1
|
Wang L, Hu X, Tao C, Xiang J, Cui H. Identification of Antisense RNA NRAS-AS and Its Preliminary Exploration of the Anticancer Regulatory Mechanism. Genes (Basel) 2024; 15:1524. [PMID: 39766793 PMCID: PMC11675080 DOI: 10.3390/genes15121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE To explore the influence of NRAS-AS on the proliferation, apoptosis, cell cycle, migration, and invasion ability of HCC cells, as well as its underlying mechanisms. METHODS A double-stranded cDNA library for liver cancer cells was constructed, and identified NRAS-AS through High-throughput sequencing, bioinformatics, chain-specific fluorescent quantitative PCR, and RACE. NRAS-AS's effects on HepG2 and SMMC-7721 cells and gene expression were evaluated. Additionally, the study analyzed the influence of NRAS-AS overexpression on tumor formation in nude mice. Immunohistochemistry and Western blotting were used to detect NRAS protein levels in clinical samples. RT-qPCR examined NRAS-AS and NRAS gene expression in HCC and adjacent tissues. RESULTS NRAS-AS overexpression suppresses HCC cell proliferation and invasion, induces cell cycle alterations in HepG2 and SMMC-7721 cells, and enhances apoptosis. NRAS-AS interference promoted liver cancer invasion, inhibited apoptosis, and influences the cell cycle. Nude mice overexpressing NRAS-AS showed smaller tumors. NRAS-AS expression in liver cancer patients correlated with clinical factors. RT-qPCR revealed an inverse correlation between NRAS-AS and NRAS gene expression in liver cancer and adjacent tissues. IHC analysis revealed reduced NRAS protein expression in HepG2 and SMMC-7721 cells following NRAS-AS overexpression. The impact of AZA treatment on antisense NRAS-AS and sense NRAS gene expression in liver cancer cells was observed, and antisense. CONCLUSION Reduced NRAS-AS expression is frequently observed in HCC and is inversely related to NRAS gene expression, suggesting a role in HCC pathogenesis through NRAS regulation. Targeting antisense RNA NRAS-AS could hold promise as a therapeutic target and diagnostic biomarker for HCC.
Collapse
Affiliation(s)
- Liping Wang
- Department of Biobank, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, China;
- College of Animal Science and Technology, Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou 225001, China;
| | - Xuming Hu
- College of Animal Science and Technology, Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou 225001, China;
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225001, China
| | - Chenyue Tao
- School of Nursing School of Public Health, Yangzhou University, Yangzhou 225001, China;
| | - Jacob Xiang
- Clinical Pharmacist, Foothills Medical Centre, 140329 St NW, Calgary, AB T2N 2T9, Canada;
| | - Hengmi Cui
- College of Animal Science and Technology, Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou 225001, China;
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
2
|
Miranda-Roblero HO, Saavedra-Salazar LF, Galicia-Moreno M, Arceo-Orozco S, Caloca-Camarena F, Sandoval-Rodriguez A, García-Bañuelos J, Frias-Gonzalez C, Almeida-López M, Martínez-López E, Armendariz-Borunda J, Monroy-Ramirez HC. Pirfenidone Reverts Global DNA Hypomethylation, Promoting DNMT1/UHRF/PCNA Coupling Complex in Experimental Hepatocarcinoma. Cells 2024; 13:1013. [PMID: 38920644 PMCID: PMC11201610 DOI: 10.3390/cells13121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) development is associated with altered modifications in DNA methylation, changing transcriptional regulation. Emerging evidence indicates that DNA methyltransferase 1 (DNMT1) plays a key role in the carcinogenesis process. This study aimed to investigate how pirfenidone (PFD) modifies this pathway and the effect generated by the association between c-Myc expression and DNMT1 activation. Rats F344 were used for HCC development using 50 mg/kg of diethylnitrosamine (DEN) and 25 mg/kg of 2-Acetylaminofluorene (2-AAF). The HCC/PFD group received simultaneous doses of 300 mg/kg of PFD. All treatments lasted 12 weeks. On the other hand, HepG2 cells were used to evaluate the effects of PFD in restoring DNA methylation in the presence of the inhibitor 5-Aza. Histopathological, biochemical, immunohistochemical, and western blot analysis were carried out and our findings showed that PFD treatment reduced the amount and size of tumors along with decreased Glipican-3, β-catenin, and c-Myc expression in nuclear fractions. Also, this treatment improved lipid metabolism by modulating PPARγ and SREBP1 signaling. Interestingly, PFD augmented DNMT1 and DNMT3a protein expression, which restores global methylation, both in our in vivo and in vitro models. In conclusion, our results suggest that PFD could slow down HCC development by controlling DNA methylation.
Collapse
MESH Headings
- Animals
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA Methylation/drug effects
- DNA Methylation/genetics
- Pyridones/pharmacology
- Rats
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Humans
- Hep G2 Cells
- Proliferating Cell Nuclear Antigen/metabolism
- Male
- Rats, Inbred F344
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Diethylnitrosamine
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/genetics
Collapse
Affiliation(s)
- Hipolito Otoniel Miranda-Roblero
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, CUCS, University of Guadalajara, Guadalajara 44340, Mexico; (H.O.M.-R.); (L.F.S.-S.)
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Liliana Faridi Saavedra-Salazar
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, CUCS, University of Guadalajara, Guadalajara 44340, Mexico; (H.O.M.-R.); (L.F.S.-S.)
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Scarlet Arceo-Orozco
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Fernando Caloca-Camarena
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Claudia Frias-Gonzalez
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, CUCS, University of Guadalajara, Guadalajara 44340, Mexico; (H.O.M.-R.); (L.F.S.-S.)
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Mónica Almeida-López
- University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico
| | - Erika Martínez-López
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Juan Armendariz-Borunda
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45138, Mexico
| | - Hugo Christian Monroy-Ramirez
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| |
Collapse
|
3
|
Lanka G, Begum D, Banerjee S, Adhikari N, P Y, Ghosh B. Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors. Comput Biol Med 2023; 166:107481. [PMID: 37741229 DOI: 10.1016/j.compbiomed.2023.107481] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Histone deacetylase 3 (HDAC3) is an epigenetic regulator that involves gene expression, apoptosis, and cell cycle progression, and the overexpression of HDAC3 is accountable for several cancers, neurodegeneracy, and many other diseases. Therefore, HDAC3 emerged as a promising drug target for the novel drug design. Here, we carried out the pharmacophore modeling using 50 benzamide-based HDAC3 selective inhibitors and utilized it for PHASE ligand screening to retrieve the hits with similar pharmacophore features. The dataset inhibitors of best hypotheses used to build the 3D QSAR model and the generated 3D QSAR model resulted in good PLS statistics with a regression coefficient (R2) of 0.89, predictive coefficient (Q2) of 0.88, and Pearson-R factor of 0.94 indicating its excellent predictive ability. The hits retrieved from pharmacophore-based virtual screening were subjected to docking against HDAC3 for the identification of potential inhibitors. A total of 10 hitsM1 to M10 were ranked using their scoring functions and further subject to lead optimization. The Prime MM/GBSA, AutoDock binding free energies, and ADMET studies were implemented for the selection of lead candidates. The four ligand molecules M1, M2, M3, and M4 were identified as potential leads against HDAC3 after lead optimization. The top two leads M1 and M2 were subjected to MD simulations for their stability evaluation with HDAC3. The newly designed leads M11 and M12 were identified as HDAC3 potential inhibitors from MD simulations studies. Therefore, the outcomes of the present study could provide insights into the discovery of new potential HDAC3 inhibitors with improved selectivity and activity against a variety of cancers and neurodegenerative diseases.
Collapse
Affiliation(s)
- Goverdhan Lanka
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Darakhshan Begum
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Yogeeswari P
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India.
| |
Collapse
|
4
|
Raju R, Abuwatfa WH, Pitt WG, Husseini GA. Liposomes for the Treatment of Brain Cancer-A Review. Pharmaceuticals (Basel) 2023; 16:1056. [PMID: 37630971 PMCID: PMC10458450 DOI: 10.3390/ph16081056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
Due to their biocompatibility, non-toxicity, and surface-conjugation capabilities, liposomes are effective nanocarriers that can encapsulate chemotherapeutic drugs and facilitate targeted delivery across the blood-brain barrier (BBB). Additionally, strategies have been explored to synthesize liposomes that respond to internal and/or external stimuli to release their payload controllably. Although research into liposomes for brain cancer treatment is still in its infancy, these systems have great potential to fundamentally change the drug delivery landscape. This review paper attempts to consolidate relevant literature regarding the delivery to the brain using nanocarriers, particularly liposomes. The paper first briefly explains conventional treatment modalities for cancer, followed by describing the blood-brain barrier and ways, challenges, and techniques involved in transporting drugs across the BBB. Various nanocarrier systems are introduced, with attention to liposomes, due to their ability to circumvent the challenges imposed by the BBB. Relevant studies involving liposomal systems researched to treat brain tumors are reviewed in vitro, in vivo, and clinical studies. Finally, the challenges associated with the use of liposomes to treat brain tumors and how they can be addressed are presented.
Collapse
Affiliation(s)
- Richu Raju
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA;
| | - Ghaleb A. Husseini
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
5
|
Sassi A, Fredon M, Cotte AK, Fuselier C, Schneider C, Martiny L, Monchaud D, Chekir-Ghedira L, Aires V, Delmas D. Chrysin-Induced Regression of Angiogenesis via an Induction of DNA Damage Response and Oxidative Stress in In Vitro and In Vivo Models of Melanoma. Cells 2023; 12:1561. [PMID: 37371032 DOI: 10.3390/cells12121561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the progress made in treatments, melanoma is one of the cancers for which its incidence and mortality have increased during recent decades. In the research of new therapeutic strategies, natural polyphenols such as chrysin could be good candidates owing to their capacities to modulate the different fundamental aspects of tumorigenesis and resistance mechanisms, such as oxidative stress and neoangiogenesis. In the present study, we sought to determine whether chrysin could exert antitumoral effects via the modulation of angiogenesis by acting on oxidative stress and associated DNA damage. For the first time, we show a link between chrysin-induced antiproliferative effects, the activation of the DNA damage pathway, and its ability to limit angiogenesis. More specifically, herein, we show that chrysin induces single- and double-stranded DNA breaks via the activation of the DNA damage response pathway: ATM (ataxia-telangiectasia-mutated)/Chk2 (checkpoint kinase 2) and ATR (ataxia telangiectasia and Rad3-related)/Chk1 (checkpoint kinase 1) pathways. Strong activation of this DNA damage response was found to be partly involved in the ability of chrysin to limit angiogenesis and may partly involve a direct interaction between the polyphenol and DNA G-quadruplex structures responsible for the replication fork collapse. Moreover, these events were associated with a marked reduction in melanoma cells' capacity to secrete proangiogenic factor VEGF-A. The disruption of these key protein actors in tumor growth by chrysin was also confirmed in a syngeneic model of B16 melanoma. This last point is of importance to further consider the use of chrysin as a new therapeutic strategy in melanoma treatment.
Collapse
Affiliation(s)
- Aicha Sassi
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Maxime Fredon
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Alexia K Cotte
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Camille Fuselier
- Faculté des Sciences Exactes et Naturelles, UMR CNRS 7369 MEDyC, Université de Reims Champagne Ardenne, 51687 Reims, France
| | - Christophe Schneider
- Faculté des Sciences Exactes et Naturelles, UMR CNRS 7369 MEDyC, Université de Reims Champagne Ardenne, 51687 Reims, France
| | - Laurent Martiny
- Faculté des Sciences Exactes et Naturelles, UMR CNRS 7369 MEDyC, Université de Reims Champagne Ardenne, 51687 Reims, France
| | - David Monchaud
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC, 21078 Dijon, France
| | - Leila Chekir-Ghedira
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Virginie Aires
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Dominique Delmas
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
- Centre de Lutte Contre le Cancer Georges François Leclerc Center, 21000 Dijon, France
| |
Collapse
|
6
|
Malcomson FC, Mathers JC. Translation of nutrigenomic research for personalised and precision nutrition for cancer prevention and for cancer survivors. Redox Biol 2023; 62:102710. [PMID: 37105011 PMCID: PMC10165138 DOI: 10.1016/j.redox.2023.102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Personalised and precision nutrition uses information on individual characteristics and responses to nutrients, foods and dietary patterns to develop targeted nutritional advice that is more effective in improving the diet and health of each individual. Moving away from the conventional 'one size fits all', such targeted intervention approaches may pave the way to better population health, including lower burden of non-communicable diseases. To date, most personalised and precision nutrition approaches have been focussed on tackling obesity and cardiometabolic diseases with limited efforts directed to cancer prevention and for cancer survivors. Advances in understanding the biological basis of cancer and of the role played by diet in cancer prevention and in survival after cancer diagnosis, mean that it is timely to test and to apply such personalised and precision nutrition approaches in the cancer area. This endeavour can take advantage of the enhanced understanding of interactions between dietary factors, individual genotype and the gut microbiome that impact on risk of, and survival after, cancer diagnosis. Translation of these basic research into public health action should include real-time acquisition of nutrigenomic and related data and use of AI-based data integration methods in systems approaches that can be scaled up using mobile devices.
Collapse
Affiliation(s)
- F C Malcomson
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - J C Mathers
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
7
|
Cecere F, Pignata L, Hay Mele B, Saadat A, D'Angelo E, Palumbo O, Palumbo P, Carella M, Scarano G, Rossi GB, Angelini C, Sparago A, Cerrato F, Riccio A. Co-Occurrence of Beckwith-Wiedemann Syndrome and Early-Onset Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15071944. [PMID: 37046605 PMCID: PMC10093120 DOI: 10.3390/cancers15071944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
CRC is an adult-onset carcinoma representing the third most common cancer and the second leading cause of cancer-related deaths in the world. EO-CRC (<45 years of age) accounts for 5% of the CRC cases and is associated with cancer-predisposing genetic factors in half of them. Here, we describe the case of a woman affected by BWSp who developed EO-CRC at age 27. To look for a possible molecular link between BWSp and EO-CRC, we analysed her whole-genome genetic and epigenetic profiles in blood, and peri-neoplastic and neoplastic colon tissues. The results revealed a general instability of the tumor genome, including copy number and methylation changes affecting genes of the WNT signaling pathway, CRC biomarkers and imprinted loci. At the germline level, two missense mutations predicted to be likely pathogenic were found in compound heterozygosity affecting the Cystic Fibrosis (CF) gene CFTR that has been recently classified as a tumor suppressor gene, whose dysregulation represents a severe risk factor for developing CRC. We also detected constitutional loss of methylation of the KCNQ1OT1:TSS-DMR that leads to bi-allelic expression of the lncRNA KCNQ1OT1 and BWSp. Our results support the hypothesis that the inherited CFTR mutations, together with constitutional loss of methylation of the KCNQ1OT1:TSS-DMR, initiate the tumorigenesis process. Further somatic genetic and epigenetic changes enhancing the activation of the WNT/beta-catenin pathway likely contributed to increase the growth advantage of cancer cells. Although this study does not provide any conclusive cause-effect relationship between BWSp and CRC, it is tempting to speculate that the imprinting defect of BWSp might accelerate tumorigenesis in adult cancer in the presence of predisposing genetic variants.
Collapse
Affiliation(s)
- Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Bruno Hay Mele
- Department of Biology, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Abu Saadat
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Emilia D'Angelo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Gioacchino Scarano
- Medical Genetics Unit, Azienda Ospedaliera "San Pio" P."Gaetano Rummo", 82100 Benevento, Italy
| | | | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo (IAC) "Mauro Picone", Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
- Institute of Genetics and e Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy
| |
Collapse
|
8
|
Liu C, Zhou X, Jin J, Zhu Q, Li L, Yin Q, Xu T, Gu W, Ma F, Yang R. The Association Between Breast Cancer and Blood-Based Methylation of CD160, ISYNA1 and RAD51B in the Chinese Population. Front Genet 2022; 13:927519. [PMID: 35812748 PMCID: PMC9261985 DOI: 10.3389/fgene.2022.927519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022] Open
Abstract
Recent studies have identified DNA methylation signatures in the white blood cells as potential biomarkers for breast cancer (BC) in the European population. Here, we investigated the association between BC and blood-based methylation of cluster of differentiation 160 (CD160), inositol-3-phosphate synthase 1 (ISYNA1) and RAD51 paralog B (RAD51B) genes in the Chinese population. Peripheral blood samples were collected from two independent case-control studies with a total of 272 sporadic early-stage BC cases (76.5% at stage I&II) and 272 cancer-free female controls. Mass spectrometry was applied to quantitatively measure the levels of DNA methylation. The logistic regression and non-parametric tests were used for the statistical analyses. In contrast to the protective effects reported in European women, we reported the blood-based hypomethylation in CD160, ISYNA1 and RAD51B as risk factors for BC in the Chinese population (CD160_CpG_3, CD160_CpG_4/cg20975414, ISYNA1_CpG_2, RAD51B_CpG_3 and RAD51B_CpG_4; odds ratios (ORs) per -10% methylation ranging from 1.08 to 1.67, p < 0.05 for all). Moreover, hypomethylation of CD160, ISYNA1 and RAD51B was significantly correlated with age, BC subtypes including estrogen receptor (ER)-negative BC tumors, triple negative tumors, BC cases with larger size, advanced stages and more lymph node involvement. Our results supported the report in European women that BC is associated with altered methylation of CD160, ISYNA1 and RAD51B in the peripheral blood, although the effects are opposite in the Chinese population. The difference between the two populations may be due to variant genetic background or life styles, implicating that the validations of epigenetic biomarkers in variant ethnic groups are warranted.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiajie Zhou
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jialie Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lixi Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiming Yin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tian Xu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Rongxi Yang,
| |
Collapse
|
9
|
Chatterjee S, Zeng X, Ouidir M, Tesfaye M, Zhang C, Tekola-Ayele F. Sex-specific placental gene expression signatures of small for gestational age at birth. Placenta 2022; 121:82-90. [PMID: 35303517 PMCID: PMC9010378 DOI: 10.1016/j.placenta.2022.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Small for gestational age at birth (SGA), often a consequence of placental dysfunction, is a risk factor for neonatal morbidity and later life cardiometabolic diseases. There are sex differences in placental gene expression and fetal growth. Here, we investigated sex-specific associations between gene expression in human placenta measured using RNA sequencing and SGA status using data from ethnic diverse pregnant women in the NICHD Fetal Growth Studies cohort (n = 74). METHODS Gene expression measures were obtained using RNA-Sequencing and differential gene expression between SGA (birthweight <10th percentile) and appropriate for gestational age (AGA: ≥10th and <90th percentile) was tested separately in males (12 SGA and 27 AGA) and females (9 SGA and 26 AGA) using a weighted mean of log ratios method with adjustment for mode of delivery and ethnicity. RESULTS At 5% false discovery rate (FDR), we identified 40 differentially expressed genes (DEGs) related to SGA status among males (95% up- and 5% down-regulated) and 314 DEGs among females (32.5% up- and 67.5% down-regulated). Seven female-specific DEGs overlapped with known imprinted genes (AXL, CYP24A1, GPR1, PLAGL1, CMTM1, DLX5, LY6D). The DEGs in males were significantly enriched for immune response and inflammation signaling pathways whereas the DEGs in females were enriched for organ development signaling pathways (FDR<0.05). Sex-combined analysis identified no additional DEGs, rather 98% of the sex-specific DEGs were no longer significant and the remaining 2% were attenuated. DISCUSSION This study revealed sex-specific human placental gene expression changes and molecular pathways associated with SGA and underscored that unravelling the pathogenesis of SGA warrants consideration of fetal sex as a biological variable. TRIAL REGISTRATION https://www. CLINICALTRIALS gov, Unique identifier: NCT00912132.
Collapse
Affiliation(s)
- Suvo Chatterjee
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Xuehuo Zeng
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Markos Tesfaye
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.
| |
Collapse
|
10
|
Hong H, Ji M, Lai D. Chronic Stress Effects on Tumor: Pathway and Mechanism. Front Oncol 2022; 11:738252. [PMID: 34988010 PMCID: PMC8720973 DOI: 10.3389/fonc.2021.738252] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic stress is an emotional experience that occurs when people encounter something they cannot adapt to. Repeated chronic stress increases the risk of a variety of diseases, such as cardiovascular disease, depression, endocrine disease, inflammation and cancer. A growing body of research has shown that there is a link between chronic stress and tumor occurrence in both animal studies and clinical studies. Chronic stress activates the neuroendocrine system (hypothalamic-pituitary-adrenal axis) and sympathetic nervous system. Stress hormones promote the occurrence and development of tumors through various mechanisms. In addition, chronic stress also affects the immune function of the body, leading to the decline of immune monitoring ability and promote the occurrence of tumors. The mechanisms of chronic stress leading to tumor include inflammation, autophagy and epigenetics. These factors increase the proliferation and invasion capacity of tumor cells and alter the tumor microenvironment. Antagonists targeting adrenergic receptors have played a beneficial role in improving antitumor activity, as well as chemotherapy resistance and radiation resistance. Here, we review how these mechanisms contribute to tumor initiation and progression, and discuss whether these molecular mechanisms might be an ideal target to treat tumor.
Collapse
Affiliation(s)
- Hanqing Hong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Speciality, Shanghai, China
| | - Min Ji
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Speciality, Shanghai, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Speciality, Shanghai, China
| |
Collapse
|
11
|
Guo Z, Shafik AM, Jin P, Wu Z, Wu H. Detecting m6A methylation regions from Methylated RNA Immunoprecipitation Sequencing. Bioinformatics 2021; 37:2818-2824. [PMID: 33724304 PMCID: PMC9991887 DOI: 10.1093/bioinformatics/btab181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION The post-transcriptional epigenetic modification on mRNA is an emerging field to study the gene regulatory mechanism and their association with diseases. Recently developed high-throughput sequencing technology named Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) enables one to profile mRNA epigenetic modification transcriptome wide. A few computational methods are available to identify transcriptome-wide mRNA modification, but they are either limited by over-simplified model ignoring the biological variance across replicates or suffer from low accuracy and efficiency. RESULTS In this work, we develop a novel statistical method, based on an empirical Bayesian hierarchical model, to identify mRNA epigenetic modification regions from MeRIP-seq data. Our method accounts for various sources of variations in the data through rigorous modeling and applies shrinkage estimation by borrowing information from transcriptome-wide data to stabilize the parameter estimation. Simulation and real data analyses demonstrate that our method is more accurate, robust and efficient than the existing peak calling methods. AVAILABILITY AND IMPLEMENTATION Our method TRES is implemented as an R package and is freely available on Github at https://github.com/ZhenxingGuo0015/TRES. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhenxing Guo
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Andrew M Shafik
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI 02806, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Hernandez-Meza G, von Felden J, Gonzalez-Kozlova EE, Garcia-Lezana T, Peix J, Portela A, Craig AJ, Sayols S, Schwartz M, Losic B, Mazzaferro V, Esteller M, Llovet JM, Villanueva A. DNA Methylation Profiling of Human Hepatocarcinogenesis. Hepatology 2021; 74:183-199. [PMID: 33237575 PMCID: PMC8144238 DOI: 10.1002/hep.31659] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Mutations in TERT (telomerase reverse transcriptase) promoter are established gatekeepers in early hepatocarcinogenesis, but little is known about other molecular alterations driving this process. Epigenetic deregulation is a critical event in early malignancies. Thus, we aimed to (1) analyze DNA methylation changes during the transition from preneoplastic lesions to early HCC (eHCC) and identify candidate epigenetic gatekeepers, and to (2) assess the prognostic potential of methylation changes in cirrhotic tissue. APPROACH AND RESULTS Methylome profiling was performed using Illumina HumanMethylation450 (485,000 cytosine-phosphateguanine, 96% of known cytosine-phosphateguanine islands), with data available for a total of 390 samples: 16 healthy liver, 139 cirrhotic tissue, 8 dysplastic nodules, and 227 HCC samples, including 40 eHCC below 2cm. A phylo-epigenetic tree derived from the Euclidean distances between differentially DNA-methylated sites (n = 421,997) revealed a gradient of methylation changes spanning healthy liver, cirrhotic tissue, dysplastic nodules, and HCC with closest proximity of dysplasia to HCC. Focusing on promoter regions, we identified epigenetic gatekeeper candidates with an increasing proportion of hypermethylated samples (beta value > 0.5) from cirrhotic tissue (<1%), to dysplastic nodules (≥25%), to eHCC (≥50%), and confirmed inverse correlation between DNA methylation and gene expression for TSPYL5 (testis-specific Y-encoded-like protein 5), KCNA3 (potassium voltage-gated channel, shaker-related subfamily, member 3), LDHB (lactate dehydrogenase B), and SPINT2 (serine peptidase inhibitor, Kunitz type 2) (all P < 0.001). Unsupervised clustering of genome-wide methylation profiles of cirrhotic tissue identified two clusters, M1 and M2, with 42% and 58% of patients, respectively, which correlates with survival (P < 0.05), independent of etiology. CONCLUSIONS Genome-wide DNA-methylation profiles accurately discriminate the different histological stages of human hepatocarcinogenesis. We report on epigenetic gatekeepers in the transition between dysplastic nodules and eHCC. DNA-methylation changes in cirrhotic tissue correlate with clinical outcomes.
Collapse
Affiliation(s)
- Gabriela Hernandez-Meza
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johann von Felden
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,I. Department of Internal Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Edgar E. Gonzalez-Kozlova
- Department of Genetics and Genomic Sciences, Cancer Immunology Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Garcia-Lezana
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judit Peix
- Translational Research in Hepatic Oncology, Liver Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Universitat De Barcelona, Catalonia, Spain
| | - Anna Portela
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Amanda J. Craig
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergi Sayols
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Institute of Molecular Biology, Mainz, Germany
| | - Myron Schwartz
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Cancer Immunology Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Milan, Italy
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Josep M. Llovet
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Translational Research in Hepatic Oncology, Liver Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Universitat De Barcelona, Catalonia, Spain,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Ari F, Napieralski R, Akgun O, Magdolen V, Ulukaya E. Epigenetic modulators combination with chemotherapy in breast cancer cells. Cell Biochem Funct 2021; 39:571-583. [PMID: 33608886 DOI: 10.1002/cbf.3626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Despite the concerning adverse effects on tumour development, epigenetic drugs are very promising in cancer treatment. The aim of this study was to compare the differential effects of standard chemotherapy regimens (FEC: 5-fluorouracil plus epirubicine plus cyclophosphamide) in combination with epigenetic modulators (decitabine, valproic acid): (a) on gene methylation levels of selected tumour biomarkers (LINE-1, uPA, PAI-1, DAPK); (b) their expression status (uPA and PAI-1); (c) differentiation status (5meC and H3K27me3). Furthermore, cell survival as well as changes concerning the invasion capacity were monitored in cell culture models of breast cancer (MCF-7, MDA-MB-231). A significant overall decrease of cell survival was observed in the FEC-containing combination therapies for both cell lines. Methylation results showed a general tendency towards increased demethylation of the uPA and PAI-1 gene promoters for the MCF-7 cells, as well as the proapoptotic DAPK gene in the treatment regimens for both cell lines. The uPA and PAI-1 antigen levels were mainly increased in the supernatant of FEC-only treated MDA-MB-231 cells. DAC-only treatment induced an increase of secreted uPA protein in MCF-7 cell culture, while most of the VPA-containing regimens also induced uPA and PAI-1 expression in MCF-7 cell fractions. Epigenetically active substances can also induce a re-differentiation in tumour cells, as shown by 5meC, H3K27me3 applying ICC. SIGNIFICANCE OF THE STUDY: Epigenetic modulators especially in the highly undifferentiated and highly malignant MDA-MB-231 tumour cells significantly reduced tumour malignancy thus; further clinical studies applying specific combination therapies with epigenetic modulators may be warranted.
Collapse
Affiliation(s)
- Ferda Ari
- Science and Art Faculty, Department of Biology, Bursa Uludag University, Bursa, Turkey
| | - Rudolf Napieralski
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Therawis Diagnostics GmbH, Munich, Germany
| | - Oguzhan Akgun
- Science and Art Faculty, Department of Biology, Bursa Uludag University, Bursa, Turkey
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Engin Ulukaya
- Faculty of Medicine, Department of Clinical Biochemistry, Istinye University, Istanbul, Turkey
| |
Collapse
|
14
|
Klutstein M. Cause and effect in epigenetics - where lies the truth, and how can experiments reveal it?: Epigenetic self-reinforcing loops obscure causation in cancer and aging. Bioessays 2020; 43:e2000262. [PMID: 33236359 DOI: 10.1002/bies.202000262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Epigenetic changes are implicated in aging and cancer. Sometimes, it is clear whether the causing agent of the condition is a genetic factor or epigenetic. In other cases, the causative factor is unclear, and could be either genetic or epigenetic. Is there a general role for epigenetic changes in cancer and aging? Here, I present the paradigm of causative roles executed by epigenetic changes. I discuss cases with clear roles of the epigenome in cancer and aging, and other cases showing involvement of other factors. I also present the possibility that sometimes causality is difficult to assign because of the presence of self-reinforcing loops in epigenetic regulation. Such loops hinder the identification of the causative factor. I provide an experimental framework by which the role of the epigenome can be examined in a better setting and where the presence of such loops could be investigated in more detail.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
15
|
Mancilla VJ, Peeri NC, Silzer T, Basha R, Felini M, Jones HP, Phillips N, Tao MH, Thyagarajan S, Vishwanatha JK. Understanding the Interplay Between Health Disparities and Epigenomics. Front Genet 2020; 11:903. [PMID: 32973872 PMCID: PMC7468461 DOI: 10.3389/fgene.2020.00903] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Social epigenomics has emerged as an integrative field of research focused on identification of socio-environmental factors, their influence on human biology through epigenomic modifications, and how they contribute to current health disparities. Several health disparities studies have been published using genetic-based approaches; however, increasing accessibility and affordability of molecular technologies have allowed for an in-depth investigation of the influence of external factors on epigenetic modifications (e.g., DNA methylation, micro-RNA expression). Currently, research is focused on epigenetic changes in response to environment, as well as targeted epigenetic therapies and environmental/social strategies for potentially minimizing certain health disparities. Here, we will review recent findings in this field pertaining to conditions and diseases over life span encompassing prenatal to adult stages.
Collapse
Affiliation(s)
- Viviana J. Mancilla
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Noah C. Peeri
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Talisa Silzer
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Riyaz Basha
- Department of Pediatrics, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Martha Felini
- Department of Pediatrics, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Harlan P. Jones
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nicole Phillips
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Meng-Hua Tao
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Srikantha Thyagarajan
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Jamboor K. Vishwanatha
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
16
|
Kovács T, Szabó-Meleg E, Ábrahám IM. Estradiol-Induced Epigenetically Mediated Mechanisms and Regulation of Gene Expression. Int J Mol Sci 2020; 21:ijms21093177. [PMID: 32365920 PMCID: PMC7246826 DOI: 10.3390/ijms21093177] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Gonadal hormone 17β-estradiol (E2) and its receptors are key regulators of gene transcription by binding to estrogen responsive elements in the genome. Besides the classical genomic action, E2 regulates gene transcription via the modification of epigenetic marks on DNA and histone proteins. Depending on the reaction partner, liganded estrogen receptor (ER) promotes DNA methylation at the promoter or enhancer regions. In addition, ERs are important regulators of passive and active DNA demethylation. Furthermore, ERs cooperating with different histone modifying enzymes and chromatin remodeling complexes alter gene transcription. In this review, we survey the basic mechanisms and interactions between estrogen receptors and DNA methylation, demethylation and histone modification processes as well as chromatin remodeling complexes. The particular relevance of these mechanisms to physiological processes in memory formation, embryonic development, spermatogenesis and aging as well as in pathophysiological changes in carcinogenesis is also discussed.
Collapse
Affiliation(s)
- Tamás Kovács
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - István M. Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
- Correspondence:
| |
Collapse
|
17
|
Yang L, Lei Q, Li L, Yang J, Dong Z, Cui H. Silencing or inhibition of H3K79 methyltransferase DOT1L induces cell cycle arrest by epigenetically modulating c-Myc expression in colorectal cancer. Clin Epigenetics 2019; 11:199. [PMID: 31888761 PMCID: PMC6937672 DOI: 10.1186/s13148-019-0778-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epigenetic regulations play pivotal roles in tumorigenesis and cancer development. Disruptor of telomeric silencing-1-like (DOT1L), also known as KMT4, is the only identified histone methyltransferase that catalyzes the mono-, di-, and tri-methylation of lysine 79 histone 3 (H3K79). However, little is known about the effect of H3K79 methylation on the modulation of colorectal cancer (CRC) development. METHODS DOT1L expression profiles in different subgroups of CRC tissues and its clinical significances were analyzed from some online datasheets. DOT1L in CRC cell lines was silenced by either lentivirus-mediated knockdown or inhibited by its specific inhibitor, EPZ004777. Then cell proliferation was detected by MTT assay, BrdU assay, and soft agar assay; cell cycle was detected by cytometry; and tumorigenicity was detected by using nude mice xenograft models. Clinical co-expression was analyzed between DOT1L and c-Myc. Chromatin immunoprecipitation (ChIP) assay was used to determine whether the translation of c-Myc was epigenetically regulated by H3K79me2 induced by DOT1L. c-Myc overexpression was used to rescue the cell cycle arrest and tumor growth induced by DOT1L silencing or inhibition in CRC. RESULTS We found that DOT1L was highly expressed in colorectal cancer and was negatively related to the prognosis of patients with CRC. Silencing or inhibition of DOT1L blocked cell proliferation, BrdU incorporation, self-renewal capability in vitro, and tumorigenicity in vivo. Besides, inhibition or silencing of DOT1L also induced cell cycle arrest at S phase, as well as decreased the expression of CDK2 and Cyclin A2. Furthermore, in the clinical databases of CRC, we found that the expression of DOT1L was positively correlated with that of c-Myc, a major regulator in the upstream of cell cycle-related factors. Besides, c-Myc expression was downregulated after DOT1L knockdown and c-Myc restoration rescued decrease of cell proliferation, BrdU corporation, self-renewal capability, cell cycle progression in vitro and tumorigenicity in vivo induced by DOT1L silencing. Then we found that H3K79 methylation was decreased after DOT1L knockdown. ChIP assay showed that H3K79me2 was enriched on the - 682~+ 284 region of c-Myc promoter, and the enrichment was decreased after DOT1L inhibition. CONCLUSIONS Our results show that DOT1L epigenetically promotes the transcription of c-Myc via H3K79me2. DOT1L silencing or inhibition induces cell cycle arrest at S phase. DOT1L is a potential marker for colorectal cancer and EPZ004777 may be a potential drug for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China
| | - Qian Lei
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China
| | - Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China. .,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China. .,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China. .,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China. .,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China.
| |
Collapse
|
18
|
Brumbaugh J, Di Stefano B, Hochedlinger K. Reprogramming: identifying the mechanisms that safeguard cell identity. Development 2019; 146:146/23/dev182170. [PMID: 31792064 DOI: 10.1242/dev.182170] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development and homeostasis rely upon concerted regulatory pathways to establish the specialized cell types needed for tissue function. Once a cell type is specified, the processes that restrict and maintain cell fate are equally important in ensuring tissue integrity. Over the past decade, several approaches to experimentally reprogram cell fate have emerged. Importantly, efforts to improve and understand these approaches have uncovered novel molecular determinants that reinforce lineage commitment and help resist cell fate changes. In this Review, we summarize recent studies that have provided insights into the various chromatin factors, post-transcriptional processes and features of genomic organization that safeguard cell identity in the context of reprogramming to pluripotency. We also highlight how these factors function in other experimental, physiological and pathological cell fate transitions, including direct lineage conversion, pluripotency-to-totipotency reversion and cancer.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA .,Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
19
|
Wang R, Liu X. Epigenetic regulation of prostate cancer. Genes Dis 2019; 7:606-613. [PMID: 33335960 PMCID: PMC7729106 DOI: 10.1016/j.gendis.2019.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is (PCa) the second leading cause of cancer death in males in the United State, with 174,650 new cases and 31,620 deaths estimated in 2019. It has been documented that epigenetic deregulation such as histone modification and DNA methylation contributes to PCa initiation and progression. EZH2 (enhancer of zeste homolog 2), the catalytic subunit of the Polycomb Repressive Complex (PRC2) responsible for H3K27me3 and gene repression, has been identified as a promising target in PCa. In addition, overexpression of other epigenetic regulators such as DNA methyltransferases (DNMT) is also observed in PCa. These epigenetic regulators undergo extensive post-translational modifications, in particular, phosphorylation. AKT, CDKs, PLK1, PKA, ATR and DNA-PK are the established kinases responsible for phosphorylation of various epigenetic regulators.
Collapse
Affiliation(s)
- Ruixin Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
20
|
Lee MP. Understanding Cancer Through the Lens of Epigenetic Inheritance, Allele-Specific Gene Expression, and High-Throughput Technology. Front Oncol 2019; 9:794. [PMID: 31497535 PMCID: PMC6712412 DOI: 10.3389/fonc.2019.00794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Epigenetic information is characterized by its stable transmission during mitotic cell divisions and plasticity during development and differentiation. This duality is in contrast to genetic information, which is stable and identical in all cells in an organism with exception of immunoglobulin gene rearrangements in lymphocytes and somatic mutations in cancer cells. Allele-specific analysis of gene expression and epigenetic modifications provides a unique approach to studying epigenetic regulation in normal and cancer cells. Extension of Knudson's two-hits theory to include epigenetic alteration as a means to inactivate tumor suppressor genes provides better understanding of how genetic mutations and epigenetic alterations jointly contribute to cancer development. High-throughput technology has greatly accelerated cancer discovery. Large initiatives such as TCGA have shown that epigenetic components are frequent targets of mutations in cancer and these discoveries provide new insights into understanding cancer etiology and generate new opportunities for cancer therapeutics.
Collapse
Affiliation(s)
- Maxwell P Lee
- High Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Pakzad Toochaei S, Ghasempouri SM, Riyahi Bakhtiari A, Khodabandeh S. Global DNA methylation changes in rock pigeon (Columba livia) as a sentinel species due to polycyclic aromatic hydrocarbons exposure in Tehran (Iran) as a megacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26090-26101. [PMID: 31280440 DOI: 10.1007/s11356-019-05642-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Global DNA methylation, as an epigenetic modifications, can be a promising genomic marker for monitoring the contaminants and predicting their adverse health effects. The study aims to assess the effects of 16 PAH concentration on the altered DNA methylation levels in the kidney and liver of rock pigeon (Columba livia), as a sentinel species, from Tehran megacity as well as 40 days benzo(a)pyrene in vitro exposure: (0.1, 2.5, 5, 7.5, and 10 mg kg-1 bw). Data indicated that the total LMW-PAH (low molecular weight PAHs) group (120.22, 121.34, 103.69, and 128.79 ng g-1 dw in liver, kidney, skin, and muscle, respectively) in the Tehran samples have higher levels than the other PAHs groups. In addition, the DNA methylation level had negative relation with the total amount of PAHs in liver and kidney. A comparatively higher global DNA hypomethylation (by 8.65% in liver and 3.76% in kidney) was observed in birds exposed to B(a)P. Our results lead us to suggest that DNA hypomethylation in liver and kidney associated with the B(a)P may be useful biomarker discovery (more than the amount of PAH concentration in different tissues of C. livia) in urban areas. In conclusion, based on the overall results assessed, DNA methylation changes in pigeon may show a new target pathway for evaluation of environmental health.
Collapse
Affiliation(s)
- Sahel Pakzad Toochaei
- Hamoun International Wetland Research Institute, University of Zabol, 98615-538, Zabol, Iran
| | - Seyed Mahmoud Ghasempouri
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - Saber Khodabandeh
- Department of Marine Biology, Faculty of Marine Sciences, Tarbiat Modares University, P.O.Box 46414-356, Noor, Iran
| |
Collapse
|
22
|
Yusufu A, Shayimu P, Tuerdi R, Fang C, Wang F, Wang H. TFF3 and TFF1 expression levels are elevated in colorectal cancer and promote the malignant behavior of colon cancer by activating the EMT process. Int J Oncol 2019; 55:789-804. [PMID: 31432157 PMCID: PMC6741840 DOI: 10.3892/ijo.2019.4854] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
Reports on the roles of the secreted trefoil factor (TFF)1 and 3 in colorectal cancer (CRC) and their underlying mechanisms of action in tumorigenesis are not common and are controversial. In the present study, the mRNA expression and promoter methylation of TFF1 and TFF3 in cancer and adjacent normal tissues were investigated, and their association with other clinical factors and patient prognosis were evaluated. Moreover, the association between TFF3 and epithelial mesenchymal transition (EMT) was explored by overexpressing or inhibiting TFF3 expression. The results revealed that the mRNA level of TFF1 and TFF3 in the cancer tissues was significantly higher than that in the matched adjacent normal tissues (P=0.034 and P=0.007, respectively), and a higher expression of TFF3, but not TFF1, was predominantly associated with clinicopathological factors and a poorer prognosis. No correlation was observed between promoter methylation and the expression of TFF1 or TFF3. The overexpression of TFF3 promoted the proliferation, migration and invasiveness of HT29 cells, and induced an increase in the expression of Twist1, Snail and Vimentin, while causing a decrease in E-cadherin expression. On the contrary, the knockdown of TFF3 resulted in opposite effects in the LoVo cells. On the whole, the findings of this study indicate that TFF3 may be a promising new factor for the estimation of the survival of patients with CRC, and may promote the malignant progression of CRC by activating the EMT process. Therefore, TFF3 may be a future potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Aikeremu Yusufu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Paerhati Shayimu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Rousidan Tuerdi
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Cheng Fang
- Department of Gastrointestinal Surgery, Xi Jing Digestive Disease Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fei Wang
- Department of Gastrointestinal Surgery, Xi Jing Digestive Disease Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Haijiang Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
23
|
Association of family history of tumors with clinicopathological characteristics and prognosis of colorectal cancer. Eur J Cancer Prev 2019; 28:258-267. [DOI: 10.1097/cej.0000000000000482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Mollashahi B, Aghamaleki FS, Movafagh A. The Roles of miRNAs in Medulloblastoma: A Systematic Review. J Cancer Prev 2019; 24:79-90. [PMID: 31360688 PMCID: PMC6619858 DOI: 10.15430/jcp.2019.24.2.79] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Medulloblastoma is considered one of the most threatening malignant brain tumors with an extremely high mortality rate in children. In the medulloblastoma, there are several genes and mutations found to work in an unregulated manner that works together to push the cells into a cancerous state. With the discovery of non-coding RNAs such as microRNAs (miRNAs), it has been shown that a different layer of gene regulations may be disrupted which would cause cancer. This fact led scientists to put their focus on the role of miRNAs in cancer. A mature miRNA contains a seed sequence which gives the miRNA to identify and attach to the interest mRNA; this attachment may lead degradation of mRNA or suppress of translation of the mRNA. The expression of miRNAs in medulloblastoma shows that some of these non-coding RNAs are overexpressed (OncomiRs) which help cells to proliferate and keep their stemness features. On the other hand, there are other forms of these miRNAs which normally inhibit cell proliferation and promote cell differentiation (tumor suppressor). These are down-regulated during cancer progression. In this systematic review, we attempted to gather several important studies on miRNAs’ role in medulloblastoma tumors and the importance of these non-coding RNAs in the future study of cancer.
Collapse
Affiliation(s)
- Behrouz Mollashahi
- Department of Cellular-Molecular Biology, Faculty of Biological Sciences and Technologies, Shahid Beheshti University, Tehran, Iran
| | - Fateme Shaabanpour Aghamaleki
- Department of Cellular-Molecular Biology, Faculty of Biological Sciences and Technologies, Shahid Beheshti University, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Primers on nutrigenetics and nutri(epi)genomics: Origins and development of precision nutrition. Biochimie 2019; 160:156-171. [PMID: 30878492 DOI: 10.1016/j.biochi.2019.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Understanding the relationship between genotype and phenotype is a central goal not just for genetics but also for medicine and biological sciences. Despite outstanding technological progresses, genetics alone is not able to completely explain phenotypes, in particular for complex diseases. Given the existence of a "missing heritability", growing attention has been given to non-mendelian mechanisms of inheritance and to the role of the environment. The study of interaction between gene and environment represents a challenging but also a promising field with high potential for health prevention, and epigenetics has been suggested as one of the best candidate to mediate environmental effects on the genome. Among environmental factors able to interact with both genome and epigenome, nutrition is one of the most impacting. Not just our genome influences the responsiveness to food and nutrients, but vice versa, nutrition can also modify gene expression through epigenetic mechanisms. In this complex picture, nutrigenetics and nutrigenomics represent appealing disciplines aimed to define new prospectives of personalized nutrition. This review introduces to the study of gene-environment interactions and describes how nutrigenetics and nutrigenomics modulate health, promoting or affecting healthiness through life-style, thus playing a pivotal role in modulating the effect of genetic predispositions.
Collapse
|
26
|
Guan Z, Yu H, Cuk K, Zhang Y, Brenner H. Whole-Blood DNA Methylation Markers in Early Detection of Breast Cancer: A Systematic Literature Review. Cancer Epidemiol Biomarkers Prev 2018; 28:496-505. [DOI: 10.1158/1055-9965.epi-18-0378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/09/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022] Open
|
27
|
Klymenko Y, Nephew KP. Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled. Cancers (Basel) 2018; 10:E295. [PMID: 30200265 PMCID: PMC6162502 DOI: 10.3390/cancers10090295] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic dissemination of epithelial ovarian cancer (EOC) predominantly occurs through direct cell shedding from the primary tumor into the intra-abdominal cavity that is filled with malignant ascitic effusions. Facilitated by the fluid flow, cells distribute throughout the cavity, broadly seed and invade through peritoneal lining, and resume secondary tumor growth in abdominal and pelvic organs. At all steps of this unique metastatic process, cancer cells exist within a multidimensional tumor microenvironment consisting of intraperitoneally residing cancer-reprogramed fibroblasts, adipose, immune, mesenchymal stem, mesothelial, and vascular cells that exert miscellaneous bioactive molecules into malignant ascites and contribute to EOC progression and metastasis via distinct molecular mechanisms and epigenetic dysregulation. This review outlines basic epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulators, and summarizes current knowledge on reciprocal interactions between each participant of the EOC cellular milieu and tumor cells in the context of aberrant epigenetic crosstalk. Promising research directions and potential therapeutic strategies that may encompass epigenetic tailoring as a component of complex EOC treatment are discussed.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
28
|
Abstract
Esophageal adenocarcinoma (EAC) develops from Barrett's esophagus (BE), a condition where the normal squamous epithelia is replaced by specialized intestinal metaplasia in response to chronic gastroesophageal acid reflux. In a minority of individuals, BE can progress to low- and high-grade dysplasia and eventually to intra-mucosal and then invasive carcinoma. BE provides researchers with a unique model to characterize the process by which a carcinoma arises from its precursor lesion. Molecular studies of BE have demonstrated that it is not simply a metaplastic tissue, but rather it harbors frequent alterations that are also present in dysplastic BE and in EAC. Both BE and EAC are characterized by loss of heterozygosity, aneuploidy, specific genetic mutations, and clonal diversity. Epigenetic abnormalities, primary alterations in DNA methylation, are also frequently seen in BE and EAC. Candidate gene and array-based approaches have demonstrated that numerous tumor suppressor genes exhibit aberrant promoter methylation, and some of these altered genes are associated with the neoplastic progression of BE. It has also been shown that the BE and EAC epigenomes are characterized by hypomethylation of intragenic and non-coding regions Recent studies have also provided new insight into the evolutionary forces underlying the molecular alterations seen in BE and EAC and into the molecular pathogenesis of EAC.
Collapse
Affiliation(s)
- William M. Grady
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA,University of Washington School of Medicine, Department of Internal Medicine, Seattle, WA
| | - Ming Yu
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA
| |
Collapse
|
29
|
Zhou X, Yang S, Yan F, He K, Zhao A. Genome-wide DNA methylation profiles of porcine ovaries in estrus and proestrus. Physiol Genomics 2018; 50:714-723. [PMID: 29775429 DOI: 10.1152/physiolgenomics.00052.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA methylation is an important epigenetic modification involved in the estrous cycle and the regulation of reproduction. Here, we investigated the genome-wide profiles of DNA methylation in porcine ovaries in proestrus and estrus using methylated DNA immunoprecipitation sequencing. The results showed that DNA methylation was enriched in intergenic and intron regions. The methylation levels of coding regions were higher than those of the 5'- and 3'-flanking regions of genes. There were 4,813 differentially methylated regions (DMRs) of CpG islands in the estrus vs. proestrus ovarian genomes. Additionally, 3,651 differentially methylated genes (DMGs) were identified in pigs in estrus and proestrus. The DMGs were significantly enriched in biological processes and pathways related to reproduction and hormone regulation. We identified 90 DMGs associated with regulating reproduction in pigs. Our findings can serve as resources for DNA methylome research focused on porcine ovaries and further our understanding of epigenetically regulated reproduction in mammals.
Collapse
Affiliation(s)
- Xiaolong Zhou
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Songbai Yang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Feifei Yan
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Ke He
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Ayong Zhao
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an, China
| |
Collapse
|
30
|
Exposure to Phthalate, an Endocrine Disrupting Chemical, Alters the First Trimester Placental Methylome and Transcriptome in Women. Sci Rep 2018; 8:6086. [PMID: 29666409 PMCID: PMC5904105 DOI: 10.1038/s41598-018-24505-w] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/04/2018] [Indexed: 11/08/2022] Open
Abstract
Phthalates are known endocrine disruptors and associated with decreased fecundity, pregnancy loss, and adverse obstetrical outcomes, however the underlying mechanisms remain to be established. Environmental factors can influence gene expression and cell function by modifying epigenetic marks, impacting the developing embryo as well as future generations of offspring. The impact of phthalates on placental gene methylation and expression is largely unknown. We studied the effect of maternal phthalate exposure on the human placental DNA methylome and transcriptome. We determined epigenome-wide DNA methylation marks (Illumina Infinium Human Methylation 850k BeadChip) and gene expression (Agilent whole human genome array) associated with phthalate exposure in first trimester placenta. Integrative genomic analysis of candidate genes was performed to define gene methylation-expression relationships. We identified 39 genes with significantly altered methylation and gene expression in the high phthalate exposure group. Most of these relationships were inversely correlated. This analysis identified epidermal growth factor receptor (EGFR) as a critical candidate gene mediating the effects of phthalates on early placental function. Although additional studies are needed to determine the functional consequences of these changes, our findings are consistent with the model that phthalates impact placental function by modulating the expression of critical placental genes through epigenetic regulation.
Collapse
|
31
|
Conte M, De Palma R, Altucci L. HDAC inhibitors as epigenetic regulators for cancer immunotherapy. Int J Biochem Cell Biol 2018. [PMID: 29535070 DOI: 10.1016/j.biocel.2018.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, anti-tumor immunotherapy has shown promising results, and immune-oncology is now emerging as the fourth major wave in the treatment of tumors after radiotherapy, chemotherapy and molecular targeted therapy. Understanding the impact of the immune system on neoplastic cells is crucial to improve its effectiveness against cancer. The stratification of patients who might benefit from immunotherapy as well as the personalization of medicine have contributed to the discovery of new immunotherapeutic targets and molecules. In the present review, we discuss the mechanistic role of histone deacetylase inhibitors (HDACi) as potential immunomodulating agents to treat cancer. Our current understanding of the use of HDACi in combination with various immunotherapeutic approaches, such as immunomodulating agents and cancer vaccines, is also addressed. The potential clinical applications of the growing number of novel epigenetic drugs for cancer immunotherapy are widening, and some of these therapies are already in clinical trials.
Collapse
Affiliation(s)
| | - Raffaele De Palma
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
32
|
Expression of GAEC1 mRNA and protein and its association with clinical and pathological parameters of patients with colorectal adenocarcinoma. Exp Mol Pathol 2018; 104:71-75. [DOI: 10.1016/j.yexmp.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/10/2018] [Indexed: 01/18/2023]
|
33
|
Friedrich P, Itriago E, Rodriguez-Galindo C, Ribeiro K. Racial and Ethnic Disparities in the Incidence of Pediatric Extracranial Embryonal Tumors. J Natl Cancer Inst 2017; 109:4209520. [PMID: 29117360 DOI: 10.1093/jnci/djx050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023] Open
Abstract
Background Few studies have comparatively assessed differences in the incidence of childhood cancer by race and ethnicity that could inform etiologic research. We aimed to identify disparities in the incidence of pediatric extracranial embryonal tumors by race and ethnicity in the United States using a population-based cancer registry. Methods Cases of extracranial embryonal tumors among children age 0 to 19 years diagnosed between 2000 and 2010 were retrieved from the Surveillance, Epidemiology, and End Results Program 18 (n = 8188). Age-standardized incidence rates and incidence rate ratios (IRRs) were obtained by race/ethnicity. Whites were the reference group. The percentage of families living below the poverty line by county was used to stratify by socioeconomic status (SES). Results All minority groups had a lower incidence of neuroblastoma (Hispanics: IRR = 0.53, 95% confidence interval [CI] = 0.47 to 0.59; blacks: IRR = 0.70, 95% CI = 0.61 to 0.81; Native-Hawaiian/Asian-Pacific-Islander (API): IRR = 0.56, 95% CI = 0.46 to 0.67; and American Indian/Alaska Native (AI/AN): IRR = 0.28, 95% CI = 0.15 to 0.48) while Hispanics had a higher incidence of retinoblastoma (IRR = 1.26, 95% CI = 1.07 to 1.48). Incidence of nephroblastoma was lower among Hispanics (IRR = 0.80, 95% CI = 0.71 to 0.91) and API (IRR = 0.43, 95% CI = 0.33 to 0.56) while equivalent for blacks. Similarly, incidence of rhabdomyosarcoma was low among Hispanics (IRR = 0.85, 95% CI = 0.74 to 0.98) and API (IRR = 0.61, 95% CI = 0.47 to 0.79) while equivalent for blacks. However, incidence of hepatoblastoma was low among blacks (IRR = 0.44, 95% CI = 0.28 to 0.68) while equivalent for Hispanics and API. Incidence of germ cell tumors was higher among Hispanics (IRR = 1.30, 95% CI = 1.19 to 1.42) and lower among blacks (IRR = 0.52, 95% CI = 0.44 to 0.61) and API (IRR = 0.79, 95% CI = 0.67 to 0.93). No effect modification by SES was observed. Conclusions Unique incidence patterns of childhood extracranial embryonal tumors exist by race and ethnicity in the United States. The interplay between race/ethnicity and genetics, epigenetics, and gene-environment interactions in the causation of these cancers deserves further investigation.
Collapse
Affiliation(s)
- Paola Friedrich
- Affiliations of authors: Department of Pediatric Oncology, Dana-Farber, Boston Children's Cancer and Blood Disorders Center, Boston, MA (PF, EI, CRG); Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (KR) and Current affiliations: Department of Oncology and Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN (PF, CRG); Department of Pediatrics, Children's Medical Center Dallas, University of Texas Southwestern Medical Center, Dallas, TX (EI)
| | - Elena Itriago
- Affiliations of authors: Department of Pediatric Oncology, Dana-Farber, Boston Children's Cancer and Blood Disorders Center, Boston, MA (PF, EI, CRG); Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (KR) and Current affiliations: Department of Oncology and Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN (PF, CRG); Department of Pediatrics, Children's Medical Center Dallas, University of Texas Southwestern Medical Center, Dallas, TX (EI)
| | - Carlos Rodriguez-Galindo
- Affiliations of authors: Department of Pediatric Oncology, Dana-Farber, Boston Children's Cancer and Blood Disorders Center, Boston, MA (PF, EI, CRG); Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (KR) and Current affiliations: Department of Oncology and Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN (PF, CRG); Department of Pediatrics, Children's Medical Center Dallas, University of Texas Southwestern Medical Center, Dallas, TX (EI)
| | - Karina Ribeiro
- Affiliations of authors: Department of Pediatric Oncology, Dana-Farber, Boston Children's Cancer and Blood Disorders Center, Boston, MA (PF, EI, CRG); Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (KR) and Current affiliations: Department of Oncology and Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN (PF, CRG); Department of Pediatrics, Children's Medical Center Dallas, University of Texas Southwestern Medical Center, Dallas, TX (EI)
| |
Collapse
|
34
|
|
35
|
Tamgue O, Lei M. Triptolide Promotes Senescence of Prostate Cancer Cells Through Histone Methylation and Heterochromatin Formation. Asian Pac J Cancer Prev 2017; 18:2519-2526. [PMID: 28952292 PMCID: PMC5720660 DOI: 10.22034/apjcp.2017.18.9.2519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Triptolide is a medicinal herb-derived diterpene triepoxide with potent anti-tumor activity, mainly, correlated with its ability to inhibit and inactivate subunits of RNA polymerase II, thereby suppressing global gene transcription. Epigenetic imbalance including histone methylation are well known to play important roles in prostate cancer (PCa) onset and progression. The goal of this study was to investigate whether triptolide might exert anti-PCa influence by reshaping the histone methylation landscape. Methods: Triptolide-treated PCa cell lines were analyzed by RT-qPCR and western blotting for expression of histone demethylases and associated markers. Detection of senescence was achieved using senescence associated β-galactosidase staining and analyses of apoptosis and cell cycle were performed by flow cytometry. Senescence–associated heterochromatin foci were detected by immunofluorescence while chromatin immunoprecipitation associated with qPCR (CHIP-qPCR) was applied to assess accumulation of histone markers on promoters of target genes. Cell viability was determined using the CCK-8 assay. Results: We found triptolide to enhance H3K27me3 levels by down-regulating JMJD3 and UTX and also H3K9me3 through up-regulation of SUV39H1. Furthermore, it up-regulated expression of HP1α. Thereby, heterochromatin formation and deposition on promoters of E2F1-target genes was promoted, correlating with suppression of gene transcription, decreased cell viability and induction of a senescence-like phenotype in PCa cells. Conclusions: Our results indicate that triptolide exerts anti-tumor effects including PCa cell senescence at least partially through increasing the levels of repressive histone H3 methylation and formation of a repressive chromatin state in PCa cells. Further studies of its potential as an epigenetic anti-PCa drug appear warranted.
Collapse
Affiliation(s)
- Ousman Tamgue
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.,College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China.
| | | |
Collapse
|
36
|
Li Q, Xue X, Li W, Wang Q, Han L, Brunson T, Xu W, Chambers-Harris I, Wang Q, Li X, Ma L, Song Q. Heterogeneous DNA methylation status in same-cell subpopulations of ovarian cancer tissues. Tumour Biol 2017; 39:1010428317701650. [PMID: 28618935 DOI: 10.1177/1010428317701650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aims to explore the heterogeneous DNA methylation differences between individual single ovarian cancer cells isolated from the same formalin-fixed and paraffin-embedded human ovarian cancer tissue. Single cells were isolated by laser microdissection. Whole genome amplification and polymerase chain reaction purification were performed on the converted genomic DNA. Target primers designed for checking DNA methylation were used in polymerase chain reaction reactions to amplify special fragments. Sequencing was performed to analyze the heterogeneous DNA methylation statuses of different single ovarian cancer cells. Three of nine single human ovarian cancer cells showed positive bands (33.3%) on separating gel. The methylated and unmethylated CpGs were shown at the same loci in different single cells. We show heterogeneous DNA methylation statuses in same-cell subpopulations.
Collapse
Affiliation(s)
- Qiling Li
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xue Xue
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wenzhi Li
- 2 Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Qi Wang
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lu Han
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tiffany Brunson
- 2 Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Wei Xu
- 2 Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Qing Wang
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xu Li
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Li Ma
- 2 Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Qing Song
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,2 Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
37
|
Bowers EC, McCullough SD. Linking the Epigenome with Exposure Effects and Susceptibility: The Epigenetic Seed and Soil Model. Toxicol Sci 2017; 155:302-314. [PMID: 28049737 PMCID: PMC5291212 DOI: 10.1093/toxsci/kfw215] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The epigenome is a dynamic mediator of gene expression that shapes the way that cells, tissues, and organisms respond to their environment. Initial studies in the emerging field of "toxicoepigenetics" have described either the impact of an environmental exposure on the epigenome or the association of epigenetic signatures with the onset or progression of disease; however, the majority of these pioneering studies examined the relationship between discrete epigenetic modifications and the effects of a single environmental factor. Although these data provide critical blocks with which we construct our understanding of the role of the epigenome in susceptibility and disease, they are akin to individual letters in a complex alphabet that is used to compose the language of the epigenome. Advancing the use of epigenetic data to gain a more comprehensive understanding of the mechanisms underlying exposure effects, identify susceptible populations, and inform the next generation risk assessment depends on our ability to integrate these data in a way that accounts for their cumulative impact on gene regulation. Here we will review current examples demonstrating associations between the epigenetic impacts of intrinsic factors, such as such as age, genetics, and sex, and environmental exposures shape the epigenome and susceptibility to exposure effects and disease. We will also demonstrate how the "epigenetic seed and soil" model can be used as a conceptual framework to explain how epigenetic states are shaped by the cumulative impacts of intrinsic and extrinsic factors and how these in turn determine how an individual responds to subsequent exposure to environmental stressors.
Collapse
Affiliation(s)
- Emma C Bowers
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Shaun D McCullough
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
38
|
Mouh FZ, Mzibri ME, Slaoui M, Amrani M. Recent Progress in Triple Negative Breast Cancer Research. Asian Pac J Cancer Prev 2017; 17:1595-608. [PMID: 27221827 DOI: 10.7314/apjcp.2016.17.4.1595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is defined as a type of breast carcinoma that is negative for expression of oestrogene and progesterone hormone receptors (ER, PR) and HER2. This form of breast cancer is marked by its aggressiveness, low survival rate and lack of specific therapies. Recently, important molecular characteristics of TNBC have been highlighted and led to the identification of some biomarkers that could be used in diagnosis, as therapeutic targets or to assess the prognosis. In this review, we summarize recent progress in TNBC research focusing on the genetic and epigenetic alterations of TNBC and the potential use of these biomarkers in the targeted therapy for better management of TNBC.
Collapse
Affiliation(s)
- Fatima Zahra Mouh
- Equipe deRecherche ONCOGYMA, University of Mohamed V, Faculty of Medicine and Pharmacy of Rabat Morocco E-mail :
| | | | | | | |
Collapse
|
39
|
Epigenetic modifications at DMRs of placental genes are subjected to variations in normal gestation, pathological conditions and folate supplementation. Sci Rep 2017; 7:40774. [PMID: 28098215 PMCID: PMC5241688 DOI: 10.1038/srep40774] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/01/2016] [Indexed: 01/13/2023] Open
Abstract
Invasive placentation and cancer development shares many similar molecular and epigenetic pathways. Paternally expressed, growth promoting genes (SNRPN, PEG10 and MEST) which are known to play crucial role in tumorogenesis, are not well studied during placentation. This study reports for the first time of the impact of gestational-age, pathological conditions and folic acid supplementation on dynamic nature of DNA and histone methylation present at their differentially methylated regions (DMRs). Here, we reported the association between low DNA methylation/H3K27me3 and higher expression of SNRPN, PEG10 and MEST in highly proliferating normal early gestational placenta. Molar and preeclamptic placental villi, exhibited aberrant changes in methylation levels at DMRs of these genes, leading to higher and lower expression of these genes, respectively, in reference to their respective control groups. Moreover, folate supplementation could induce gene specific changes in mRNA expression in placental cell lines. Further, MEST and SNRPN DMRs were observed to show the potential to act as novel fetal DNA markers in maternal plasma. Thus, variation in methylation levels at these DMRs regulate normal placentation and placental disorders. Additionally, the methylation at these DMRs might also be susceptible to folic acid supplementation and has the potential to be utilized in clinical diagnosis.
Collapse
|
40
|
Chen T, Giri M, Xia Z, Subedi YN, Li Y. Genetic and epigenetic mechanisms of epilepsy: a review. Neuropsychiatr Dis Treat 2017; 13:1841-1859. [PMID: 28761347 PMCID: PMC5516882 DOI: 10.2147/ndt.s142032] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epilepsy is a common episodic neurological disorder or condition characterized by recurrent epileptic seizures, and genetics seems to play a key role in its etiology. Early linkage studies have localized multiple loci that may harbor susceptibility genes to epilepsy, and mutational analyses have detected a number of mutations involved in both ion channel and nonion channel genes in patients with idiopathic epilepsy. Genome-wide studies of epilepsy have found copy number variants at 2q24.2-q24.3, 7q11.22, 15q11.2-q13.3, and 16p13.11-p13.2, some of which disrupt multiple genes, such as NRXN1, AUTS2, NLGN1, CNTNAP2, GRIN2A, PRRT2, NIPA2, and BMP5, implicated for neurodevelopmental disorders, including intellectual disability and autism. Unfortunately, only a few common genetic variants have been associated with epilepsy. Recent exome-sequencing studies have found some genetic mutations, most of which are located in nonion channel genes such as the LGI1, PRRT2, EFHC1, PRICKLE, RBFOX1, and DEPDC5 and in probands with rare forms of familial epilepsy, and some of these genes are involved with the neurodevelopment. Since epigenetics plays a role in neuronal function from embryogenesis and early brain development to tissue-specific gene expression, epigenetic regulation may contribute to the genetic mechanism of neurodevelopment through which a gene and the environment interacting with each other affect the development of epilepsy. This review focused on the analytic tools used to identify epilepsy and then provided a summary of recent linkage and association findings, indicating the existence of novel genes on several chromosomes for further understanding of the biology of epilepsy.
Collapse
Affiliation(s)
- Tian Chen
- Department of Health Management Center, Chongqing Three Gorges Central Hospital, Chongqing, People's Republic of China
| | - Mohan Giri
- National Center for Rheumatic Diseases, Ratopul, Gaushala, Kathmandu, Nepal
| | - Zhenyi Xia
- Department of Thoracic Surgery, Chongqing Three Gorges Central Hospital, Chongqing, People's Republic of China
| | - Yadu Nanda Subedi
- National Center for Rheumatic Diseases, Ratopul, Gaushala, Kathmandu, Nepal
| | - Yan Li
- Department of Health Management Center, Chongqing Three Gorges Central Hospital, Chongqing, People's Republic of China
| |
Collapse
|
41
|
McCarrey JR, Lehle JD, Raju SS, Wang Y, Nilsson EE, Skinner MK. Tertiary Epimutations - A Novel Aspect of Epigenetic Transgenerational Inheritance Promoting Genome Instability. PLoS One 2016; 11:e0168038. [PMID: 27992467 PMCID: PMC5167269 DOI: 10.1371/journal.pone.0168038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/23/2016] [Indexed: 11/29/2022] Open
Abstract
Exposure to environmental factors can induce the epigenetic transgenerational inheritance of disease. Alterations to the epigenome termed “epimutations” include “primary epimutations” which are epigenetic alterations in the absence of genetic change and “secondary epimutations” which form following an initial genetic change. To determine if secondary epimutations contribute to transgenerational transmission of disease following in utero exposure to the endocrine disruptor vinclozolin, we exposed pregnant female rats carrying the lacI mutation-reporter transgene to vinclozolin and assessed the frequency of mutations in kidney tissue and sperm recovered from F1 and F3 generation progeny. Our results confirm that vinclozolin induces primary epimutations rather than secondary epimutations, but also suggest that some primary epimutations can predispose a subsequent accelerated accumulation of genetic mutations in F3 generation descendants that have the potential to contribute to transgenerational phenotypes. We therefore propose the existence of “tertiary epimutations” which are initial primary epimutations that promote genome instability leading to an accelerated accumulation of genetic mutations.
Collapse
Affiliation(s)
- John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
- * E-mail:
| | - Jake D. Lehle
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
| | - Seetha S. Raju
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
| | - Eric E. Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA United States of America
| |
Collapse
|
42
|
Coleman WB. Obesity and the breast cancer methylome. Curr Opin Pharmacol 2016; 31:104-113. [DOI: 10.1016/j.coph.2016.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
|
43
|
Skinner MK, Guerrero-Bosagna C, Haque MM. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics 2016; 10:762-71. [PMID: 26237076 PMCID: PMC4622673 DOI: 10.1080/15592294.2015.1062207] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A variety of environmental factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. This involves the germline transmission of epigenetic information between generations. Exposure specific transgenerational sperm epimutations have been previously observed. The current study was designed to investigate the potential role genetic mutations have in the process, using copy number variations (CNV). In the first (F1) generation following exposure, negligible CNV were identified; however, in the transgenerational F3 generation, a significant increase in CNV was observed in the sperm. The genome-wide locations of differential DNA methylation regions (epimutations) and genetic mutations (CNV) were investigated. Observations suggest the environmental induction of the epigenetic transgenerational inheritance of sperm epimutations promote genome instability, such that genetic CNV mutations are acquired in later generations. A combination of epigenetics and genetics is suggested to be involved in the transgenerational phenotypes. The ability of environmental factors to promote epigenetic inheritance that subsequently promotes genetic mutations is a significant advance in our understanding of how the environment impacts disease and evolution.
Collapse
Affiliation(s)
- Michael K Skinner
- a Center for Reproductive Biology; School of Biological Sciences; Washington State University ; Pullman , WA USA
| | | | | |
Collapse
|
44
|
Wianny F, Blachère T, Godet M, Guillermas R, Cortay V, Bourillot PY, Lefèvre A, Savatier P, Dehay C. Epigenetic status of H19/IGF2 and SNRPN imprinted genes in aborted and successfully derived embryonic stem cell lines in non-human primates. Stem Cell Res 2016; 16:557-67. [DOI: 10.1016/j.scr.2016.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022] Open
|
45
|
Ratner N, Brodeur GM, Dale RC, Schor NF. The "neuro" of neuroblastoma: Neuroblastoma as a neurodevelopmental disorder. Ann Neurol 2016; 80:13-23. [PMID: 27043043 DOI: 10.1002/ana.24659] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a childhood cancer derived from cells of neural crest origin. The hallmarks of its enigmatic character include its propensity for spontaneous regression under some circumstances and its association with paraneoplastic opsoclonus, myoclonus, and ataxia. The neurodevelopmental underpinnings of its origins may provide important clues for development of novel therapeutic and preventive agents for this frequently fatal malignancy and for the associated paraneoplastic syndromes. Ann Neurol 2016;80:13-23.
Collapse
Affiliation(s)
- Nancy Ratner
- Department of Pediatrics, Cincinnati Children's Hospital and University of Cincinnati, Cincinnati, OH
| | - Garrett M Brodeur
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Russell C Dale
- Clinical School, the Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Nina F Schor
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
46
|
Terry MB, McDonald JA, Wu HC, Eng S, Santella RM. Epigenetic Biomarkers of Breast Cancer Risk: Across the Breast Cancer Prevention Continuum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 882:33-68. [PMID: 26987530 PMCID: PMC5305320 DOI: 10.1007/978-3-319-22909-6_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epigenetic biomarkers, such as DNA methylation, can increase cancer risk through altering gene expression. The Cancer Genome Atlas (TCGA) Network has demonstrated breast cancer-specific DNA methylation signatures. DNA methylation signatures measured at the time of diagnosis may prove important for treatment options and in predicting disease-free and overall survival (tertiary prevention). DNA methylation measurement in cell free DNA may also be useful in improving early detection by measuring tumor DNA released into the blood (secondary prevention). Most evidence evaluating the use of DNA methylation markers in tertiary and secondary prevention efforts for breast cancer comes from studies that are cross-sectional or retrospective with limited corresponding epidemiologic data, raising concerns about temporality. Few prospective studies exist that are large enough to address whether DNA methylation markers add to the prediction of tertiary and secondary outcomes over and beyond standard clinical measures. Determining the role of epigenetic biomarkers in primary prevention can help in identifying modifiable pathways for targeting interventions and reducing disease incidence. The potential is great for DNA methylation markers to improve cancer outcomes across the prevention continuum. Large, prospective epidemiological studies will provide essential evidence of the overall utility of adding these markers to primary prevention efforts, screening, and clinical care.
Collapse
Affiliation(s)
- Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Jasmine A McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Hui Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sybil Eng
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Regina M Santella
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
47
|
Mirzaei H, Mirzaei H, Yazdi F, Salehi R. SiRNA and epigenetic aberrations in ovarian cancer. J Cancer Res Ther 2016; 12:498-508. [DOI: 10.4103/0973-1482.153661] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
48
|
Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat Commun 2015; 6:10204. [PMID: 26667266 PMCID: PMC4682161 DOI: 10.1038/ncomms10204] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023] Open
Abstract
Carcinoma-associated fibroblasts (CAF) mediate the onset of a proinvasive tumour microenvironment. The proinflammatory cytokine LIF reprograms fibroblasts into a proinvasive phenotype, which promotes extracellular matrix remodelling and collective invasion of cancer cells. Here we unveil that exposure to LIF initiates an epigenetic switch leading to the constitutive activation of JAK1/STAT3 signalling, which results in sustained proinvasive activity of CAF. Mechanistically, p300-histone acetyltransferase acetylates STAT3, which, in turn, upregulates and activates the DNMT3b DNA methyltransferase. DNMT3b methylates CpG sites of the SHP-1 phosphatase promoter, which abrogates SHP-1 expression, and results in constitutive phosphorylation of JAK1. Sustained JAK1/STAT3 signalling is maintained by DNA methyltransferase DNMT1. Consistently, in human lung and head and neck carcinomas, STAT3 acetylation and phosphorylation are inversely correlated with SHP-1 expression. Combined inhibition of DNMT activities and JAK signalling, in vitro and in vivo, results in long-term reversion of CAF-associated proinvasive activity and restoration of the wild-type fibroblast phenotype. Carcinoma-associated fibroblasts are key components of solid tumours and associated with poor clinical outcome. Here the authors show that the cytokine LIF initiates an epigenetic switch which results in the sustained invasive activity of the tumour cells.
Collapse
|
49
|
Cho YH, Woo HD, Jang Y, Porter V, Christensen S, Hamilton RF, Chung HW. The Association of LINE-1 Hypomethylation with Age and Centromere Positive Micronuclei in Human Lymphocytes. PLoS One 2015. [PMID: 26196382 PMCID: PMC4510364 DOI: 10.1371/journal.pone.0133909] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Global hypomethylation in white blood cell (WBC) DNA has recently been proposed as a potential biomarker for determining cancer risk through genomic instability. However, the amplitude of the changes associated with age and the impacts of environmental factors on DNA methylation are unclear. In this study, we investigated the association of genomic hypomethylation with age, cigarette use, drinking status and the presence of centromere positive micronuclei (MNC+)-a biomarker for age-dependent genomic instability. Genomic hypomethylation of the repetitive element LINE-1 was measured in WBC DNA from 32 healthy male volunteers using the pyrosequencing assay. We also measured MNC+ with the micronucleus-centromere assay using a pan-centromeric probe. Possibly due to the small sample size and resulting low statistical power, smoking and drinking status had no significant effect on LINE-1 hypomethylation or the occurrence of MNC+. Consequently, we did not include them in further analyses. In contrast, LINE-1 hypomethylation and age significantly predicted MNC+; therefore, we examined whether LINE-1 hypomethylation plays a role in MNC+ formation by age, since genomic hypomethylation is associated with genomic instability. However, LINE-1 hypomethylation did not significantly mediate the effect of age on MNC+. Our data indicate that the repetitive element LINE-1 is demethylated with age and increasing MNC+ frequency, but additional studies are needed to fully understand the relation between genomic DNA hypomethylation, age and genomic instability.
Collapse
Affiliation(s)
- Yoon Hee Cho
- Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, The University of Montana, Missoula, Montana, United States of America
- * E-mail:
| | - Hae Dong Woo
- Molecular Epidemiology Branch, Division of Cancer Epidemiology and Prevention, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Yoonhee Jang
- Department of Psychology, The University of Montana, Missoula, Montana, United States of America
| | - Virginia Porter
- Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, The University of Montana, Missoula, Montana, United States of America
| | - Sonja Christensen
- Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, The University of Montana, Missoula, Montana, United States of America
| | - Raymond F. Hamilton
- Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, The University of Montana, Missoula, Montana, United States of America
| | - Hai Won Chung
- Department of Molecular Epidemiology, School of Public Health, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|
50
|
Rethinking pheochromocytomas and paragangliomas from a genomic perspective. Oncogene 2015; 35:1080-9. [DOI: 10.1038/onc.2015.172] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
|