1
|
Poudel S, Pokhrel D, Zhang X, Sukumaran AT, Adhikari P, Kiess AS, Macklin KS, Zhang L. Campylobacter jejuni from no antibiotics ever (NAE) broilers: prevalence, antibiotic resistance, and virulence genes analysis. Poult Sci 2024; 103:104380. [PMID: 39418794 PMCID: PMC11532556 DOI: 10.1016/j.psj.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Campylobacter jejuni (C. jejuni) is a leading foodborne illness causing bacteria, and poultry is a major reservoir of this pathogen. With the recent increase in broiler production under the "no antibiotics ever" (NAE) system, this study aimed to assess the prevalence, antibiotic resistance, and virulence characteristics of C. jejuni isolated from NAE raised broilers. A total of 270 cloacal swabs were collected from the live-hang areas of 3 commercial processing plants over 9 wk. Each processing plant was visited 3 times at a 1-wk interval, and 30 samples were collected per visit. Among the total 270 cloacal swab samples, C. jejuni was isolated from 44 (16.3%) samples . Of these isolates, 65.9% possessed toxin-producing genes cdtA, cdtB, and cdtC, and invasion gene ciaB. The prevalence of antibioitc resistance genes aph (3')-IIIa, erm(B) were 59.1%, and 50%, respectively. Nine (20.45%) C. jejuni isolates were identified as multidrug resistant (MDR), and 18 (40.9%) isolates showed resistance to at least 1 tested antibiotic. The highest resistance was observed against tetracycline (29.5%), followed by nalidixic acid (25%), whereas 22.7% of isolates were resistant to 2 clinically important antibiotics, azithromycin and ciprofloxacin. These results suggest that there ishigh prevalence level of multi-drug resistant C. jejuni with toxin producing virulence genes in the NAE-raised broilers sampled in this study, indicating the potential for serious human illnesses if transmitted through the food chain.
Collapse
Affiliation(s)
- Sabin Poudel
- Department of Poultry Science, Mississippi State University, MS, 39762, USA; Department of Poultry Science, Auburn University, Auburn, AL, 36849, USA
| | - Diksha Pokhrel
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| | - Xue Zhang
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, MS, 39762, USA
| | | | - Pratima Adhikari
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| | - Aaron S Kiess
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Kenneth S Macklin
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, MS, 39762, USA.
| |
Collapse
|
2
|
Shafiee D, Salpynov Z, Gusmanov A, Khuanbai Y, Mukhatayev Z, Kunz J. Enteric Infection-Associated Reactive Arthritis: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:3433. [PMID: 38929962 PMCID: PMC11205162 DOI: 10.3390/jcm13123433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Background. The objective of this systematic review and meta-analysis was to estimate the proportions of individuals infected with Campylobacter, Escherichia, Salmonella, Shigella, or Yersinia who develop reactive arthritis. Methods. A systematic review was conducted, encompassing English-language articles published before January 2024, sourced from the Embase, PubMed, Scopus, and Web of Science databases. This review included observational studies that reported the occurrence of reactive arthritis (ReA) among patients with Campylobacter, Escherichia, Salmonella, Shigella, or Yersinia infections. Data extraction was carried out independently by two reviewers. Subsequently, a random-effects meta-analysis was performed, with heterogeneity assessed using the I2 value. Additionally, meta-regression was employed to investigate the potential influence of study-level variables on the observed heterogeneity. Results. A total of 87 studies were identified; 23 reported on ReA development after Campylobacter infection, 7 reported on ReA after Escherichia infection, 30 reported ReA onset after salmonellosis, 14 reported ReA after shigellosis, and 13 reported ReA after Yersinia infection. The proportion of Campylobacter patients who developed ReA was 0.03 (95% CI [0.01, 0.06], I2 = 97.62%); the proportion of Escherichia patients who developed ReA was 0.01 (95% CI [0.00, 0.06], I2 = 92.78%); the proportion of Salmonella patients was 0.04 (95% CI [0.02, 0.08], I2 = 97.67%); the proportion of Shigella patients was 0.01 (95% CI [0.01, 0.03], I2 = 90.64%); and the proportion of Yersinia patients who developed ReA was 0.05 (95% CI [0.02, 0.13], I2 = 96%). Conclusion. A significant proportion of Salmonella, Shigella, and Yersinia cases resulted in ReA. Nonetheless, it is important to interpret the findings cautiously due to the substantial heterogeneity observed between studies.
Collapse
Affiliation(s)
- Darya Shafiee
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 020000, Kazakhstan; (D.S.); (Z.S.); (A.G.); (Z.M.)
| | - Zhandos Salpynov
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 020000, Kazakhstan; (D.S.); (Z.S.); (A.G.); (Z.M.)
| | - Arnur Gusmanov
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 020000, Kazakhstan; (D.S.); (Z.S.); (A.G.); (Z.M.)
| | | | - Zhussipbek Mukhatayev
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 020000, Kazakhstan; (D.S.); (Z.S.); (A.G.); (Z.M.)
- National Laboratory Astana, Astana 020000, Kazakhstan;
| | - Jeannette Kunz
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 020000, Kazakhstan; (D.S.); (Z.S.); (A.G.); (Z.M.)
| |
Collapse
|
3
|
Zhang Z, Yan Y, Pang J, Dai L, Zhang Q, Yu EW. Structural basis of DNA recognition of the Campylobacter jejuni CosR regulator. mBio 2024; 15:e0343023. [PMID: 38323832 PMCID: PMC10936212 DOI: 10.1128/mbio.03430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Campylobacter jejuni is a foodborne pathogen commonly found in the intestinal tracts of animals. This pathogen is a leading cause of gastroenteritis in humans. Besides its highly infectious nature, C. jejuni is increasingly resistant to a number of clinically administrated antibiotics. As a consequence, the Centers for Disease Control and Prevention has designated antibiotic-resistant Campylobacter as a serious antibiotic resistance threat in the United States. The C. jejuni CosR regulator is essential to the viability of this bacterium and is responsible for regulating the expression of a number of oxidative stress defense enzymes. Importantly, it also modulates the expression of the CmeABC multidrug efflux system, the most predominant and clinically important system in C. jejuni that mediates resistance to multiple antimicrobials. Here, we report structures of apo-CosR and CosR bound with a 21 bp DNA sequence located at the cmeABC promotor region using both single-particle cryo-electron microscopy and X-ray crystallography. These structures allow us to propose a novel mechanism for CosR regulation that involves a long-distance conformational coupling and rearrangement of the secondary structural elements of the regulator to bind target DNA. IMPORTANCE Campylobacter jejuni has emerged as an antibiotic-resistant threat worldwide. CosR is an essential regulator for this bacterium and is important for Campylobacter adaptation to various stresses. Here, we describe the structural basis of CosR binding to target DNA as determined by cryo-electron microscopy and X-ray crystallography. Since CosR is a potential target for intervention, our studies may facilitate the development of novel therapeutics to combat C. jejuni infection.
Collapse
Affiliation(s)
- Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yuqi Yan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jinji Pang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Lei Dai
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Homayonia S, Ling CC. Epoxide-Mediated Trans-Thioglycosylation and Application to the Synthesis of Oligosaccharides Related to the Capsular Polysaccharides of C. jejuni HS:4. Chemistry 2024; 30:e202303753. [PMID: 38215247 DOI: 10.1002/chem.202303753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/14/2024]
Abstract
The enzyme-resistant thioglycosides are highly valuable immunogens because of their enhanced metabolic stability. We report the first synthesis of a family of thiooligosaccharides related to the capsular polysaccharides (CPS) of Campylobacter jejuni HS:4 for potential use in conjugate vaccines. The native CPS structures of the pathogen consist of a challenging repeating disaccharide formed with β(1→4)-linked 6-deoxy-β-D-ido-heptopyranoside and N-acetyl-D-glucosamine; the rare 6-deoxy-ido-heptopyranosyl backbone and β-anomeric configuration of the former monosaccharide makes the synthesis of this family of antigens very challenging. So far, no synthesis of the thioanalogs of the CPS antigens have been reported. The unprecedented synthesis presented in this work is built on an elegant approach by using β-glycosylthiolate as a glycosyl donor to open the 2,3-epoxide functionality of pre-designed 6-deoxy-β-D-talo-heptopyranosides. Our results illustrated that this key trans-thioglycosylation can be designed in a modular and regio and stereo-selective manner. Built on the success of this novel approach, we succeeded the synthesis of a family of thiooligosaccharides including a thiohexasaccharide which is considered to be the desired antigen length and complexity for immunizations. We also report the first direct conversion of base-stable but acid-labile 2-trimethylsilylethyl glycosides to glycosyl-1-thioacetates in a one-pot manner.
Collapse
Affiliation(s)
- Saba Homayonia
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
5
|
Strakova N, Michova H, Shagieva E, Ovesna P, Karpiskova R, Demnerova K. Genotyping of Campylobacter jejuni and prediction tools of its antimicrobial resistance. Folia Microbiol (Praha) 2024; 69:207-219. [PMID: 37816942 PMCID: PMC10876727 DOI: 10.1007/s12223-023-01093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
Although Campylobacter jejuni is the pathogen responsible for the most common foodborne illness, tracing of the infection source remains challenging due to its highly variable genome. Therefore, one of the aim of the study was to compare three genotyping methods (MLST, PFGE, and mP-BIT) to determine the most effective genotyping tool. C. jejuni strains were divided into 4 clusters based on strain similarity in the cgMLST dendrogram. Subsequently, the dendrograms of the 3 tested methods were compared to determine the accuracy of each method compared to the reference cgMLST method. Moreover, a cost-benefit analysis has showed that MLST had the highest inverse discrimination index (97%) and required less workflow, time, fewer consumables, and low bacterial sample quantity. PFGE was shown to be obsolete both because of its low discriminatory power and the complexity of the procedure. Similarly, mP‑BIT showed low separation results, which was compensated by its high availability. Therefore, our data showed that MLST is the optimal tool for genotyping C. jejuni. Another aim was to compare the antimicrobial resistance to ciprofloxacin, erythromycin, and tetracycline in C. jejuni strains isolated from human, water, air, food, and animal samples by two gene sequence-based prediction methods and to compare them with the actual susceptibility of C. jejuni strains using the disc diffusion method. Both tools, ResFinder and RGI, synchronously predict the antimicrobial susceptibility of C. jejuni and either can be used.
Collapse
Affiliation(s)
- Nicol Strakova
- Veterinary Research Institute, Hudcova 296/70, Brno, Czech Republic.
| | - Hana Michova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Ekaterina Shagieva
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Petra Ovesna
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Renata Karpiskova
- Department of Public Health, Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Katerina Demnerova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
6
|
Thota VN, Lowary TL. Synthesis of 6-deoxy-d-ido-heptopyranose-containing fragments of the Campylobacter jejuni strain CG8486 capsular polysaccharide. Carbohydr Res 2024; 536:109058. [PMID: 38354653 DOI: 10.1016/j.carres.2024.109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Campylobacters are important causes of gastrointestinal illness and the capsular polysaccharides (CPS) they produce are key virulence factors and targets for vaccine development. We report here the synthesis of two fragments of the Campylobacter jejuni CG8486 strain CPS that contain a rare 6-deoxy-d-ido-heptopyranose residue and, in one target, two O-methyl phosphoramidate (MeOPN) motifs. The synthetic approach features the stereoselective construction of the β-d-ido-heptopyranoside linkage via glycosylation with a β-d-galacto-heptopyranoside donor followed by a one-pot sequential C-2 and C-3 inversion. During the syntheses, we uncovered a number of interesting conformational effects with regard to the 6-deoxy-ido-heptopyranose ring, the glycosidic linkage connecting the two monosaccharides, and the MeOPN groups.
Collapse
Affiliation(s)
- V Narasimharao Thota
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada; Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei, 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Section 4, #1, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
7
|
Kreling V, Falcone FH, Herrmann F, Kemper L, Amiteye D, Cord-Landwehr S, Kehrenberg C, Moerschbacher BM, Hensel A. High molecular/low acetylated chitosans reduce adhesion of Campylobacter jejuni to host cells by blocking JlpA. Appl Microbiol Biotechnol 2024; 108:171. [PMID: 38265503 PMCID: PMC10810038 DOI: 10.1007/s00253-024-13000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
Infections caused by Campylobacter spp. are a major cause of severe enteritis worldwide. Multifactorial prevention strategies are necessary to reduce the prevalence of Campylobacter. In particular, antiadhesive strategies with specific inhibitors of early host-pathogen interaction are promising approaches to reduce the bacterial load. An in vitro flow cytometric adhesion assay was established to study the influence of carbohydrates on the adhesion of C. jejuni to Caco-2 cells. Chitosans with a high degree of polymerization and low degree of acetylation were identified as potent antiadhesive compounds, exerting significant reduction of C. jejuni adhesion to Caco-2 cells at non-toxic concentrations. Antiadhesive and also anti-invasive effects were verified by confocal laser scanning microscopy. For target identification, C. jejuni adhesins FlpA and JlpA were expressed in Escherichia coli ArcticExpress, and the influence of chitosan on binding to fibronectin and HSP90α, respectively, was investigated. While no effects on FlpA binding were found, a strong inhibition of JlpA-HSP90α binding was observed. To simulate real-life conditions, chicken meat was inoculated with C. jejuni, treated with antiadhesive chitosan, and the bacterial load was quantified. A strong reduction of C. jejuni load was observed. Atomic force microscopy revealed morphological changes of C. jejuni after 2 h of chitosan treatment, indicating disturbance of the cell wall and sacculi formation by electrostatic interaction of positively charged chitosan with the negatively charged cell surface. In conclusion, our data indicate promising antiadhesive and anti-invasive potential of high molecular weight, strongly de-acetylated chitosans for reducing C. jejuni load in livestock and food production. KEY POINTS: • Antiadhesive effects of chitosan with high DP/low DA against C. jejuni to host cells • Specific targeting of JlpA/Hsp90α interaction by chitosan • Meat treatment with chitosan reduces C. jejuni load.
Collapse
Affiliation(s)
- Vanessa Kreling
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, Justus Liebig University Giessen, Schubertstraße 81, 35392, Giessen, Germany
| | - Fabian Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Daniel Amiteye
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Stefan Cord-Landwehr
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Corinna Kehrenberg
- Institute of Veterinary Food Science, Justus Liebig University Giessen, Frankfurter Straße 92, 35392, Giessen, Germany
| | - Bruno M Moerschbacher
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
8
|
Heimesaat MM, Schabbel N, Langfeld LQ, Shayya NW, Mousavi S, Bereswill S. Prophylactic Oral Application of Activated Charcoal Mitigates Acute Campylobacteriosis in Human Gut Microbiota-Associated IL-10 -/- Mice. Biomolecules 2024; 14:141. [PMID: 38397378 PMCID: PMC10886519 DOI: 10.3390/biom14020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The incidence of human Campylobacter jejuni infections is increasing worldwide. It is highly desirable to prevent campylobacteriosis in individuals at risk for severe disease with antibiotics-independent non-toxic compounds. Activated charcoal (AC) has long been used as an anti-diarrheal remedy. Here, we tested the disease-mitigating effects of oral AC versus placebo in human gut microbiota-associated (hma) IL-10-/- mice starting a week prior to C. jejuni infection. On day 6 post-infection, the gastrointestinal C. jejuni loads were comparable in both infected cohorts, whereas campylobacteriosis symptoms such as wasting and bloody diarrhea were mitigated upon AC prophylaxis. Furthermore, AC application resulted in less pronounced C. jejuni-induced colonic epithelial cell apoptosis and in dampened innate and adaptive immune cell responses in the colon that were accompanied by basal concentrations of pro-inflammatory mediators including IL-6, TNF-α, IFN-γ, and nitric oxide measured in colonic explants from AC treated mice on day 6 post-infection. Furthermore, C. jejuni infection resulted in distinct fecal microbiota shift towards higher enterobacterial numbers and lower loads of obligate anaerobic species in hma mice that were AC-independent. In conclusion, our pre-clinical placebo-controlled intervention study provides evidence that prophylactic oral AC application mitigates acute murine campylobacteriosis.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Zhang Z, Lizer N, Wu Z, Morgan CE, Yan Y, Zhang Q, Yu EW. Cryo-Electron Microscopy Structures of a Campylobacter Multidrug Efflux Pump Reveal a Novel Mechanism of Drug Recognition and Resistance. Microbiol Spectr 2023; 11:e0119723. [PMID: 37289051 PMCID: PMC10434076 DOI: 10.1128/spectrum.01197-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Campylobacter jejuni is a bacterium that is commonly present in the intestinal tracts of animals. It is also a major foodborne pathogen that causes gastroenteritis in humans. The most predominant and clinically important multidrug efflux system in C. jejuni is the CmeABC (Campylobacter multidrug efflux) pump, a tripartite system that includes an inner membrane transporter (CmeB), a periplasmic fusion protein (CmeA), and an outer membrane channel protein (CmeC). This efflux protein machinery mediates resistance to a number of structurally diverse antimicrobial agents. A recently identified CmeB variant, termed resistance enhancing CmeB (RE-CmeB), can increase its multidrug efflux pump activity, likely by influencing antimicrobial recognition and extrusion. Here, we report structures of RE-CmeB in its apo form as well as in the presence of four different drugs by using single-particle cryo-electron microscopy (cryo-EM). Coupled with mutagenesis and functional studies, this structural information allows us to identify critical amino acids that are important for drug resistance. We also report that RE-CmeB utilizes a somewhat unique subset of residues to bind different drugs, thereby optimizing its ability to accommodate different compounds with distinct scaffolds. These findings provide insights into the structure-function relationship of this newly emerged antibiotic efflux transporter variant in Campylobacter. IMPORTANCE Campylobacter jejuni has emerged as one of the most problematic and highly antibiotic-resistant pathogens, worldwide. The Centers for Disease Control and Prevention have designated antibiotic-resistant C. jejuni as a serious antibiotic resistance threat in the United States. We recently identified a C. jejuni resistance enhancing CmeB (RE-CmeB) variant that can increase its multidrug efflux pump activity and confers an exceedingly high-level of resistance to fluoroquinolones. Here, we report the cryo-EM structures of this prevalent and clinically important C. jejuni RE-CmeB multidrug efflux pump in both the absence and presence of four antibiotics. These structures allow us to understand the action mechanism for multidrug recognition in this pump. Our studies will ultimately inform an era in structure-guided drug design to combat multidrug resistance in these Gram-negative pathogens.
Collapse
Affiliation(s)
- Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Nicholas Lizer
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Zuowei Wu
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yuqi Yan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Kemper L, Hensel A. Campylobacter jejuni: targeting host cells, adhesion, invasion, and survival. Appl Microbiol Biotechnol 2023; 107:2725-2754. [PMID: 36941439 PMCID: PMC10027602 DOI: 10.1007/s00253-023-12456-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Campylobacter jejuni, causing strong enteritis, is an unusual bacterium with numerous peculiarities. Chemotactically controlled motility in viscous milieu allows targeted navigation to intestinal mucus and colonization. By phase variation, quorum sensing, extensive O-and N-glycosylation and use of the flagellum as type-3-secretion system C. jejuni adapts effectively to environmental conditions. C. jejuni utilizes proteases to open cell-cell junctions and subsequently transmigrates paracellularly. Fibronectin at the basolateral side of polarized epithelial cells serves as binding site for adhesins CadF and FlpA, leading to intracellular signaling, which again triggers membrane ruffling and reduced host cell migration by focal adhesion. Cell contacts of C. jejuni results in its secretion of invasion antigens, which induce membrane ruffling by paxillin-independent pathway. In addition to fibronectin-binding proteins, other adhesins with other target structures and lectins and their corresponding sugar structures are involved in host-pathogen interaction. Invasion into the intestinal epithelial cell depends on host cell structures. Fibronectin, clathrin, and dynein influence cytoskeletal restructuring, endocytosis, and vesicular transport, through different mechanisms. C. jejuni can persist over a 72-h period in the cell. Campylobacter-containing vacuoles, avoid fusion with lysosomes and enter the perinuclear space via dynein, inducing signaling pathways. Secretion of cytolethal distending toxin directs the cell into programmed cell death, including the pyroptotic release of proinflammatory substances from the destroyed cell compartments. The immune system reacts with an inflammatory cascade by participation of numerous immune cells. The development of autoantibodies, directed not only against lipooligosaccharides, but also against endogenous gangliosides, triggers autoimmune diseases. Lesions of the epithelium result in loss of electrolytes, water, and blood, leading to diarrhea, which flushes out mucus containing C. jejuni. Together with the response of the immune system, this limits infection time. Based on the structural interactions between host cell and bacterium, the numerous virulence mechanisms, signaling, and effects that characterize the infection process of C. jejuni, a wide variety of targets for attenuation of the pathogen can be characterized. The review summarizes strategies of C. jejuni for host-pathogen interaction and should stimulate innovative research towards improved definition of targets for future drug development. KEY POINTS: • Bacterial adhesion of Campylobacter to host cells and invasion into host cells are strictly coordinated processes, which can serve as targets to prevent infection. • Reaction and signalling of host cell depend on the cell type. • Campylobacter virulence factors can be used as targets for development of antivirulence drug compounds.
Collapse
Affiliation(s)
- Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
11
|
Zingre T, Bagatella S, Wenker C, Kittl S, Meli ML, Wyss F, Grau-Roma L. Fatal gastritis and enterocolitis due to concurrent Helicobacter pylori and Campylobacter jejuni infection in a captive cheetah (Acinonyxjubatus). J Comp Pathol 2023; 201:81-86. [PMID: 36745967 DOI: 10.1016/j.jcpa.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 02/05/2023]
Abstract
A 3.5-year-old female cheetah (Acinonyx jubatus) died after a 10-day history of anorexia, regurgitation and diarrhoea despite symptomatic therapy. At gross post-mortem examination, the stomach was blood-filled with mucosal thickening and multifocal ulcerations. The intestinal mucosa was thickened and reddened, and the intestinal lumen was filled with dark red to black pasty content. Gastric histological lesions were compatible with gastritis due to Helicobacter infection, which was confirmed by polymerase chain reaction. Histology of the intestines revealed a severe necrotizing neutrophilic enterocolitis with abundant intralesional curved to spiral bacteria, corresponding to Campylobacter jejuni, which were subsequently isolated from both small and large intestinal contents. No other intestinal pathogens were detected despite thorough investigations. These findings suggest that C. jejuni may have played an aetiological role in the enterocolitis. Such an association has not been previously reported in non-domestic felids.
Collapse
Affiliation(s)
- Tatiana Zingre
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Stefano Bagatella
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Sonja Kittl
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marina L Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Llorenç Grau-Roma
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Abstract
Spondyloarthropathies, also known as spondyloarthritis, encompasses a spectrum of diseases classified by it's axial and peripheral musculoskeletal manifestations. Extra-articular features are common in SpA making these systemic rheumatologic diseases involve the skin, eye, gut, and other organ systems.Research has identified risk factors for the development of spondyloarthritis, particularly regarding genetic susceptibility and the strong association with HLA-B27. Multiple studies have elucidated clinical risk factors associated with SpA disease activity and severity. In this review, we aim to explore the environmental risk factors for spondyloarthritis.
Collapse
Affiliation(s)
- Yvette Farran
- Division of Rheumatology, Department of Internal Medicine, John P. and Kathrine G. McGovern School of Medicine at The University of Texas Health Science Center at Houston, 6431 Fannin MSB 5.270, Houston, TX 77030, USA
| | - John Reveille
- Division of Rheumatology, Department of Internal Medicine, John P. and Kathrine G. McGovern School of Medicine at The University of Texas Health Science Center at Houston, 6431 Fannin MSB 5.270, Houston, TX 77030, USA
| | - Mark Hwang
- Division of Rheumatology, Department of Internal Medicine, John P. and Kathrine G. McGovern School of Medicine at The University of Texas Health Science Center at Houston, 6431 Fannin MSB 5.270, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Riegert AS, Narindoshvili T, Platzer NE, Raushel FM. Functional Characterization of a HAD Phosphatase Involved in Capsular Polysaccharide Biosynthesis in Campylobacter jejuni. Biochemistry 2022; 61:2431-2440. [PMID: 36214481 PMCID: PMC9633586 DOI: 10.1021/acs.biochem.2c00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni is a Gram-negative, pathogenic bacterium found in the intestinal tracts of chickens and many other farm animals. C. jejuni infection results in campylobacteriosis, which can cause nausea, diarrhea, fever, cramps, and death. The surface of the bacterium is coated with a thick layer of sugar known as the capsular polysaccharide. This highly modified polysaccharide contains an unusual d-glucuronamide moiety in serotypes HS:2 and HS:19. Previously, we have demonstrated that a phosphorylated glucuronamide intermediate is synthesized in C. jejuni NCTC 11168 (serotype HS:2) by cumulative reactions of three enzymes: Cj1441, Cj1436/Cj1437, and Cj1438. Cj1441 functions as a UDP-d-glucose dehydrogenase to make UDP-d-glucuronate; then Cj1436 or Cj1437 catalyzes the formation of ethanolamine phosphate or S-serinol phosphate, respectively, and finally Cj1438 catalyzes amide bond formation using d-glucuronate and either ethanolamine phosphate or S-serinol phosphate. Here, we investigated the final d-glucuronamide-modifying enzyme, Cj1435. Cj1435 was shown to catalyze the hydrolysis of the phosphate esters from either the d-glucuronamide of ethanolamine phosphate or S-serinol phosphate. Kinetic constants for a range of substrates were determined, and the stereoselectivity of the enzyme for the hydrolysis of glucuronamide of S-serinol phosphate was established using 31P nuclear magnetic resonance spectroscopy. A bioinformatic analysis of Cj1435 reveals it to be a member of the HAD phosphatase superfamily with a unique DXXE catalytic motif.
Collapse
Affiliation(s)
- Alexander S. Riegert
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Tamari Narindoshvili
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Nicole E. Platzer
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Frank M. Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, United States
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| |
Collapse
|
15
|
Stein RA. Campylobacter jejuni and Postinfectious Autoimmune Diseases: A Proof of Concept in Glycobiology. ACS Infect Dis 2022; 8:1981-1991. [PMID: 36137262 DOI: 10.1021/acsinfecdis.2c00397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glycans, one of the most diverse groups of macromolecules, are ubiquitous constituents of all cells and have many critical functions, including the interaction between microbes and their hosts. One of the best model organisms to study the host-pathogen interaction, the gastrointestinal pathogen Campylobacter jejuni dedicates extensive resources to glycosylation and exhibits a diverse array of surface sugar-coated displays. The first bacterium where N-linked glycosylation was described, C. jejuni can additionally modify proteins by O-linked glycosylation, has extracellular capsular polysaccharides that are important for virulence and represent the major determinant of the Penner serotyping scheme, and has outer membrane lipooligosaccharides that participate in processes such as colonization, survival, inflammation, and immune evasion. In addition to causing gastrointestinal disease and extraintestinal infections, C. jejuni was also linked to postinfectious autoimmune neuropathies, of which Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS) are the most extensively characterized ones. These postinfectious autoimmune neuropathies occur when specific bacterial surface lipooligosaccharides mimic gangliosides in the host nervous system. C. jejuni provided the first proof of concept for the involvement of molecular mimicry in the pathogenesis of an autoimmune disease and, also, for the ability of a bacterial polymorphism to shape the clinical presentation of the postinfectious autoimmune neuropathy. The scientific journey that culminated with elucidating the mechanistic details of the C. jejuni-GBS link was the result of contributions from several fields, including microbiology, structural biology, glycobiology, genetics, and immunology and provides an inspiring and important example to interrogate other instances of molecular mimicry and their involvement in autoimmune disease.
Collapse
Affiliation(s)
- Richard A Stein
- Industry Associate Professor NYU Tandon School of Engineering, Department of Chemical and Biomolecular Engineering, 6 MetroTech Center, Brooklyn, New York 11201, United States
| |
Collapse
|
16
|
Hou Z, Wang J, Zhang X, Wang P, Song N, Li M. Synthesis of a conjugable hexasaccharide corresponding to the capsular polysaccharide of Campylobacter jejuni strain BH0142. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Poudel S, Li T, Chen S, Zhang X, Cheng WH, Sukumaran AT, Kiess AS, Zhang L. Prevalence, Antimicrobial Resistance, and Molecular Characterization of Campylobacter Isolated from Broilers and Broiler Meat Raised without Antibiotics. Microbiol Spectr 2022; 10:e0025122. [PMID: 35536038 PMCID: PMC9241809 DOI: 10.1128/spectrum.00251-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/18/2022] [Indexed: 12/28/2022] Open
Abstract
Campylobacter is one of the main bacterial pathogens that cause campylobacteriosis in the United States. Poultry is considered a major reservoir for the transmission of Campylobacter to humans. This study aimed to determine the prevalence and molecular characteristics of Campylobacter in the no-antibiotics-ever (NAE) broilers. A total of 414 samples were collected, among which 160 retail chicken samples were purchased from grocery stores and 254 samples were collected from broiler farms located in Mississippi State. The overall prevalence of Campylobacter was 25.4%, and a significantly higher prevalence was observed in retail chicken than in the farm samples (36.3% versus 18.5%; P < 0.0001), respectively. The prevalence of Campylobacter was not different (P = 0.263) between conventional retail (40.0%) and NAE (31.4%) retail chicken. Campylobacter jejuni was the predominant species among the positive isolates, accounting for 78.1%. Among the 82 C. jejuni isolates, 52.4% of the isolates carried the gyrA gene followed by the tet(O) gene (14.6%), whereas toxin-producing genes cdtA, cdtB, and cdtC were carried by 43.9%, 46.3%, and 43.9%, respectively. However, none of these virulence genes were detected in C. jejuni isolated from litter samples. Among tested C. jejuni, 13.6% of the isolates were multidrug resistant. The highest resistance was observed against nalidixic acid (49.2%), followed by tetracycline (23.7%). Our study suggests that the prevalence of Campylobacter was higher in retail meat samples than in environmental samples obtained from farms, and there was no difference in Campylobacter prevalence among conventional and NAE retail chicken. IMPORTANCE The FDA antibiotic withdrawal policy has led to a shift in the production system, from conventional antibiotics fed birds to no antibiotics ever (NAE) raised birds. However, the impact of this shift to NAE on the prevalence and characteristics of Campylobacter has not been studied on the farm or in retail chicken meats. The objective of this study was to determine the current prevalence of Campylobacter and the distribution of their antimicrobial resistance and virulence genes in NAE-raised broilers. The findings of this study will help the industry to take necessary action to develop effective mitigation strategies for reducing Campylobacter contamination in NAE broilers.
Collapse
Affiliation(s)
- Sabin Poudel
- Department of Poultry Science, Mississippi State University, Mississippi State, Mississippi, USA
| | - Tianmin Li
- Department of Poultry Science, Mississippi State University, Mississippi State, Mississippi, USA
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Saijuan Chen
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
- Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Baoding, Hebei, China
| | - Xue Zhang
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, Mississippi, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, Mississippi, USA
| | - Anuraj T. Sukumaran
- Department of Poultry Science, Mississippi State University, Mississippi State, Mississippi, USA
| | - Aaron S. Kiess
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
18
|
Ananthanathorn P, Sukharomana M, Charuvanij S. Clinical profiles of post-infectious arthritis and transient synovitis of the hip in children. Pediatr Int 2022; 64:e15237. [PMID: 35938590 DOI: 10.1111/ped.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/09/2021] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Acute inflammatory arthritides can present as a result of immune reaction following infections. Post-infectious arthritis and transient synovitis of the hip in children are included in this disease entity. The aim of this study was to describe the clinical profiles of post-infectious arthritis and transient synovitis of the hip in Thai children. METHODS A retrospective review was performed at a tertiary care hospital in Bangkok, Thailand from January 2005 to July 2017. RESULTS Eighty-six patients (56 boys and 30 girls) were included in this study. Mean age was 8.4 ± 4.8 years. Reactive arthritis was diagnosed in two patients (2.3%) following Salmonella spp. and Chlamydia trachomatis infections. Post-streptococcal reactive arthritis was present in 10 patients (11.6%). Transient synovitis of the hip was found in 30 patients (34.9%). Forty-four patients (51.2%) were clinically diagnosed with post-infectious arthritis. Mono/oligoarthritis was the most common clinical profile (84.9%). The distribution of lower-extremity involvement was as follows: hip, 47.6%; knee, 46.5%; and ankle joints, 30.2%. The documented preceding illness consisted mostly of upper respiratory tract symptoms (30.2%). Non-steroidal anti-inflammatory drugs were prescribed for 70 patients (81.4%). CONCLUSION Mono/oligoarthritis of the lower extremity was the main clinical profile. Preceding viral illness was documented in one-third of children. Reactive arthritis was rarely seen.
Collapse
Affiliation(s)
- Paween Ananthanathorn
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Maynart Sukharomana
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Charuvanij
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Vohra P, Chintoan-Uta C, Bremner A, Mauri M, Terra VS, Cuccui J, Wren BW, Vervelde L, Stevens MP. Evaluation of a Campylobacter jejuni N-glycan-ExoA glycoconjugate vaccine to reduce C. jejuni colonisation in chickens. Vaccine 2021; 39:7413-7420. [PMID: 34799141 DOI: 10.1016/j.vaccine.2021.10.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 01/10/2023]
Abstract
Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide and handling or consumption of contaminated poultry meat is the key source of infection. Glycoconjugate vaccines containing the C. jejuni N-glycan have been reported to be partially protective in chickens. However, our previous studies with subunit vaccines comprising the C. jejuni FlpA or SodB proteins with up to two or three C. jejuni N-glycans, respectively, failed to elicit significant protection. In this study, protein glycan coupling technology was used to add up to ten C. jejuni N-glycans onto a detoxified form of Pseudomonas aeruginosa exotoxin A (ExoA). The glycoprotein, G-ExoA, was evaluated for efficacy against intestinal colonisation of White Leghorn chickens by C. jejuni strains M1 and 11168H relative to unglycosylated ExoA. Chickens were challenged with the minimum dose required for reliable colonisation, which was 102 colony-forming units (CFU) for strain M1 and and 104 CFU for strain 11168H. Vaccine-specific serum IgY was detected in chickens vaccinated with both ExoA and G-ExoA. However, no reduction in caecal colonisation by C. jejuni was observed. While the glycan dose achieved with G-ExoA was higher than FlpA- or SodB-based glycoconjugates that were previously evaluated, it was lower than that of glycoconjugates where protection against C. jejuni has been reported, indicating that protection may be highly sensitive to the amount of glycan presented and/or study-specific variables.
Collapse
Affiliation(s)
- Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom; Institute for Immunology and Infection Research, School of Biological Sciences, Charlotte Auerbach Road, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Abi Bremner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Marta Mauri
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Vanessa S Terra
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Jon Cuccui
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | | |
Collapse
|
20
|
Chantzaras AP, Karageorgos S, Panagiotou P, Georgiadou E, Chousou T, Spyridopoulou K, Paradeisis G, Kanaka-Gantenbein C, Botsa E. Myocarditis in a Pediatric Patient with Campylobacter Enteritis: A Case Report and Literature Review. Trop Med Infect Dis 2021; 6:tropicalmed6040212. [PMID: 34941668 PMCID: PMC8707348 DOI: 10.3390/tropicalmed6040212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Myocarditis represents a potential complication of various infectious and noninfectious agents and a common diagnostic challenge for clinicians. Data regarding Campylobacter-associated myocarditis are limited. Here, a case of a 13-year-old female with Campylobacter jejuni gastroenteritis complicated by myocarditis is presented, followed by a literature review in order to retrieve information about Campylobacter-associated carditis in the pediatric population. A search on MEDLINE/PubMed yielded 7relevant cases in the last 20 years. Most of them (six/seven) were males and the mean age was 16.1 years. All patients presented with gastrointestinal symptoms followed in six/seven cases by chest pain within two to seven days. Campylobacter was isolated from stool cultures in six patients; abnormal electrocardiographic findings were detected in six; and abnormal echocardiographic findings in three of the cases. Five patients were treated with antibiotics. Full recovery was the clinical outcome in six patients, whereas one patient died. Concerning the nonspecific symptoms of patients with myocarditis, high clinical suspicion of this complication is necessary in cases where patients with a recent infection present with chest pain and elevated cardiac biomarkers.
Collapse
Affiliation(s)
- Anastasios-Panagiotis Chantzaras
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon and Papadiamantopoulou Street, 11527 Athens, Greece; (A.-P.C.); (S.K.); (P.P.); (E.G.); (T.C.); (C.K.-G.)
| | - Spyridon Karageorgos
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon and Papadiamantopoulou Street, 11527 Athens, Greece; (A.-P.C.); (S.K.); (P.P.); (E.G.); (T.C.); (C.K.-G.)
| | - Panagiota Panagiotou
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon and Papadiamantopoulou Street, 11527 Athens, Greece; (A.-P.C.); (S.K.); (P.P.); (E.G.); (T.C.); (C.K.-G.)
| | - Elissavet Georgiadou
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon and Papadiamantopoulou Street, 11527 Athens, Greece; (A.-P.C.); (S.K.); (P.P.); (E.G.); (T.C.); (C.K.-G.)
| | - Theodora Chousou
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon and Papadiamantopoulou Street, 11527 Athens, Greece; (A.-P.C.); (S.K.); (P.P.); (E.G.); (T.C.); (C.K.-G.)
| | - Kalliopi Spyridopoulou
- Department of Microbiology, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon and Papadiamantopoulou Street, 11527 Athens, Greece; (K.S.); (G.P.)
| | - Georgios Paradeisis
- Department of Microbiology, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon and Papadiamantopoulou Street, 11527 Athens, Greece; (K.S.); (G.P.)
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon and Papadiamantopoulou Street, 11527 Athens, Greece; (A.-P.C.); (S.K.); (P.P.); (E.G.); (T.C.); (C.K.-G.)
| | - Evanthia Botsa
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon and Papadiamantopoulou Street, 11527 Athens, Greece; (A.-P.C.); (S.K.); (P.P.); (E.G.); (T.C.); (C.K.-G.)
- Correspondence: or
| |
Collapse
|
21
|
Lopes GV, Ramires T, Kleinubing NR, Scheik LK, Fiorentini ÂM, Padilha da Silva W. Virulence factors of foodborne pathogen Campylobacterjejuni. Microb Pathog 2021; 161:105265. [PMID: 34699927 DOI: 10.1016/j.micpath.2021.105265] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022]
Abstract
Campylobacter jejuni is a highly frequent cause of gastrointestinal foodborne disease in humans throughout the world. Disease outcomes vary from mild to severe diarrhea, and in rare cases the Guillain-Barré syndrome or reactive arthritis can develop as a post-infection complication. Transmission to humans usually occurs via the consumption of a range of foods, especially those associated with the consumption of raw or undercooked poultry meat, unpasteurized milk, and water-based environmental sources. When associated to food or water ingestion, the C. jejuni enters the human host intestine via the oral route and colonizes the distal ileum and colon. When it adheres and colonizes the intestinal cell surfaces, the C. jejuni is expected to express several putative virulence factors, which cause damage to the intestine either directly, by cell invasion and/or production of toxin(s), or indirectly, by triggering inflammatory responses. This review article highlights various C. jejuni characteristics - such as motility and chemotaxis - that contribute to the biological fitness of the pathogen, as well as factors involved in human host cell adhesion and invasion, and their potential role in the development of the disease. We have analyzed and critically discussed nearly 180 scientific articles covering the latest improvements in the field.
Collapse
Affiliation(s)
- Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Letícia Klein Scheik
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil.
| |
Collapse
|
22
|
Phenotypic and Molecular Patterns of Resistance among Campylobacter coli and Campylobacter jejuni Isolates, from Pig Farms. Animals (Basel) 2021; 11:ani11082394. [PMID: 34438851 PMCID: PMC8388618 DOI: 10.3390/ani11082394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Campylobacter spp. has been the leading cause of human diarrhea in EU since 2005. Although poultry and poultry meat are considered as the primary source of transmission of campylobacteriosis to humans, pigs can be a significant reservoir of the pathogen, as well. Moreover, the increase of antibiotic resistance in the specific pathogen, especially against fluroquinolones and macrolides is considered a significant threat for public health. The purpose of the current study was to evaluate and molecularly characterize the antimicrobial resistance of Campylobacter infection in pig farms in Greece at both phenotypic and molecular level. Abstract The purpose of this research was to characterize the antibiotic resistance patterns of Campylobacter spp. isolated from commercial farrow to finish farms in Greece, and analyze the relevant molecular resistance mechanisms among the resistant Campylobacter isolates. Susceptibility testing to five different classes of antibiotics was performed in 100 C. coli and 100 C. jejuni, previously isolated and identified. All isolates were found susceptible to meropenem. Very high rates of resistance were recorded for tetracyclines (84.5%), medium rates of resistance were recorded regarding quinolones (23%), and low and very low rates of resistance were identified for macrolides such as erythromycin and aminoglycosides (12% and 4%, respectively). Only 12.5% of the Campylobacter isolates displayed MDR. Regarding the molecular mechanisms of resistance, all ciprofloxacin resistant isolates hosted the mutant type Thr-86-Ile region of the quinolone resistance-determining region (QRDR) of the gyrA gene. In all erythromycin resistant isolates, the transitional mutations A2075G and A2074C in the 23S rRNA gene were only amplified. Molecular screening of tetracycline resistance genes indicated that the vast majority of Campylobacter isolates (92.3%) were positive for the tet(O) gene. In summary, these findings and especially the very high and medium rates of resistance for tetracyclines and fluroquinolones, respectively recommend that a continuous monitoring of Campylobacter isolates susceptibility in combination with the proper use of antimicrobials in livestock production is of great importance for public health.
Collapse
|
23
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|
24
|
Li T, Wang J, Zhu X, Zhou X, Sun S, Wang P, Cao H, Yu G, Li M. Synthesis of Rare 6-Deoxy-d-/l-Heptopyranosyl Fluorides: Assembly of a Hexasaccharide Corresponding to Campylobacter jejuni Strain CG8486 Capsular Polysaccharide. J Am Chem Soc 2021; 143:11171-11179. [PMID: 34260212 DOI: 10.1021/jacs.1c05048] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Campylobacter jejuni is the leading cause of human diarrheal diseases and has been designated as one of highly resistant pathogens by the World Health Organization. The C. jejuni capsular polysaccharides feature broad existence of uncommon 6dHepp residues and have proven to be potential antigens to develop innovative antibacterial glycoconjugation vaccines. To address the lack of synthetic methods for rare 6dHepp architectures of importance, we herein describe a novel and efficient approach for the preparation of uncommon d-/l-6dHepp fluorides that have power as glycosylating agents. The synthesis is achieved by a C1-to-C5 switch strategy relying on radical decarboxylative fluorination of uronic acids arising from readily available allyl d-C-glycosides. To further showcase the application of this protocol, a structurally unique hexasaccharide composed of →3)-β-d-6didoHepp-(1→4)-β-d-GlcpNAc-(1→ units, corresponding to the capsular polysaccharide of C. jejuni strain CG8486 has been assembled for the first time. The assembly is characterized by highly efficient construction of the synthetically challenging β-(1,2-cis)-d-ido-heptopyranoside by inversion of the C2 configuration of β-(1,2-trans)-d-gulo-heptopyranoside, which is conveniently obtained by anchimerically assisted stereoselective glycosylation of the orthogonally protected 6dgulHepp fluoride. Ready accessibility of 6dHepp fluorides and the resulting glycans could serve as a rational starting point for the further development of synthetic vaccines fighting Campylobacter infection.
Collapse
Affiliation(s)
- Tiantian Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianjun Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xinhao Zhu
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Zhou
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shaozi Sun
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hongzhi Cao
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
25
|
Pogreba-Brown K, Austhof E, Tang X, Trejo MJ, Owusu-Dommey A, Boyd K, Armstrong A, Schaefer K, Bazaco MC, Batz M, Riddle M, Porter C. Enteric Pathogens and Reactive Arthritis: Systematic Review and Meta-Analyses of Pathogen-Associated Reactive Arthritis. Foodborne Pathog Dis 2021; 18:627-639. [PMID: 34255548 DOI: 10.1089/fpd.2020.2910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The objective of this systematic review and meta-analysis was to estimate the proportion of postinfectious reactive arthritis (ReA) after bacterial enteric infection from one of four selected pathogens. We collected studies from PubMed, Web of Science, and Embase, which assessed the proportion of postinfectious ReA published from January 1, 2000 to April 1, 2018. Papers were screened independently by title, abstract, and full text; papers in English, Spanish, and Portuguese utilizing a case-control (CC) or cohort study design, with a laboratory confirmed or probable acute bacterial enteric infection and subsequent ReA, were included. The proportion of ReA cases was pooled between and across pathogens. Factors that can induce study heterogeneity were explored using univariate meta-regression, including region, sample size, study design, and ReA case ascertainment. Twenty-four articles were included in the final review. The estimated percentage of cases across studies describing Campylobacter-associated ReA (n = 11) was 1.71 (95% confidence interval [CI] 0.49-5.84%); Salmonella (n = 17) was 3.9 (95% CI 1.6-9.1%); Shigella (n = 6) was 1.0 (95% CI 0.2-4.9%); and Yersinia (n = 7) was 3.4 (95% CI 0.8-13.7%). Combining all four pathogens, the estimated percentage of cases that developed ReA was 2.6 (95% CI 1.5-4.7%). Due to high heterogeneity reflected by high I2 values, results should be interpreted with caution. However, the pooled proportion developing ReA from studies with sample sizes (N) <1000 were higher compared with N > 1000 (6% vs. 0.3%), retrospective cohort studies were lower (1.1%) compared with CC or prospective cohorts (6.8% and 5.9%, respectively), and those where ReA cases are identified through medical record review were lower (0.3%) than those identified by a specialist (3.9%) or self-report (12%). The estimated percentage of people who developed ReA after infection with Campylobacter, Salmonella, Shigella, or Yersinia is relatively low (2.6). In the United States, this estimate would result in 84,480 new cases of ReA annually.
Collapse
Affiliation(s)
- Kristen Pogreba-Brown
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Erika Austhof
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Xin Tang
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Mario J Trejo
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Ama Owusu-Dommey
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Kylie Boyd
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Alexandra Armstrong
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Kenzie Schaefer
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | | | - Michael Batz
- U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Mark Riddle
- Department of Internal Medicine, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Chad Porter
- Naval Medical Research Center, Silver Spring, Maryland, USA
| |
Collapse
|
26
|
Myintzaw P, Jaiswal AK, Jaiswal S. A Review on Campylobacteriosis Associated with Poultry Meat Consumption. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1942487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Peter Myintzaw
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Dublin, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland
| |
Collapse
|
27
|
Echevarría-Lucas L, Senciales-González JM, Medialdea-Hurtado ME, Rodrigo-Comino J. Impact of Climate Change on Eye Diseases and Associated Economical Costs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7197. [PMID: 34281132 PMCID: PMC8297364 DOI: 10.3390/ijerph18137197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
Climate change generates negative impacts on human health. However, little is known about specific impacts on eye diseases, especially in arid and semi-arid areas where increases in air temperatures are expected. Therefore, the main goals of this research are: (i) to highlight the association between common eye diseases and environmental factors; and (ii) to analyze, through the available literature, the health expenditure involved in combating these diseases and the savings from mitigating the environmental factors that aggravate them. Mixed methods were used to assess the cross-variables (environmental factors, eye diseases, health costs). Considering Southern Spain as an example, our results showed that areas with similar climatic conditions could increase eye diseases due to a sustained increase in temperatures and torrential rains, among other factors. We highlight that an increase in eye diseases in Southern Spain is conditioned by the effects of climate change by up to 36.5%; the economic burden of the main eye diseases, extrapolated to the rest of the country, would represent an annual burden of 0.7% of Spain's Gross Domestic Product. In conclusion, the increase in eye diseases has a strong economic and social impact that could be reduced with proper management of the effects of climate change. We propose a new concept: disease sink, defined as any climate change mitigation action which reduces the incidence or morbidity of disease.
Collapse
Affiliation(s)
- Lucía Echevarría-Lucas
- Ophthalmology Service of Axarquía Hospital, 29700 Vélez-Málaga, Spain; (L.E.-L.); (M.E.M.-H.)
| | | | | | - Jesús Rodrigo-Comino
- Department of Regional Geographical Analysis and Physical Geography, University of Granada, 18010 Granada, Spain
- Department of Physical Geography, University of Trier, 54296 Trier, Germany
| |
Collapse
|
28
|
Clarke TN, Schilling MA, Melendez LA, Isidean SD, Porter CK, Poly FM. A systematic review and meta-analysis of Penner serotype prevalence of Campylobacter jejuni in low- and middle-income countries. PLoS One 2021; 16:e0251039. [PMID: 33951106 PMCID: PMC8099051 DOI: 10.1371/journal.pone.0251039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/17/2021] [Indexed: 01/18/2023] Open
Abstract
Introduction While Campylobacter jejuni is a leading foodborne bacterial pathogen worldwide, it poses a particular risk to susceptible populations in low- and middle-income countries (LMICs). A capsule-conjugate vaccine approach has been proposed as a potential solution, but little information exists on circulating C. jejuni capsule types in LMICs. The capsule is the major serodeterminant of the Penner typing scheme, which is based on serum recognition of Campylobacter heat-stable antigens. We conducted a systematic review and meta-analysis to estimate the distribution of Penner serotypes associated with C. jejuni enteritis in LMICs. Vaccine coverage assessments for hypothetical regional and global C. jejuni vaccines were also estimated. Methods A systematic review of the literature published from 1980 to 2019 was performed using PubMed, Scopus, and Web of Science databases. Articles were assessed for eligibility and data were abstracted. Pooled C. jejuni serotype prevalence in LMICs was estimated by region and globally using random-effects models. Results A total of 36 studies were included, capturing 4,434 isolates from LMICs. Fifteen serotypes were present in a sufficient number of studies to be included in analyses. Among these, HS4c was the most common serotype globally (12.6%), though leading capsule types varied among regions. HS2, HS3c, HS4c, HS5/31, HS8/17, and HS10 were all among the 10 most common region-specific serotypes. Conclusions The results of this review suggest that an octavalent vaccine could provide up to 66.9% coverage of typable strains worldwide, and 56.8–69.0% regionally. This review also highlights the paucity of available data on capsules in LMICs; more testing is needed to inform vaccine development efforts.
Collapse
Affiliation(s)
- Tegan N. Clarke
- General Dynamics Information Technology, Silver Spring, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Megan A. Schilling
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Luca A. Melendez
- George Washington University School of Public Health, Washington, DC, United States of America
| | - Sandra D. Isidean
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Chad K. Porter
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Frédéric M. Poly
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
- * E-mail:
| |
Collapse
|
29
|
[Postinfectious reactive arthritis after chlamydia infection in competitive sports : Clinical management and current literature review]. DER ORTHOPADE 2021; 50:179-187. [PMID: 32583060 PMCID: PMC7925465 DOI: 10.1007/s00132-020-03935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reactive arthritis following infection with chlamydia is a rare but important differential diagnosis in atraumatic joint swelling. A delayed diagnosis often leads to prolonged periods of absence from physical activity. This can have serious consequences, especially for the career of competitive athletes. OBJECTIVES Recommendation for the clinical management of postinfectious reactive arthritis for rapid diagnosis and targeted treatment in the symptomatic clinical course. MATERIALS AND METHODS Review of the literature on the topics "chlamydia", "reactive arthritis", "postinfectious arthritis" and "sexually acquired reactive arthritis", including presentation of two clinical cases of postinfectious reactive arthritis after chlamydia infection from competitive sports. RESULTS AND CONCLUSION Reactive arthritis following chlamydia infection in competitive athletes is a rare entity. However, it can be accompanied by far-reaching individual consequences, especially with regard to possible downtime in sports. Long-term consequences such as chronic joint damage in maintained synovitis must also be considered. In order to make a diagnosis, a specific anamnesis and the direct detection of the pathogen in the specimen of synovial fluid by polymerase chain reaction is essential. This allows a reliable diagnosis to be made with immediate initiation of therapy. However, a prolonged course of the disease cannot be excluded even if therapy is started in due time.
Collapse
|
30
|
Monteiro MA, Chen YH, Ma Z, Ewing CP, Mohamad Nor N, Omari E, Song E, Gabryelski P, Guerry P, Poly F. Relationships of capsular polysaccharides belonging to Campylobacter jejuni HS1 serotype complex. PLoS One 2021; 16:e0247305. [PMID: 33621246 PMCID: PMC7901785 DOI: 10.1371/journal.pone.0247305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
The Campylobacter jejuni capsule type HS1 complex is one of the most common serotypes identified worldwide, and consists of strains typing as HS1, HS1/44, HS44 and HS1/8. The capsule structure of the HS1 type strain was shown previously to be composed of teichoic-acid like glycerol-galactosyl phosphate repeats [4-)-α-D-Galp-(1-2)-Gro-(1-P-] with non-stoichiometric fructose branches at the C2 and C3 of Gal and non-stoichiometric methyl phosphoramidate (MeOPN) modifications on the C3 of the fructose. Here, we demonstrate that the capsule of an HS1/44 strain is identical to that of the type strain of HS1, and the capsule of HS1/8 is also identical to HS1, except for an additional site of MeOPN modification at C6 of Gal. The DNA sequence of the capsule locus of an HS44 strain included an insertion of 10 genes, and the strain expressed two capsules, one identical to the HS1 type strain, but with no fructose branches, and another composed of heptoses and MeOPN. We also characterize a HS1 capsule biosynthesis gene, HS1.08, as a fructose transferase responsible for the attachment of the β-D-fructofuranoses residues at C2 and C3 of the Gal unit. In summary, the common component of all members of the HS1 complex is the teichoic-acid like backbone that is likely responsible for the observed sero-cross reactivity.
Collapse
Affiliation(s)
| | - Yu-Han Chen
- Dept. of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Zuchao Ma
- Dept. of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Cheryl P. Ewing
- Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | | | - Eman Omari
- Dept. of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Ellen Song
- Dept. of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Pawel Gabryelski
- Dept. of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Patricia Guerry
- Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Frédéric Poly
- Naval Medical Research Center, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Moffatt CRM, Kennedy KJ, Selvey L, Kirk MD. Campylobacter-associated hospitalisations in an Australian provincial setting. BMC Infect Dis 2021; 21:10. [PMID: 33407203 PMCID: PMC7788795 DOI: 10.1186/s12879-020-05694-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Campylobacter spp. infections are a globally important cause of enterocolitis, causing substantial morbidity. Capturing accurate information on hospitalisations is challenging and limited population-level data exist to describe the clinico-epidemiological characteristics of hospitalised cases. METHODS Hospital administrative and laboratory datasets were linked to identify Campylobacter-associated hospitalisations between 2004 and 2013. Accuracy of morbidity coding was assessed using laboratory diagnosis as a gold standard, with health department surveillance data used to calculate population-based rates. Additional patient-level data were collected via review of medical records. Descriptive statistics were used to assess changes in rates and proportions and to assess relationships between key variables including age, length of stay, comorbidity and complications. RESULTS In total 685 Campylobacter-associated hospital admissions were identified, with the sensitivity of morbidity coding 52.8% (95% CI 48.9-56.7%). The mean annual rate of hospitalisation was 13.6%. Hospitalisation rates were higher for females across most age-groups, while for both genders marked increases were observed for those aged ≥60 years. Median admission age was 39.5 years, with an average length of stay of 3.5 days. Comorbidities were present in 34.5% (237/685) of admissions, with these patients more likely to develop electrolyte disturbances, hypotension, renal impairment or acute confusion (all p < 0.001). Bacteraemia and acute kidney injury were observed in 4.1% (28/685) and 3.6% (23/685) of admissions, respectively. Inpatient mortality was low (0.15%). CONCLUSION Under reporting of Campylobacter-associated hospitalisations is substantial but can be improved through data linkage. We observed demographic differences among those hospitalised but further work is needed to determine risk factors and predictors for hospitalisation.
Collapse
Affiliation(s)
- Cameron R M Moffatt
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT, 2602, Australia.
| | - Karina J Kennedy
- Department of Microbiology, Canberra Hospital and Health Services, Canberra, ACT, Australia
| | - Linda Selvey
- School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT, 2602, Australia
| |
Collapse
|
32
|
Watari T, Tachibana T, Okada A, Nishikawa K, Otsuki K, Nagai N, Abe H, Nakano Y, Takagi S, Amano Y. A review of food poisoning caused by local food in Japan. J Gen Fam Med 2021; 22:15-23. [PMID: 33457151 PMCID: PMC7796784 DOI: 10.1002/jgf2.384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Increasingly popular worldwide, Japanese cuisine includes several raw preparations such as sashimi and sushi; however, limited information on food poisoning from Japanese local food is available in English literature. Without appropriate knowledge, physicians may underdiagnose traveler's diarrhea among people returning from Japan. To provide accurate information to primary care physicians worldwide, we conducted a narrative review on food poisoning research published in Japanese and English over the past four years, considering the frequency and clinical importance of various presentations.
Collapse
Affiliation(s)
- Takashi Watari
- Postgraduate Clinical Training CenterShimane University HospitalShimaneJapan
| | | | - Azusa Okada
- Faculty of MedicineShimane UniversityShimaneJapan
| | | | | | | | - Haruki Abe
- Faculty of MedicineShimane UniversityShimaneJapan
| | | | - Soshi Takagi
- Faculty of MedicineShimane UniversityShimaneJapan
| | - Yu Amano
- Faculty of MedicineShimane UniversityShimaneJapan
| |
Collapse
|
33
|
Vogt NA, Pearl DL, Taboada EN, Mutschall SK, Bondo KJ, Jardine CM. Epidemiology of Campylobacter jejuni in raccoons (Procyon lotor) on swine farms and in conservation areas in southern Ontario. Zoonoses Public Health 2020; 68:19-28. [PMID: 33226196 DOI: 10.1111/zph.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
Campylobacter is a leading cause of foodborne illness in humans worldwide. Sources of infection are often difficult to identify, and are, generally, poorly understood. Recent work suggests that wildlife may represent a source of Campylobacter for human infections. Using a repeated cross-sectional study design, raccoons were trapped on five swine farms and five conservation areas in southern Ontario from 2011 to 2013. Our objectives were to: (a) assess the impact of seasonal, climatic, location, annual and raccoon demographic factors on the occurrence of Campylobacter jejuni in these animals; and (b) identify clusters of C. jejuni in space, time and space-time using spatial scan statistics. Multi-level multivariable logistic regression was used to examine the odds of isolating C. jejuni, with site and animal modelled as random intercepts. The following independent variables were examined: raccoon age and sex, year, location type, season, temperature and rainfall. A total of 1,096 samples were obtained from 627 raccoons; 46.3% were positive for C. jejuni. The following interactions and their main effects were significant (p < .05) and retained in the final model: season × temperature, year × rainfall, year × temperature. Based on the results from our multivariable model and spatial scan statistics, climatic variables (i.e. rainfall, temperature and season) were associated with the carriage of C. jejuni by raccoons, but the effects were not consistent, and varied by location and year. Although raccoons may pose a zoonotic risk due to their carriage of Campylobacter, further work is required to characterize the transmission and movement of this microorganism within the ecosystem.
Collapse
Affiliation(s)
- Nadine A Vogt
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David L Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Eduardo N Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Steven K Mutschall
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - Kristin J Bondo
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX, USA
| | - Claire M Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
34
|
Shagieva E, Teren M, Michova H, Strakova N, Karpiskova R, Demnerova K. Adhesion, Biofilm Formation, and luxS Sequencing of Campylobacter jejuni Isolated From Water in the Czech Republic. Front Cell Infect Microbiol 2020; 10:596613. [PMID: 33330139 PMCID: PMC7718015 DOI: 10.3389/fcimb.2020.596613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023] Open
Abstract
The microaerophilic pathogen Campylobacter jejuni is a leading bacterial cause of human gastroenteritis in developed countries. Even though it has a reputation as a fastidious organism, C. jejuni is widespread and can be easily isolated from various animals, food, and environmental sources. It is suggested that an ability to form biofilms is probably necessary for the survival of C. jejuni under harsh environmental conditions. The first step required for successful biofilm formation is adhesion to a suitable surface. Therefore, in this work, the degree of adhesion was evaluated, followed by characterization and quantification of biofilms using confocal laser scanning microscopy (CLSM). A total of 15 isolates of C. jejuni were used in the experiments (12 isolates from surface and waste waters, 1 human clinical, 1 food and 1 ACTT BAA-2151 collection strain, all samples originated from the Czech Republic). Regardless of the sample origin, all C. jejuni isolates were able to adhere to the polystyrene surface within 30 min, with the number of attached cells increasing with the time of incubation. The resulting data showed that all isolates were able to form complex voluminous biofilms after 24 h of cultivation. The average amount of biovolume ranged from 3.59 × 106 µm3 to 17.50 × 106 µm3 in isolates obtained from different sources of water, 16.79 × 106 µm3 in the food isolate and 10.92 × 106 µm3 in the collection strain. However, the highest amount of biomass was produced by the human clinical isolate (25.48 × 106 µm3). Similar to the quantity, the architecture of the biofilms also differed, from a rugged flat monolayer of cells to large clustered structures. Further, all isolates were tested for the presence of the luxS gene, as the luxS/AI-2 (autoinducer-2) quorum sensing pathway has been previously connected with enhanced biofilm formation. Two isolates originated from surface waters did not possess the luxS gene. These isolates formed thinner and sparser biofilms lacking the presence of significant clusters. However, the ability to adhere to the surface was preserved. The sequencing of the luxS-containing fragments shown a high similarity of the luxS gene among the isolates.
Collapse
Affiliation(s)
- Ekaterina Shagieva
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Martin Teren
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Hana Michova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Nicol Strakova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia
| | - Renata Karpiskova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia
| | - Katerina Demnerova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
35
|
Verma A, Sharda S, Rathi B, Somvanshi P, Pandey BD. Elucidating potential molecular signatures through host-microbe interactions for reactive arthritis and inflammatory bowel disease using combinatorial approach. Sci Rep 2020; 10:15131. [PMID: 32934294 PMCID: PMC7492238 DOI: 10.1038/s41598-020-71674-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
Reactive Arthritis (ReA), a rare seronegative inflammatory arthritis, lacks exquisite classification under rheumatic autoimmunity. ReA is solely established using differential clinical diagnosis of the patient cohorts, where pathogenic triggers linked to enteric and urogenital microorganisms e.g. Salmonella, Shigella, Yersinia, Campylobacter, Chlamydia have been reported. Inflammatory Bowel Disease (IBD), an idiopathic enteric disorder co-evolved and attuned to present gut microbiome dysbiosis, can be correlated to the genesis of enteropathic arthropathies like ReA. Gut microbes symbolically modulate immune system homeostasis and are elementary for varied disease patterns in autoimmune disorders. The gut-microbiota axis structured on the core host-microbe interactions execute an imperative role in discerning the etiopathogenesis of ReA and IBD. This study predicts the molecular signatures for ReA with co-evolved IBD through the enveloped host-microbe interactions and microbe-microbe 'interspecies communication', using synonymous gene expression data for selective microbes. We have utilized a combinatorial approach that have concomitant in-silico work-pipeline and experimental validation to corroborate the findings. In-silico analysis involving text mining, metabolic network reconstruction, simulation, filtering, host-microbe interaction, docking and molecular mimicry studies results in robust drug target/s and biomarker/s for co-evolved IBD and ReA. Cross validation of the target/s or biomarker/s was done by targeted gene expression analysis following a non-probabilistic convenience sampling. Studies were performed to substantiate the host-microbe disease network consisting of protein-marker-symptom/disease-pathway-drug associations resulting in possible identification of vital drug targets, biomarkers, pathways and inhibitors for IBD and ReA.Our study identified Na(+)/H(+) anti-porter (NHAA) and Kynureninase (KYNU) to be robust early and essential host-microbe interacting targets for IBD co-evolved ReA. Other vital host-microbe interacting genes, proteins, pathways and drugs include Adenosine Deaminase (ADA), Superoxide Dismutase 2 (SOD2), Catalase (CAT), Angiotensin I Converting Enzyme (ACE), carbon metabolism (folate biosynthesis) and methotrexate. These can serve as potential prognostic/theranostic biomarkers and signatures that can be extrapolated to stratify ReA and related autoimmunity patient cohorts for further pilot studies.
Collapse
Affiliation(s)
- Anukriti Verma
- Amity Institute of Biotechnology, J-3 Block, Amity University Campus, Sector-125, Noida, UP, 201313, India
| | - Shivani Sharda
- Amity Institute of Biotechnology, J-3 Block, Amity University Campus, Sector-125, Noida, UP, 201313, India.
| | - Bhawna Rathi
- Amity Institute of Biotechnology, J-3 Block, Amity University Campus, Sector-125, Noida, UP, 201313, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Bimlesh Dhar Pandey
- Fortis Hospital, B-22, Sector 62, Gautam Buddh Nagar, Noida, Uttar Pradesh, 201301, India
| |
Collapse
|
36
|
Vohra P, Chintoan-Uta C, Terra VS, Bremner A, Cuccui J, Wren BW, Vervelde L, Stevens MP. Evaluation of Glycosylated FlpA and SodB as Subunit Vaccines Against Campylobacter jejuni Colonisation in Chickens. Vaccines (Basel) 2020; 8:vaccines8030520. [PMID: 32932979 PMCID: PMC7564835 DOI: 10.3390/vaccines8030520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide and the handling or consumption of contaminated poultry meat is the key source of infection. C. jejuni proteins FlpA and SodB and glycoconjugates containing the C. jejuni N-glycan have been separately reported to be partially protective vaccines in chickens. In this study, two novel glycoproteins generated by protein glycan coupling technology-G-FlpA and G-SodB (with two and three N-glycosylation sites, respectively)-were evaluated for efficacy against intestinal colonisation of chickens by C. jejuni strain M1 relative to their unglycosylated variants. Two independent trials of the same design were performed with either a high challenge dose of 107 colony-forming units (CFU) or a minimum challenge dose of 102 CFU of C. jejuni M1. While antigen-specific serum IgY was detected in both trials, no reduction in caecal colonisation by C. jejuni M1 was observed and glycosylation of vaccine antigens had no effect on the outcome. Our data highlight inconsistencies in the outcome of C. jejuni vaccination trials that may reflect antigen-, challenge strain-, vaccine administration-, adjuvant- and chicken line-specific differences from previously published studies. Refinement of glycoconjugate vaccines by increasing glycosylation levels or using highly immunogenic protein carriers could improve their efficacy.
Collapse
Affiliation(s)
- Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (C.C.-U.); (A.B.); (L.V.); (M.P.S.)
- Institute for Immunology and Infection Research, School of Biological Sciences, Charlotte Auerbach Road, University of Edinburgh, Edinburgh EH9 3FL, UK
- Correspondence: ; Tel.: +44-(0)-131-651-7112
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (C.C.-U.); (A.B.); (L.V.); (M.P.S.)
| | - Vanessa S. Terra
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (V.S.T.); (J.C.); (B.W.W.)
| | - Abi Bremner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (C.C.-U.); (A.B.); (L.V.); (M.P.S.)
| | - Jon Cuccui
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (V.S.T.); (J.C.); (B.W.W.)
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (V.S.T.); (J.C.); (B.W.W.)
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (C.C.-U.); (A.B.); (L.V.); (M.P.S.)
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (C.C.-U.); (A.B.); (L.V.); (M.P.S.)
| |
Collapse
|
37
|
Carl AG, Harris LD, Feng M, Nordstrøm LU, Gerfen GJ, Evans GB, Silakov A, Almo SC, Grove TL. Narrow-Spectrum Antibiotic Targeting of the Radical SAM Enzyme MqnE in Menaquinone Biosynthesis. Biochemistry 2020; 59:2562-2575. [DOI: 10.1021/acs.biochem.0c00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ayala G. Carl
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Lawrence D. Harris
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 5040, New Zealand
| | - Mu Feng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Lars U. Nordstrøm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gary J. Gerfen
- Department of Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gary B. Evans
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 5040, New Zealand
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Tyler L. Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
38
|
Abstract
In general, foodborne diseases present themselves with gastrointestinal symptoms caused by bacterial, viral, and parasitic pathogens well established to be foodborne. These pathogens are also associated with extraintestinal clinical manifestations. Recent studies have suggested that Escherichia coli and Klebsiella pneumoniae, which both cause common extraintestinal infections such as urinary tract and bloodstream infections, may also be foodborne. The resolution and separation of these organisms into pathotypes versus commensals by modern genotyping methods have led to the identification of key lineages of these organisms causing outbreaks of extraintestinal infections. These epidemiologic observations suggested common- or point-source exposures, such as contaminated food. Here, we describe the spectrum of extraintestinal illnesses caused by recognized enteric pathogens and then review studies that demonstrate the potential role of extraintestinal pathogenic E. coli (ExPEC) and K. pneumoniae as foodborne pathogens. The impact of global food production and distribution systems on the possible foodborne spread of these pathogens is discussed.
Collapse
Affiliation(s)
- Lee W. Riley
- School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
39
|
Pogreba-Brown K, Austhof E, Armstrong A, Schaefer K, Villa Zapata L, McClelland DJ, Batz MB, Kuecken M, Riddle M, Porter CK, Bazaco MC. Chronic Gastrointestinal and Joint-Related Sequelae Associated with Common Foodborne Illnesses: A Scoping Review. Foodborne Pathog Dis 2020; 17:67-86. [DOI: 10.1089/fpd.2019.2692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kristen Pogreba-Brown
- Epidemiology & Biostatistics Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Erika Austhof
- Epidemiology & Biostatistics Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Alexandra Armstrong
- Epidemiology & Biostatistics Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Kenzie Schaefer
- Epidemiology & Biostatistics Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Lorenzo Villa Zapata
- Epidemiology & Biostatistics Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | | | | | - Maria Kuecken
- U.S. Food and Drug Administration, College Park, Maryland
| | - Mark Riddle
- Naval Medical Research Center, Silver Spring, Maryland
| | | | | |
Collapse
|
40
|
Porter CK, Riddle MS, Laird RM, Loza M, Cole S, Gariepy C, Alcala A, Gutierréz R, Baribaud F, Rao NL, Nagpal S. Cohort profile of a US military population for evaluating pre-disease and disease serological biomarkers in rheumatoid and reactive arthritis: Rationale, organization, design, and baseline characteristics. Contemp Clin Trials Commun 2020; 17:100522. [PMID: 31989058 PMCID: PMC6971336 DOI: 10.1016/j.conctc.2020.100522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/02/2020] [Accepted: 01/11/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose The etiology of several autoimmune disorders, including rheumatoid arthritis, remains unknown. While there are clear phases of disease progression, the mechanisms of transition between these phases are poorly understood. Additionally, treatment focuses on an alteration of the biological processes to prevent joint damage and functional decline. A goal is to potentially treat the disease during the preclinical phase to mitigate the disease process. Reactive arthritis is another rheumatologic condition known to be secondary to a distal infection. While prevention of infection would mitigate risk, serologic profiling patients with the disease may assist in the elucidation of potential disease risk factors. This study was initiated to enable an assessment of pre-disease biomarkers in patients newly diagnosed with rheumatoid arthritis and reactive arthritis. Participants A retrospective cohort of 500 rheumatoid and 500 reactive arthritis cases with 500 matched controls was drawn from a population of active component US military personnel. Appropriate inclusion criteria limited subject selection. Additionally, 4 serum samples (3 pre-disease and 1 disease-associated) were obtained for each case and control. Findings to date The established cohort provides the framework for novel exploration of the host response through serum profiling and seroepidemiology prior to disease onset. Future plans This study establishes the framework for the evaluation of novel serum biomarkers enabling the identification of signals prior to clinical disease that may enable disease prediction, elucidate disease pathogenesis and identify novel exposures leading to increased disease risk and/or disease severity.
Collapse
Affiliation(s)
- Chad K Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Mark S Riddle
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Renee M Laird
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | - Matthew Loza
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Suzanne Cole
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Christina Gariepy
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | - Ashley Alcala
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | - Ramiro Gutierréz
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | | | - Navin L Rao
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Sunil Nagpal
- Immunology, Janssen Research & Development, Spring House, PA, USA
| |
Collapse
|
41
|
Rimmer JE, Harro C, Sack DA, Talaat KR, Gutierrez RL, DeNearing B, Brubaker J, Laird RM, Poly F, Maue AC, Jaep K, Alcala A, Mochalova Y, Gariepy CL, Chakraborty S, Guerry P, Tribble DR, Porter CK, Riddle MS. Rifaximin Fails to Prevent Campylobacteriosis in the Human Challenge Model: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin Infect Dis 2019; 66:1435-1441. [PMID: 29145631 DOI: 10.1093/cid/cix1014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Background Campylobacter species are a leading cause of diarrheal disease globally with significant morbidity. Primary prevention efforts have yielded limited results. Rifaximin chemoprophylaxis decreases rates of travelers' diarrhea and may be suitable for high-risk persons. We assessed the efficacy of rifaximin in the controlled human infection model for Campylobacter jejuni. Methods Twenty-eight subjects were admitted to an inpatient facility and randomized to a twice-daily dose of 550 mg rifaximin or placebo. The following day, subjects ingested 1.7 × 105 colony-forming units of C. jejuni strain CG8421. Subjects continued prophylaxis for 3 additional days, were followed for campylobacteriosis for 144 hours, and were subsequently treated with azithromycin and ciprofloxacin. Samples were collected to assess immunologic responses to CG8421. Results There was no difference (P = 1.0) in the frequency of campylobacteriosis in those receiving rifaximin (86.7%) or placebo (84.6%). Additionally, there were no differences in the clinical signs and symptoms of C. jejuni infection to include abdominal pain/cramps (P = 1.0), nausea (P = 1.0), vomiting (P = .2), or fever (P = 1.0) across study groups. Immune responses to the CG8421 strain were comparable across treatment groups. Conclusions Rifaximin did not prevent campylobacteriosis in this controlled human infection model. Given the morbidity associated with Campylobacter infection, primary prevention efforts remain a significant need. Clinical Trials Registration NCT02280044.
Collapse
Affiliation(s)
- Joanna E Rimmer
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland.,School of Immunity and Infection, University of Birmingham.,Academic Department of Military Medicine, Royal Centre for Defence Medicine (Academia and Research), Medical Directorate, Joint Medical Command, Information and Communications Technology Centre, Birmingham Research Park, United Kingdom
| | - Clayton Harro
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Kawsar R Talaat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Ramiro L Gutierrez
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Barbara DeNearing
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Jessica Brubaker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Renee M Laird
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Frédéric Poly
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Alexander C Maue
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Kayla Jaep
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Ashley Alcala
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Yelizaveta Mochalova
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Christina L Gariepy
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Patricia Guerry
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - David R Tribble
- Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Chad K Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Mark S Riddle
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| |
Collapse
|
42
|
Lackner J, Weiss M, Müller-Graf C, Greiner M. The disease burden associated with Campylobacter spp. in Germany, 2014. PLoS One 2019; 14:e0216867. [PMID: 31091282 PMCID: PMC6519833 DOI: 10.1371/journal.pone.0216867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/30/2019] [Indexed: 11/19/2022] Open
Abstract
Bacteria of the genus Campylobacter are an important cause of human illness worldwide. Campylobacter infections are expressed as gastroenteritis and can lead to severe sequelae like reactive arthritis, Guillain-Barré syndrome, irritable bowel syndrome and inflammatory bowel disease. In Germany, Campylobacter-associated gastroenteritis cases are notifiable but there is no reporting obligation for the sequelaes and the disease burden is clearly underestimated. The aim of our study was to quantify reliably the current disease burden of all Campylobacter spp.-associated diseases for Germany with the method of disability-adjusted life years (DALYs). DALYs combine mortality and morbidity in a single summary measure, whereby one DALY represents the loss of one year in full health. For acute gastroenteritis, we estimated 967 DALYs of which only 484 DALYs were detected within the reporting system. Overall, we estimated that 8811 DALYs were caused by the campylobacter-related diseases known so far. 98% of the DALYs were associated with morbidity and 2% with mortality. Mortality was caused by the health outcomes Gastroenteritis and Guillain-Barré syndrome exclusively.
Collapse
Affiliation(s)
- Julia Lackner
- Department of Exposure, Federal Institute for Risk Assessment, Berlin, Germany
| | - Michael Weiss
- Department of Exposure, Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Matthias Greiner
- Department of Exposure, Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
43
|
Ramakrishnan A, Schumack NM, Gariepy CL, Eggleston H, Nunez G, Espinoza N, Nieto M, Castillo R, Rojas J, McCoy AJ, Beck Z, Matyas GR, Alving CR, Guerry P, Poly F, Laird RM. Enhanced Immunogenicity and Protective Efficacy of a Campylobacter jejuni Conjugate Vaccine Coadministered with Liposomes Containing Monophosphoryl Lipid A and QS-21. mSphere 2019; 4:e00101-19. [PMID: 31043512 PMCID: PMC6495334 DOI: 10.1128/msphere.00101-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is among the most common causes of diarrheal disease worldwide and efforts to develop protective measures against the pathogen are ongoing. One of the few defined virulence factors targeted for vaccine development is the capsule polysaccharide (CPS). We have developed a capsule conjugate vaccine against C. jejuni strain 81-176 (CPS-CRM) that is immunogenic in mice and nonhuman primates (NHPs) but only moderately immunogenic in humans when delivered alone or with aluminum hydroxide. To enhance immunogenicity, two novel liposome-based adjuvant systems, the Army Liposome Formulation (ALF), containing synthetic monophosphoryl lipid A, and ALF plus QS-21 (ALFQ), were evaluated with CPS-CRM in this study. In mice, ALF and ALFQ induced similar amounts of CPS-specific IgG that was significantly higher than levels induced by CPS-CRM alone. Qualitative differences in antibody responses were observed where CPS-CRM alone induced Th2-biased IgG1, whereas ALF and ALFQ enhanced Th1-mediated anti-CPS IgG2b and IgG2c and generated functional bactericidal antibody titers. CPS-CRM + ALFQ was superior to vaccine alone or CPS-CRM + ALF in augmenting antigen-specific Th1, Th2, and Th17 cytokine responses and a significantly higher proportion of CD4+ IFN-γ+ IL-2+ TNF-α+ and CD4+ IL-4+ IL-10+ T cells. ALFQ also significantly enhanced anti-CPS responses in NHPs when delivered with CPS-CRM compared to alum- or ALF-adjuvanted groups and showed the highest protective efficacy against diarrhea following orogastric challenge with C. jejuni This study provides evidence that the ALF adjuvants may provide enhanced immunogenicity of this and other novel C. jejuni capsule conjugate vaccines in humans.IMPORTANCECampylobacter jejuni is a leading cause of diarrheal disease worldwide, and currently no preventative interventions are available. C. jejuni is an invasive mucosal pathogen that has a variety of polysaccharide structures on its surface, including a capsule. In phase 1 studies, a C. jejuni capsule conjugate vaccine was safe but poorly immunogenic when delivered alone or with aluminum hydroxide. Here, we report enhanced immunogenicity of the conjugate vaccine delivered with liposome adjuvants containing monophosphoryl lipid A without or with QS-21, known as ALF and ALFQ, respectively, in preclinical studies. Both liposome adjuvants significantly enhanced immunity in mice and nonhuman primates and improved protective efficacy of the vaccine compared to alum in a nonhuman primate C. jejuni diarrhea model, providing promising evidence that these potent adjuvant formulations may enhance immunogenicity in upcoming human studies with this C. jejuni conjugate and other malaria and HIV vaccine platforms.
Collapse
Affiliation(s)
| | - Nina M Schumack
- Henry M. Jackson Foundation for Military Medicine, Bethesda, Maryland, USA
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Christina L Gariepy
- Henry M. Jackson Foundation for Military Medicine, Bethesda, Maryland, USA
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Heather Eggleston
- Henry M. Jackson Foundation for Military Medicine, Bethesda, Maryland, USA
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gladys Nunez
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Nereyda Espinoza
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Monica Nieto
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Rosa Castillo
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Jesus Rojas
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Andrea J McCoy
- Bacteriology Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Zoltan Beck
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for Military Medicine, Bethesda, Maryland, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Carl R Alving
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patricia Guerry
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Frédéric Poly
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Renee M Laird
- Henry M. Jackson Foundation for Military Medicine, Bethesda, Maryland, USA
- Department of Enteric Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| |
Collapse
|
44
|
Contrasting the Clinical Presentation and Prevalence of Septic, Reactive, and Crystal Arthritis in Patients With Hematologic and Solid Malignancies. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2019. [DOI: 10.1097/ipc.0000000000000712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
A Cotransformation Method To Identify a Restriction-Modification Enzyme That Reduces Conjugation Efficiency in Campylobacter jejuni. Appl Environ Microbiol 2018; 84:AEM.02004-18. [PMID: 30242003 DOI: 10.1128/aem.02004-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 01/07/2023] Open
Abstract
Conjugation is an important mechanism for horizontal gene transfer in Campylobacter jejuni, the leading cause of human bacterial gastroenteritis in developed countries. However, to date, the factors that significantly influence conjugation efficiency in Campylobacter spp. are still largely unknown. Given that multiple recombinant loci could independently occur within one recipient cell during natural transformation, the genetic materials from a high-frequency conjugation (HFC) C. jejuni strain may be cotransformed with a selection marker into a low-frequency conjugation (LFC) recipient strain, creating new HFC transformants suitable for the identification of conjugation factors using a comparative genomics approach. To test this, an erythromycin resistance selection marker was created in an HFC C. jejuni strain; subsequently, the DNA of this strain was naturally transformed into NCTC 11168, an LFC C. jejuni strain, leading to the isolation of NCTC 11168-derived HFC transformants. Whole-genome sequencing analysis and subsequent site-directed mutagenesis identified Cj1051c, a putative restriction-modification enzyme (aka CjeI) that could drastically reduce the conjugation efficiency of NCTC 11168 (>5,000-fold). Chromosomal complementation of three diverse HFC C. jejuni strains with CjeI also led to a dramatic reduction in conjugation efficiency (∼1,000-fold). The purified recombinant CjeI could effectively digest the Escherichia coli-derived shuttle vector pRY107. The endonuclease activity of CjeI was abolished upon short heat shock treatment at 50°C, which is consistent with our previous observation that heat shock enhanced conjugation efficiency in C. jejuni Together, in this study, we successfully developed and utilized a unique cotransformation strategy to identify a restriction-modification enzyme that significantly influences conjugation efficiency in C. jejuni IMPORTANCE Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. Campylobacter jejuni, the leading foodborne bacterial organism, displays significant strain diversity due to horizontal gene transfer; however, the molecular components influencing conjugation efficiency in C. jejuni are still largely unknown. In this study, we developed a cotransformation strategy for comparative genomics analysis and successfully identified a restriction-modification enzyme that significantly influences conjugation efficiency in C. jejuni The new cotransformation strategy developed in this study is also expected to be broadly applied in other naturally competent bacteria for functional comparative genomics research.
Collapse
|
46
|
Abstract
EDUCATION GAP Campylobacter is one of the 2 most common causes of foodborne illness in the United States. It most commonly occurs in children younger than 5 years of age. Campylobacter species can cause a wide range of syndromes, from asymptomatic infections to severe systemic infections. OBJECTIVES After completing this article, readers should be able to: 1. Recognize that Campylobacter is a common cause of foodborne illness in the United States and internationally. 2. Understand the indications for testing and the treatment of Campylobacter infection.
Collapse
Affiliation(s)
- Rebecca G Same
- Division of Pediatric Infectious Diseases, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Pranita D Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
47
|
Barrett E, Carr D, Bell ML, Pogreba-Brown K. Post-infectious sequelae after Campylobacter enteric infection: a pilot study in Maricopa County, Arizona, USA. Pilot Feasibility Stud 2018; 4:142. [PMID: 30151236 PMCID: PMC6103860 DOI: 10.1186/s40814-018-0335-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/15/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Campylobacter is a leading cause of gastroenteritis across the globe caused by the ingestion of contaminated food, water, or contact with animals carrying Campylobacter bacteria. The resulting disease, campylobacteriosis, is usually self-limiting, but cases may develop post-infectious sequelae (PIS) such as gastrointestinal disorders, neurological disorders, and joint disorders. The objective of this study was to estimate a crude incidence rate for PIS among Campylobacter cases in Maricopa County, Arizona, USA and to determine the feasibility of conducting a larger scale study to understand chronic outcomes from campylobacteriosis and salmonellosis. METHODS The pilot study spanned from August 1, 2016, to August 31, 2017. During this time, cases of campylobacteriosis were reported to the Maricopa County Department of Public Health and interviewed by public health students at the University of Arizona. Initial interviews were conducted using a routine enteric surveillance questionnaire, and eligible cases were recruited and consented into the pilot study. Follow-up with a questionnaire occurred 4 to 6 weeks from the date of each case's initial interview. Data analysis was conducted using STATA SE 14 and included chi-squared tests to determine differences in demographics, symptoms, and exposures between those enrolled in the study and those eligible but not enrolled during the study period and feasibility metrics for the study including enrollment rates, response rates, time to interview, and reasons for non-enrollment. Crude rates with 95% confidence intervals were calculated to estimate PIS. RESULTS Of the routine surveillance cases, 102 (36%) enrolled into the pilot study. Of enrolled participants, 68.6% completed the follow-up questionnaire. Most enrolled participants were non-Hispanic White, male, and aged 60 + years. Over half (52.8%, 95% CI 41.1%, 64.5%) of cases experienced PIS approximately 4 to 6 weeks after acute onset of campylobacteriosis. CONCLUSIONS Results from this pilot study indicate that a larger study is feasible. The larger study will identify the true incidence of PIS and improve the management of patient health among ethnically diverse populations.
Collapse
Affiliation(s)
- Erika Barrett
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, 1295 N Martin Ave, Tucson, AZ 85719 USA
| | - Dametreea Carr
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, 1295 N Martin Ave, Tucson, AZ 85719 USA
| | - Melanie L Bell
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, 1295 N Martin Ave, Tucson, AZ 85719 USA
| | - Kristen Pogreba-Brown
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, 1295 N Martin Ave, Tucson, AZ 85719 USA
| |
Collapse
|
48
|
Fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli from poultry and human samples assessed by PCR-restriction fragment length polymorphism assay. PLoS One 2018; 13:e0199974. [PMID: 29979715 PMCID: PMC6034818 DOI: 10.1371/journal.pone.0199974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/17/2018] [Indexed: 11/19/2022] Open
Abstract
The objective of this study was to determine fluoroquinolone resistance in Campylobacter spp from poultry and human isolates. Forty-one Campylobacter jejuni isolates (30 of poultry origin and 11 of human origin) and 11 Campylobacter coli isolates (10 of human origin and 1 of poultry origin) were examined for ciprofloxacin, norfloxacin, and nalidixic acid resistance using the minimal inhibitory concentration (MIC) method. Thereafter, the isolates were analyzed by PCR-Restriction Fragment Length Polymorphism (RFLP) assay for detection of Thr-86 mutation. Finally, DNA sequencing was performed for confirmation of gyrA gene mutation. A complete correlation was observed between MICs, PCR-RFLP assay, and sequencing. The results revealed high quinolone resistance rates for C. jejuni (100%) and C. coli (100%) isolates obtained from poultry and moderate resistance for C. jejuni (9.1%) and C. coli (40%) samples of human origin. A mutation in codon 86 of the gyrA gene with a Thr-to-Ile substitution is reported to be the main cause of high resistance to quinolones. This mutation can be analyzed by PCR-RFLP assay, which has been proven to be a simple and fast method for the detection of fluoroquinolone resistance in Campylobacter spp.
Collapse
|
49
|
Salah Ud-Din AIM, Roujeinikova A. Flagellin glycosylation with pseudaminic acid in Campylobacter and Helicobacter: prospects for development of novel therapeutics. Cell Mol Life Sci 2018; 75:1163-1178. [PMID: 29080090 PMCID: PMC11105201 DOI: 10.1007/s00018-017-2696-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/10/2017] [Accepted: 10/24/2017] [Indexed: 02/08/2023]
Abstract
Many pathogenic bacteria require flagella-mediated motility to colonise and persist in their hosts. Helicobacter pylori and Campylobacter jejuni are flagellated epsilonproteobacteria associated with several human pathologies, including gastritis, acute diarrhea, gastric carcinoma and neurological disorders. In both species, glycosylation of flagellin with an unusual sugar pseudaminic acid (Pse) plays a crucial role in the biosynthesis of functional flagella, and thereby in bacterial motility and pathogenesis. Pse is found only in pathogenic bacteria. Its biosynthesis via six consecutive enzymatic steps has been extensively studied in H. pylori and C. jejuni. This review highlights the importance of flagella glycosylation and details structural insights into the enzymes in the Pse pathway obtained via a combination of biochemical, crystallographic, and mutagenesis studies of the enzyme-substrate and -inhibitor complexes. It is anticipated that understanding the underlying structural and molecular basis of the catalytic mechanisms of the Pse-synthesising enzymes will pave the way for the development of novel antimicrobials.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
50
|
García-Kutzbach A, Chacón-Súchite J, García-Ferrer H, Iraheta I. Reactive arthritis: update 2018. Clin Rheumatol 2018; 37:869-874. [DOI: 10.1007/s10067-018-4022-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 01/08/2023]
|