1
|
Carbone A, Chadburn A, Gloghini A, Vaccher E, Bower M. Immune deficiency/dysregulation -associated lymphoproliferative disorders. Revised classification and management. Blood Rev 2024; 64:101167. [PMID: 38195294 DOI: 10.1016/j.blre.2023.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Significant advances in the field of lymphoma have resulted in two recent classification proposals, the International Consensus Classification (ICC) and the 5th edition WHO. A few entities are categorized differently in the ICC compared to the WHO. Nowhere is this more apparent than the immunodeficiency lymphoproliferative disorders. The three previous versions of the WHO classification (3rd, 4th and revised 4th editions) and the ICC focused on four clinical settings in which these lesions arise for primary categorization. In contrast the 2023 WHO 5th edition includes pathologic characteristics including morphology and viral status, in addition to clinical setting, as important information for lesion classification. In addition, the 2023 WHO recognizes a broader number of clinical scenarios in which these lesions arise, including not only traditional types of immune deficiency but also immune dysregulation. With this classification it is hoped that new treatment strategies will be developed leading to better patient outcomes.
Collapse
Affiliation(s)
- Antonino Carbone
- Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Aviano, Italy.
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of America.
| | - Annunziata Gloghini
- Department of Advanced Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Emanuela Vaccher
- Infectious Diseases and Tumors Unit, Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, National Cancer Institute, Aviano, Italy.
| | - Mark Bower
- Department of Oncology and National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London SW109NH, UK.
| |
Collapse
|
2
|
Leopizzi M, Mundo L, Messina E, Campolo F, Lazzi S, Angeloni A, Marchese C, Leoncini L, Giordano C, Slack F, Trivedi P, Anastasiadou E. Epstein-Barr virus-encoded EBNA2 downregulates ICOSL by inducing miR-24 in B-cell lymphoma. Blood 2024; 143:429-443. [PMID: 37847858 PMCID: PMC10862363 DOI: 10.1182/blood.2023021346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
ABSTRACT Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.
Collapse
Affiliation(s)
- Martina Leopizzi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Lucia Mundo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza University, Rome, Italy
| | - Frank Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
3
|
Kolijn PM, Langerak AW. Immune dysregulation as a leading principle for lymphoma development in diverse immunological backgrounds. Immunol Lett 2023; 263:46-59. [PMID: 37774986 DOI: 10.1016/j.imlet.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 10/01/2023]
Abstract
Lymphoma is a heterogeneous group of malignancies arising from lymphocytes, which poses a significant challenge in terms of diagnosis and treatment due to its diverse subtypes and underlying mechanisms. This review aims to explore the shared and distinct features of various forms of lymphoma predisposing conditions, with a focus on genetic, immunological and molecular aspects. While diseases such as autoimmune disorders, inborn errors of immunity and iatrogenic immunodeficiencies are biologically and immunologically distinct, each of these diseases results in profound immune dysregulation and a predisposition to lymphoma development. Interestingly, the increased risk is often skewed towards a particular subtype of lymphoma. Patients with inborn errors of immunity in particular present with extreme forms of lymphoma predisposition, providing a unique opportunity to study the underlying mechanisms. External factors such as chronic infections and environmental exposures further modulate the risk of lymphoma development. Common features of conditions predisposing to lymphoma include: persistent inflammation, recurrent DNA damage or malfunctioning DNA repair, impaired tumor surveillance and viral clearance, and dysregulation of fundamental cellular processes such as activation, proliferation and apoptosis. Our growing understanding of the underlying mechanisms of lymphomagenesis provides opportunities for early detection, prevention and tailored treatment of lymphoma development.
Collapse
Affiliation(s)
- P Martijn Kolijn
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Molina E, García-Gutiérrez L, Junco V, Perez-Olivares M, de Yébenes VG, Blanco R, Quevedo L, Acosta JC, Marín AV, Ulgiati D, Merino R, Delgado MD, Varela I, Regueiro JR, Moreno de Alborán I, Ramiro AR, León J. MYC directly transactivates CR2/CD21, the receptor of the Epstein-Barr virus, enhancing the viral infection of Burkitt lymphoma cells. Oncogene 2023; 42:3358-3370. [PMID: 37773203 DOI: 10.1038/s41388-023-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
MYC is an oncogenic transcription factor dysregulated in about half of total human tumors. While transcriptomic studies reveal more than 1000 genes regulated by MYC, a much smaller fraction of genes is directly transactivated by MYC. Virtually all Burkitt lymphoma (BL) carry chromosomal translocations involving MYC oncogene. Most endemic BL and a fraction of sporadic BL are associated with Epstein-Barr virus (EBV) infection. The currently accepted mechanism is that EBV is the BL-causing agent inducing MYC translocation. Herein we show that the EBV receptor, CR2 (also called CD21), is a direct MYC target gene. This is based on several pieces of evidence: MYC induces CR2 expression in both proliferating and arrested cells and in the absence of protein synthesis, binds the CR2 promoter and transactivates CR2 in an E-box-dependent manner. Moreover, using mice with conditional MYC ablation we show that MYC induces CR2 in primary B cells. Importantly, modulation of MYC levels directly correlates with EBV's ability of infection in BL cells. Altogether, in contrast to the widely accepted hypothesis for the correlation between EBV and BL, we propose an alternative hypothesis in which MYC dysregulation could be the first event leading to the subsequent EBV infection.
Collapse
Affiliation(s)
- Ester Molina
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Vanessa Junco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Mercedes Perez-Olivares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Virginia G de Yébenes
- Centro Nacional de Investigaciones Cardiovasculares-CNIC Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Laura Quevedo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Juan C Acosta
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ana V Marín
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Ramon Merino
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - José R Regueiro
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Almudena R Ramiro
- Centro Nacional de Investigaciones Cardiovasculares-CNIC Carlos III, Madrid, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain.
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
5
|
Haverkos B, Alpdogan O, Baiocchi R, Brammer JE, Feldman TA, Capra M, Brem EA, Nair S, Scheinberg P, Pereira J, Shune L, Joffe E, Young P, Spruill S, Katkov A, McRae R, Royston I, Faller DV, Rojkjaer L, Porcu P. Targeted therapy with nanatinostat and valganciclovir in recurrent EBV-positive lymphoid malignancies: a phase 1b/2 study. Blood Adv 2023; 7:6339-6350. [PMID: 37530631 PMCID: PMC10587711 DOI: 10.1182/bloodadvances.2023010330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Lymphomas are not infrequently associated with the Epstein-Barr virus (EBV), and EBV positivity is linked to worse outcomes in several subtypes. Nanatinostat is a class-I selective oral histone deacetylase inhibitor that induces the expression of lytic EBV BGLF4 protein kinase in EBV+ tumor cells, activating ganciclovir via phosphorylation, resulting in tumor cell apoptosis. This phase 1b/2 study investigated the combination of nanatinostat with valganciclovir in patients aged ≥18 years with EBV+ lymphomas relapsed/refractory to ≥1 prior systemic therapy with no viable curative treatment options. In the phase 1b part, 25 patients were enrolled into 5 dose escalation cohorts to determine the recommended phase 2 dose (RP2D) for phase 2 expansion. Phase 2 patients (n = 30) received RP2D (nanatinostat 20 mg daily, 4 days per week with valganciclovir 900 mg orally daily) for 28-day cycles. The primary end points were safety, RP2D determination (phase 1b), and overall response rate (ORR; phase 2). Overall, 55 patients were enrolled (B-non-Hodgkin lymphoma [B-NHL], [n = 10]; angioimmunoblastic T-cell lymphoma-NHL, [n = 21]; classical Hodgkin lymphoma, [n = 11]; and immunodeficiency-associated lymphoproliferative disorders, [n = 13]). The ORR was 40% in 43 evaluable patients (complete response rate [CRR], 19% [n = 8]) with a median duration of response of 10.4 months. For angioimmunoblastic T-cell lymphoma-NHL (n = 15; all refractory to the last prior therapy), the ORR/CRR ratio was 60%/27%. The most common adverse events were nausea (38% any grade) and cytopenia (grade 3/4 neutropenia [29%], thrombocytopenia [20%], and anemia [20%]). This novel oral regimen provided encouraging efficacy across several EBV+ lymphoma subtypes and warrants further evaluation; a confirmatory phase 2 study (NCT05011058) is underway. This phase 1b/2 study is registered at www.clinicaltrials.gov as #NCT03397706.
Collapse
Affiliation(s)
| | - Onder Alpdogan
- Division of Hematologic Malignancies and Hematopoetic Stem Cell Transplantation, Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Robert Baiocchi
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH
| | | | - Tatyana A. Feldman
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ
| | - Marcelo Capra
- Centro Integrado de Hematologia e Oncologia - Hospital Mãe de Deus, Porto Alegre, Brazil
| | - Elizabeth A. Brem
- Division of Hematology/Oncology, Deptartment of Medicine, University of California, Irvine, Orange, CA
| | - Santosh Nair
- Mid Florida Hematology and Oncology Center, Orange City, FL
| | - Phillip Scheinberg
- Division of Hematology, Hospital A Beneficência Portuguesa, São Paulo, Brazil
| | - Juliana Pereira
- Division of Hematology, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Leyla Shune
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS
| | - Erel Joffe
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | | | - Pierluigi Porcu
- Division of Hematologic Malignancies and Hematopoetic Stem Cell Transplantation, Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, PA
| |
Collapse
|
6
|
Ampofo-Asiedu J, Tagoe EA, Abrahams DOA, Petershie B, Quaye O. Epstein-Barr virus genotype-1 and Mediterranean + strain in gastric cancer biopsies of Ghanaian patients. Exp Biol Med (Maywood) 2023; 248:1221-1228. [PMID: 37417205 PMCID: PMC10621474 DOI: 10.1177/15353702231181355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/29/2023] [Indexed: 07/08/2023] Open
Abstract
Gastric cancer (GC) prevalence is on the increase in Ghana, and Epstein-Barr virus (EBV) is one of the factors that have been implicated in the etiology of the cancer. It is therefore important to know the contribution of EBV genotype and strains that are associated with GC. In this study, we aimed at genotyping EBV and determining predominant strains in GC biopsies in Ghanaian patients. Genomic DNA was extracted from 55 GC biopsies (cases) and 63 normal gastric tissues (controls) were amplified by polymerase chain reaction (PCR) using specific primers for EBV detection and genotyping followed by PCR fragments sequencing. Epstein-Barr virus positivity were 67.3% and 49.2% in the GC and normal biopsies, respectively. Both cases and controls had the Mediterranean + strain of EBV. The predominant genotype of the virus in the GC cases was genotype-1 (75.7%) compared to 66.7% of genotype-2 among the control group. Infection was associated with GC in the study population (OR = 2.11, P = 0.014, 95% CI: 1.19 - 3.75), and EBV genotype-1 significantly increased the risk of GC (OR = 5.88, P < 0.0001, 95% CI: 3.18-10.88). The mean EBV load in the cases (3.507 ± 0.574) was significantly higher than in the controls (2.256 ± 0.756) (P < 0.0001). We conclude that EBV, especially Mediterranean + genotype-1, was the predominant strain in GC biopsies and GC type or progression is independent of the viral load.
Collapse
Affiliation(s)
- Jeffery Ampofo-Asiedu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 00233, Ghana
| | | | - Darkwah Owusua Afua Abrahams
- Department of Pathology, University of Ghana Medical School, University of Ghana and Korle-Bu Teaching Hospital, Accra 00233, Ghana
| | - Bernard Petershie
- Department of Pathology, University of Ghana Medical School, University of Ghana and Korle-Bu Teaching Hospital, Accra 00233, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 00233, Ghana
| |
Collapse
|
7
|
Parisi F, Fonti N, Millanta F, Freer G, Pistello M, Poli A. Exploring the link between viruses and cancer in companion animals: a comprehensive and comparative analysis. Infect Agent Cancer 2023; 18:40. [PMID: 37386451 DOI: 10.1186/s13027-023-00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, it is estimated that 15% of human neoplasms globally are caused by infectious agents, with new evidence emerging continuously. Multiple agents have been implicated in various forms of neoplasia, with viruses as the most frequent. In recent years, investigation on viral mechanisms underlying tumoral transformation in cancer development and progression are in the spotlight, both in human and veterinary oncology. Oncogenic viruses in veterinary medicine are of primary importance not only as original pathogens of pets, but also in the view of pets as models of human malignancies. Hence, this work will provide an overview of the main oncogenic viruses of companion animals, with brief notes of comparative medicine.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy.
| | - Niccolò Fonti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Francesca Millanta
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| |
Collapse
|
8
|
Li W, Duan X, Chen X, Zhan M, Peng H, Meng Y, Li X, Li XY, Pang G, Dou X. Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma. Front Immunol 2023; 13:1079515. [PMID: 36713430 PMCID: PMC9875085 DOI: 10.3389/fimmu.2022.1079515] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Epstein-Barr virus (EBV) was the first tumor virus in humans. Nasopharyngeal carcinoma (NPC) accounts for approximately 60% of the 200,000 new tumor cases caused by EBV infection worldwide each year. NPC has an insidious onset and is highly malignant, with more than 70% of patients having intermediate to advanced disease at the time of initial diagnosis, and is strongly implicated in epithelial cancers as well as malignant lymphoid and natural killer/T cell lymphomas. Over 90% of patients with confirmed undifferentiated NPC are infected with EBV. In recent decades, much progress has been made in understanding the molecular mechanisms of NPC and developing therapeutic approaches. Radiotherapy and chemotherapy are the main treatment options for NPC; however, they have a limited efficacy in patients with locally advanced or distant metastatic tumors. Tumor immunotherapy, including vaccination, adoptive cell therapy, and immune checkpoint blockade, represents a promising therapeutic approach for NPC. Significant breakthroughs have recently been made in the application of immunotherapy for patients with recurrent or metastatic NPC (RM-NPC), indicating a broad prospect for NPC immunotherapy. Here, we review important research findings regarding immunotherapy for NPC patients and provide insights for future research.
Collapse
Affiliation(s)
- Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xiaobing Duan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xingxing Chen
- Department of Urology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Haichuan Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xian-Yang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Department of R&D, OriCell Therapeutics Co. Ltd, Pudong, Shanghai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| | - Guofu Pang
- Department of Urology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| | - Xiaohui Dou
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Health Management Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| |
Collapse
|
9
|
Lei T, Li X, Wang F, Huang Q, Liu T, Liu C, Hu Q. Immune landscape of viral cancers: Insights from single-cell sequencing. J Med Virol 2023; 95:e28348. [PMID: 36436921 DOI: 10.1002/jmv.28348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Viral infections trigger a wide range of immune responses thought to drive tumorigenesis and malignant progression. Dissecting virus-induced changes in the tumor immune microenvironment (TIME) is therefore crucial to identify key leukocyte populations that may represent novel targets for cancer therapy. Single-cell sequencing approaches have now been widely applied to the analysis of various tumors, thus enabling multiomics characterization of the highly heterogeneous TIME that bulk-sequencing cannot fully elucidate. In this review, we summarized key recent findings from sequencing studies of the immune infiltrate and antitumor response in virus-associated cancers at single cell resolution. Additionally, we also reviewed recent developments in immunotherapy for virus-associated cancers. We anticipate that the strategic use of single-cell sequencing will advance our understanding of the TIME of viral cancers, leading to the development of more potent novel treatments.
Collapse
Affiliation(s)
- Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Li
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fuhao Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Qingyu Huang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tianxing Liu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chao Liu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Yu CX, Liu W, Zhao MH, Xiao H, Wang Y, Luo B. Sequence analysis of Epstein–Barr virus BALF2 gene in associated tumors and healthy individuals from southern and northern China. Future Virol 2022. [DOI: 10.2217/fvl-2021-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The purpose of this study is to investigate the polymorphism and distribution characteristics of BALF2 gene in Epstein–Barr virus (EBV)-associated tumors (gastric cancer, nasopharyngeal carcinoma and lymphoma). Materials & methods: DNA sequences of 349 EBV-related samples were analyzed by nested PCR combined with DNA sequencing. Results: According to the phylogenetic tree, BALF2 was divided into six genotypes ( BALF2-A–F). Statistically, the incidence of BALF2-E in nasopharyngeal carcinoma was higher than that in healthy people, and the incidence of BALF2-E in nasopharyngeal carcinoma in South China was higher than that in North China (p = 0.001). Conclusion: BALF2 variants in EBV-associated samples are not only tumor-specific, but also differ between northern and southern regions.
Collapse
Affiliation(s)
- Cai-xia Yu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Meng-he Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Hua Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yun Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
11
|
Lv K, Yin T, Yu M, Chen Z, Zhou Y, Li F. Treatment Advances in EBV Related Lymphoproliferative Diseases. Front Oncol 2022; 12:838817. [PMID: 35515118 PMCID: PMC9063483 DOI: 10.3389/fonc.2022.838817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Epstein Barr virus (EBV) can affect 90% of the human population. It can invade B lymphocytes, T lymphocytes and natural killer cells of the host and remain in the host for life. The long latency and reactivation of EBV can cause malignant transformation, leading to various lymphoproliferative diseases (LPDs), including EBV-related B-cell lymphoproliferative diseases (EBV-B-LPDs) (for example, Burkitt lymphoma (BL), classic Hodgkin's lymphoma (cHL), and posttransplantation and HIV-related lymphoproliferative diseases) and EBV-related T-cell lymphoproliferative diseases (EBV-T/NK-LPDs) (for example, extranodal nasal type natural killer/T-cell lymphoma (ENKTCL), aggressive NK cell leukaemia (ANKL), and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS). EBV-LPDs are heterogeneous with different clinical features and prognoses. The treatment of EBV-LPDs is usually similar to that of EBV-negative lymphoma with the same histology and can include chemotherapy, radiotherapy, and hematopoietic stem cell transplant (HSCT). However, problems such as serious toxicity and drug resistance worsen the survival prognosis of patients. EBV expresses a variety of viral and lytic proteins that regulate cell cycle and death processes and promote the survival of tumour cells. Based on these characteristics, a series of treatment strategies for EBV in related malignant tumours have been developed, such as monoclonal antibodies, immune checkpoint inhibitors, cytotoxic T lymphocytes (CTLs) and epigenetic therapy. These new individualized therapies can produce highly specific killing effects on tumour cells, and nontumour cells can be protected from toxicity. This paper will focus on the latest progress in the treatment of EBV-LPDs based on pathological mechanisms.
Collapse
Affiliation(s)
- Kebing Lv
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Yin
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Yu
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, China.,Clinical Research Center for Hematologic Disease of Jiangxi Province, Nanchang, China.,Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China
| | - Zhiwei Chen
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, China.,Clinical Research Center for Hematologic Disease of Jiangxi Province, Nanchang, China.,Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China
| | - Yulan Zhou
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, China.,Clinical Research Center for Hematologic Disease of Jiangxi Province, Nanchang, China.,Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China
| | - Fei Li
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, China.,Clinical Research Center for Hematologic Disease of Jiangxi Province, Nanchang, China.,Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Godfrey A, Osborn K, Sinclair AJ. Interaction sites of the Epstein-Barr virus Zta transcription factor with the host genome in epithelial cells. Access Microbiol 2022; 3:000282. [PMID: 35018326 PMCID: PMC8742585 DOI: 10.1099/acmi.0.000282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is present in a state of latency in infected memory B-cells and EBV-associated lymphoid and epithelial cancers. Cell stimulation or differentiation of infected B-cells and epithelial cells induces reactivation to the lytic replication cycle. In each cell type, the EBV transcription and replication factor Zta (BZLF1, EB1) plays a role in mediating the lytic cycle of EBV. Zta is a transcription factor that interacts directly with Zta response elements (ZREs) within viral and cellular genomes. Here we undertake chromatin-precipitation coupled to DNA-sequencing (ChIP-Seq) of Zta-associated DNA from cancer-derived epithelial cells. The analysis identified over 14 000 Zta-binding sites in the cellular genome. We assessed the impact of lytic cycle reactivation on changes in gene expression for a panel of Zta-associated cellular genes. Finally, we compared the Zta-binding sites identified in this study with those previously identified in B-cells and reveal substantial conservation in genes associated with Zta-binding sites.
Collapse
Affiliation(s)
- Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
13
|
Zanelli M, Sanguedolce F, Palicelli A, Zizzo M, Martino G, Caprera C, Fragliasso V, Soriano A, Gozzi F, Cimino L, Masia F, Moretti M, Foroni M, De Marco L, Pellegrini D, De Raeve H, Ricci S, Tamagnini I, Tafuni A, Cavazza A, Merli F, Pileri SA, Ascani S. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 3). Cancers (Basel) 2021; 13:6021. [PMID: 34885131 PMCID: PMC8656853 DOI: 10.3390/cancers13236021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
EBV is the first known oncogenic virus involved in the development of several tumors. The majority of the global population are infected with the virus early in life and the virus persists throughout life, in a latent stage, and usually within B lymphocytes. Despite the worldwide diffusion of EBV infection, EBV-associated diseases develop in only in a small subset of individuals often when conditions of immunosuppression disrupt the balance between the infection and host immune system. EBV-driven lymphoid proliferations are either of B-cell or T/NK-cell origin, and range from disorders with an indolent behavior to aggressive lymphomas. In this review, which is divided in three parts, we provide an update of EBV-associated lymphoid disorders developing in the gastrointestinal tract, often representing a challenging diagnostic and therapeutic issue. Our aim is to provide a practical diagnostic approach to clinicians and pathologists who face this complex spectrum of disorders in their daily practice. In this part of the review, the chronic active EBV infection of T-cell and NK-cell type, its systemic form; extranodal NK/T-cell lymphoma, nasal type and post-transplant lymphoproliferative disorders are discussed.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | | | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Alessandra Soriano
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Francesco Masia
- Dipartimento di Medicina, Università degli Studi di Perugia, 05100 Terni, Italy; (F.M.); (M.M.)
| | - Marina Moretti
- Dipartimento di Medicina, Università degli Studi di Perugia, 05100 Terni, Italy; (F.M.); (M.M.)
| | - Moira Foroni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Loredana De Marco
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - David Pellegrini
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Hendrik De Raeve
- Pathology, University Hospital Brussels, 1090 Brussels, Belgium;
- Pathology, O.L.V. Hospital Aalst, 9300 Aalst, Belgium
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Ione Tamagnini
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Alessandro Tafuni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano A. Pileri
- Haematopathology Division, European Institute of Oncology-IEO IRCCS Milan, 20141 Milan, Italy;
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| |
Collapse
|
14
|
Zanelli M, Sanguedolce F, Palicelli A, Zizzo M, Martino G, Caprera C, Fragliasso V, Soriano A, Valle L, Ricci S, Gozzi F, Cimino L, Cavazza A, Merli F, Pileri SA, Ascani S. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 2). Cancers (Basel) 2021; 13:4527. [PMID: 34572754 PMCID: PMC8469260 DOI: 10.3390/cancers13184527] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) is a common pathogen infecting people primarily early in life. The virus has the ability to persist throughout a person's life, usually in B lymphocytes. Conditions of immunodeficiency as well as the introduction of immunosuppressive therapies and the advent of transplant technologies has brought immunodeficiency-associated lymphoproliferative disorders into view, which are often driven by EBV. The group of EBV-associated lymphoproliferative disorders includes different entities, with distinct biological features, ranging from indolent disorders, which may even spontaneously regress, to aggressive lymphomas requiring prompt and adequate treatment. These disorders are often diagnostically challenging due to their overlapping morphology and immunophenotype. Both nodal and extra-nodal sites, including the gastrointestinal tract, may be involved. This review, divided in three parts, summarizes the clinical, pathological, molecular features and treatment strategies of EBV-related lymphoproliferative disorders occurring in the gastrointestinal tract and critically analyzes the major issues in the differential diagnosis. In this part of the review, we discuss plasmablastic lymphoma, extra-cavitary primary effusion lymphoma and Burkitt lymphoma.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | | | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luca Valle
- Anatomic Pathology, Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano A. Pileri
- Haematopathology Division, European Institute of Oncology-IEO IRCCS Milan, 20141 Milan, Italy;
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| |
Collapse
|
15
|
CYB561A3 is the Key Lysosomal Iron Reductase Required for Burkitt B-cell Growth and Survival. Blood 2021; 138:2216-2230. [PMID: 34232987 DOI: 10.1182/blood.2021011079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/18/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) causes endemic Burkitt lymphoma, the leading childhood cancer in sub-Saharan Africa. Burkitt cells retain aspects of germinal center B-cell physiology with MYC-driven B-cell hyperproliferation, yet little is presently known about their iron metabolism. CRISPR/Cas9 analysis highlighted the little studied ferrireductase CYB561A3 as critical for Burkitt proliferation, but not for that of closely related EBV-transformed lymphoblastoid cells or nearly all other Cancer Dependency Map cell lines. Burkitt CYB561A3 knockout induced profound iron starvation, despite ferritinophagy and plasma membrane transferrin upregulation. Elevated concentrations of ascorbic acid, a key CYB561 family electron donor or the labile iron source ferrous citrate rescued Burkitt CYB561A3 deficiency. CYB561A3 knockout caused catastrophic lysosomal and mitochondrial damage and impaired mitochondrial respiration. By contrast, lymphoblastoid B-cells with the transforming EBV latency III program were instead dependent on the STEAP3 ferrireductase. These results highlight CYB561A3 it as an attractive therapeutic Burkitt lymphoma target.
Collapse
|
16
|
Abstract
Despite widely available antiretroviral therapy, lymphoma remains the leading cause of death for human immunodeficiency virus (HIV)-infected persons in economically developed countries. Even a few months of drug interruptions can lead to drops in the CD4 cell count, HIV viremia, and an increased risk of lymphoma. Currently, good HIV control facilitates intensive therapies appropriate to the lymphoma, including autologous and even allogeneic hematopoietic stem cell transplantation. Nonetheless, HIV-related lymphomas have unique aspects, including pathogenetic differences driven by the presence of HIV and often coinfection with oncogenic viruses. Future therapies might exploit these differences. Lymphoma subtypes also differ in the HIV-infected population, and the disease has a higher propensity for advanced-stage, aggressive presentation and extranodal disease. Other unique aspects include the need to avoid potential interactions between antiretroviral therapy and chemotherapeutic agents and the need for HIV-specific supportive care such as infection prophylaxis. Overall, the care of these patients has progressed sufficiently that recent guidelines from the American Society of Clinical Oncology advocate the inclusion of HIV-infected patients alongside HIV-negative patients in cancer clinical trials when appropriate. This article examines HIV lymphoma and includes Burkitt lymphoma in the general population.
Collapse
|
17
|
Volaric AK, Singh K, Gru AA. Rare EBV-associated B cell neoplasms of the gastrointestinal tract. Semin Diagn Pathol 2021; 38:38-45. [PMID: 33985830 DOI: 10.1053/j.semdp.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
EBV-driven B cell neoplasms can rarely present as an extranodal mass in the gastrointestinal tract and can be missed, even by experienced pathologists, because of this uncommon presentation. A selection of these neoplasms, namely EBV-positive diffuse large B cell lymphoma, not otherwise specified (DLBCL NOS), EBV-positive mucocutaneous ulcer (EBV MCU), extracavitary primary effusion lymphoma (EPEL), and EBV-positive Burkitt lymphoma, will be discussed in the present review. Besides the common thread of EBV positivity, these lymphoproliferative disorders arise in unique clinical settings that are often associated with immunodeficiency, immunosuppression or immunosenescence and can present as solitary masses albeit rarely, within the gastrointestinal tract.
Collapse
Affiliation(s)
- Ashley K Volaric
- Department of Pathology, Stanford Medicine, Stanford, CA, United States
| | - Kunwar Singh
- Department of Pathology, Stanford Medicine, Stanford, CA, United States
| | - Alejandro A Gru
- Department of Pathology, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
18
|
Preiss NK, Kang T, Usherwood YK, Huang YH, Branchini BR, Usherwood EJ. Control of B Cell Lymphoma by Gammaherpesvirus-Induced Memory CD8 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3372-3382. [PMID: 33188072 PMCID: PMC7924667 DOI: 10.4049/jimmunol.2000734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/13/2020] [Indexed: 02/02/2023]
Abstract
Persistent infection with gammaherpesviruses (γHV) can cause lymphomagenesis in immunocompromised patients. Murine γHV-68 (MHV-68) is an important tool for understanding immune factors contributing to γHV control; however, modeling control of γHV-associated lymphomagenesis has been challenging. Current model systems require very long incubation times or severe immune suppression, and tumor penetrance is low. In this report, we describe the generation of a B cell lymphoma on the C57BL/6 background, which is driven by the Myc oncogene and expresses an immunodominant CD8 T cell epitope from MHV-68. We determined MHV-68-specific CD8 T cells in latently infected mice use either IFN-γ or perforin/granzyme to control γHV-associated lymphoma, but perforin/granzyme is a more potent effector mechanism for lymphoma control than IFN-γ. Consistent with previous reports, CD4-depleted mice lost control of virus replication in persistently infected mice. However, control of lymphoma remained intact in the absence of CD4 T cells. Collectively, these data show the mechanisms of T cell control of B cell lymphoma in γHV-infected mice overlap with those necessary for control of virus replication, but there are also important differences. This study establishes a tool for further dissecting immune surveillance against, and optimizing adoptive T cell therapies for, γHV-associated lymphomas.
Collapse
Affiliation(s)
- Nicholas K Preiss
- Microbiology and Immunology Department, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Taewook Kang
- Microbiology and Immunology Department, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Young-Kwang Usherwood
- Microbiology and Immunology Department, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Yina H Huang
- Microbiology and Immunology Department, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | | | - Edward J Usherwood
- Microbiology and Immunology Department, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| |
Collapse
|
19
|
Atallah-Yunes SA, Murphy DJ, Noy A. HIV-associated Burkitt lymphoma. LANCET HAEMATOLOGY 2020; 7:e594-e600. [PMID: 32735838 DOI: 10.1016/s2352-3026(20)30126-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
Burkitt lymphoma is a rare and aggressive non-Hodgkin lymphoma with three classifications: endemic, sporadic, and immunodeficiency-related. High-intensity chemotherapeutic regimens have considerably improved overall survival for patients with Burkitt lymphoma. In this Review of HIV-associated Burkitt lymphoma, we summarise expert opinion and provide general recommendations for the treatment of Burkitt lymphoma in patients with HIV on the basis of retrospective and prospective studies, taking into consideration immune status, CD4 cell counts, the presence of systemic disease, and the risk of CNS involvement or relapse. We also discuss the role of rituximab and antiretroviral therapy. We highlight the reasons behind the possible different mechanisms of lymphomagenesis in HIV-associated Burkitt lymphoma and endemic Burkitt lymphoma, which indicate that HIV might have either a direct or indirect oncogenic role in Burkitt lymphoma. We discuss the possible mechanisms by which HIV and HIV proteins could directly contribute to lymphomagenesis. Identifying these mechanisms might lead to the development of therapies that have fewer toxic effects than high-intensity chemotherapeutic regimens.
Collapse
Affiliation(s)
- Suheil Albert Atallah-Yunes
- Department of Medicine, University of Massachusetts Medical School-Baystate Medical Center, Springfield, MA, USA
| | - Dermot J Murphy
- Department of Medicine, Mercy Medical Center, Springfield, MA, USA
| | - Ariela Noy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
20
|
Vilmen G, Glon D, Siracusano G, Lussignol M, Shao Z, Hernandez E, Perdiz D, Quignon F, Mouna L, Poüs C, Gruffat H, Maréchal V, Esclatine A. BHRF1, a BCL2 viral homolog, disturbs mitochondrial dynamics and stimulates mitophagy to dampen type I IFN induction. Autophagy 2020; 17:1296-1315. [PMID: 32401605 DOI: 10.1080/15548627.2020.1758416] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondria respond to many cellular functions and act as central hubs in innate immunity against viruses. This response is notably due to their role in the activation of interferon (IFN) signaling pathways through the activity of MAVS (mitochondrial antiviral signaling protein) present at the mitochondrial surface. Here, we report that the BHRF1 protein, a BCL2 homolog encoded by Epstein-Barr virus (EBV), inhibits IFNB/IFN-β induction by targeting the mitochondria. Indeed, we have demonstrated that BHRF1 expression modifies mitochondrial dynamics and stimulates DNM1L/Drp1-mediated mitochondrial fission. Concomitantly, we have shown that BHRF1 is pro-autophagic because it stimulates the autophagic flux by interacting with BECN1/Beclin 1. In response to the BHRF1-induced mitochondrial fission and macroautophagy/autophagy stimulation, BHRF1 drives mitochondrial network reorganization to form juxtanuclear mitochondrial aggregates known as mito-aggresomes. Mitophagy is a cellular process, which can specifically sequester and degrade mitochondria. Our confocal studies uncovered that numerous mitochondria are present in autophagosomes and acidic compartments using BHRF1-expressing cells. Moreover, mito-aggresome formation allows the induction of mitophagy and the accumulation of PINK1 at the mitochondria. As BHRF1 modulates the mitochondrial fate, we explored the effect of BHRF1 on innate immunity and showed that BHRF1 expression could prevent IFNB induction. Indeed, BHRF1 inhibits the IFNB promoter activation and blocks the nuclear translocation of IRF3 (interferon regulatory factor 3). Thus, we concluded that BHRF1 can counteract innate immunity activation by inducing fission of the mitochondria to facilitate their sequestration in mitophagosomes for degradation.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; BCL2: BCL2 apoptosis regulator; CARD: caspase recruitment domain; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CI: compaction index; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; DDX58/RIG-I: DExD/H-box helicase 58; DNM1L/Drp1: dynamin 1 like; EBSS: Earle's balanced salt solution; EBV: Epstein-Barr virus; ER: endoplasmic reticulum; EV: empty vector; GFP: green fluorescent protein; HEK: human embryonic kidney; IFN: interferon; IgG: immunoglobulin G; IRF3: interferon regulatory factor 3; LDHA: lactate dehydrogenase A; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MMP: mitochondrial membrane potential; MOM: mitochondrial outer membrane; PINK1: PTEN induced kinase 1; RFP: red fluorescent protein; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TOMM20: translocase of outer mitochondrial membrane 20; VDAC: voltage dependent anion channel.
Collapse
Affiliation(s)
- Géraldine Vilmen
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.,CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Damien Glon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Gabriel Siracusano
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Zhouwulin Shao
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Eva Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Daniel Perdiz
- INSERM UMR-S 1193, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Frédérique Quignon
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Lina Mouna
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Christian Poüs
- INSERM UMR-S 1193, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Biochimie-Hormonologie, APHP, Hôpitaux Universitaires Paris-Sud, Site Antoine Béclère, Clamart, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Vincent Maréchal
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Physiological levels of the PTEN-PI3K-AKT axis activity are required for maintenance of Burkitt lymphoma. Leukemia 2019; 34:857-871. [PMID: 31719683 PMCID: PMC7214272 DOI: 10.1038/s41375-019-0628-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/01/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022]
Abstract
In addition to oncogenic MYC translocations, Burkitt lymphoma (BL) depends on the germinal centre (GC) dark zone (DZ) B cell survival and proliferation programme, which is characterized by relatively low PI3K-AKT activity. Paradoxically, PI3K-AKT activation facilitates MYC-driven lymphomagenesis in mice, and it has been proposed that PI3K-AKT activation is essential for BL. Here we show that the PI3K-AKT activity in primary BLs and BL cell lines does not exceed that of human non-neoplastic tonsillar GC DZ B cells. BLs were not sensitive to AKT1 knockdown, which induced massive cell death in pAKThigh DLBCL cell lines. Likewise, BL cell lines show low sensitivity to pan-AKT inhibitors. Moreover, hyper-activation of the PI3K-AKT pathway by overexpression of a constitutively active version of AKT (myrAKT) or knockdown of PTEN repressed the growth of BL cell lines. This was associated with increased AKT phosphorylation, NF-κB activation, and downregulation of DZ genes including the proto-oncogene MYB and the DZ marker CXCR4. In contrast to GCB-DLBCL, PTEN overexpression was tolerated by BL cell lines. We conclude that the molecular mechanisms instrumental to guarantee the survival of normal DZ B cells, including the tight regulation of the PTEN-PI3K-AKT axis, also operate in the survival/proliferation of BL.
Collapse
|
22
|
Coghill AE, Proietti C, Liu Z, Krause L, Bethony J, Prokunina-Olsson L, Obajemu A, Nkrumah F, Biggar RJ, Bhatia K, Hildesheim A, Doolan DL, Mbulaiteye SM. The Association between the Comprehensive Epstein-Barr Virus Serologic Profile and Endemic Burkitt Lymphoma. Cancer Epidemiol Biomarkers Prev 2019; 29:57-62. [PMID: 31619404 DOI: 10.1158/1055-9965.epi-19-0551] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/05/2019] [Accepted: 10/09/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The discovery of Epstein-Barr virus (EBV) in Burkitt lymphoma tumors represented the first link between a virus and cancer in humans, but the underlying role of this virus in endemic Burkitt lymphoma remains unclear. Nearly all children in Burkitt lymphoma-endemic areas are seropositive for EBV, but only a small percentage develop disease. Variation in EBV-directed immunity could be an explanatory cofactor. METHODS We examined serum from 150 Burkitt lymphoma cases and 150 controls using a protein microarray that measured IgG and IgA antibodies against 202 sequences across the entire EBV proteome. Variation in the EBV-directed antibody repertoire between Burkitt lymphoma cases and controls was assessed using unpaired t tests. ORs quantifying the association between anti-EBV IgG response tertiles and Burkitt lymphoma status were adjusted for age, sex, and study year. RESULTS Thirty-three anti-EBV IgG responses were elevated in Burkitt lymphoma cases compared with controls (P ≤ 0.0003). Burkitt lymphoma-associated IgG elevations were strongest for EBV proteins involved in viral replication and antiapoptotic signaling. Specifically, we observed ORs ≥4 for BMRF1 (early antigen), BBLF1 (tegument protein), BHRF1 (Bcl-2 homolog), BZLF1 (Zebra), BILF2 (glycoprotein), BLRF2 [viral capsid antigen (VCA)p23], BDLF4, and BFRF3 (VCAp18). Adjustment for malaria exposure and inheritance of the sickle cell variant did not alter associations. CONCLUSIONS Our data suggest that the anti-EBV serologic profile in patients with Burkitt lymphoma is altered, with strong elevations in 33 of the measured anti-EBV IgG antibodies relative to disease-free children. IMPACT The Burkitt lymphoma-specific signature included EBV-based markers relevant for viral replication and antiapoptotic activity, providing clues for future Burkitt lymphoma pathogenesis research.
Collapse
Affiliation(s)
- Anna E Coghill
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland. .,Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Carla Proietti
- Center for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Zhiwei Liu
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Lutz Krause
- University of Queensland, Diamantina Institute, Brisbane, Australia
| | - Jeff Bethony
- George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Adeola Obajemu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Francis Nkrumah
- Noguchi Memorial Institute, University of Ghana, Legon, Ghana
| | - Robert J Biggar
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Kishor Bhatia
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Allan Hildesheim
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Denise L Doolan
- Center for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Sam M Mbulaiteye
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| |
Collapse
|
23
|
Ma XJ, Xu G, Li ZJ, Chen F, Wu D, Miao JN, Zhan Y, Fan Y. HDAC-selective Inhibitor Cay10603 Has Single Anti-tumour Effect in Burkitt’s Lymphoma Cells by Impeding the Cell Cycle. Curr Med Sci 2019; 39:228-236. [DOI: 10.1007/s11596-019-2024-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/23/2019] [Indexed: 02/06/2023]
|
24
|
Hui KF, Yiu SPT, Tam KP, Chiang AKS. Viral-Targeted Strategies Against EBV-Associated Lymphoproliferative Diseases. Front Oncol 2019; 9:81. [PMID: 30873380 PMCID: PMC6400835 DOI: 10.3389/fonc.2019.00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is strongly associated with a spectrum of EBV-associated lymphoproliferative diseases (EBV-LPDs) ranging from post-transplant lymphoproliferative disorder, B cell lymphomas (e.g., endemic Burkitt lymphoma, Hodgkin lymphoma, and diffuse large B cell lymphoma) to NK or T cell lymphoma (e.g., nasal NK/T-cell lymphoma). The virus expresses a number of latent viral proteins which are able to manipulate cell cycle and cell death processes to promote survival of the tumor cells. Several FDA-approved drugs or novel compounds have been shown to induce killing of some of the EBV-LPDs by inhibiting the function of latent viral proteins or activating the viral lytic cycle from latency. Here, we aim to provide an overview on the mechanisms by which EBV employs to drive the pathogenesis of various EBV-LPDs and to maintain the survival of the tumor cells followed by a discussion on the development of viral-targeted strategies based on the understanding of the patho-mechanisms.
Collapse
Affiliation(s)
- Kwai Fung Hui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Stephanie Pei Tung Yiu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kam Pui Tam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Alan Kwok Shing Chiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
25
|
Abstract
Epstein-Barr virus (EBV) is one of the most widespread human pathogens. EBV infection is usually asymptomatic, and it establishes life-long latent infection. EBV latent infection sometimes causes various tumorigenic diseases, such as EBV-related lymphoproliferative diseases, Burkitt lymphomas, Hodgkin lymphomas, NK/T-cell lymphomas, and epithelial carcinomas. EBV-encoded latent genes are set of viral genes that are expressed in latently infected cells. They include virally encoded proteins, noncoding RNAs, and microRNAs. Different latent gene expression patterns are noticed in different types of EBV-infected cells. Viral latent gene products contribute to EBV-mediated B cell transformation and likely contribute to lymphomagenesis and epithelial carcinogenesis as well. Many biological functions of viral latent gene products have been reported, making difficult to understand a whole view of EBV latency. In this review, we will focus on latent gene functions that have been verified by genetic experiments using EBV mutants. We will also summarize how viral latent genes contribute to EBV-mediated B cell transformation, Burkitt lymphomagenesis, and epithelial carcinogenesis.
Collapse
|
26
|
Anastasiadou E, Stroopinsky D, Alimperti S, Jiao AL, Pyzer AR, Cippitelli C, Pepe G, Severa M, Rosenblatt J, Etna MP, Rieger S, Kempkes B, Coccia EM, Sui SJH, Chen CS, Uccini S, Avigan D, Faggioni A, Trivedi P, Slack FJ. Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia 2018; 33:132-147. [PMID: 29946193 PMCID: PMC6327052 DOI: 10.1038/s41375-018-0178-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 04/27/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022]
Abstract
Cancer cells subvert host immune surveillance by altering immune checkpoint (IC) proteins. Some Epstein−Barr virus (EBV)-associated tumors have higher Programmed Cell Death Ligand, PD-L1 expression. However, it is not known how EBV alters ICs in the context of its preferred host, the B lymphocyte and in derived lymphomas. Here, we found that latency III-expressing Burkitt lymphoma (BL), diffuse large B-cell lymphomas (DLBCL) or their EBNA2-transfected derivatives express high PD-L1. In a DLBCL model, EBNA2 but not LMP1 is sufficient to induce PD-L1. Latency III-expressing DLBCL biopsies showed high levels of PD-L1. The PD-L1 targeting oncosuppressor microRNA miR-34a was downregulated in EBNA2-transfected lymphoma cells. We identified early B-cell factor 1 (EBF1) as a repressor of miR-34a transcription. Short hairpin RNA (shRNA)-mediated knockdown of EBF1 was sufficient to induce miR-34a transcription, which in turn reduced PD-L1. MiR-34a reconstitution in EBNA2-transfected DLBCL reduced PD-L1 expression and increased its immunogenicity in mixed lymphocyte reactions (MLR) and in three-dimensional biomimetic microfluidic chips. Given the importance of PD-L1 inhibition in immunotherapy and miR-34a dysregulation in cancers, our findings may have important implications for combinatorial immunotherapy, which include IC inhibiting antibodies and miR-34a, for EBV-associated cancers.
Collapse
Affiliation(s)
- Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dina Stroopinsky
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stella Alimperti
- The Wyss Institute for Biological Inspired Engineering at Harvard, Harvard University, Boston, MA, USA
| | - Alan L Jiao
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Athalia R Pyzer
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Claudia Cippitelli
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Giuseppina Pepe
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jacalyn Rosenblatt
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marilena P Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Rieger
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Marchioninistraße 25, 81377, Munich, Germany
| | - Bettina Kempkes
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Marchioninistraße 25, 81377, Munich, Germany
| | - Eliana M Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Shannan J Ho Sui
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Christopher S Chen
- The Wyss Institute for Biological Inspired Engineering at Harvard, Harvard University, Boston, MA, USA
| | - Stefania Uccini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - David Avigan
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alberto Faggioni
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 0161, Rome, Italy
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 0161, Rome, Italy.
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Targeting autophagy in lymphomas: a double-edged sword? Int J Hematol 2018; 107:502-512. [DOI: 10.1007/s12185-018-2414-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/19/2022]
|
28
|
IRAK4 is essential for TLR9-induced suppression of Epstein-Barr virus BZLF1 transcription in Akata Burkitt's lymphoma cells. PLoS One 2017; 12:e0186614. [PMID: 29088270 PMCID: PMC5663394 DOI: 10.1371/journal.pone.0186614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022] Open
Abstract
Burkitt’s lymphoma (BL) is the most common childhood cancer in equatorial Africa, and is endemic to areas where people are chronically co-infected with Epstein-Barr virus (EBV) and the malaria pathogen Plasmodium falciparum. The contribution of these pathogens in the oncogenic process remains poorly understood. We showed earlier that the activation of Toll-like receptor (TLR) 9 by hemozoin, a disposal product formed from the digestion of blood by P. falciparum, suppresses the lytic reactivation of EBV in BL cells. EBV lytic reactivation is regulated by the expression of transcription factor Zta (ZEBRA), encoded by the EBV gene BZLF1. Here, we explore in the BL cell line Akata, the mechanism involved in repression by TLR9 of expression of BZLF1. We show that BZLF1 repression is mediated upon TLR9 engagement by a mechanism that is largely independent of de novo protein synthesis. By CRISPR/Cas9-induced inactivation of TLR9, MyD88, IRAK4 and IRAK1 we confirm that BZLF1 repression is dependent on functional TLR9 and MyD88 signaling, and identify IRAK4 as an essential element for TLR9-induced repression of BZLF1 expression upon BCR cross-linking. Our results unprecedentedly show that TLR9-mediated inhibition of lytic EBV is largely independent of new protein synthesis and demonstrate the central roles of MyD88 and IRAK4 in this process contributing to EBV’s persistence in the host’s B-cell pool.
Collapse
|
29
|
Bergallo M, Gambarino S, Pinon M, Barat V, Montanari P, Daprà V, Galliano I, Calvo PL. EBV-encoded microRNAs profile evaluation in pediatric liver transplant recipients. J Clin Virol 2017; 91:36-41. [DOI: 10.1016/j.jcv.2017.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/21/2017] [Accepted: 04/02/2017] [Indexed: 01/08/2023]
|
30
|
Abstract
Epstein-Barr virus (EBV) infection is associated with several distinct hematological and epithelial malignancies, e.g., Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and others. The association with several malignant tumors of local and worldwide distribution makes EBV one of the most important tumor viruses. Furthermore, because EBV can cause posttransplant lymphoproliferative disease, transplant medicine has to deal with EBV as a major pathogenic virus second only to cytomegalovirus. In this review, we summarize briefly the natural history of EBV infection and outline some of the recent advances in the pathogenesis of the major EBV-associated neoplasms. We present alternative scenarios and discuss them in the light of most recent experimental data. Emerging research areas including EBV-induced patho-epigenetic alterations in host cells and the putative role of exosome-mediated information transfer in disease development are also within the scope of this review. This book contains an in-depth description of a series of modern methodologies used in EBV research. In this introductory chapter, we thoroughly refer to the applications of these methods and demonstrate how they contributed to the understanding of EBV-host cell interactions. The data gathered using recent technological advancements in molecular biology and immunology as well as the application of sophisticated in vitro and in vivo experimental models certainly provided deep and novel insights into the pathogenetic mechanisms of EBV infection and EBV-associated tumorigenesis. Furthermore, the development of adoptive T cell immunotherapy has provided a novel approach to the therapy of viral disease in transplant medicine and hematology.
Collapse
Affiliation(s)
- Janos Minarovits
- Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
31
|
Kalchschmidt JS, Bashford-Rogers R, Paschos K, Gillman ACT, Styles CT, Kellam P, Allday MJ. Epstein-Barr virus nuclear protein EBNA3C directly induces expression of AID and somatic mutations in B cells. J Exp Med 2016; 213:921-8. [PMID: 27217538 PMCID: PMC4886369 DOI: 10.1084/jem.20160120] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022] Open
Abstract
Allday and collaborators demonstrate that the EBV transcription factor and oncoprotein EBNA3C directly induces the expression of AID and somatic mutations in B cells, providing a mechanism linking infection and lymphoma induction. Activation-induced cytidine deaminase (AID), the enzyme responsible for induction of sequence variation in immunoglobulins (Igs) during the process of somatic hypermutation (SHM) and also Ig class switching, can have a potent mutator phenotype in the development of lymphoma. Using various Epstein-Barr virus (EBV) recombinants, we provide definitive evidence that the viral nuclear protein EBNA3C is essential in EBV-infected primary B cells for the induction of AID mRNA and protein. Using lymphoblastoid cell lines (LCLs) established with EBV recombinants conditional for EBNA3C function, this was confirmed, and it was shown that transactivation of the AID gene (AICDA) is associated with EBNA3C binding to highly conserved regulatory elements located proximal to and upstream of the AICDA transcription start site. EBNA3C binding initiated epigenetic changes to chromatin at specific sites across the AICDA locus. Deep sequencing of cDNA corresponding to the IgH V-D-J region from the conditional LCL was used to formally show that SHM is activated by functional EBNA3C and induction of AID. These data, showing the direct targeting and induction of functional AID by EBNA3C, suggest a novel role for EBV in the etiology of B cell cancers, including endemic Burkitt lymphoma.
Collapse
Affiliation(s)
- Jens S Kalchschmidt
- Molecular Virology, Department of Medicine, Imperial College London, London W2 1PG, England, UK
| | | | - Kostas Paschos
- Molecular Virology, Department of Medicine, Imperial College London, London W2 1PG, England, UK
| | - Adam C T Gillman
- Molecular Virology, Department of Medicine, Imperial College London, London W2 1PG, England, UK
| | - Christine T Styles
- Molecular Virology, Department of Medicine, Imperial College London, London W2 1PG, England, UK
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, England, UK
| | - Martin J Allday
- Molecular Virology, Department of Medicine, Imperial College London, London W2 1PG, England, UK
| |
Collapse
|
32
|
Allen UD, Hu P, Pereira SL, Robinson JL, Paton TA, Beyene J, Khodai-Booran N, Dipchand A, Hébert D, Ng V, Nalpathamkalam T, Read S. The genetic diversity of Epstein-Barr virus in the setting of transplantation relative to non-transplant settings: A feasibility study. Pediatr Transplant 2016; 20:124-9. [PMID: 26578436 DOI: 10.1111/petr.12610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 12/14/2022]
Abstract
This study examines EBV strains from transplant patients and patients with IM by sequencing major EBV genes. We also used NGS to detect EBV DNA within total genomic DNA, and to evaluate its genetic variation. Sanger sequencing of major EBV genes was used to compare SNVs from samples taken from transplant patients vs. patients with IM. We sequenced EBV DNA from a healthy EBV-seropositive individual on a HiSeq 2000 instrument. Data were mapped to the EBV reference genomes (AG876 and B95-8). The number of EBNA2 SNVs was higher than for EBNA1 and the other genes sequenced within comparable reference coordinates. For EBNA2, there was a median of 15 SNV among transplant samples compared with 10 among IM samples (p = 0.036). EBNA1 showed little variation between samples. For NGS, we identified 640 and 892 variants at an unadjusted p value of 5 × 10(-8) for AG876 and B95-8 genomes, respectively. We used complementary sequence strategies to examine EBV genetic diversity and its application to transplantation. The results provide the framework for further characterization of EBV strains and related outcomes after organ transplantation.
Collapse
Affiliation(s)
- Upton D Allen
- Division of Infectious Diseases, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,The Transplant and Regenerative Medicine Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Pingzhao Hu
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio L Pereira
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON, Canada
| | - Joan L Robinson
- Division of Infectious Diseases, Department of Paediatrics, Stollery Children's Hospital, Edmonton, AB, Canada
| | - Tara A Paton
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON, Canada
| | - Joseph Beyene
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Nasser Khodai-Booran
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Anne Dipchand
- The Transplant and Regenerative Medicine Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Diane Hébert
- The Transplant and Regenerative Medicine Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Vicky Ng
- The Transplant and Regenerative Medicine Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Thomas Nalpathamkalam
- The Transplant and Regenerative Medicine Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stanley Read
- Division of Infectious Diseases, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Epidemiology of Epstein-Barr virus-associated pediatric lymphomas from Argentina. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:47-54. [PMID: 29421233 DOI: 10.1016/j.bmhimx.2015.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022] Open
Abstract
More than 90% of the population is infected by Epstein-Barr virus (EBV), which has sophisticatedly evolved to survive silently in B cells for the life of infected individuals. However, if the virus-host balance is disturbed, latent EBV infection could be associated with several lymphomas. The age at primary infection varies substantially worldwide, and exposure to EBV is likely to be due to socioeconomic factors. In Argentina, EBV infection is mostly subclinical and 90% of patients are seropositive by the age of 3 years; therefore, its epidemiological characteristics resemble those of an underdeveloped or developing population. EBV-positive Hodgkin lymphoma (HL) in young adults from developed populations has been attributed to delayed primary EBV infection as suggested by the association with recent mononucleosis development. EBV-associated Burkitt lymphoma and Hodgkin lymphoma in children from Argentina display frequencies similar to those observed in developed countries, whereas EBV presence in pediatric diffuse large B-cell lymphoma is slightly increased compared to those populations. However, EBV presence is statistically associated particularly with patients < 10 years of age in all three entities. Therefore, a relationship between low age of EBV seroconversion and B-cell lymphoma development risk could be suggested in children from Argentina.
Collapse
|
34
|
Burns DM, Tierney R, Shannon-Lowe C, Croudace J, Inman C, Abbotts B, Nagra S, Fox CP, Chaganti S, Craddock CF, Moss P, Rickinson AB, Rowe M, Bell AI. Memory B-cell reconstitution following allogeneic hematopoietic stem cell transplantation is an EBV-associated transformation event. Blood 2015; 126:2665-75. [PMID: 26450987 PMCID: PMC4732759 DOI: 10.1182/blood-2015-08-665000] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/03/2015] [Indexed: 02/07/2023] Open
Abstract
Allogeneic stem cell transplantation (allo-HSCT) provides a unique opportunity to track Epstein-Barr virus (EBV) infection in the context of the reconstituting B-cell system. Although many allo-HSCT recipients maintain low or undetectable levels of EBV DNA posttransplant, a significant proportion exhibit elevated and rapidly increasing EBV loads which, if left untreated, may lead to potentially fatal EBV-associated posttransplant lymphoproliferative disease. Intriguingly, this high-level EBV reactivation typically arises in the first 3 months posttransplant, at a time when the peripheral blood contains low numbers of CD27+ memory cells which are the site of EBV persistence in healthy immunocompetent donors. To investigate this apparent paradox, we prospectively monitored EBV levels and B-cell reconstitution in a cohort of allo-HSCT patients for up to 12 months posttransplant. In patients with low or undetectable levels of EBV, the circulating B-cell pool consisted predominantly of transitional and naive cells, with a marked deficiency of CD27+ memory cells which lasted >12 months. However, among patients with high EBV loads, there was a significant increase in both the proportion and number of CD27+ memory B cells. Analysis of sorted CD27+ memory B cells from these patients revealed that this population was preferentially infected with EBV, expressed EBV latent transcripts associated with B-cell growth transformation, had a plasmablastic phenotype, and frequently expressed the proliferation marker Ki-67. These findings suggest that high-level EBV reactivation following allo-HSCT may drive the expansion of latently infected CD27+ B lymphoblasts in the peripheral blood.
Collapse
Affiliation(s)
- David M Burns
- School for Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rose Tierney
- School for Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claire Shannon-Lowe
- School for Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jo Croudace
- School for Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte Inman
- School for Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ben Abbotts
- School for Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sandeep Nagra
- Centre for Clinical Haematology, University Hospitals Birmingham National Health Service Trust, Birmingham, United Kingdom; and
| | - Christopher P Fox
- Centre for Clinical Haematology, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
| | - Sridhar Chaganti
- Centre for Clinical Haematology, University Hospitals Birmingham National Health Service Trust, Birmingham, United Kingdom; and
| | - Charles F Craddock
- Centre for Clinical Haematology, University Hospitals Birmingham National Health Service Trust, Birmingham, United Kingdom; and
| | - Paul Moss
- School for Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan B Rickinson
- School for Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Rowe
- School for Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew I Bell
- School for Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
35
|
Traylen C, Ramasubramanyan S, Zuo J, Rowe M, Almohammad R, Heesom K, Sweet SMM, Matthews DA, Sinclair AJ. Identification of Epstein-Barr Virus Replication Proteins in Burkitt's Lymphoma Cells. Pathogens 2015; 4:739-51. [PMID: 26529022 PMCID: PMC4693162 DOI: 10.3390/pathogens4040739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
The working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published transcriptome data for the EBV genome during its lytic replication cycle show extensive transcription, but the identification of the proteins is limited. We have taken a global proteomics approach to identify viral proteins that are expressed during the EBV lytic replication cycle. We combined an enrichment method to isolate cells undergoing EBV lytic replication with SILAC-labeling coupled to mass-spectrometry and identified viral and host proteins expressed during the EBV lytic replication cycle. Amongst the most frequently identified viral proteins are two components of the DNA replication machinery, the single strand DNA binding protein BALF2, DNA polymerase accessory protein BMRF1 and both subunits of the viral ribonucleoside-diphosphate reductase enzyme (BORF2 and BaRF1). An additional 42 EBV lytic cycle proteins were also detected. This provides proteomic identification for many EBV lytic replication cycle proteins and also identifies post-translational modifications.
Collapse
Affiliation(s)
- Chris Traylen
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| | | | - Jianmin Zuo
- School of Cancer Sciences and Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham B15 2TT, UK.
| | - Martin Rowe
- School of Cancer Sciences and Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham B15 2TT, UK.
| | - Rajaei Almohammad
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| | - Kate Heesom
- School of Cellular and Molecular Medicine, University of Bristol, Medical Sciences Building, Bristol BS8 1TD, UK.
| | - Steve M M Sweet
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK.
| | - David A Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Medical Sciences Building, Bristol BS8 1TD, UK.
| | - Alison J Sinclair
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
36
|
Host Gene Expression Is Regulated by Two Types of Noncoding RNAs Transcribed from the Epstein-Barr Virus BamHI A Rightward Transcript Region. J Virol 2015; 89:11256-68. [PMID: 26311882 DOI: 10.1128/jvi.01492-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED In Epstein-Barr virus-infected epithelial cancers, the alternatively spliced BamHI A rightward transcripts (BARTs) are the most abundant viral polyadenylated RNA. The BART introns form the template for the production of 44 microRNAs (miRNAs), and the spliced and polyadenylated exons form nuclear non-protein-coding RNAs. Analysis of host cell transcription by RNA-seq during latency in AGS cells identified a large number of reproducibly changed genes. Genes that were downregulated were enriched for BART miRNA targets. Bioinformatics analysis predicted activation of the myc pathway and downregulation of XBP1 as likely mediators of the host transcriptional changes. Effects on XBP1 activity were not detected in these cells; however, myc activation was confirmed through use of a myc-responsive luciferase reporter. To identify potential regulatory properties of the spliced, polyadenylated BART RNAs, a full-length cDNA clone of one of the BART isoforms was obtained and expressed in the Epstein-Barr virus (EBV)-negative AGS cells. The BART cDNA transcript remained primarily nuclear yet induced considerable and consistent changes in cellular transcription, as profiled by RNA-seq. These transcriptional changes significantly overlapped the transcriptional changes induced during latent EBV infection of these same cells, where the BARTs are exclusively nuclear and do not encode proteins. These data suggest that the nuclear BART RNAs are functional long noncoding RNAs (lncRNAs). The abundant expression of multiple forms of noncoding RNAs that contribute to growth regulation without expression of immunogenic proteins would be an important mechanism for viral oncogenesis in the presence of a functional immune system. IMPORTANCE Infection with Epstein-Barr virus (EBV) is nearly ubiquitous in the human population; however, it does contribute to the formation of multiple types of cancer. In immunocompromised patients, EBV causes multiple types of lymphomas by expressing viral oncogenes that promote growth and survival of infected B lymphocytes. EBV-positive gastric carcinoma does not require immune suppression, and the viral oncoproteins that are frequent targets for an immunological response are not expressed. This study demonstrates using transcriptional analysis that the expression of various classes of viral non-protein-coding RNAs likely contribute to the considerable changes in the host transcriptional profile in the AGS gastric cancer cell line. This is the first report to show that the highly expressed polyadenylated BamHI A rightward transcripts (BART) viral transcript in gastric carcinoma is in fact a functional viral long noncoding RNA. These studies provide new insight into how EBV can promote transformation in the absence of viral protein expression.
Collapse
|
37
|
Ramasubramanyan S, Osborn K, Al-Mohammad R, Naranjo Perez-Fernandez IB, Zuo J, Balan N, Godfrey A, Patel H, Peters G, Rowe M, Jenner RG, Sinclair AJ. Epstein-Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression. Nucleic Acids Res 2015; 43:3563-77. [PMID: 25779048 PMCID: PMC4402532 DOI: 10.1093/nar/gkv212] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/01/2015] [Indexed: 12/13/2022] Open
Abstract
Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements.
Collapse
Affiliation(s)
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | - Jianmin Zuo
- School of Cancer Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Nicolae Balan
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Harshil Patel
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Gordon Peters
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Martin Rowe
- School of Cancer Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Richard G Jenner
- UCL Cancer Institute and MRC Centre for Medical Molecular Virology, Paul O'Gorman Building, University College London, London W1CE 6BT, UK
| | | |
Collapse
|
38
|
Vockerodt M, Yap LF, Shannon-Lowe C, Curley H, Wei W, Vrzalikova K, Murray PG. The Epstein-Barr virus and the pathogenesis of lymphoma. J Pathol 2015; 235:312-22. [PMID: 25294567 DOI: 10.1002/path.4459] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023]
Abstract
Since the discovery in 1964 of the Epstein-Barr virus (EBV) in African Burkitt lymphoma, this virus has been associated with a remarkably diverse range of cancer types. Because EBV persists in the B cells of the asymptomatic host, it can easily be envisaged how it contributes to the development of B-cell lymphomas. However, EBV is also found in other cancers, including T-cell/natural killer cell lymphomas and several epithelial malignancies. Explaining the aetiological role of EBV is challenging, partly because the virus probably contributes differently to each tumour and partly because the available disease models cannot adequately recapitulate the subtle variations in the virus-host balance that exist between the different EBV-associated cancers. A further challenge is to identify the co-factors involved; because most persistently infected individuals will never develop an EBV-associated cancer, the virus cannot be working alone. This article will review what is known about the contribution of EBV to lymphoma development.
Collapse
Affiliation(s)
- Martina Vockerodt
- Centre for Human Virology and the School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Lee N, Moss WN, Yario TA, Steitz JA. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 2015; 160:607-618. [PMID: 25662012 DOI: 10.1016/j.cell.2015.01.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/14/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
EBER2 is an abundant nuclear noncoding RNA expressed by the Epstein-Barr virus (EBV). Probing its possible chromatin localization by CHART revealed EBER2's presence at the terminal repeats (TRs) of the latent EBV genome, overlapping previously identified binding sites for the B cell transcription factor PAX5. EBER2 interacts with PAX5 and is required for the localization of PAX5 to the TRs. EBER2 knockdown phenocopies PAX5 depletion in upregulating the expression of LMP2A/B and LMP1, genes nearest the TRs. Knockdown of EBER2 also decreases EBV lytic replication, underscoring the essential role of the TRs in viral replication. Recruitment of the EBER2-PAX5 complex is mediated by base-pairing between EBER2 and nascent transcripts from the TR locus. The interaction is evolutionarily conserved in the related primate herpesvirus CeHV15 despite great sequence divergence. Using base-pairing with nascent RNA to guide an interacting transcription factor to its DNA target site is a previously undescribed function for a trans-acting noncoding RNA.
Collapse
Affiliation(s)
- Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Therese A Yario
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| |
Collapse
|
40
|
Cohen M, Narbaitz M, Metrebian F, De Matteo E, Preciado MV, Chabay PA. Epstein-Barr virus-positive diffuse large B-cell lymphoma association is not only restricted to elderly patients. Int J Cancer 2014; 135:2816-24. [PMID: 24789501 DOI: 10.1002/ijc.28942] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/17/2014] [Indexed: 01/20/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common group of malignant lymphomas, account for 30% of adult non-Hodgkin lymphomas. The 2008 World Health Organization (WHO) classification included a new entity, Epstein-Barr virus (EBV)+ DLBCL of the elderly, affecting patients aged 50 years or older. However, some reports of younger EBV+ DLBCL cases, without evidence of underlying immunosuppression, can be found. The role of EBV in tumor microenvironment composition in DLBCL is still not well understood. Our aim was to assess EBV presence and latency pattern as well as tumor T-cell population in an adult DLBCL series of Argentina. The study was conducted on biopsies from 75 DLBCL patients. EBERs expression was performed by in situ hybridization, while EBV gene expression was analyzed using real-time polymerase chain reaction. LMP1, LMP2A, EBNA2, EBNA3A, CD4, CD8 and Foxp3 expression was assessed by immunohistochemistry. Nine percent of cases showed EBV expression, with similar frequency among patients younger than 50 years and 50 years or older (13% and 8%, respectively). T-cell subsets were not altered by EBV presence. Latency type II was the most frequently observed, together with lytic gene expression in EBV+ DLBCL, with ≥20% of EBERs+ cells. These findings suggest that EBV+ DLBCL in our series was similar to the previously described in Asia and Latin-America, displaying latency II or III expression profile and no age-specific characteristics. Finally, EBV+ DLBCL may be an entity that is not only restricted to patients who are older than 50 years of age, in consequence the age cutoff revision may be a current goal.
Collapse
Affiliation(s)
- M Cohen
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
41
|
Rowe M, Fitzsimmons L, Bell AI. Epstein-Barr virus and Burkitt lymphoma. CHINESE JOURNAL OF CANCER 2014; 33:609-19. [PMID: 25418195 PMCID: PMC4308657 DOI: 10.5732/cjc.014.10190] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/06/2014] [Indexed: 12/12/2022]
Abstract
In 1964, a new herpesvirus, Epstein-Barr virus (EBV), was discovered in cultured tumor cells derived from a Burkitt lymphoma (BL) biopsy taken from an African patient. This was a momentous event that reinvigorated research into viruses as a possible cause of human cancers. Subsequent studies demonstrated that EBV was a potent growth-transforming agent for primary B cells, and that all cases of BL carried characteristic chromosomal translocations resulting in constitutive activation of the c-MYC oncogene. These results hinted at simple oncogenic mechanisms that would make Burkitt lymphoma paradigmatic for cancers with viral etiology. In reality, the pathogenesis of this tumor is rather complicated with regard to both the contribution of the virus and the involvement of cellular oncogenes. Here, we review the current understanding of the roles of EBV and c-MYC in the pathogenesis of BL and the implications for new therapeutic strategies to treat this lymphoma.
Collapse
Affiliation(s)
- Martin Rowe
- School of Cancer Sciences, University of Bir-mingham CMDS, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
42
|
Abstract
Abstract
Burkitt lymphoma (BL) is an aggressive B-cell non-Hodgkin lymphoma that is almost uniformly associated with translocations involving the gene for MYC on chromosome 8. The 3 subtypes of BL, endemic, sporadic, and immunodeficiency-associated, differ from epidemiologic and clinical perspectives but may be genetically similar. Prompt administration of multiagent immunochemotherapy regimens is associated with favorable outcomes for the majority of patients. Survival is inferior in older patients, likely reflecting increased therapy-related toxicity, possibly resulting in decreased treatment intensity. Central nervous system prophylaxis, tumor lysis prevention and treatment, and management of infectious complications from myelosuppressive regimens are critical. Prognosis of refractory or relapsed disease is poor and patients are best treated on clinical trials when available.
Collapse
|
43
|
Tursiella ML, Bowman ER, Wanzeck KC, Throm RE, Liao J, Zhu J, Sample CE. Epstein-Barr virus nuclear antigen 3A promotes cellular proliferation by repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1. PLoS Pathog 2014; 10:e1004415. [PMID: 25275486 PMCID: PMC4183747 DOI: 10.1371/journal.ppat.1004415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 08/21/2014] [Indexed: 11/20/2022] Open
Abstract
Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14ARF and p16INK4a expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14ARF and p16INK4a. By contrast, p16INK4a was not detectably expressed in Wp-R BL and the low-level expression of p14ARF was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21WAF1/CIP1, a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21WAF1/CIP1 expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of Wp-R BL cells and LCLs. Epstein-Barr virus (EBV) infects over 98% of the population worldwide and is associated with a variety of human cancers. In the healthy host, the virus represses expression of its proteins to avoid detection by the immune system to enable it to remain in the body for the lifetime of its host, a situation known as latency. This downregulation was first observed in EBV-associated Burkitt lymphoma (BL), which classically express only one viral protein, EBNA-1. A subset of BL named Wp-restricted (Wp-R) BL express additional latency-associated viral proteins. Because Wp-R BL also express wild-type p53 (which normally prevents cellular proliferation), we wanted to explore the possibility that these viral proteins play a role in tumorigenesis. Indeed, we have demonstrated that Wp-R BL cells are more tumorigenic in immunocompromised mice than other BL. Here, we have investigated the role of one of these viral proteins, EBNA-3A. If we inhibit the expression of EBNA-3A, Wp-R BL cells fail to proliferate and express increased p21WAF1/CIP1, a cellular protein that inhibits cell proliferation. These results suggest that this previously undescribed function of EBNA-3A plays a role in the proliferation and likely contributes to tumorigenesis in Wp-R BL.
Collapse
Affiliation(s)
- Melissa L. Tursiella
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Emily R. Bowman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Keith C. Wanzeck
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Robert E. Throm
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jason Liao
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Junjia Zhu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Clare E. Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Hui KF, Leung YY, Yeung PL, Middeldorp JM, Chiang AKS. Combination of SAHA and bortezomib up-regulates CDKN2A and CDKN1A and induces apoptosis of Epstein-Barr virus-positive Wp-restricted Burkitt lymphoma and lymphoblastoid cell lines. Br J Haematol 2014; 167:639-50. [PMID: 25155625 DOI: 10.1111/bjh.13089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/15/2014] [Indexed: 01/22/2023]
Abstract
Epstein-Barr virus (EBV) latent proteins exert anti-apoptotic effects on EBV-transformed lymphoid cells by down-regulating BCL2L11 (BIM), CDKN2A (p16(INK4A) ) and CDKN1A (p21(WAF1) ). However, the potential therapeutic effects of targeting these anti-apoptotic mechanisms remain unexplored. Here, we tested both in vitro and in vivo effects of the combination of histone deacetylase (HDAC) and proteasome inhibitors on the apoptosis of six endemic Burkitt lymphoma (BL) lines of different latency patterns (types I and III and Wp-restricted) and three lymphoblastoid cell lines (LCLs). We found that the combination of HDAC and proteasome inhibitors (e.g. SAHA/bortezomib) synergistically induced the killing of Wp-restricted and latency III BL and LCLs but not latency I BL cells. The synergistic killing was due to apoptosis, as evidenced by the high percentage of annexin V positivity and strong cleavage of PARP1 (PARP) and CASP3 (caspase-3). Concomitantly, SAHA/bortezomib up-regulated the expression of CDKN2A and CDKN1A but did not affect the level of BCL2L11 or BHRF1 (viral homologue of BCL2). The apoptotic effects were dependent on reactive oxygen species generation. Furthermore, SAHA/bortezomib suppressed the growth of Wp-restricted BL xenografts in nude mice. This study provides the rationale to test the novel application of SAHA/bortezomib on the treatment of EBV-associated Wp-restricted BL and post-transplant lymphoproliferative disorder.
Collapse
Affiliation(s)
- Kwai Fung Hui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, China
| | | | | | | | | |
Collapse
|
45
|
Quinn LL, Zuo J, Abbott RJM, Shannon-Lowe C, Tierney RJ, Hislop AD, Rowe M. Cooperation between Epstein-Barr virus immune evasion proteins spreads protection from CD8+ T cell recognition across all three phases of the lytic cycle. PLoS Pathog 2014; 10:e1004322. [PMID: 25144360 PMCID: PMC4140850 DOI: 10.1371/journal.ppat.1004322] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IE
Collapse
Affiliation(s)
- Laura L. Quinn
- School of Cancer Sciences and Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, United Kingdom
| | - Jianmin Zuo
- School of Cancer Sciences and Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, United Kingdom
| | - Rachel J. M. Abbott
- School of Cancer Sciences and Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, United Kingdom
| | - Claire Shannon-Lowe
- School of Cancer Sciences and Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, United Kingdom
| | - Rosemary J. Tierney
- School of Cancer Sciences and Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, United Kingdom
| | - Andrew D. Hislop
- School of Cancer Sciences and Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, United Kingdom
| | - Martin Rowe
- School of Cancer Sciences and Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
46
|
Rickinson AB. Co-infections, inflammation and oncogenesis: future directions for EBV research. Semin Cancer Biol 2014; 26:99-115. [PMID: 24751797 DOI: 10.1016/j.semcancer.2014.04.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/24/2022]
Abstract
Epstein-Barr virus (EBV) is aetiologically linked to a wide range of human tumours. Some arise as accidents of the virus' lifestyle in its natural niche, the B lymphoid system; these include B-lymphoproliferative disease of the immunocompromised, Hodgkin Lymphoma, Burkitt Lymphoma and particular forms of diffuse large B cell lymphoma. Interestingly, HIV infection increases the incidence of each of these B cell malignancies, though by different degrees and for different reasons. Other EBV-associated tumours arise through rare viral entry into unnatural target tissues; these include all cases of nasal T/NK cell lymphoma and of undifferentiated nasopharyngeal carcinoma plus a small but significant subset of gastric carcinomas, a tumour type more generally associated with chronic Helicobacter pylori infection. Understanding EBV's involvement in the pathogenesis of these different malignancies is an important long-term goal. This article focuses on two overlapping, but relatively neglected, areas of research that could contribute to that goal. The first addresses the mechanisms whereby coincident infections with other pathogens increase the risk of EBV-positive malignancies, and takes as its paradigm the actions of holoendemic malaria and HIV infections as co-factors in Burkitt lymphomagenesis. The second widens the argument to include both infectious and non-infectious sources of chronic inflammation in the pathogenesis of EBV-positive tumours such as T/NK cell lymphoma, nasopharyngeal carcinoma and gastric carcinoma.
Collapse
Affiliation(s)
- A B Rickinson
- School of Cancer Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
47
|
Campion EM, Hakimjavadi R, Loughran ST, Phelan S, Smith SM, D'Souza BN, Tierney RJ, Bell AI, Cahill PA, Walls D. Repression of the proapoptotic cellular BIK/NBK gene by Epstein-Barr virus antagonizes transforming growth factor β1-induced B-cell apoptosis. J Virol 2014; 88:5001-13. [PMID: 24554662 PMCID: PMC3993823 DOI: 10.1128/jvi.03642-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/13/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED The Epstein-Barr virus (EBV) establishes a lifelong latent infection in humans. EBV infection of primary B cells causes cell activation and proliferation, a process driven by the viral latency III gene expression program, which includes EBV nuclear proteins (EBNAs), latent membrane proteins, and untranslated RNAs, including microRNAs. Some latently infected cells enter the long-lived memory B-cell compartment and express only EBNA1 transiently (Lat I) or no EBV protein at all (Lat 0). Targeting the molecular machinery that controls B-cell fate decisions, including the Bcl-2 family of apoptosis-regulating proteins, is crucial to the EBV cycle of infection. Here, we show that BIK (also known as NBK), which encodes a proapoptotic "sensitizer" protein, is repressed by the EBNA2-driven Lat III program but not the Lat I program. BIK repression occurred soon after infection of primary B cells by EBV but not by a recombinant EBV in which the EBNA2 gene had been knocked out. Ectopic BIK induced apoptosis in Lat III cells by a mechanism dependent on its BH3 domain and the activation of caspases. We show that EBNA2 represses BIK in EBV-negative B-cell lymphoma-derived cell lines and that this host-virus interaction can inhibit the proapoptotic effect of transforming growth factor β1 (TGF-β1), a key physiological mediator of B-cell homeostasis. Reduced levels of TGF-β1-associated regulatory SMAD proteins were bound to the BIK promoter in response to EBV Lat III or ectopic EBNA2. These data are evidence of an additional mechanism used by EBV to promote B-cell survival, namely, the transcriptional repression of the BH3-only sensitizer BIK. IMPORTANCE Over 90% of adult humans are infected with the Epstein-Barr virus (EBV). EBV establishes a lifelong silent infection, with its DNA residing in small numbers of blood B cells that are a reservoir from which low-level virus reactivation and shedding in saliva intermittently occur. Importantly, EBV DNA is found in some B-cell-derived tumors in which viral genes play a key role in tumor cell emergence and progression. Here, we report for the first time that EBV can shut off a B-cell gene called BIK. When activated by a molecular signal called transforming growth factor β1 (TGF-β1), BIK plays an important role in killing unwanted B cells, including those infected by viruses. We describe the key EBV-B-cell molecular interactions that lead to BIK shutoff. These findings further our knowledge of how EBV prevents the death of its host cell during infection. They are also relevant to certain posttransplant lymphomas where unregulated cell growth is caused by EBV genes.
Collapse
Affiliation(s)
- Eva M. Campion
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad T. Loughran
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Susan Phelan
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad M. Smith
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Brendan N. D'Souza
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Rosemary J. Tierney
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew I. Bell
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Paul A. Cahill
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
- Vascular Biology Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| |
Collapse
|
48
|
Murata T, Sato Y, Kimura H. Modes of infection and oncogenesis by the Epstein-Barr virus. Rev Med Virol 2014; 24:242-53. [PMID: 24578255 DOI: 10.1002/rmv.1786] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/19/2014] [Accepted: 01/23/2014] [Indexed: 12/15/2022]
Abstract
The EBV is a human γ-herpesvirus associated with various neoplasms. It is responsible for causing cancers of B, T, and NK cells as well as cells of epithelial origin. Such diversity in target cells and the complicated steps of oncogenesis are perplexing when we speculate about the mechanisms of action of EBV-positive cancers. Here, we first note three common features that contribute to the development and maintenance of EBV-positive cancers: effects of EBV oncogenes, immunosuppression and evasion/exploitation of the immune system, and genetic and epigenetic predisposition/alteration of the host genome. Then, we demonstrate the mechanisms of oncogenesis and the means by which each EBV-positive cancer develops, with particular focus on the mode of EBV infection. The EBV has two alternative life cycles: lytic and latent. The latter is categorized into four programs (latency types 0-III) in which latent viral genes are expressed differentially depending on the tissue of origin and state of cells. The production of viral latent genes tends to decrease with an increase in time, and, in an approximate manner, the expression levels of viral genes are inversely correlated with the degree of abnormalities in the host genome. Occasional execution of the viral lytic cycle also contributes to oncogenesis. Understanding this life cycle of the EBV and its relevance in oncogenesis may provide valuable clues to the development of effective therapies for the associated cancers.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | |
Collapse
|
49
|
Schmitz R, Ceribelli M, Pittaluga S, Wright G, Staudt LM. Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb Perspect Med 2014; 4:4/2/a014282. [PMID: 24492847 DOI: 10.1101/cshperspect.a014282] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Burkitt lymphoma is a germinal center B-cell-derived cancer that was instrumental in the identification of MYC as an important human oncogene more than three decades ago. Recently, new genomics technologies have uncovered several additional oncogenic mechanisms that cooperate with MYC to create this highly aggressive cancer. The transcription factor TCF-3 is central to Burkitt lymphoma pathogenesis. TCF-3 is rendered constitutively active in Burkitt lymphoma by two related mechanisms: (1) somatic mutations that inactivate its negative regulator ID3, and (2) somatic mutations in TCF-3 that block the ability of ID3 to bind and interfere with its activity as a transcription factor. TCF-3 is also a master regulator of normal germinal center B-cell differentiation. Within the germinal center, TCF-3 up-regulates genes that are characteristically expressed in the rapidly dividing centroblasts, the putative cell of origin for Burkitt lymphoma, while repressing genes expressed in the less proliferative centrocytes. TCF-3 promotes antigen-independent (tonic) B-cell-receptor signaling in Burkitt lymphoma by transactivating immunoglobulin heavy- and light-chain genes while repressing PTPN6, which encodes the phosphatase SHP-1, a negative regulator of B-cell-receptor signaling. Tonic B-cell-receptor signaling sustains Burkitt lymphoma survival by engaging the PI3 kinase pathway. In addition, TCF-3 promotes cell-cycle progression by transactivating CCND3, encoding a D-type cyclin that regulates the G1-S phase transition. Additionally, CCND3 accumulates oncogenic mutations that stabilize cyclin D3 protein expression and drive proliferation. These new insights into Burkitt lymphoma pathogenesis suggest new therapeutic strategies, which are sorely needed in developing regions of the world where this cancer is endemic.
Collapse
Affiliation(s)
- Roland Schmitz
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
50
|
Abstract
Epstein-Barr virus (EBV) is a member of gamma-herpesvirus, which can cause various types of tumor. Coexisting with the host for a long period of time, it has evolved unique and sophisticated strategy for survival by taking complicated, tactical modes of infection. Such modes include latent and lytic infections, and latent state is further categorized into four types. Differences and transitions in such lifestyles are significantly associated not only with virus amplification, but also with pathology and advancement of the disorders. I here review oncogenesis and pathogenesis of EBV-related disorders, especially focusing on our recent results on the modes of EBV infection.
Collapse
|