F, Romdhane I, Nasri J, Ferhi M, Bellazrag N, Saidi Y, Mannaii J. Focal epilepsy and psychosis symptoms: A case report and review of the literature. Ann Med Surg (Lond) 2022; 84:104862. [PMID: 36582880 PMCID: PMC9793167 DOI: 10.1016/j.amsu.2022.104862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/07/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background Epilepsy is still a real mental health problem; although most epilepsies are curable, their psychopathological consequences are often significant and complex to manage. In this framework, the association of epilepsy with psychotic disorders has long been known. Case presentation To discuss the links between epilepsy and psychosis, we report the observation of a 52-year-old man, treated for complex focal epilepsy, admitted to a psychiatric department for auditory and visual hallucinations and a behavioural disorder not improved by antiepileptic treatment alone or an antipsychotic alone. Discussion Psychotic symptoms in epilepsy can be part of intercritical, post-critical or alternative psychoses. In our patient's case, the psychotic symptoms were post-critical and alternative. It was probably an associated schizophreniform disorder. Emotional indifference and activity restriction are rarely encountered in this setting, while rapid mood fluctuations are frequent. Delusional themes are often mystical, fueled by auditory and unusual visual hallucinations. Negative disorders are rare. Conclusion Epileptic psychoses have not been identified as nosographic entities in the psychiatric classification systems (DSM-V and ICD-10), which poses a problem in recognizing these disorders. Therefore, a collaboration between psychiatrists and neurologists is necessary to understand this complex comorbidity better, avoid diagnostic errors, and optimize management.
Collapse
Affiliation(s)
- Fares Jaballah
- Corresponding author. Mohamed Rchid Ridha, Ksar hallal, 5070, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Bernal J, Valdés-Hernández MDC, Escudero J, Duarte R, Ballerini L, Bastin ME, Deary IJ, Thrippleton MJ, Touyz RM, Wardlaw JM. Assessment of perivascular space filtering methods using a three-dimensional computational model. Magn Reson Imaging 2022; 93:33-51. [PMID: 35932975 DOI: 10.1016/j.mri.2022.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 10/31/2022]
Abstract
Growing interest surrounds the assessment of perivascular spaces (PVS) on magnetic resonance imaging (MRI) and their validation as a clinical biomarker of adverse brain health. Nonetheless, the limits of validity of current state-of-the-art segmentation methods are still unclear. Here, we propose an open-source three-dimensional computational framework comprising 3D digital reference objects and evaluate the performance of three PVS filtering methods under various spatiotemporal imaging considerations (including sampling, motion artefacts, and Rician noise). Specifically, we study the performance of the Frangi, Jerman and RORPO filters in enhancing PVS-like structures to facilitate segmentation. Our findings were three-fold. First, as long as voxels are isotropic, RORPO outperforms the other two filters, regardless of imaging quality. Unlike the Frangi and Jerman filters, RORPO's performance does not deteriorate as PVS volume increases. Second, the performance of all "vesselness" filters is heavily influenced by imaging quality, with sampling and motion artefacts being the most damaging for these types of analyses. Third, none of the filters can distinguish PVS from other hyperintense structures (e.g. white matter hyperintensities, stroke lesions, or lacunes) effectively, the area under precision-recall curve dropped substantially (Frangi: from 94.21 [IQR 91.60, 96.16] to 43.76 [IQR 25.19, 63.38]; Jerman: from 94.51 [IQR 91.90, 95.37] to 58.00 [IQR 35.68, 64.87]; RORPO: from 98.72 [IQR 95.37, 98.96] to 71.87 [IQR 57.21, 76.63] without and with other hyperintense structures, respectively). The use of our computational model enables comparing segmentation methods and identifying their advantages and disadvantages, thereby providing means for testing and optimising pipelines for ongoing and future studies.
Collapse
Affiliation(s)
- Jose Bernal
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Maria D C Valdés-Hernández
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK; Lothian Birth Cohorts group, Department of Psychology, The University of Edinburgh, UK.
| | - Javier Escudero
- Institute for Digital Communications, The University of Edinburgh, Edinburgh, UK
| | - Roberto Duarte
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Lucia Ballerini
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK; Lothian Birth Cohorts group, Department of Psychology, The University of Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts group, Department of Psychology, The University of Edinburgh, UK
| | | | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montréal, Canada
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK; Lothian Birth Cohorts group, Department of Psychology, The University of Edinburgh, UK
| |
Collapse
|
25
|
Barisano G, Lynch KM, Sibilia F, Lan H, Shih NC, Sepehrband F, Choupan J. Imaging perivascular space structure and function using brain MRI. Neuroimage 2022; 257:119329. [PMID: 35609770 PMCID: PMC9233116 DOI: 10.1016/j.neuroimage.2022.119329] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
In this article, we provide an overview of current neuroimaging methods for studying perivascular spaces (PVS) in humans using brain MRI. In recent years, an increasing number of studies highlighted the role of PVS in cerebrospinal/interstial fluid circulation and clearance of cerebral waste products and their association with neurological diseases. Novel strategies and techniques have been introduced to improve the quantification of PVS and to investigate their function and morphological features in physiological and pathological conditions. After a brief introduction on the anatomy and physiology of PVS, we examine the latest technological developments to quantitatively analyze the structure and function of PVS in humans with MRI. We describe the applications, advantages, and limitations of these methods, providing guidance and suggestions on the acquisition protocols and analysis techniques that can be applied to study PVS in vivo. Finally, we review the human neuroimaging studies on PVS across the normative lifespan and in the context of neurological disorders.
Collapse
Affiliation(s)
- Giuseppe Barisano
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| | - Kirsten M Lynch
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Francesca Sibilia
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Haoyu Lan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Nien-Chu Shih
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| |
Collapse
|
26
|
Jiang J, Wang D, Song Y, Sachdev PS, Wen W. Computer-Aided Extraction of Select MRI Markers of Cerebral Small Vessel Disease: A Systematic Review. Neuroimage 2022; 261:119528. [PMID: 35914668 DOI: 10.1016/j.neuroimage.2022.119528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a major vascular contributor to cognitive impairment in ageing, including dementias. Imaging remains the most promising method for in vivo studies of CSVD. To replace the subjective and laborious visual rating approaches, emerging studies have applied state-of-the-art artificial intelligence to extract imaging biomarkers of CSVD from MRI scans. We aimed to summarise published computer-aided methods for the examination of three imaging biomarkers of CSVD, namely cerebral microbleeds (CMB), dilated perivascular spaces (PVS), and lacunes of presumed vascular origin. Seventy classical image processing, classical machine learning, and deep learning studies were identified. Transfer learning and weak supervision techniques have been applied to accommodate the limitations in the training data. While good performance metrics were achieved in local datasets, there have not been generalisable pipelines validated in different research and/or clinical cohorts. Future studies could consider pooling data from multiple sources to increase data size and diversity, and evaluating performance using both image processing metrics and associations with clinical measures.
Collapse
Affiliation(s)
- Jiyang Jiang
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia.
| | - Dadong Wang
- Quantitative Imaging Research Team, Data61, CSIRO, Marsfield, NSW 2122, Australia
| | - Yang Song
- School of Computer Science and Engineering, University of New South Wales, NSW 2052, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| |
Collapse
|
27
|
Lee DA, Lee J, Park KM. Glymphatic system impairment in patients with status epilepticus. Neuroradiology 2022; 64:2335-2342. [PMID: 35835880 DOI: 10.1007/s00234-022-03018-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The aim of this study was to compare the function of the glymphatic system in patients with status epilepticus (SE) with that in healthy controls by diffusion tensor image analysis along the perivascular space (DTI-ALPS) method. We also investigated the association between glymphatic system function and the clinical characteristics of SE. METHODS We retrospectively enrolled 28 patients with SE and 31 healthy controls matched for age and sex. All study participants underwent diffusion tensor imaging using the same 3-T MRI scanner, and the DTI-ALPS index was calculated. We compared the DTI-ALPS index between the SE group and the control group. We also evaluated the associations of the DTI-ALPS index with etiology and type of SE, age, putative duration of seizure, time interval until MRI, seizure-related changes on diffusion-weighted imaging, and any previous structural lesions. RESULTS The DTI-ALPS index was significantly lower in the SE group than in the control group (1.462 ± 0.297 vs. 1.632 ± 0.270, p = 0.026) and was negatively correlated with age (r = - 0.280, p = 0.032) in the SE group. However, there were no significant between-group differences in the DTI-ALPS index according to other clinical factors. SIGNIFICANCE The finding of a significantly lower DTI-ALPS index in the SE group suggests that the glymphatic system is impaired in patients with SE. DTI-ALPS is a useful tool for evaluation of the function of the glymphatic system in these patients.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Korea
| | - Joonwon Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Korea.
| |
Collapse
|
28
|
Ozturk K, Nascene D. Dentate nucleus signal intensity changes on T1-weighted MRI after repeated administrations of linear and macrocyclic gadolinium-based contrast agents: a pediatric intraindividual case-control study. Acta Radiol 2022; 63:914-922. [PMID: 34018821 DOI: 10.1177/02841851211018809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND An association between consecutive administrations of macrocyclic gadolinium-based contrast agent (mcGBCA) gadobutrol and linear (L)-GBCA gadopentetate dimeglumine and gadolinium retention in the pediatric brain remains incompletely understood. PURPOSE To compare signal intensity (SI) changes in the dentate nucleus (DN) on unenhanced T1-weighted imaging (T1WI) in children who obtained mcGBCA gadobutrol with those who had previously received L-GBCA gadopentetate dimeglumine. MATERIAL AND METHODS This retrospective study included 27 children who received L-GBCA gadopentetate dimeglumine followed by mcGBCA gadobutrol and two different control groups matched for age and sex for both periods, each involving 27 individuals with no GBCA administration from January 2010 to January 2020. DN-to-middle cerebellar peduncle (MCP) SI ratios on T1WI were determined. A repeated-measures ANOVA was performed to compare the T1WI SI ratio between children exposed to GBCA in each of the two periods and controls. Pearson correlation analysis was conducted to determine any correlation between SI ratios and confounding parameters. RESULTS T1WI SI ratio was significantly higher in those who had only L-GBCA (1.005±0.087) or subsequent mcGBCA gadobutrol (1.002±0.104) than in control groups 1 (0.927±0.041; P<0.001) and 2 (0.930±0.041; P=0.002), respectively, but no significant difference of the T1WI SI ratio was noted between L-GBCA period and subsequent mcGBCA gadobutrol period (P=0.917). T1WI SI ratios and the L-GBCA administration number revealed a modest but significant correlation (correlation coefficient=0.034; P=0.016). CONCLUSION Previous administration of gadopentetate dimeglumine is associated with increased T1WI SI in the DN, while subsequent administration of gadobutrol does not demonstrate any additional SI increase in the pediatric brain.
Collapse
Affiliation(s)
- Kerem Ozturk
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - David Nascene
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Lee DA, Park BS, Ko J, Park SH, Lee YJ, Kim IH, Park JH, Park KM. Glymphatic system dysfunction in temporal lobe epilepsy patients with hippocampal sclerosis. Epilepsia Open 2022; 7:306-314. [PMID: 35305294 PMCID: PMC9159256 DOI: 10.1002/epi4.12594] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/10/2022] Open
Abstract
Objective This study aimed to evaluate glymphatic system function in temporal lobe epilepsy (TLE) patients with hippocampal sclerosis (HS) in comparison to healthy controls, using diffusion tensor imaging (DTI)‐analysis along the perivascular space (ALPS) method. We hypothesized that there is glymphatic system dysfunction in TLE patients with HS. Methods We retrospectively enrolled 25 TLE patients with HS and 26 age‐ and sex‐matched healthy controls. All participants underwent DTI with the same 3T magnetic resonance imaging scanner, and the DTI‐ALPS index was calculated. We evaluated the differences in the DTI‐ALPS index between TLE patients with HS and healthy controls. Moreover, we evaluated the correlation between the DTI‐ALPS index and clinical characteristics of epilepsy, including age, age at seizure onset, duration of epilepsy, and number of anti‐seizure medications (ASMs). Results There was a difference in the DTI‐ALPS index between TLE patients with HS and healthy controls. The DTI‐ALPS index in TLE patients with HS was lower than that in healthy controls (1.497 vs. 1.668, P = .015). However, there was no difference in the DTI‐ALPS index between the newly diagnosed TLE patients with HS and the chronic TLE patients with HS. The DTI‐ALPS index was negatively correlated with age (r = −0.420, P = .036). However, the DTI‐ALPS index was not correlated with other clinical characteristics, including age at seizure onset, duration of epilepsy, and number of ASMs. Significance Our findings showed that the DTI‐ALPS index was significantly lower in TLE patients with HS than in healthy controls, indicating the presence of glymphatic system dysfunction in TLE patients with HS. Our study also suggests that the DTI‐ALPS method may be useful for evaluating glymphatic system function in epilepsy.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Bong Soo Park
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Junghae Ko
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Si Hyung Park
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Yoo Jin Lee
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Il Hwan Kim
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jin Han Park
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
30
|
Lee DA, Park BS, Ko J, Park SH, Park JH, Kim IH, Lee YJ, Park KM. Glymphatic system function in patients with newly diagnosed focal epilepsy. Brain Behav 2022; 12:e2504. [PMID: 35107879 PMCID: PMC8933756 DOI: 10.1002/brb3.2504] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 01/01/2022] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The aim of this study was to analyze the glymphatic system function and its relationship with clinical characteristics, global diffusion tensor imaging (DTI) parameters, and global structural connectivity in treatment-naïve patients with newly diagnosed focal epilepsy. METHODS This retrospective single-center study investigated patients with focal epilepsy and healthy controls. All participants underwent routine brain magnetic resonance imaging and DTI. DTI analysis along the perivascular space (DTI-ALPS) was used to evaluate glymphatic system function. We also calculated the measures of global DTI parameters, including whole-brain fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), and performed a graph theoretical network analysis to measure global structural connectivity. RESULTS A total of 109 patients with focal epilepsy and 88 healthy controls were analyzed. There were no significant differences in the DTI-ALPS index (1.67 vs. 1.68, p = 0.861) between the groups. However, statistically significant associations were found between the DTI-ALPS index and age (r = -0.242, p = 0.01), FA (r = 0.257, p = 0.007), MD (r = -0.469, p < 0.001), AD (r = -0.303, p = 0.001), RD (r = -0.434, p < 0.001), and the assortative coefficient (r = 0.230, p = 0.016) in patients with focal epilepsy. CONCLUSION The main finding of this study is that DTI-ALPS index is significantly correlated with global DTI parameters and structural connectivity measures of the brain in patients with focal epilepsy. In addition, DTI-ALPS index decreases with age in these patients. We conclude that the DTI-ALPS index can be used to investigate glymphatic system function in patients with focal epilepsy.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Bong Soo Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Junghae Ko
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Si Hyung Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jin-Han Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Il Hwan Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Yoo Jin Lee
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
31
|
Zhang Z, Zhou H, Liu X, Liu L, Shu S, Fang F. Identification of the clinical and neuroimaging characteristics in children with neuromyelitis optica spectrum disorders: a case series. Transl Pediatr 2021; 10:2459-2466. [PMID: 34765469 PMCID: PMC8578765 DOI: 10.21037/tp-21-370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Childhood neuromyelitis optica spectrum disorders (NMOSDs) may cause visual impairment and brain or spinal cord damage, and the effects may be permanent if left untreated. Since the incidence of NMOSD cases in children is relatively low, the understanding of NMOSD among children is inadequate. METHODS This investigation examined the clinical and neuroimaging characteristics of childhood NMOSD. We retrospectively analyzed the clinical information of 11 NMOSD patients admitted to our centre from 2012 to 2021. The disease status was assessed by the Expanded Disability Status Scale (EDSS) score. RESULTS The two major symptoms observed in the study cohort were optic neuritis (ON) (9/11) and encephalopathy (7/11). Antibody tests were performed on 8 children, 2 of whom showed serum aquaporin 4 (AQP4) antibody positivity, and another 2 presented with serum myelin oligodendrocyte glycoprotein (MOG) antibody positivity. All patients showed white matter hyperintensity on magnetic resonance imaging (MRI) scans. Interestingly, a rare radiological sign, enlarged perivascular space (PVS), which is more commonly observed in the elderly or adults, was found in 4 participants with more severe clinical manifestations. CONCLUSIONS While NMOSD in children is less commonly diagnosed through clinical evaluations, the symptoms of ON and encephalopathy should raise the possibility of the disease. As the diagnosis of NMOSD in children is relatively difficult, enlarged PVS may represent a promising biomarker for the diagnosis and evaluation of NMOSD.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Paediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Zhou
- Department of Paediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinglou Liu
- Department of Paediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Liu
- Department of Paediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sainan Shu
- Department of Paediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Fang
- Department of Paediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Lee HJ, Lee DA, Shin KJ, Park KM. Glymphatic system dysfunction in patients with juvenile myoclonic epilepsy. J Neurol 2021; 269:2133-2139. [PMID: 34510256 DOI: 10.1007/s00415-021-10799-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The glymphatic system is a glial cell-dependent waste clearance pathway in the brain that is essential for the maintenance of brain homeostasis. In this study, we evaluated glymphatic system function in patients with juvenile myoclonic epilepsy (JME) compared with healthy controls. METHODS Patients with JME and healthy controls were retrospectively enrolled in this study. All the participants underwent brain diffusion tensor imaging (DTI). The "DTI-analysis along the perivascular space (ALPS)"-index was calculated to evaluate the glymphatic system function of the participants. The ALPS-indices of the patients with JME were compared with those of the healthy controls. In addition, the correlations between ALPS-index and the clinical characteristics of the patients with JME were analyzed to validate changes in glymphatic system function. RESULTS A total of 39 patients with JME and 38 healthy controls were enrolled in this study. The mean ALPS- index of the patients with JME was significantly lower than that of the healthy controls (1.541 vs. 1.653, p = 0.041). ALPS-index was negatively correlated with age in patients with JME (r = -0.375, p = 0.018). However, ALPS-index was not correlated with age at onset, duration of epilepsy, or anti-seizure medication load in patients with JME. CONCLUSION This study is the first in which the ALPS method was used to demonstrate that patients with JME have significant glymphatic system dysfunction. The results also show that glymphatic system index is negatively correlated with age in patients with JME, a finding which demonstrates that the glymphatic system function of patients with JME gradually declines with age. The ALPS-index might be a potential biomarker for monitoring glymphatic system function in patients with epilepsy.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea
| | - Kyong Jin Shin
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea.
| |
Collapse
|
33
|
Raitamaa L, Huotari N, Korhonen V, Helakari H, Koivula A, Kananen J, Kiviniemi V. Spectral analysis of physiological brain pulsations affecting the BOLD signal. Hum Brain Mapp 2021; 42:4298-4313. [PMID: 34037278 PMCID: PMC8356994 DOI: 10.1002/hbm.25547] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Physiological pulsations have been shown to affect the global blood oxygen level dependent (BOLD) signal in human brain. While these pulsations have previously been regarded as noise, recent studies show their potential as biomarkers of brain pathology. We used the extended 5 Hz spectral range of magnetic resonance encephalography (MREG) data to investigate spatial and frequency distributions of physiological BOLD signal sources. Amplitude spectra of the global image signals revealed cardiorespiratory envelope modulation (CREM) peaks, in addition to the previously known very low frequency (VLF) and cardiorespiratory pulsations. We then proceeded to extend the amplitude of low frequency fluctuations (ALFF) method to each of these pulsations. The respiratory pulsations were spatially dominating over most brain structures. The VLF pulsations overcame the respiratory pulsations in frontal and parietal gray matter, whereas cardiac and CREM pulsations had this effect in central cerebrospinal fluid (CSF) spaces and major blood vessels. A quasi‐periodic pattern (QPP) analysis showed that the CREM pulsations propagated as waves, with a spatiotemporal pattern differing from that of respiratory pulsations, indicating them to be distinct intracranial physiological phenomenon. In conclusion, the respiration has a dominant effect on the global BOLD signal and directly modulates cardiovascular brain pulsations.
Collapse
Affiliation(s)
- Lauri Raitamaa
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Niko Huotari
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Vesa Korhonen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Heta Helakari
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Anssi Koivula
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Janne Kananen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Vesa Kiviniemi
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| |
Collapse
|
34
|
Salimeen MSA, Liu C, Li X, Wang M, Singh M, Si S, Li M, Cheng Y, Wang X, Zhao H, Wu F, Zhang Y, Tafawa H, Pradhan A, Yang G, Yang J. Exploring Variances of White Matter Integrity and the Glymphatic System in Simple Febrile Seizures and Epilepsy. Front Neurol 2021; 12:595647. [PMID: 33967932 PMCID: PMC8097149 DOI: 10.3389/fneur.2021.595647] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Simple febrile seizures (SFS) and epilepsy are common seizures in childhood. However, the mechanism underlying SFS is uncertain, and the presence of obvious variances in white matter (WM) integrity and glymphatic function between SFS and epilepsy remain unclear. Therefore, this study aimed to investigate the differences in WM integrity and glymphatic function between SFS and epilepsy. Material and Methods: We retrospectively included 26 children with SFS, 33 children with epilepsy, and 28 controls aged 6–60 months who underwent magnetic resonance imaging (MRI). Tract-based spatial statistics (TBSS) were used to compare the diffusion tensor imaging (DTI) metrics of WM among the above-mentioned groups. T2-weighted imaging (T2WI) was used to segment the visible Virchow-Robin space (VRS) through a custom-designed automated method. VRS counts and volume were quantified and compared among the SFS, epilepsy, and control groups. Correlations of the VRS metrics and seizure duration and VRS metrics and the time interval between seizure onset and MRI scan were also investigated. Results: In comparison with controls, children with SFS showed no significant changes in fractional anisotropy (FA), axial diffusivity (AD), or radial diffusivity (RD) in the WM (P > 0.05). Decreased FA, unchanged AD, and increased RD were observed in the epilepsy group in comparison with the SFS and control groups (P < 0.05). Meanwhile, VRS counts were higher in the SFS and epilepsy groups than in the control group (VRS_SFS, 442.42 ± 74.58, VRS_epilepsy, 629.94 ± 106.55, VRS_control, 354.14 ± 106.58; P < 0.001), and similar results were found for VRS volume (VRS_SFS, 6,228.18 ± 570.74 mm3, VRS_epilepsy, 9,684.84 ± 7,292.66mm3, VRS_control, 4,007.22 ± 118.86 mm3; P < 0.001). However, VRS metrics were lower in the SFS group than in the epilepsy group (P < 0.001). In both SFS and epilepsy, VRS metrics positively correlated with seizure duration and negatively correlated with the course after seizure onset. Conclusion: SFS may not be associated with WM microstructural disruption; however, epilepsy is related to WM alterations. Seizures are associated with glymphatic dysfunction in either SFS or epilepsy.
Collapse
Affiliation(s)
- Mustafa Salimeen Abdelkareem Salimeen
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiology, Dongola Teaching Hospital, University of Dongola, Dongola, Sudan
| | - Congcong Liu
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xianjun Li
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Wang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Martha Singh
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuqing Si
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengxuan Li
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yannan Cheng
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyu Wang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huifang Zhao
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Wu
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuli Zhang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Habib Tafawa
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Anuja Pradhan
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanyu Yang
- School of Electronic Engineering, Xidian University, Xi'an, China
| | - Jian Yang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
35
|
Piantino J, Boespflug EL, Schwartz DL, Luther M, Morales AM, Lin A, Fossen RV, Silbert L, Nagel BJ. Characterization of MR Imaging-Visible Perivascular Spaces in the White Matter of Healthy Adolescents at 3T. AJNR Am J Neuroradiol 2020; 41:2139-2145. [PMID: 33033050 PMCID: PMC7658833 DOI: 10.3174/ajnr.a6789] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE Perivascular spaces play a role in cerebral waste removal and neuroinflammation. Our aim was to provide data regarding the burden of MR imaging-visible perivascular spaces in white matter in healthy adolescents using an automated segmentation method and to establish relationships between common demographic characteristics and perivascular space burden. MATERIALS AND METHODS One hundred eighteen 12- to 21-year-old subjects underwent T1- and T2-weighted 3T MR imaging as part of the National Consortium on Alcohol and Neurodevelopment in Adolescence. Perivascular spaces were identified in WM on T2-weighted imaging using a local heterogeneity approach coupled with morphologic constraints, and their spatial distribution and geometric characteristics were assessed. RESULTS MR imaging-visible perivascular spaces were identified in all subjects (range, 16-287). Males had a significantly higher number of perivascular spaces than females: males, mean, 98.4 ± 50.5, versus females, 70.7 ± 36.1, (P < .01). Perivascular space burden was bilaterally symmetric (r > 0.4, P < .01), and perivascular spaces were more common in the frontal and parietal lobes than in the temporal and occipital lobes (P < .01). Age and pubertal status were not significantly associated with perivascular space burden. CONCLUSIONS Despite a wide range of burden, perivascular spaces are present in all healthy adolescents. Perivascular space burden is higher in adolescent males than in females, regardless of age and pubertal status. In this population, perivascular spaces are highly symmetric. Although widely reported as a feature of the aging brain, awareness of the presence of perivascular spaces in a cohort of healthy adolescents provides the foundation for further research regarding the role of these structural variants in health and disease.
Collapse
Affiliation(s)
- J Piantino
- From the Department of Pediatrics (J.P., M.L.), Division of Child Neurology, Doernbecher Children's Hospital
| | - E L Boespflug
- Department of Neurology (E.L.B., D.L.S., L.S.), Layton Aging and Alzheimer's Disease Center
| | - D L Schwartz
- Department of Neurology (E.L.B., D.L.S., L.S.), Layton Aging and Alzheimer's Disease Center
- Advanced Imaging Research Center (D.L.S.)
| | - M Luther
- From the Department of Pediatrics (J.P., M.L.), Division of Child Neurology, Doernbecher Children's Hospital
| | - A M Morales
- Department of Psychiatry (A.M.M., R.V.F., B.J.N.)
| | - A Lin
- Department of Emergency Medicine (A.L.), Center for Policy and Research in Emergency Medicine
| | - R V Fossen
- Department of Psychiatry (A.M.M., R.V.F., B.J.N.)
| | - L Silbert
- Department of Neurology (E.L.B., D.L.S., L.S.), Layton Aging and Alzheimer's Disease Center
- Department of Neurology (L.S.), Portland Veterans Affairs Medical Center, Portland, Oregon
| | - B J Nagel
- Department of Psychiatry (A.M.M., R.V.F., B.J.N.)
| |
Collapse
|
36
|
Hennig J, Kiviniemi V, Riemenschneider B, Barghoorn A, Akin B, Wang F, LeVan P. 15 Years MR-encephalography. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:85-108. [PMID: 33079327 PMCID: PMC7910380 DOI: 10.1007/s10334-020-00891-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Objective This review article gives an account of the development of the MR-encephalography (MREG) method, which started as a mere ‘Gedankenexperiment’ in 2005 and gradually developed into a method for ultrafast measurement of physiological activities in the brain. After going through different approaches covering k-space with radial, rosette, and concentric shell trajectories we have settled on a stack-of-spiral trajectory, which allows full brain coverage with (nominal) 3 mm isotropic resolution in 100 ms. The very high acceleration factor is facilitated by the near-isotropic k-space coverage, which allows high acceleration in all three spatial dimensions. Methods The methodological section covers the basic sequence design as well as recent advances in image reconstruction including the targeted reconstruction, which allows real-time feedback applications, and—most recently—the time-domain principal component reconstruction (tPCR), which applies a principal component analysis of the acquired time domain data as a sparsifying transformation to improve reconstruction speed as well as quality. Applications Although the BOLD-response is rather slow, the high speed acquisition of MREG allows separation of BOLD-effects from cardiac and breathing related pulsatility. The increased sensitivity enables direct detection of the dynamic variability of resting state networks as well as localization of single interictal events in epilepsy patients. A separate and highly intriguing application is aimed at the investigation of the glymphatic system by assessment of the spatiotemporal patterns of cardiac and breathing related pulsatility. Discussion MREG has been developed to push the speed limits of fMRI. Compared to multiband-EPI this allows considerably faster acquisition at the cost of reduced image quality and spatial resolution.
Collapse
Affiliation(s)
- Juergen Hennig
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Bruno Riemenschneider
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Antonia Barghoorn
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burak Akin
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fei Wang
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre LeVan
- Departments of Radiology and Paediatrics, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|