1
|
Helen H, Gunawan MC, Halim P, Dinata MR, Ahmed A, Dalimunthe A, Marianne M, Ribeiro RIMDA, Hasibuan PAZ, Nurkolis F, Hey-Hawkins E, Park MN, Harahap U, Kim SH, Kim B, Syahputra RA. Flavonoids as modulators of miRNA expression in pancreatic cancer: Pathways, Mechanisms, And Therapeutic Potential. Biomed Pharmacother 2024; 179:117347. [PMID: 39241569 DOI: 10.1016/j.biopha.2024.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Pancreatic cancer (PC) is a complex malignancy, distinguished by its aggressive characteristics and unfavorable prognosis. Recent developments in understanding the molecular foundations of this disease have brought attention to the noteworthy involvement of microRNAs (miRNAs) in disease development, advancement, and treatment resistance. The anticancer capabilities of flavonoids, which are a wide range of phytochemicals present in fruits and vegetables, have attracted considerable interest because of their ability to regulate miRNA expression. This review provides the effects of flavonoids on miRNA expression in PC, explains the underlying processes, and explores the possible therapeutic benefits of flavonoid-based therapies. Flavonoids inhibit PC cell proliferation, induce apoptosis, and enhance chemosensitivity via the modulation of miRNAs involved in carcinogenesis. Additionally, this review emphasizes the significance of certain miRNAs as targets of flavonoid action. These miRNAs have a role in regulating important signaling pathways such as the phosphoinositide-3-kinase-protein kinase B/Protein kinase B (Akt), mitogen activated protein kinase (MAPK), Janus kinase/signal transducers and activators of transcription (JAK/STAT), and Wnt/β-catenin pathways. This review aims to consolidate current knowledge on the interaction between flavonoids and miRNAs in PC, providing a comprehensive analysis of how flavonoid-mediated modulation of miRNA expression could influence cancer progression and therapy. It highlights the use of flavonoid nanoformulations to enhance stability, increase absorption, and maximize anti-PC activity, improving patient outcomes. The review calls for further research to optimize the use of flavonoid nanoformulations in clinical trials, leading to innovative treatment strategies and more effective approaches for PC.
Collapse
Affiliation(s)
- Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Marianne Marianne
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Rosy Iara Maciel De Azambuja Ribeiro
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | | | - Fahrul Nurkolis
- Biological Sciences, Faculty of Sciences and Technology, UIN Sunan Kalijaga, Yogyakarta, Indonesia
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Sung-Hoon Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia.
| |
Collapse
|
2
|
Li L, Jin T, Hu L, Ding J. Alternative splicing regulation and its therapeutic potential in bladder cancer. Front Oncol 2024; 14:1402350. [PMID: 39132499 PMCID: PMC11310127 DOI: 10.3389/fonc.2024.1402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Bladder cancer is one of the leading causes of mortality globally. The development of bladder cancer is closely associated with alternative splicing, which regulates human gene expression and enhances the diversity of functional proteins. Alternative splicing is a distinctive feature of bladder cancer, and as such, it may hold promise as a therapeutic target. This review aims to comprehensively discuss the current knowledge of alternative splicing in the context of bladder cancer. We review the process of alternative splicing and its regulation in bladder cancer. Moreover, we emphasize the significance of abnormal alternative splicing and splicing factor irregularities during bladder cancer progression. Finally, we explore the impact of alternative splicing on bladder cancer drug resistance and the potential of alternative splicing as a therapeutic target.
Collapse
Affiliation(s)
- Lina Li
- College of Medicine, Jinhua University of Vocational Technology, Jinhua, Zhejiang, China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Liang Hu
- Department of Urology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
3
|
Trink Y, Urbach A, Dekel B, Hohenstein P, Goldberger J, Kalisky T. Characterization of Alternative Splicing in High-Risk Wilms' Tumors. Int J Mol Sci 2024; 25:4520. [PMID: 38674106 PMCID: PMC11050615 DOI: 10.3390/ijms25084520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The significant heterogeneity of Wilms' tumors between different patients is thought to arise from genetic and epigenetic distortions that occur during various stages of fetal kidney development in a way that is poorly understood. To address this, we characterized the heterogeneity of alternative mRNA splicing in Wilms' tumors using a publicly available RNAseq dataset of high-risk Wilms' tumors and normal kidney samples. Through Pareto task inference and cell deconvolution, we found that the tumors and normal kidney samples are organized according to progressive stages of kidney development within a triangle-shaped region in latent space, whose vertices, or "archetypes", resemble the cap mesenchyme, the nephrogenic stroma, and epithelial tubular structures of the fetal kidney. We identified a set of genes that are alternatively spliced between tumors located in different regions of latent space and found that many of these genes are associated with the epithelial-to-mesenchymal transition (EMT) and muscle development. Using motif enrichment analysis, we identified putative splicing regulators, some of which are associated with kidney development. Our findings provide new insights into the etiology of Wilms' tumors and suggest that specific splicing mechanisms in early stages of development may contribute to tumor development in different patients.
Collapse
Affiliation(s)
- Yaron Trink
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.T.); (J.G.)
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute and Division of Pediatric Nephrology, Edmond and Lily Safra Children’s Hospital, Sheba Tel-HaShomer Medical Centre, Ramat Gan 5262000, Israel
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jacob Goldberger
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.T.); (J.G.)
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.T.); (J.G.)
| |
Collapse
|
4
|
Li C, Yin Y, Tao R, Lin Y, Wang T, Shen Q, Li R, Tao K, Liu W. ESRP1-driven alternative splicing of CLSTN1 inhibits the metastasis of gastric cancer. Cell Death Discov 2023; 9:464. [PMID: 38114495 PMCID: PMC10730894 DOI: 10.1038/s41420-023-01757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Tumor metastasis severely limits the prognosis of gastric cancer patients. RNA-binding proteins (RBPs) are crucial in tumor metastasis, yet there is limited research into their involvement in gastric cancer. Here, we found that ESRP1, a RBP specific in epithelial cells, is important in regulating the metastasis of gastric cancer cells. ESRP1 is negatively correlated with distant metastasis and lymph node metastasis in gastric cancer patients. And we demonstrated that ESRP1 inhibit migration and invasion of gastric cancer in vitro and in vivo. Mechanistically, ESRP1 promotes exon 11 alternative splicing of CLSTN1 pre-mRNA. The post-splicing short CLSTN1 stabilizes the Ecadherin/β-catenin binding structure, and promotes β-catenin protein ubiquitination and degradation, thereby inhibiting the migration and invasion of gastric cancer cells. Our study highlights the role of ESRP1 in regulating metastasis of gastric cancer and extends its mechanism. These results provide a possibility for ESRP1 and CLSTN1 to become therapeutic targets for metastasis of gastric cancer.
Collapse
Affiliation(s)
- Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruikang Tao
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Yao Lin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Shen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Runze Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Li L, Zheng J, Oltean S. Regulation of Epithelial-Mesenchymal Transitions by Alternative Splicing: Potential New Area for Cancer Therapeutics. Genes (Basel) 2023; 14:2001. [PMID: 38002944 PMCID: PMC10671305 DOI: 10.3390/genes14112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complicated biological process in which cells with epithelial phenotype are transformed into mesenchymal cells with loss of cell polarity and cell-cell adhesion and gain of the ability to migrate. EMT and the reverse mesenchymal-epithelial transitions (METs) are present during cancer progression and metastasis. Using the dynamic switch between EMT and MET, tumour cells can migrate to neighbouring organs or metastasize in the distance and develop resistance to traditional chemotherapy and targeted drug treatments. Growing evidence shows that reversing or inhibiting EMT may be an advantageous approach for suppressing the migration of tumour cells or distant metastasis. Among different levels of modulation of EMT, alternative splicing (AS) plays an important role. An in-depth understanding of the role of AS and EMT in cancer is not only helpful to better understand the occurrence and regulation of EMT in cancer progression, but also may provide new therapeutic strategies. This review will present and discuss various splice variants and splicing factors that have been shown to play a crucial role in EMT.
Collapse
Affiliation(s)
| | | | - Sebastian Oltean
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter EX1 2LU, UK; (L.L.)
| |
Collapse
|
6
|
Bale S, Verma P, Varga J, Bhattacharyya S. Extracellular Matrix-Derived Damage-Associated Molecular Patterns (DAMP): Implications in Systemic Sclerosis and Fibrosis. J Invest Dermatol 2023; 143:1877-1885. [PMID: 37452808 PMCID: PMC11974346 DOI: 10.1016/j.jid.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are intracellular molecules released under cellular stress or recurring tissue injury, which serve as endogenous ligands for toll-like receptors (TLRs). Such DAMPs are either actively secreted by immune cells or passively released into the extracellular environment from damaged cells or generated as alternatively spliced mRNA variants of extracellular matrix (ECM) glycoproteins. When recognized by pattern recognition receptors (PRRs) such as TLRs, DAMPs trigger innate immune responses. Currently, the best-characterized PRRs include, in addition to TLRs, nucleotide-binding oligomerization domain-like receptors, RIG-I-like RNA helicases, C-type lectin receptors, and many more. Systemic sclerosis (SSc) is a chronic autoimmune condition characterized by inflammation and progressive fibrosis in multiple organs. Using an unbiased survey for SSc-associated DAMPs, we have identified the ECM glycoproteins fibronectin-containing extra domain A and tenascin C as the most highly upregulated in SSc skin and lung biopsies. These DAMPs activate TLR4 on resident stromal cells to elicit profibrotic responses and sustained myofibroblasts activation resulting in progressive fibrosis. This review summarizes the current understanding of the complex functional roles of DAMPs in the progression and failure of resolution of fibrosis in general, with a particular focus on SSc, and considers viable therapeutic approaches targeting DAMPs.
Collapse
Affiliation(s)
- Swarna Bale
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Swati Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Manabile MA, Hull R, Khanyile R, Molefi T, Damane BP, Mongan NP, Bates DO, Dlamini Z. Alternative Splicing Events and Their Clinical Significance in Colorectal Cancer: Targeted Therapeutic Opportunities. Cancers (Basel) 2023; 15:3999. [PMID: 37568815 PMCID: PMC10417810 DOI: 10.3390/cancers15153999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) ranks as one of the top causes of cancer mortality worldwide and its incidence is on the rise, particularly in low-middle-income countries (LMICs). There are several factors that contribute to the development and progression of CRC. Alternative splicing (AS) was found to be one of the molecular mechanisms underlying the development and progression of CRC. With the advent of genome/transcriptome sequencing and large patient databases, the broad role of aberrant AS in cancer development and progression has become clear. AS affects cancer initiation, proliferation, invasion, and migration. These splicing changes activate oncogenes or deactivate tumor suppressor genes by producing altered amounts of normally functional or new proteins with different, even opposing, functions. Thus, identifying and characterizing CRC-specific alternative splicing events and variants might help in designing new therapeutic splicing disrupter drugs. CRC-specific splicing events can be used as diagnostic and prognostic biomarkers. In this review, alternatively spliced events and their role in CRC development will be discussed. The paper also reviews recent research on alternatively spliced events that might be exploited as prognostic, diagnostic, and targeted therapeutic indicators. Of particular interest is the targeting of protein arginine methyltransferase (PMRT) isoforms for the development of new treatments and diagnostic tools. The potential challenges and limitations in translating these discoveries into clinical practice will also be addressed.
Collapse
Affiliation(s)
- Mosebo Armstrong Manabile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa;
| | - Nigel Patrick Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - David Owen Bates
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Centre for Cancer Sciences, Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| |
Collapse
|
8
|
Derham JM, Kalsotra A. The discovery, function, and regulation of epithelial splicing regulatory proteins (ESRP) 1 and 2. Biochem Soc Trans 2023; 51:1097-1109. [PMID: 37314029 PMCID: PMC11298080 DOI: 10.1042/bst20221124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Alternative splicing is a broad and evolutionarily conserved mechanism to diversify gene expression and functionality. The process relies on RNA binding proteins (RBPs) to recognize and bind target sequences in pre-mRNAs, which allows for the inclusion or skipping of various alternative exons. One recently discovered family of RBPs is the epithelial splicing regulatory proteins (ESRP) 1 and 2. Here, we discuss the structure and physiological function of the ESRPs in a variety of contexts. We emphasize the current understanding of their splicing activities, using the classic example of fibroblast growth factor receptor 2 mutually exclusive splicing. We also describe the mechanistic roles of ESRPs in coordinating the splicing and functional output of key signaling pathways that support the maintenance of, or shift between, epithelial and mesenchymal cell states. In particular, we highlight their functions in the development of mammalian limbs, the inner ear, and craniofacial structure while discussing the genetic and biochemical evidence that showcases their conserved roles in tissue regeneration, disease, and cancer pathogenesis.
Collapse
Affiliation(s)
- Jessica M. Derham
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
9
|
Hoch CC, Stögbauer F, Wollenberg B. Unraveling the Role of Epithelial-Mesenchymal Transition in Adenoid Cystic Carcinoma of the Salivary Glands: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15112886. [PMID: 37296849 DOI: 10.3390/cancers15112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Salivary adenoid cystic carcinoma (SACC) is considered a challenging malignancy; it is characterized by a slow-growing nature, yet a high risk of recurrence and distant metastasis, presenting significant hurdles in its treatment and management. At present, there are no approved targeted agents available for the management of SACC and systemic chemotherapy protocols that have demonstrated efficacy remain to be elucidated. Epithelial-mesenchymal transition (EMT) is a complex process that is closely associated with tumor progression and metastasis, enabling epithelial cells to acquire mesenchymal properties, including increased mobility and invasiveness. Several molecular signaling pathways have been implicated in the regulation of EMT in SACC, and understanding these mechanisms is crucial to identifying new therapeutic targets and developing more effective treatment approaches. This manuscript aims to provide a comprehensive overview of the latest research on the role of EMT in SACC, including the molecular pathways and biomarkers involved in EMT regulation. By highlighting the most recent findings, this review offers insights into potential new therapeutic strategies that could improve the management of SACC patients, especially those with recurrent or metastatic disease.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Fabian Stögbauer
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| |
Collapse
|
10
|
Devaraj A, Singh M, Narayanavari SA, Yong G, Chen J, Wang J, Becker M, Walisko O, Schorn A, Cseresznyés Z, Raskó T, Radscheit K, Selbach M, Ivics Z, Izsvák Z. HMGXB4 Targets Sleeping Beauty Transposition to Germinal Stem Cells. Int J Mol Sci 2023; 24:ijms24087283. [PMID: 37108449 PMCID: PMC10138897 DOI: 10.3390/ijms24087283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Transposons are parasitic genetic elements that frequently hijack vital cellular processes of their host. HMGXB4 is a known Wnt signaling-regulating HMG-box protein, previously identified as a host-encoded factor of Sleeping Beauty (SB) transposition. Here, we show that HMGXB4 is predominantly maternally expressed, and marks both germinal progenitor and somatic stem cells. SB piggybacks HMGXB4 to activate transposase expression and target transposition to germinal stem cells, thereby potentiating heritable transposon insertions. The HMGXB4 promoter is located within an active chromatin domain, offering multiple looping possibilities with neighboring genomic regions. HMGXB4 is activated by ERK2/MAPK1, ELK1 transcription factors, coordinating pluripotency and self-renewal pathways, but suppressed by the KRAB-ZNF/TRIM28 epigenetic repression machinery, also known to regulate transposable elements. At the post-translational level, SUMOylation regulates HMGXB4, which modulates binding affinity to its protein interaction partners and controls its transcriptional activator function via nucleolar compartmentalization. When expressed, HMGXB4 can participate in nuclear-remodeling protein complexes and transactivate target gene expression in vertebrates. Our study highlights HMGXB4 as an evolutionarily conserved host-encoded factor that assists Tc1/Mariner transposons to target the germline, which was necessary for their fixation and may explain their abundance in vertebrate genomes.
Collapse
Affiliation(s)
- Anantharam Devaraj
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Manvendra Singh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Suneel A Narayanavari
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Guo Yong
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jichang Wang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Mareike Becker
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Oliver Walisko
- Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institute, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Andrea Schorn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Zoltán Cseresznyés
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Tamás Raskó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kathrin Radscheit
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Matthias Selbach
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institute, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
11
|
Giraud J, Seeneevassen L, Rousseau B, Bouriez D, Sifré E, Giese A, Nguyen TL, Tiffon C, Lippi Y, Azzi-Martin L, Pannequin J, Ménard A, Bessède E, Staedel C, Mégraud F, Belleannée G, Lehours P, Gronnier C, Dubus P, Varon C. CD44v3 is a marker of invasive cancer stem cells driving metastasis in gastric carcinoma. Gastric Cancer 2023; 26:234-249. [PMID: 36528833 PMCID: PMC9950191 DOI: 10.1007/s10120-022-01357-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cancer stem cells (CSCs) are at the origin of tumour initiation and progression in gastric adenocarcinoma (GC). However, markers of metastasis-initiating cells remain unidentified in GC. In this study, we characterized CD44 variants expressed in GC and evaluated the tumorigenic and metastatic properties of CD44v3+ cells and their clinical significance in GC patients. METHODS Using GC cell lines and patient-derived xenografts, we evaluated CD44+ and CD44v3+ GC cells molecular signature and their tumorigenic, chemoresistance, invasive and metastatic properties, and expression in patients-derived tissues. RESULTS CD44v3+ cells, which represented a subpopulation of CD44+ cells, were detected in advanced preneoplastic lesions and presented CSCs chemoresistance and tumorigenic properties in vitro and in vivo. Molecular and functional analyses revealed two subpopulations of gastric CSCs: CD44v3+ CSCs with an epithelial-mesenchymal transition (EMT)-like signature, and CD44+/v3- CSCs with an epithelial-like signature; both were tumorigenic but CD44v3+ cells showed higher invasive and metastatic properties in vivo. CD44v3+ cells detected in the primary tumours of GC patients were associated with a worse prognosis. CONCLUSION CD44v3 is a marker of a subpopulation of CSCs with metastatic properties in GC. The identification of metastasis-initiating cells in GC represents a major advance for further development of anti-metastatic therapeutic strategies.
Collapse
Affiliation(s)
- Julie Giraud
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Lornella Seeneevassen
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Benoit Rousseau
- Animal Facility, University of Bordeaux, 33076 Bordeaux, France
| | - Damien Bouriez
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France ,Department of Digestive Surgery, Haut-Lévêque Hospital, 33000 Bordeaux, France ,CHU Bordeaux, 33076 Bordeaux, France
| | - Elodie Sifré
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Alban Giese
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Tra Ly Nguyen
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Camille Tiffon
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Yannick Lippi
- Toxalim Research Centre in Food Toxicology, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Lamia Azzi-Martin
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Julie Pannequin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Armelle Ménard
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Emilie Bessède
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Cathy Staedel
- INSERM U1212, ARNA, University of Bordeaux, 33076 Bordeaux, France
| | - Francis Mégraud
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France ,CHU Bordeaux, 33076 Bordeaux, France ,Centre National de Référence des Campylobacters et Helicobacters, Pellegrin Hospital, 33076 Bordeaux, France
| | - Geneviève Belleannée
- CHU Bordeaux, 33076 Bordeaux, France ,Department of Histology and Pathology, Haut-Lévêque Hospital, 33000 Bordeaux, France
| | - Philippe Lehours
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France ,CHU Bordeaux, 33076 Bordeaux, France ,Centre National de Référence des Campylobacters et Helicobacters, Pellegrin Hospital, 33076 Bordeaux, France
| | - Caroline Gronnier
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France ,Department of Digestive Surgery, Haut-Lévêque Hospital, 33000 Bordeaux, France ,CHU Bordeaux, 33076 Bordeaux, France
| | - Pierre Dubus
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France ,CHU Bordeaux, 33076 Bordeaux, France ,Department of Histology and Pathology, Haut-Lévêque Hospital, 33000 Bordeaux, France
| | - Christine Varon
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076, Bordeaux, France.
| |
Collapse
|
12
|
Characterization of alternative mRNA splicing in cultured cell populations representing progressive stages of human fetal kidney development. Sci Rep 2022; 12:19548. [PMID: 36380228 PMCID: PMC9666651 DOI: 10.1038/s41598-022-24147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Nephrons are the functional units of the kidney. During kidney development, cells from the cap mesenchyme-a transient kidney-specific progenitor state-undergo a mesenchymal to epithelial transition (MET) and subsequently differentiate into the various epithelial cell types that create the tubular structures of the nephron. Faults in this transition can lead to a pediatric malignancy of the kidney called Wilms' tumor that mimics normal kidney development. While human kidney development has been characterized at the gene expression level, a comprehensive characterization of alternative splicing is lacking. Therefore, in this study, we performed RNA sequencing on cell populations representing early, intermediate, and late developmental stages of the human fetal kidney, as well as three blastemal-predominant Wilms' tumor patient-derived xenografts. Using this newly generated RNAseq data, we identified a set of transcripts that are alternatively spliced between the different developmental stages. Moreover, we found that cells from the earliest developmental stage have a mesenchymal splice-isoform profile that is similar to that of blastemal-predominant Wilms' tumor xenografts. RNA binding motif enrichment analysis suggests that the mRNA binding proteins ESRP1, ESRP2, RBFOX2, and QKI regulate alternative mRNA splicing during human kidney development. These findings illuminate new molecular mechanisms involved in human kidney development and pediatric kidney cancer.
Collapse
|
13
|
Peart NJ, Hwang JY, Quesnel-Vallières M, Sears MJ, Yang Y, Stoilov P, Barash Y, Park JW, Lynch KW, Carstens RP. The global Protein-RNA interaction map of ESRP1 defines a post-transcriptional program that is essential for epithelial cell function. iScience 2022; 25:105205. [PMID: 36238894 PMCID: PMC9550651 DOI: 10.1016/j.isci.2022.105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/25/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023] Open
Abstract
The epithelial splicing regulatory proteins, ESRP1 and ESRP2, are essential for mammalian development through the regulation of a global program of alternative splicing of genes involved in the maintenance of epithelial cell function. To further inform our understanding of the molecular functions of ESRP1, we performed enhanced crosslinking immunoprecipitation coupled with high-throughput sequencing (eCLIP) in epithelial cells of mouse epidermis. The genome-wide binding sites of ESRP1 were integrated with RNA-Seq analysis of alterations in splicing and total gene expression that result from epidermal ablation of Esrp1 and Esrp2. These studies demonstrated that ESRP1 functions in splicing regulation occur primarily through direct binding in a position-dependent manner to promote either exon inclusion or skipping. In addition, we also identified widespread binding of ESRP1 in 3' and 5' untranslated regions (UTRs) of genes involved in epithelial cell function, suggesting that its post-transcriptional functions extend beyond splicing regulation.
Collapse
Affiliation(s)
- Natoya J Peart
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
| | - Mathieu Quesnel-Vallières
- Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J Sears
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuequin Yang
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Stoilov
- Department of Biochemistry and Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Yoseph Barash
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juw Won Park
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, USA
| | - Kristen W Lynch
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russ P Carstens
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Emerging Roles of RNA-Binding Proteins in Inner Ear Hair Cell Development and Regeneration. Int J Mol Sci 2022; 23:ijms232012393. [PMID: 36293251 PMCID: PMC9604452 DOI: 10.3390/ijms232012393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level. They play major roles in the tissue- and stage-specific expression of protein isoforms as well as in the maintenance of protein homeostasis. The inner ear is a bi-functional organ, with the cochlea and the vestibular system required for hearing and for maintaining balance, respectively. It is relatively well documented that transcription factors and signaling pathways are critically involved in the formation of inner ear structures and in the development of hair cells. Accumulating evidence highlights emerging functions of RBPs in the post-transcriptional regulation of inner ear development and hair cell function. Importantly, mutations of splicing factors of the RBP family and defective alternative splicing, which result in inappropriate expression of protein isoforms, lead to deafness in both animal models and humans. Because RBPs are critical regulators of cell proliferation and differentiation, they present the potential to promote hair cell regeneration following noise- or ototoxin-induced damage through mitotic and non-mitotic mechanisms. Therefore, deciphering RBP-regulated events during inner ear development and hair cell regeneration can help define therapeutic strategies for treatment of hearing loss. In this review, we outline our evolving understanding of the implications of RBPs in hair cell formation and hearing disease with the aim of promoting future research in this field.
Collapse
|
15
|
Kabiraj L, Kundu A. Potential role of microRNAs in pancreatic cancer manifestation: a review. J Egypt Natl Canc Inst 2022; 34:26. [PMID: 35718815 DOI: 10.1186/s43046-022-00127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer cells are different from normal cells in regard to phenotypic and functional expression. Cancer is the outcome of aberrant gene expression affecting various cellular signaling pathways. MicroRNAs (MiRs) are small, non-coding RNAs regulating the expression of various protein-coding genes post-transcriptionally and are known to play critical roles in the complicated cellular pathways leading to cell growth, proliferation, development, and apoptosis. MiRs are involved in various cancer-related pathways and function both as tumor suppressor and cancer-causing genes. There is a need for significant biomarkers, and better prognostication of response to a particular treatment and liquid biopsy could be useful to appraise such potential biomarkers. This review has focused on the involvement of anomalous expression of miRs in human pancreatic cancer and the investigation of miR-based biomarkers for disease diagnosis and better therapeutic selection.
Collapse
Affiliation(s)
- Lisa Kabiraj
- Department of Microbiology, Techno India University, EM-4, Sector-V, Salt Lake City, Kolkata, 700091, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, EM-4, Sector-V, Salt Lake City, Kolkata, 700091, India.
| |
Collapse
|
16
|
Li L, Zheng J, Stevens M, Oltean S. A repositioning screen using an FGFR2 splicing reporter reveals compounds that regulate epithelial-mesenchymal transitions and inhibit growth of prostate cancer xenografts. Mol Ther Methods Clin Dev 2022; 25:147-157. [PMID: 35402635 PMCID: PMC8971352 DOI: 10.1016/j.omtm.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
Research in the area of hallmarks of cancer has opened the possibility of designing new therapies based on modulating these cancer properties. We present here a screen designed to find chemicals that modulate epithelial-mesenchymal transitions (EMTs) in prostate cancer. For screening, we used a repurposing library and, as a readout, an FGFR2-based splicing reporter, which has been shown previously to be a sensor for EMTs. Various properties of cancer cells were assessed, signaling pathways investigated, and in vivo experiments in nude mice xenografts performed. The screen yielded three hit compounds (a T-type Ca channel inhibitor, an L-type Ca channel inhibitor, and an opioid antagonist) that switch FGFR2 splicing and induce an epithelial phenotype in prostate cancer cells. The compounds affected differently various properties of cancer cells, but all of them decreased cell migration, which is in line with modulating EMTs. We further present mechanistic insights into one of the compounds, nemadipine-A. The administration of nemadipine-A intraperitoneally in a nude mouse xenograft model of prostate cancer slowed tumor growth. To conclude, we show that knowledge of the molecular mechanisms that connect alternative splicing and various cancer properties may be used as a platform for drug development.
Collapse
Affiliation(s)
- Ling Li
- Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter EX1 2LU, UK
| | - Jinxia Zheng
- Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter EX1 2LU, UK
| | - Megan Stevens
- Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter EX1 2LU, UK
| | - Sebastian Oltean
- Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter EX1 2LU, UK
- Corresponding author Sebastian Oltean, MD, PhD, Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter, EX1 2LU, UK.
| |
Collapse
|
17
|
Identification of EMT-Related lncRNAs as Potential Prognostic Biomarkers and Therapeutic Targets for Pancreatic Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8259951. [PMID: 35444701 PMCID: PMC9015861 DOI: 10.1155/2022/8259951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/03/2022]
Abstract
Epithelial-mesenchymal transition (EMT) can promote carcinoma progression by multiple mechanisms; many studies demonstrated the invasiveness of pancreatic adenocarcinoma (PAAD) associated with the EMT, but how it acts through an lncRNA-dependent manner is unknown. Here, we investigated 146 samples from The Cancer Genome Atlas (TCGA) and 92 samples from the International Cancer Genome Consortium (ICGC). By gene set variation analysis (GSVA) and weighted correlation network analysis (WGCNA), we explored the EMT-related long noncoding RNAs (EMTlnc). Then, we performed univariate Cox regression analysis to screen their prognostic value for PAAD. The least absolute contraction and selection operator (LASSO) Cox regression was used to establish EMT-related lncRNA prognostic signal (EMT-LPS). In addition, we established a competitive endogenous ceRNA network. Then, we identified 33 prognostic EMTlnc as prognostic lncRNAs and established an EMT-LPS which showed strong prognostic ability in stratification analysis. By corresponding risk scores, patients were divided into low-risk and high-risk subgroups. Principal component analysis (PCA) showed that these subgroups had individual EMT status. Enrichment analysis showed that in the high-risk subgroup, biological processes, pathways, and hallmarks related to malignant tumors are more common. What is more, we constructed a nomogram that had powerful ability to predict the overall survival rate (OS) of PAAD patients in two datasets. So, EMT-LPS are a principal element in PAAD's carcinoma progression and may help us in choosing the way of prognosis assessment and provide some clues to design the new drugs for PAAD.
Collapse
|
18
|
Lan Y, Jiang R. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Curr Top Dev Biol 2022; 148:13-50. [PMID: 35461563 PMCID: PMC9060390 DOI: 10.1016/bs.ctdb.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cleft lip and cleft palate are common birth defects resulting from genetic and/or environmental perturbations of facial development in utero. Facial morphogenesis commences during early embryogenesis, with cranial neural crest cells interacting with the surface ectoderm to form initially partly separate facial primordia consisting of the medial and lateral nasal prominences, and paired maxillary and mandibular processes. As these facial primordia grow around the primitive oral cavity and merge toward the ventral midline, the surface ectoderm undergoes a critical differentiation step to form an outer layer of flattened and tightly connected periderm cells with a non-stick apical surface that prevents epithelial adhesion. Formation of the upper lip and palate requires spatiotemporally regulated inter-epithelial adhesions and subsequent dissolution of the intervening epithelial seam between the maxillary and medial/lateral nasal processes and between the palatal shelves. Proper regulation of epithelial integrity plays a paramount role during human facial development, as mutations in genes encoding epithelial adhesion molecules and their regulators have been associated with syndromic and non-syndromic orofacial clefts. In this chapter, we summarize mouse genetic studies that have been instrumental in unraveling the mechanisms regulating epithelial integrity and periderm differentiation during facial and palate development. Since proper epithelial integrity also plays crucial roles in wound healing and cancer, understanding the mechanisms regulating epithelial integrity during facial development have direct implications for improvement in clinical care of craniofacial patients.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
19
|
Buyuk B, Jin S, Ye K. Epithelial-to-Mesenchymal Transition Signaling Pathways Responsible for Breast Cancer Metastasis. Cell Mol Bioeng 2022; 15:1-13. [PMID: 35096183 PMCID: PMC8761190 DOI: 10.1007/s12195-021-00694-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Breast carcinoma is highly metastatic and invasive. Tumor metastasis is a convoluted and multistep process involving tumor cell disseminating from their primary site and migrating to the secondary organ. Epithelial-mesenchymal transition (EMT) is one of the crucial steps that initiate cell progression, invasion, and metastasis. During EMT, epithelial cells alter their molecular features and acquire a mesenchymal phenotype. The regulation of EMT is centered by several signaling pathways, including primary mediators TGF-β, Notch, Wnt, TNF-α, Hedgehog, and RTKs. It is also affected by hypoxia and microRNAs (miRNAs). All these pathways are the convergence on the transcriptional factors such as Snail, Slug, Twist, and ZEB1/2. In addition, a line of evidence suggested that EMT and cancer stem like cells (CSCs) are associated. EMT associated cancer stem cells display mesenchymal phenotypes and resist to chemotherapy or targeted therapy. In this review, we highlighted recent discoveries in these signaling pathways and their regulation in breast cancer metastasis and invasion. While the clinical relevance of EMT and breast cancers remains controversial, we speculated a convergent signaling network pivotal to elucidating the transition of epithelial to mesenchymal phenotypes and onset of metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Busra Buyuk
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| | - Sha Jin
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| |
Collapse
|
20
|
Legge D, Li L, Moriarty W, Lee D, Szemes M, Zahed A, Panousopoulos L, Chung WY, Aghabi Y, Barratt J, Williams R, Pritchard‐Jones K, Malik KT, Oltean S, Brown KW. The epithelial splicing regulator ESRP2 is epigenetically repressed by DNA hypermethylation in Wilms tumour and acts as a tumour suppressor. Mol Oncol 2022; 16:630-647. [PMID: 34520622 PMCID: PMC8807366 DOI: 10.1002/1878-0261.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Wilms tumour (WT), an embryonal kidney cancer, has been extensively characterised for genetic and epigenetic alterations, but a proportion of WTs still lack identifiable abnormalities. To uncover DNA methylation changes critical for WT pathogenesis, we compared the epigenome of foetal kidney with two WT cell lines, filtering our results to remove common cancer-associated epigenetic changes and to enrich for genes involved in early kidney development. This identified four hypermethylated genes, of which ESRP2 (epithelial splicing regulatory protein 2) was the most promising for further study. ESRP2 was commonly repressed by DNA methylation in WT, and this occurred early in WT development (in nephrogenic rests). ESRP2 expression was reactivated by DNA methyltransferase inhibition in WT cell lines. When ESRP2 was overexpressed in WT cell lines, it inhibited cellular proliferation in vitro, and in vivo it suppressed tumour growth of orthotopic xenografts in nude mice. RNA-seq of the ESRP2-expressing WT cell lines identified several novel splicing targets. We propose a model in which epigenetic inactivation of ESRP2 disrupts the mesenchymal to epithelial transition in early kidney development to generate WT.
Collapse
Affiliation(s)
- Danny Legge
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Ling Li
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolUK
| | - Whei Moriarty
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - David Lee
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Marianna Szemes
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Asef Zahed
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | | | - Wan Yun Chung
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Yara Aghabi
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Jasmin Barratt
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Richard Williams
- Cancer SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Karim T.A. Malik
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Sebastian Oltean
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolUK
| | - Keith W. Brown
- School of Cellular and Molecular MedicineUniversity of BristolUK
| |
Collapse
|
21
|
A Multi-Omics Network of a Seven-Gene Prognostic Signature for Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 23:ijms23010219. [PMID: 35008645 PMCID: PMC8745553 DOI: 10.3390/ijms23010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
There is an unmet clinical need to identify patients with early-stage non-small cell lung cancer (NSCLC) who are likely to develop recurrence and to predict their therapeutic responses. Our previous study developed a qRT-PCR-based seven-gene microfluidic assay to predict the recurrence risk and the clinical benefits of chemotherapy. This study showed it was feasible to apply this seven-gene panel in RNA sequencing profiles of The Cancer Genome Atlas (TCGA) NSCLC patients (n = 923) in randomly partitioned feasibility-training and validation sets (p < 0.05, Kaplan-Meier analysis). Using Boolean implication networks, DNA copy number variation-mediated transcriptional regulatory network of the seven-gene signature was identified in multiple NSCLC cohorts (n = 371). The multi-omics network genes, including PD-L1, were significantly correlated with immune infiltration and drug response to 10 commonly used drugs for treating NSCLC. ZNF71 protein expression was positively correlated with epithelial markers and was negatively correlated with mesenchymal markers in NSCLC cell lines in Western blots. PI3K was identified as a relevant pathway of proliferation networks involving ZNF71 and its isoforms formulated with CRISPR-Cas9 and RNA interference (RNAi) profiles. Based on the gene expression of the multi-omics network, repositioning drugs were identified for NSCLC treatment.
Collapse
|
22
|
Schamschula E, Lahnsteiner A, Assenov Y, Hagmann W, Zaborsky N, Wiederstein M, Strobl A, Stanke F, Muley T, Plass C, Tümmler B, Risch A. Disease-related blood-based differential methylation in cystic fibrosis and its representation in lung cancer revealed a regulatory locus in PKP3 in lung epithelial cells. Epigenetics 2021; 17:837-860. [PMID: 34415821 PMCID: PMC9423854 DOI: 10.1080/15592294.2021.1959976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease, characterized by massive chronic lung inflammation. The observed variability in clinical phenotypes in monozygotic CF twins is likely associated with the extent of inflammation. This study sought to investigate inflammation-related aberrant DNA methylation in CF twins and to determine to what extent acquired methylation changes may be associated with lung cancer. Blood-based genome-wide DNA methylation analysis was performed to compare the DNA methylomes of monozygotic twins, from the European CF Twin and Sibling Study with various degrees of disease severity. Putatively inflammation-related and differentially methylated positions were selected from a large lung cancer case-control study and investigated in blood by targeted bisulphite next-generation-sequencing. An inflammation-related locus located in the Plakophilin-3 (PKP3) gene was functionally analysed regarding promoter and enhancer activity in presence and absence of methylation using luciferase reporter assays. We confirmed in a unique cohort that monozygotic twins, even if clinically discordant, have only minor differences in global DNA methylation patterns and blood cell composition. Further, we determined the most differentially methylated positions, a high proportion of which are blood cell-type-specific, whereas others may be acquired and thus have potential relevance in the context of inflammation as lung cancer risk factors. We identified a sequence in the gene body of PKP3 which is hypermethylated in blood from CF twins with severe phenotype and highly variably methylated in lung cancer patients and controls, independent of known clinical parameters, and showed that this region exhibits methylation-dependent promoter activity in lung epithelial cells.
Collapse
Affiliation(s)
| | | | - Yassen Assenov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Hagmann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Anna Strobl
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Frauke Stanke
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik Heidelberg, University of Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Burkhard Tümmler
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Angela Risch
- Department of Biosciences, University of Salzburg, Salzburg, Austria.,Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Cluster Salzburg, Salzburg, Austria.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
23
|
Ashok C, Ahuja N, Natua S, Mishra J, Samaiya A, Shukla S. E2F1 and epigenetic modifiers orchestrate breast cancer progression by regulating oxygen-dependent ESRP1 expression. Oncogenesis 2021; 10:58. [PMID: 34362878 PMCID: PMC8346533 DOI: 10.1038/s41389-021-00347-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Epithelial splicing regulatory protein 1 (ESRP1) is an RNA binding protein that governs the alternative splicing events related to epithelial phenotypes. ESRP1 contributes significantly at different stages of cancer progression. ESRP1 expression is substantially elevated in carcinoma in situ compared to the normal epithelium, whereas it is drastically ablated in cancer cells within hypoxic niches, which promotes epithelial to mesenchymal transition (EMT). Although a considerable body of research sought to understand the EMT-associated ESRP1 downregulation, the regulatory mechanisms underlying ESRP1 upregulation in primary tumors remained largely uncharted. This study seeks to unveil the regulatory mechanisms that spatiotemporally fine-tune the ESRP1 expression during breast carcinogenesis. Our results reveal that an elevated expression of transcription factor E2F1 and increased CpG hydroxymethylation of the E2F1 binding motif conjointly induce ESRP1 expression in breast carcinoma. However, E2F1 fails to upregulate ESRP1 despite its abundance in oxygen-deprived breast cancer cells. Mechanistically, impelled by the hypoxia-driven reduction of tet methylcytosine dioxygenase 3 (TET3) activity, CpG sites across the E2F1 binding motif lose the hydroxymethylation marks while gaining the de novo methyltransferase-elicited methylation marks. These two oxygen-sensitive epigenetic events work in concert to repel E2F1 from the ESRP1 promoter, thereby diminishing ESRP1 expression under hypoxia. Furthermore, E2F1 skews the cancer spliceome by upregulating splicing factor SRSF7 in hypoxic breast cancer cells. Our findings provide previously unreported mechanistic insights into the plastic nature of ESRP1 expression and insinuate important implications in therapeutics targeting breast cancer progression.
Collapse
Affiliation(s)
- Cheemala Ashok
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh India
| | - Neha Ahuja
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh India
| | - Subhashis Natua
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh India
| | - Jharna Mishra
- Department of Pathology, Bansal Hospital, Bhopal, Madhya Pradesh India
| | - Atul Samaiya
- Department of Surgical Oncology, Bansal Hospital, Bhopal, Madhya Pradesh India
| | - Sanjeev Shukla
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh India
| |
Collapse
|
24
|
Cui J, Ren P, Li Y, Ma Y, Wang J, Lin C, Jing L, Tong X, Ma S, Chen J. ESRP1 as a prognostic factor of non-small-cell lung cancer is related to the EMT transcription factor of Twist. Thorac Cancer 2021; 12:2449-2457. [PMID: 34342121 PMCID: PMC8447917 DOI: 10.1111/1759-7714.14088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Objective Non‐small‐cell lung cancer (NSCLC) is one of the most common fatal cancers in the world. Although the treatment of NSCLC has been significantly improved, there is still an unmet need to identify novel targets for developing therapeutic agents and diagnostic/prognostic markers. The aim of this study is explore the role and underlying mechanism of the epithelial splicing regulatory protein (ESRP1) in the development and progression of NSCLC. Methods A total of 115 participants, 65 cases of NSCLC, 20 cases of precancerous lesions, and 30 cases of benign lung nodules, were included in this study. The expressions of ESRP1 and related transcription factor Twist in enrolled lung tissues were evaluated by histochemistry and immunohistochemistry assay. The survival analysis and related prognosis factors were evaluated by the Kaplan–Meier curve and Cox regression. In addition, the expression of ESRP1 and epithelial‐mesenchymal transition (EMT)related transcription factor Twist and EMT markers E‐cadherin and N‐cadherin were ascertained by immunohistochemical and immunoblotting assay on A549 lung adenocarcinoma cell lines that were exposed to transforming growth factor β1 (TGFβ1). Results Compared with normal lung tissues, the abundance of ESRP1 protein was significantly increased in precancerous lesions and lung cancer. Correlation analysis demonstrated that ESRP1 was an independent prognostic factor in NSCLC. The expression of ESRP1 and Twist was positively correlated in lung tissues (r = 0.285, p < 0.001). In vitro analysis further showed that TGFβ1 could upregulate the expression of EMT transcription factor Twist while downregulating ESRP1. Conclusions Our data suggest that the aberrant expression of ESRP1 is an early event in the development of NSCLC. The ESRP1 could serve as a prognostic biomarker for NSCLC, particularly when combined with Twist. The Twist negatively regulated the expression of ESRP1, emphasizing the role of the TGFβ/ESRP1 pathway in the development of NSCLC, which warrants further investigation.
Collapse
Affiliation(s)
- Jieda Cui
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Peng Ren
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, China
| | - Yan Li
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yunfan Ma
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jingdi Wang
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, China
| | - Chutong Lin
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, China
| | - Liang Jing
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, China
| | - Xuexia Tong
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shaohua Ma
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, China
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
25
|
Effect of Graphene and Graphene Oxide on Airway Barrier and Differential Phosphorylation of Proteins in Tight and Adherens Junction Pathways. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:nano11051283. [PMID: 34068174 PMCID: PMC8152977 DOI: 10.3390/nano11051283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Via inhalation we are continuously exposed to environmental and occupational irritants which can induce adverse health effects, such as irritant-induced asthma (IIA). The airway epithelium forms the first barrier encountered by these agents. We investigated the effect of environmental and occupational irritants on the airway epithelial barrier in vitro. The airway epithelial barrier was mimicked using a coculture model, consisting of bronchial epithelial cells (16HBE) and monocytes (THP-1) seeded on the apical side of a permeable support, and human lung microvascular endothelial cells (HLMVEC) grown on the basal side. Upon exposure to graphene (G) and graphene oxide (GO) in a suspension with fetal calf serum (FCS), ammonium persulfate (AP), sodium persulfate (SP) and hypochlorite (ClO−), the transepithelial electrical resistance (TEER) and flux of fluorescent labelled dextran (FD4-flux), was determined. Exposure to graphene nanoparticles (GNPs) induced an immediate negative effect on the epithelial barrier, whereas ClO− only had a negative impact after 24 h of exposure. AP and SP did not affect the barrier properties. The tight junctions (TJ) network showed less connected zonula occludens 1 (ZO-1) and occludin staining in GNP-exposed cocultures. Functional analysis of the phosphoproteomic data indicated that proteins in the adherens junction (AJ) and TJ pathways showed an altered phosphorylation due to GNP exposure. To conclude, the negative effect of GNPs on the epithelial barrier can be explained by the slightly altered the TJ organization which could be caused by alterations in the phosphorylation level of proteins in the AJ and TJ pathway.
Collapse
|
26
|
Villemin JP, Lorenzi C, Cabrillac MS, Oldfield A, Ritchie W, Luco RF. A cell-to-patient machine learning transfer approach uncovers novel basal-like breast cancer prognostic markers amongst alternative splice variants. BMC Biol 2021; 19:70. [PMID: 33845831 PMCID: PMC8042689 DOI: 10.1186/s12915-021-01002-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast cancer is amongst the 10 first causes of death in women worldwide. Around 20% of patients are misdiagnosed leading to early metastasis, resistance to treatment and relapse. Many clinical and gene expression profiles have been successfully used to classify breast tumours into 5 major types with different prognosis and sensitivity to specific treatments. Unfortunately, these profiles have failed to subclassify breast tumours into more subtypes to improve diagnostics and survival rate. Alternative splicing is emerging as a new source of highly specific biomarkers to classify tumours in different grades. Taking advantage of extensive public transcriptomics datasets in breast cancer cell lines (CCLE) and breast cancer tumours (TCGA), we have addressed the capacity of alternative splice variants to subclassify highly aggressive breast cancers. RESULTS Transcriptomics analysis of alternative splicing events between luminal, basal A and basal B breast cancer cell lines identified a unique splicing signature for a subtype of tumours, the basal B, whose classification is not in use in the clinic yet. Basal B cell lines, in contrast with luminal and basal A, are highly metastatic and express epithelial-to-mesenchymal (EMT) markers, which are hallmarks of cell invasion and resistance to drugs. By developing a semi-supervised machine learning approach, we transferred the molecular knowledge gained from these cell lines into patients to subclassify basal-like triple negative tumours into basal A- and basal B-like categories. Changes in splicing of 25 alternative exons, intimately related to EMT and cell invasion such as ENAH, CD44 and CTNND1, were sufficient to identify the basal-like patients with the worst prognosis. Moreover, patients expressing this basal B-specific splicing signature also expressed newly identified biomarkers of metastasis-initiating cells, like CD36, supporting a more invasive phenotype for this basal B-like breast cancer subtype. CONCLUSIONS Using a novel machine learning approach, we have identified an EMT-related splicing signature capable of subclassifying the most aggressive type of breast cancer, which are basal-like triple negative tumours. This proof-of-concept demonstrates that the biological knowledge acquired from cell lines can be transferred to patients data for further clinical investigation. More studies, particularly in 3D culture and organoids, will increase the accuracy of this transfer of knowledge, which will open new perspectives into the development of novel therapeutic strategies and the further identification of specific biomarkers for drug resistance and cancer relapse.
Collapse
Affiliation(s)
- Jean-Philippe Villemin
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Claudio Lorenzi
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Marie-Sarah Cabrillac
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Andrew Oldfield
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - William Ritchie
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
| | - Reini F Luco
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
| |
Collapse
|
27
|
Ye Q, Mohamed R, Dakhlallah D, Gencheva M, Hu G, Pearce MC, Kolluri SK, Marsh CB, Eubank TD, Ivanov AV, Guo NL. Molecular Analysis of ZNF71 KRAB in Non-Small-Cell Lung Cancer. Int J Mol Sci 2021; 22:3752. [PMID: 33916522 PMCID: PMC8038441 DOI: 10.3390/ijms22073752] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Our previous study found that zinc finger protein 71 (ZNF71) mRNA expression was associated with chemosensitivity and its protein expression was prognostic of non-small-cell lung cancer (NSCLC). The Krüppel associated box (KRAB) transcriptional repression domain is commonly present in human zinc finger proteins, which are linked to imprinting, silencing of repetitive elements, proliferation, apoptosis, and cancer. This study revealed that ZNF71 KRAB had a significantly higher expression than the ZNF71 KRAB-less isoform in NSCLC tumors (n = 197) and cell lines (n = 117). Patients with higher ZNF71 KRAB expression had a significantly worse survival outcome than patients with lower ZNF71 KRAB expression (log-rank p = 0.04; hazard ratio (HR): 1.686 [1.026, 2.771]), whereas ZNF71 overall and KRAB-less expression levels were not prognostic in the same patient cohort. ZNF71 KRAB expression was associated with epithelial-to-mesenchymal transition (EMT) in both patient tumors and cell lines. ZNF71 KRAB was overexpressed in NSCLC cell lines resistant to docetaxel and paclitaxel treatment compared to chemo-sensitive cell lines, consistent with its association with poor prognosis in patients. Therefore, ZNF71 KRAB isoform is a more effective prognostic factor than ZNF71 overall and KRAB-less expression for NSCLC. Functional analysis using CRISPR-Cas9 and RNA interference (RNAi) screening data indicated that a knockdown/knockout of ZNF71 did not significantly affect NSCLC cell proliferation in vitro.
Collapse
Affiliation(s)
- Qing Ye
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Rehab Mohamed
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
| | - Duaa Dakhlallah
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University of Cairo, New Cairo 11835, Egypt
| | - Marieta Gencheva
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
| | - Gangqing Hu
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
| | - Martin C. Pearce
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (M.C.P.); (S.K.K.)
| | - Siva Kumar Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (M.C.P.); (S.K.K.)
| | - Clay B. Marsh
- Department of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Timothy D. Eubank
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
| | - Alexey V. Ivanov
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Nancy Lan Guo
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
28
|
Guo J, Tong J, Zheng J. Circular RNAs: A Promising Biomarker for Endometrial Cancer. Cancer Manag Res 2021; 13:1651-1665. [PMID: 33633465 PMCID: PMC7901565 DOI: 10.2147/cmar.s290975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/19/2021] [Indexed: 01/06/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common malignant tumors of the female reproductive tract. EC patients have high morbidity and mortality rates and remain an important cause of cancer-related morbidity and mortality worldwide. More and more studies have shown that a large number of non-coding RNAs (such as microRNAs and long non-coding RNAs) are associated with the occurrence of diseases. Circular RNAs (circRNAs) is an endogenous non-coding RNA. It has a unique covalent structure. Many studies in recent years have found circRNAs differential expression in a variety of tumor tissues compared to matched normal tissues. In endometrial carcinoma, there also are multiple circRNAs differentially expressed and therefore circRNAs perhaps can be used as a diagnostic and prognosis biomarkers of EC. In this review, we described the biogenesis, function and characteristics of circRNAs, and the circRNAs with potential influence and clinical significance on the development of EC were summarized. Adenocarcinoma is the most common form of EC, so this review focuses on endometrioid adenocarcinoma.
Collapse
Affiliation(s)
- Jialu Guo
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310008, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, 310008, People's Republic of China
| | - Jinyi Tong
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310008, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, 310008, People's Republic of China
| | - Jianfeng Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, 310008, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, 310008, People's Republic of China
| |
Collapse
|
29
|
Epithelial splicing regulatory protein 1 and 2 (ESRP1 and ESRP2) upregulation predicts poor prognosis in prostate cancer. BMC Cancer 2020; 20:1220. [PMID: 33339518 PMCID: PMC7749503 DOI: 10.1186/s12885-020-07682-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/23/2020] [Indexed: 01/26/2023] Open
Abstract
Background Epithelial splicing regulatory protein 1 (ESRP1) and 2 (ESRP2) regulate alternative splicing events of various pre-mRNAs. Some of these targets play a role in cancer-associated processes, including cytoskeleton reorganization and DNA-repair processes. This study was undertaken to estimate the impact of ESRP1 and ESRP2 alterations on prostate cancer patient prognosis. Methods A tissue microarray made from 17,747 individual cancer samples with comprehensive, pathological, clinical and molecular data was analyzed by immunohistochemistry for ESRP1 and ESRP2. Results Nuclear staining for ESRP1 was seen in 38.6% (36.0% low, 2.6% high) of 12,140 interpretable cancers and in 41.9% (36.4% low, 5.3% high) of 12,962 interpretable cancers for ESRP2. Nuclear protein expression was linked to advanced tumor stage, high Gleason score, presence of lymph node metastasis, early biochemical recurrence, and ERG-positive cancers (p < 0.0001 each). Expression of ESRPs was significantly linked to 11 (ESRP1)/9 (ESRP2) of 11 analyzed deletions in all cancers and to 8 (ESRP1)/9 (ESRP2) of 11 deletions in ERG-negative cancers portending a link to genomic instability. Combined ESRPs expression analysis suggested an additive effect and showed the worst prognosis for cancers with high ESRP1 and ESRP2 expression. Multivariate analyses revealed that the prognostic impact of ESRP1, ESRP2 and combined ESRP1/ESRP2 expression was independent of all established pre- and postoperative prognostic features. Conclusions Our data show a striking link between nuclear ESRP expression and adverse features in prostate cancer and identifies expression of ESRP1 and/or ESRP2 as independent prognostic markers with a potential for routine application.
Collapse
|
30
|
RAC1B Regulation of TGFB1 Reveals an Unexpected Role of Autocrine TGFβ1 in the Suppression of Cell Motility. Cancers (Basel) 2020; 12:cancers12123570. [PMID: 33260366 PMCID: PMC7760153 DOI: 10.3390/cancers12123570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Autocrine transforming growth factor (TGF)β has been implicated in epithelial-mesenchymal transition (EMT) and invasion of several cancers including pancreatic ductal adenocarcinoma (PDAC) as well as triple-negative breast cancer (TNBC). However, the precise mechanism and the upstream inducers or downstream effectors of endogenous TGFB1 remain poorly characterized. In both cancer types, the small GTPase RAC1B inhibits cell motility induced by recombinant human TGFβ1 via downregulation of the TGFβ type I receptor, ALK5, but whether RAC1B also impacts autocrine TGFβ signaling has not yet been studied. Intriguingly, RNA interference-mediated knockdown (RNAi-KD) or CRISPR/Cas-mediated knockout of RAC1B in TGFβ1-secreting PDAC-derived Panc1 cells resulted in a dramatic decrease in secreted bioactive TGFβ1 in the culture supernatants and TGFB1 mRNA expression, while the reverse was true for TNBC-derived MDA-MB-231 cells ectopically expressing RAC1B. Surprisingly, the antibody-mediated neutralization of secreted bioactive TGFβ or RNAi-KD of the endogenous TGFB1 gene, was associated with increased rather than decreased migratory activities of Panc1 and MDA-MB-231 cells, upregulation of the promigratory genes SNAI1, SNAI2 and RAC1, and downregulation of the invasion suppressor genes CDH1 (encoding E-cadherin) and SMAD3. Intriguingly, ectopic re-expression of SMAD3 was able to rescue Panc1 and MDA-MB-231 cells from the TGFB1 KD-induced rise in migratory activity. Together, these data suggest that RAC1B favors synthesis and secretion of autocrine TGFβ1 which in a SMAD3-dependent manner blocks EMT-associated gene expression and cell motility.
Collapse
|
31
|
Jiménez N, Reig Ò, Montalbo R, Milà-Guasch M, Nadal-Dieste L, Castellano G, Lozano JJ, Victoria I, Font A, Rodriguez-Vida A, Carles J, Suárez C, Domènech M, Sala-González N, Fernández PL, Rodríguez-Carunchio L, Díaz S, Prat A, Marín-Aguilera M, Mellado B. Cell Plasticity-Related Phenotypes and Taxanes Resistance in Castration-Resistant Prostate Cancer. Front Oncol 2020; 10:594023. [PMID: 33224888 PMCID: PMC7667288 DOI: 10.3389/fonc.2020.594023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023] Open
Abstract
The prostatic tumor cells plasticity is involved in resistance to hormone-therapy, allowing these cells to survive despite androgen receptor inhibition. However, its role in taxanes resistance has not been fully established. Gene expression of plasticity-related phenotypes such as epithelial-mesenchymal transition (EMT), stem cell-like and neuroendocrine (NE) phenotypes was studied in vitro, in silico, in circulating tumor cells (CTCs) (N=22) and in tumor samples (N=117) from taxanes-treated metastatic castration-resistant prostate cancer (mCRPC) patients. Docetaxel (D)-resistant cells presented a more pronounced EMT phenotype than cabazitaxel (CZ)-resistant cells. In silico analysis revealed ESRP1 down-regulation in taxane-exposed mCRPC samples. Cell plasticity-related changes occurred in CTCs after taxanes treatment. Tumor EMT phenotype was associated with lower PSA progression-free survival (PFS) to D (P<0.001), and better to CZ (P=0.002). High ESRP1 expression was independently associated with longer PSA-PFS (P<0.001) and radiologic-PFS (P=0.001) in D and shorter PSA-PFS in the CZ cohort (P=0.041). High SYP expression was independently associated with lower PSA-PFS in D (P=0.003) and overall survival (OS) in CZ (P=0.002), and high EZH2 expression was associated with adverse OS in D-treated patients (P=0.013). In conclusion, EMT profile in primary tumor is differentially associated with D or CZ benefit and NE dedifferentiation correlates with adverse taxanes clinical outcome.
Collapse
Affiliation(s)
- Natalia Jiménez
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | - Òscar Reig
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
| | - Ruth Montalbo
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | - Maria Milà-Guasch
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lluis Nadal-Dieste
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
| | - Giancarlo Castellano
- Genomic Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan José Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Iván Victoria
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
| | - Albert Font
- Medical Oncology Department, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Alejo Rodriguez-Vida
- Medical Oncology Department, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
| | - Joan Carles
- Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Cristina Suárez
- Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, Barcelona, Spain
| | | | - Núria Sala-González
- Oncology Department, Institut Català d’Oncologia, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - Pedro Luis Fernández
- Department of Pathology, Hospital Germans Trias i Pujol, IGTP and Universidad Autonoma de Barcelona, Badalona, Spain
| | | | - Sherley Díaz
- Department of Pathology, Hospital Clínic, Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Mercedes Marín-Aguilera
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
| | - Begoña Mellado
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Chan TW, Fu T, Bahn JH, Jun HI, Lee JH, Quinones-Valdez G, Cheng C, Xiao X. RNA editing in cancer impacts mRNA abundance in immune response pathways. Genome Biol 2020; 21:268. [PMID: 33106178 PMCID: PMC7586670 DOI: 10.1186/s13059-020-02171-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND RNA editing generates modifications to the RNA sequences, thereby increasing protein diversity and shaping various layers of gene regulation. Recent studies have revealed global shifts in editing levels across many cancer types, as well as a few specific mechanisms implicating individual sites in tumorigenesis or metastasis. However, most tumor-associated sites, predominantly in noncoding regions, have unknown functional relevance. RESULTS Here, we carry out integrative analysis of RNA editing profiles between epithelial and mesenchymal tumors, since epithelial-mesenchymal transition is a key paradigm for metastasis. We identify distinct editing patterns between epithelial and mesenchymal tumors in seven cancer types using TCGA data, an observation further supported by single-cell RNA sequencing data and ADAR perturbation experiments in cell culture. Through computational analyses and experimental validations, we show that differential editing sites between epithelial and mesenchymal phenotypes function by regulating mRNA abundance of their respective genes. Our analysis of RNA-binding proteins reveals ILF3 as a potential regulator of this process, supported by experimental validations. Consistent with the known roles of ILF3 in immune response, epithelial-mesenchymal differential editing sites are enriched in genes involved in immune and viral processes. The strongest target of editing-dependent ILF3 regulation is the transcript encoding PKR, a crucial player in immune and viral response. CONCLUSIONS Our study reports widespread differences in RNA editing between epithelial and mesenchymal tumors and a novel mechanism of editing-dependent regulation of mRNA abundance. It reveals the broad impact of RNA editing in cancer and its relevance to cancer-related immune pathways.
Collapse
Affiliation(s)
- Tracey W Chan
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Ting Fu
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Jae-Hyung Lee
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
- Department of Life and Nanopharmaceutical Sciences & Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | | | - Chonghui Cheng
- Lester & Sue Smith Breast Center & Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Institute for Quantitative and Computational Sciences, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Wineberg Y, Bar-Lev TH, Futorian A, Ben-Haim N, Armon L, Ickowicz D, Oriel S, Bucris E, Yehuda Y, Pode-Shakked N, Gilad S, Benjamin S, Hohenstein P, Dekel B, Urbach A, Kalisky T. Single-Cell RNA Sequencing Reveals mRNA Splice Isoform Switching during Kidney Development. J Am Soc Nephrol 2020; 31:2278-2291. [PMID: 32651222 PMCID: PMC7609002 DOI: 10.1681/asn.2019080770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/23/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND During mammalian kidney development, nephron progenitors undergo a mesenchymal-to-epithelial transition and eventually differentiate into the various tubular segments of the nephron. Recently, Drop-seq single-cell RNA sequencing technology for measuring gene expression from thousands of individual cells identified the different cell types in the developing kidney. However, that analysis did not include the additional layer of heterogeneity that alternative mRNA splicing creates. METHODS Full transcript length single-cell RNA sequencing characterized the transcriptomes of 544 individual cells from mouse embryonic kidneys. RESULTS Gene expression levels measured with full transcript length single-cell RNA sequencing identified each cell type. Further analysis comprehensively characterized splice isoform switching during the transition between mesenchymal and epithelial cellular states, which is a key transitional process in kidney development. The study also identified several putative splicing regulators, including the genes Esrp1/2 and Rbfox1/2. CONCLUSIONS Discovery of the sets of genes that are alternatively spliced as the fetal kidney mesenchyme differentiates into tubular epithelium will improve our understanding of the molecular mechanisms that drive kidney development.
Collapse
Affiliation(s)
- Yishay Wineberg
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Tali Hana Bar-Lev
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Anna Futorian
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nissim Ben-Haim
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Leah Armon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Debby Ickowicz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sarit Oriel
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Efrat Bucris
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yishai Yehuda
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Division of Pediatric Nephrology, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shlomit Gilad
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Sima Benjamin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Division of Pediatric Nephrology, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tomer Kalisky
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
34
|
Mencucci MV, Lapyckyj L, Rosso M, Besso MJ, Belgorosky D, Isola M, Vanzulli S, Lodillinsky C, Eiján AM, Tejerizo JC, Gonzalez MI, Zubieta ME, Vazquez-Levin MH. Ephrin-B1 Is a Novel Biomarker of Bladder Cancer Aggressiveness. Studies in Murine Models and in Human Samples. Front Oncol 2020; 10:283. [PMID: 32292715 PMCID: PMC7119101 DOI: 10.3389/fonc.2020.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BC) is the ninth most common cancer worldwide, but molecular changes are still under study. During tumor progression, Epithelial cadherin (E-cadherin) expression is altered and β-catenin may be translocated to the nucleus, where it acts as co-transcription factor of tumor invasion associated genes. This investigation further characterizes E-cadherin and β-catenin associated changes in BC, by combining bioinformatics, an experimental murine cell model (MB49/MB49-I) and human BC samples. In in silico studies, a DisGeNET (gene-disease associations database) analysis identified CDH1 (E-cadherin gene) as one with highest score among 130 BC related-genes. COSMIC mutation analysis revealed CDH1 low mutations rates. Compared to MB49 control BC cells, MB49-I invasive cells showed decreased E-cadherin expression, E- to P-cadherin switch, higher β-catenin nuclear signal and lower cytoplasmic p-Ser33-β-catenin signal, higher Ephrin-B1 ligand and EphB2 receptor expression, higher Phospho-Stat3 and Urokinase-type Plasminogen Activator (UPA), and UPA receptor expression. MB49-I cells transfected with Ephrin-B1 siRNA showed lower migratory and invasive capacity than control cells (scramble siRNA). By immunohistochemistry, orthotopic MB49-I tumors had lower E-cadherin, increased nuclear β-catenin, lower pSer33-β-catenin cytoplasmic signal, and higher Ephrin-B1 expression than MB49 tumors. Similar changes were found in human BC tumors, and 83% of infiltrating tumors depicted a high Ephrin-B1 stain. An association between higher Ephrin-B1 expression and higher stage and tumor grade was found. No association was found between abnormal E-cadherin signal, Ephrin-B1 expression or clinical-pathological parameter. This study thoroughly analyzed E-cadherin and associated changes in BC, and reports Ephrin-B1 as a new marker of tumor aggressiveness.
Collapse
Affiliation(s)
- María Victoria Mencucci
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Lara Lapyckyj
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Marina Rosso
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - María José Besso
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Denise Belgorosky
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Isola
- Departamento de Anatomía Patológica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Catalina Lodillinsky
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana María Eiján
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Tejerizo
- Departamento de Urología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - María Ercilia Zubieta
- Departamento de Urología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Hebe Vazquez-Levin
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| |
Collapse
|
35
|
Dou Y, Kawaler EA, Cui Zhou D, Gritsenko MA, Huang C, Blumenberg L, Karpova A, Petyuk VA, Savage SR, Satpathy S, Liu W, Wu Y, Tsai CF, Wen B, Li Z, Cao S, Moon J, Shi Z, Cornwell M, Wyczalkowski MA, Chu RK, Vasaikar S, Zhou H, Gao Q, Moore RJ, Li K, Sethuraman S, Monroe ME, Zhao R, Heiman D, Krug K, Clauser K, Kothadia R, Maruvka Y, Pico AR, Oliphant AE, Hoskins EL, Pugh SL, Beecroft SJI, Adams DW, Jarman JC, Kong A, Chang HY, Reva B, Liao Y, Rykunov D, Colaprico A, Chen XS, Czekański A, Jędryka M, Matkowski R, Wiznerowicz M, Hiltke T, Boja E, Kinsinger CR, Mesri M, Robles AI, Rodriguez H, Mutch D, Fuh K, Ellis MJ, DeLair D, Thiagarajan M, Mani DR, Getz G, Noble M, Nesvizhskii AI, Wang P, Anderson ML, Levine DA, Smith RD, Payne SH, Ruggles KV, Rodland KD, Ding L, Zhang B, Liu T, Fenyö D. Proteogenomic Characterization of Endometrial Carcinoma. Cell 2020; 180:729-748.e26. [PMID: 32059776 PMCID: PMC7233456 DOI: 10.1016/j.cell.2020.01.026] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/β-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily A Kawaler
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Daniel Cui Zhou
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lili Blumenberg
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Alla Karpova
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankha Satpathy
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Yige Wu
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhi Li
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Suhas Vasaikar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Zhou
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Qingsong Gao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sunantha Sethuraman
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David Heiman
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karsten Krug
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl Clauser
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramani Kothadia
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yosef Maruvka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Amanda E Oliphant
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Emily L Hoskins
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Samuel L Pugh
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Sean J I Beecroft
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - David W Adams
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jonathan C Jarman
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Andy Kong
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Steven Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrzej Czekański
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Marcin Jędryka
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, 61-701 Poznań, Poland; University Hospital of Lord's Transfiguration, 60-569 Poznań, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Deborah DeLair
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Noble
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew L Anderson
- College of Medicine Obstetrics & Gynecology, University of South Florida Health, Tampa, FL 33620, USA
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Kelly V Ruggles
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA.
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David Fenyö
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
36
|
Nobili S, Lapucci A, Landini I, Coronnello M, Roviello G, Mini E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol 2020; 60:72-95. [PMID: 31412294 DOI: 10.1016/j.semcancer.2019.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
|
37
|
Hu X, Harvey SE, Zheng R, Lyu J, Grzeskowiak CL, Powell E, Piwnica-Worms H, Scott KL, Cheng C. The RNA-binding protein AKAP8 suppresses tumor metastasis by antagonizing EMT-associated alternative splicing. Nat Commun 2020; 11:486. [PMID: 31980632 PMCID: PMC6981122 DOI: 10.1038/s41467-020-14304-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing has been shown to causally contribute to the epithelial–mesenchymal transition (EMT) and tumor metastasis. However, the scope of splicing factors that govern alternative splicing in these processes remains largely unexplored. Here we report the identification of A-Kinase Anchor Protein (AKAP8) as a splicing regulatory factor that impedes EMT and breast cancer metastasis. AKAP8 not only is capable of inhibiting splicing activity of the EMT-promoting splicing regulator hnRNPM through protein–protein interaction, it also directly binds to RNA and alters splicing outcomes. Genome-wide analysis shows that AKAP8 promotes an epithelial cell state splicing program. Experimental manipulation of an AKAP8 splicing target CLSTN1 revealed that splice isoform switching of CLSTN1 is crucial for EMT. Moreover, AKAP8 expression and the alternative splicing of CLSTN1 predict breast cancer patient survival. Together, our work demonstrates the essentiality of RNA metabolism that impinges on metastatic breast cancer. Splice isoform switching regulated by the heterogeneous nuclear ribonucleoprotein M (hnRNPM) induces EMT and metastasis. Here, the authors report that AKAP8 is a metastasis suppressor that inhibits the splicing activity of hnRNPM and antagonizes genome-wide EMT-associated alternative splicing to maintain epithelial cell state.
Collapse
Affiliation(s)
- Xiaohui Hu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Samuel E Harvey
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rong Zheng
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jingyi Lyu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Emily Powell
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chonghui Cheng
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Jia J, Shi E, Zhou X, Zhu S, Li J, Zhang J, Yu J, Wang S, Feng L. Expression of ESRP1 at human fetomaternal interface and involvement in trophoblast migration and invasion. Placenta 2020; 90:18-26. [PMID: 32056547 DOI: 10.1016/j.placenta.2019.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Studies have reported that villous cytotrophoblasts (CTBs) undergo a partial epithelial to mesenchymal transition (EMT) when differentiating into extravillous cytotrophoblasts (EVTs). Epithelial splicing-regulatory protein 1 (ESRP1), an alternative splicing regulator, has been demonstrated to play important roles in the EMT process. Nevertheless, the roles of ESRP1 in the placentation remain undefined. METHODS ESRP1 expression in placental tissues throughout pregnancy was determined by immunohistochemistry and western blotting. The effect of ESRP1 knockdown by using small-interfering RNAs (siRNAs) on the phenotype of trophoblast cell line (HTR-8/SVneo) and villous explants was evaluated. RESULTS ESRP1 was localized within the CTBs, trophoblast columns, and EVTs located in the decidua. ESRP1 expression was changed during pregnancy, with the highest expression level in term placentae. ESRP1 knockdown significantly increased the migration and invasion of HTR-8/SVneo cells, as well as the outgrowth of EVTs from villous explants, without affecting cell proliferation. This enhanced effect was associated with the increased expression of N-cadherin, vimentin and CD44. DISCUSSION Our results suggested an important role for ESRP1 in regulating trophoblast migration and invasion during placentation.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Erjiao Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglan Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaqi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
39
|
Teles SP, Oliveira P, Ferreira M, Carvalho J, Ferreira P, Oliveira C. Integrated Analysis of Structural Variation and RNA Expression of FGFR2 and Its Splicing Modulator ESRP1 Highlight the ESRP1amp- FGFR2norm- FGFR2-IIIchigh Axis in Diffuse Gastric Cancer. Cancers (Basel) 2019; 12:cancers12010070. [PMID: 31881796 PMCID: PMC7017189 DOI: 10.3390/cancers12010070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023] Open
Abstract
Gastric Cancer (GC) is one of the most common and deadliest types of cancer in the world. To improve GC prognosis, increasing efforts are being made to develop new targeted therapies. Although FGFR2 genetic amplification and protein overexpression in GC have been targeted in clinical trials, so far no improvement in patient overall survival has been found. To address this issue, we studied genetic and epigenetic events affecting FGFR2 and its splicing regulator ESRP1 in GC that could be used as new therapeutic targets or predictive biomarkers. We performed copy number variation (CNV), DNA methylation, and RNA expression analyses of FGFR2/ESRP1 across several cohorts. We discovered that both genes were frequently amplified and demethylated in GC, resulting in increased ESRP1 expression and of a specific FGFR2 isoform: FGFR2-IIIb. We also showed that ESRP1 amplification in GC correlated with a significant decreased expression of FGFR2-IIIc, an alternative FGFR2 splicing isoform. Furthermore, when we performed a survival analysis, we observed that patients harboring diffuse-type tumors with low FGFR2-IIIc expression revealed a better overall survival than patients with FGFR2-IIIc high-expressing diffuse tumors. Our results encourage further studies on the role of ESRP1 in GC and support FGFR2-IIIc as a relevant biomarker in GC.
Collapse
Affiliation(s)
- Sara Pinto Teles
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Master in Oncology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Patrícia Oliveira
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Marta Ferreira
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Carvalho
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Pedro Ferreira
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Department of Computer Science, Faculty of Sciences, University of Porto, Rua Campo Alegre 1021/1055, 4169-007 Porto, Portugal
| | - Carla Oliveira
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Department Pathology and Oncology Faculty of Medicine University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
40
|
Gasiulė S, Dreize N, Kaupinis A, Ražanskas R, Čiupas L, Stankevičius V, Kapustina Ž, Laurinavičius A, Valius M, Vilkaitis G. Molecular Insights into miRNA-Driven Resistance to 5-Fluorouracil and Oxaliplatin Chemotherapy: miR-23b Modulates the Epithelial–Mesenchymal Transition of Colorectal Cancer Cells. J Clin Med 2019; 8:E2115. [PMID: 31810268 PMCID: PMC6947029 DOI: 10.3390/jcm8122115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Although treatment of colorectal cancer with 5-florouracil and oxaliplatin is widely used, it is frequently followed by a relapse. Therefore, there is an urgent need for profound understanding of chemotherapy resistance mechanisms as well as the profiling of predictive markers for individualized treatment. In this study, we identified the changes in 14 miRNAs in 5-fluouracil and 40 miRNAs in oxaliplatin-resistant cell lines by miRNA sequencing. The decrease in miR-224-5p expression in the 5-fluorouracil-resistant cells correlated with drug insensitivity due to its overexpression-induced drug-dependent apoptosis. On the other hand, the miR-23b/27b/24-1 cluster was overexpressed in oxaliplatin-resistant cells. The knockout of miR-23b led to the partial restoration of oxaliplatin susceptibility, showing the essential role of miR-23b in the development of drug resistance by this cluster. Proteomic analysis identified target genes of miR-23b and showed that endothelial-mesenchymal transition (EMT) was implicated in oxaliplatin insensibility. Data revealed that EMT markers, such as vimentin and SNAI2, were expressed moderately higher in the oxaliplatin-resistant cells and their expression increased further in the less drug-resistant cells, which had miR-23b knockout. This establishes that the balance of EMT contributes to the drug resistance, showing the importance of the miR-23b-mediated fine-tuning of EMT in oxaliplatin-resistant cancer cells.
Collapse
Affiliation(s)
- Stasė Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Nadezda Dreize
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Algirdas Kaupinis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Raimundas Ražanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Laurynas Čiupas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Žana Kapustina
- Thermo Fisher Scientific Baltics, Vilnius LT-02241, Lithuania;
| | - Arvydas Laurinavičius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius LT-08406, Lithuania;
- Faculty of Medicine, Vilnius University, Vilnius LT-03101, Lithuania
| | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| |
Collapse
|
41
|
Cause-and-Effect relationship between FGFR1 expression and epithelial-mesenchymal transition in EGFR-mutated non-small cell lung cancer cells. Lung Cancer 2019; 132:132-140. [PMID: 31097086 DOI: 10.1016/j.lungcan.2019.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Increased FGFR1 expression is associated with resistance to tyrosine kinase inhibitors (TKIs) in EGFR-mutated NSCLC cells and often concomitant with epithelial to mesenchymal transition (EMT). However, the cause-and-effect relationship between increased FGFR1 expression and EMT in the genetic background of EGFR-mutated non-small cell lung cancer (NSCLC) cells is not clear. Previous studies have specifically addressed the relationship between EMT and increased FGFR1 expression in the context of simultaneous TKI-mediated blocking of EGFR-signaling. Here, in the context of EGFR-mutated NSCLC cells with active EGFR-signaling, we have examined whether increased FGFR1 expression drives EMT or is an EMT passenger event. MATERIALS AND METHODS For cause-and-effect analyses between EMT and FGFR1 expression, including expression of alternative spliced FGFR1 isoforms, we used CRISPR-dCAS9-SAM-mediated induction of the endogenous FGFR1 and ZEB1 genes, as well as biochemical EMT-induction, in PC9 and HCC827 NSCLC cell lines harboring activating EGFR-mutations. RESULTS We find that FGFR1 expression correlates with a ZEB1-associated EMT gene expression profile in NSCLC cells. In experiments using NSCLC cell lines harboring activating EGFR-mutations we show that CRISPR-dCAS9-SAM-mediated induction of FGFR1 expression is neither driving an increase in ZEB1 expression nor EMT characteristics. However, CRISPR-dCAS9-SAM-mediated induction of ZEB1 expression drives EMT characteristics and an increase in FGFR1 expression. Biochemical induction of EMT also drives an increase in FGFR1 expression. CONCLUSION From our findings concerning the cause-and-effect relationship in the genetic background of EGFR-mutated NSCLC cells, we conclude that an increase in ZEB1 expression is a driver of EMT resulting in concomitant increased FGFR1 expression, whereas an increase in FGFR1 expression is insufficient to drive concomitant EMT.
Collapse
|
42
|
Hong Y, Qin H, Li Y, Zhang Y, Zhuang X, Liu L, Lu K, Li L, Deng X, Liu F, Shi S, Liu G. FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E-cadherin and CD44 expression. J Cell Physiol 2019; 234:19895-19910. [PMID: 30963578 PMCID: PMC6766960 DOI: 10.1002/jcp.28588] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 01/06/2023]
Abstract
Circular RNAs (circRNAs) are a new class of RNAs, and many studies have identified thousands of circRNAs in tumor cells. Fibronectin type III domain‐containing protein 3B (FNDC3B) circular RNA (circFNDC3B, circBase ID: hsa_circ_0006156) circularizes with exons 5 and 6. Gibson Assembly DNA technology was used to construct a circFNDC3B expression vector without a splice site and restriction enzyme site. We showed that circFNDC3B increased migration and invasion in gastric cancer (GC). Ectopic expression of circFNDC3B reduced the level of E‐cadherin protein to promote the epithelial–mesenchymal transition in GC. RNA immunoprecipitation assays and RNA pull‐down assays confirmed that circFNC3B increased CD44 expression, which was associated with cell adhesion, via the formation of a ternary complex of circFNDC3B‐IGF2BP3‐CD44 mRNA. These results indicated that circFNDC3B was associated with the degree of malignancy to highlight the specific characteristics of cell invasion.
Collapse
Affiliation(s)
- Yuling Hong
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Cancer Prevention and Rehabilitation, Huayan Science and Technology Cancer Prevention and Rehabilitation Research Center, School of Pharmaceutical Sciences Xiamen University, Fujian, China
| | - Haifeng Qin
- Department of Pulmonary Neoplasm Internal Medicine, The 307th Hospital of Military Chinese People's Liberation Army, Beijing, China
| | - Yin Li
- Department of Medical Examination, Xiamen International Travel Healthcare Center, Xiamen, Fujian, China
| | - Yuhai Zhang
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Xunrong Zhuang
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Lei Liu
- Department of Cancer Prevention and Rehabilitation, Huayan Science and Technology Cancer Prevention and Rehabilitation Research Center, School of Pharmaceutical Sciences Xiamen University, Fujian, China
| | - Kun Lu
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Long Li
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Xiaoling Deng
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Fan Liu
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Songlin Shi
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Guoyan Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China.,Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Cancer Prevention and Rehabilitation, Huayan Science and Technology Cancer Prevention and Rehabilitation Research Center, School of Pharmaceutical Sciences Xiamen University, Fujian, China
| |
Collapse
|
43
|
Networks of mRNA Processing and Alternative Splicing Regulation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:1-27. [PMID: 31342435 DOI: 10.1007/978-3-030-19966-1_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
mRNA processing events introduce an intricate layer of complexity into gene expression processes, supporting a tremendous level of diversification of the genome's coding and regulatory potential, particularly in vertebrate species. The recent development of massive parallel sequencing methods and their adaptation to the identification and quantification of different RNA species and the dynamics of mRNA metabolism and processing has generated an unprecedented view over the regulatory networks that are established at this level, which contribute to sustain developmental, tissue specific or disease specific gene expression programs. In this chapter, we provide an overview of the recent evolution of transcriptome profiling methods and the surprising insights that have emerged in recent years regarding distinct mRNA processing events - from the 5' end to the 3' end of the molecule.
Collapse
|
44
|
Li L, Qi L, Qu T, Liu C, Cao L, Huang Q, Song W, Yang L, Qi H, Wang Y, Gao B, Guo Y, Sun B, Meng B, Zhang B, Cao W. Epithelial Splicing Regulatory Protein 1 Inhibits the Invasion and Metastasis of Lung Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1882-1894. [DOI: 10.1016/j.ajpath.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022]
|
45
|
Abstract
Cancer metastasis is defined as the dissemination of malignant cells from the primary tumor site, leading to colonization of distant organs and the establishment of a secondary tumor. Metastasis is frequently associated with chemoresistance and is the major cause of cancer-related mortality. Metastatic cells need to acquire the ability to resist to stresses provided by different environments, such as reactive oxygen species, shear stress, hemodynamic forces, stromal composition, and immune responses, to colonize other tissues. Hence, only a small population of cells has a metastasis-initiating potential. Several studies have revealed the misregulation of transcriptional variants during cancer progression, and many splice events can be used to distinguish between normal and tumoral tissue. These variants, which are abnormally expressed in malignant cells, contribute to an adaptive response of tumor cells and the success of the metastatic cascade, promoting an anomalous cell cycle, cellular adhesion, resistance to death, cell survival, migration and invasion. Understanding the different aspects of splicing regulation and the influence of transcriptional variants that control metastatic cells is critical for the development of therapeutic strategies. In this review, we describe how transcriptional variants contribute to metastatic competence and discuss how targeting specific isoforms may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Joice De Faria Poloni
- a Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Diego Bonatto
- a Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
46
|
van Staalduinen J, Baker D, Ten Dijke P, van Dam H. Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 2018; 37:6195-6211. [PMID: 30002444 DOI: 10.1038/s41388-018-0378-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023]
Abstract
Chemoresistance remains a major complication of cancer treatments. Recent data provide strong evidence that chemoresistance is linked to epithelial-mesenchymal transition (EMT), a latent developmental process, which is re-activated during cancer progression. EMT involves transcriptional reprogramming and is driven by specific EMT transcription factors (EMT-TFs). In this review, we provide support for the idea that EMT-TFs contribute to the development of resistance against cancer therapy and discuss how EMT-TFs might be targeted to advance novel therapeutic approaches to the treatment of cancer.
Collapse
Affiliation(s)
- Jente van Staalduinen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - David Baker
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands.
| | - Hans van Dam
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
47
|
El-Athman R, Fuhr L, Relógio A. A Systems-Level Analysis Reveals Circadian Regulation of Splicing in Colorectal Cancer. EBioMedicine 2018; 33:68-81. [PMID: 29936137 PMCID: PMC6085510 DOI: 10.1016/j.ebiom.2018.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence points to a significant role of the circadian clock in the regulation of splicing in various organisms, including mammals. Both dysregulated circadian rhythms and aberrant pre-mRNA splicing are frequently implicated in human disease, in particular in cancer. To investigate the role of the circadian clock in the regulation of splicing in a cancer progression context at the systems-level, we conducted a genome-wide analysis and compared the rhythmic transcriptional profiles of colon carcinoma cell lines SW480 and SW620, derived from primary and metastatic sites of the same patient, respectively. We identified spliceosome components and splicing factors with cell-specific circadian expression patterns including SRSF1, HNRNPLL, ESRP1, and RBM 8A, as well as altered alternative splicing events and circadian alternative splicing patterns of output genes (e.g., VEGFA, NCAM1, FGFR2, CD44) in our cellular model. Our data reveals a remarkable interplay between the circadian clock and pre-mRNA splicing with putative consequences in tumor progression and metastasis.
Collapse
Affiliation(s)
- Rukeia El-Athman
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - Luise Fuhr
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany.
| |
Collapse
|
48
|
Alternative splicing and cancer metastasis: prognostic and therapeutic applications. Clin Exp Metastasis 2018; 35:393-402. [PMID: 29845349 DOI: 10.1007/s10585-018-9905-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Metastatic cells exhibit an extraordinary phenotypic plasticity, not only in adapting to unfamiliar microenvironments but also in surviving aggressive treatments and immune responses. A major source of phenotypic variability is alternative splicing (AS) of the pre-messenger RNA. This process is catalyzed by one of the most complex pieces of cellular molecular regulatory events, the spliceosome, which is composed of ribonucleoproteins and polypeptides termed spliceosome factors. With strong evidence indicating that AS affects nearly all genes encoded by the human genome, aberrant AS programs have a significant impact on cancer cell development and progression. In this review, we present insights about the genomic and epigenomic factors affecting AS, summarize the most recent findings linking aberrant AS to metastatic progression, and highlight potential prognostic and therapeutic applications.
Collapse
|
49
|
The role of the epithelial-to-mesenchymal transition (EMT) in diseases of the salivary glands. Histochem Cell Biol 2018; 150:133-147. [DOI: 10.1007/s00418-018-1680-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
|
50
|
Voena C, Varesio LM, Zhang L, Menotti M, Poggio T, Panizza E, Wang Q, Minero VG, Fagoonee S, Compagno M, Altruda F, Monti S, Chiarle R. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1. Oncotarget 2017; 7:33316-30. [PMID: 27119231 PMCID: PMC5078097 DOI: 10.18632/oncotarget.8955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/29/2016] [Indexed: 11/25/2022] Open
Abstract
A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy.
Collapse
Affiliation(s)
- Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy.,Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lydia M Varesio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Liye Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Matteo Menotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Teresa Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Elena Panizza
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Qi Wang
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Valerio G Minero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Sharmila Fagoonee
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Mara Compagno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy.,Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy.,Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|