1
|
Schol P, van Elsas MJ, Middelburg J, Nijen Twilhaar MK, van Hall T, van der Sluis TC, van der Burg SH. Myeloid effector cells in cancer. Cancer Cell 2024; 42:1997-2014. [PMID: 39658540 DOI: 10.1016/j.ccell.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
The role of myeloid cells in tumor immunity is multifaceted. While dendritic cells support T cell-mediated tumor control, the highly heterogenous populations of macrophages, neutrophils, and immature myeloid cells were generally considered immunosuppressive. This view has led to effective therapies reinvigorating tumor-reactive T cells; however, targeting the immunosuppressive effects of macrophages and neutrophils to boost the cancer immunity cycle was clinically less successful. Recent studies interrogating the role of immune cells in the context of successful immunotherapy affirm the key role of T cells, but simultaneously challenge the idea that the cytotoxic function of T cells is the main contributor to therapy-driven tumor regression. Rather, therapy-activated intra-tumoral T cells recruit and activate or reprogram several myeloid effector cell types, the presence of which is necessary for tumor rejection. Here, we reappreciate the key role of myeloid effector cells in tumor rejection as this may help to shape future successful immunotherapies.
Collapse
Affiliation(s)
- Pieter Schol
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marit J van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten K Nijen Twilhaar
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Tetje C van der Sluis
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
Zheng X, Sun R, Wei T. Immune microenvironment in papillary thyroid carcinoma: roles of immune cells and checkpoints in disease progression and therapeutic implications. Front Immunol 2024; 15:1438235. [PMID: 39290709 PMCID: PMC11405226 DOI: 10.3389/fimmu.2024.1438235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of primary thyroid cancer. Despite the low malignancy and relatively good prognosis, some PTC cases are highly aggressive and even develop refractory cancer in the thyroid. Growing evidence suggested that microenvironment in tumor affected PTC biological behavior due to different immune states. Different interconnected components in the immune system influence and participate in tumor invasion, and are closely related to PTC metastasis. Immune cells and molecules are widely distributed in PTC tissues. Their quantity and proportion vary with the host's immune status, which suggests that immunotherapy may be a very promising therapeutic modality for PTC. In this paper, we review the role of immune cells and immune checkpoints in PTC immune microenvironment based on the characteristics of the PTC tumor microenvironment.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruonan Sun
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Wang H, Liu S, Zhan J, Liang Y, Zeng X. Shaping the immune-suppressive microenvironment on tumor-associated myeloid cells through tumor-derived exosomes. Int J Cancer 2024; 154:2031-2042. [PMID: 38500385 DOI: 10.1002/ijc.34921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Tumor-associated myeloid cells (TAMCs) play a crucial role in orchestrating the dynamics of the tumor immune microenvironment. This heterogeneous population encompasses myeloid-derived suppressor cells, tumor-associated macrophages and dendritic cells, all of which contribute to the establishment of an immunosuppressive milieu that fosters tumor progression. Tumor-derived exosomes (TEXs), small extracellular vesicles secreted by tumor cells, have emerged as central mediators in intercellular communication within the tumor microenvironment. In this comprehensive review, we explore the intricate mechanisms through which TEXs modulate immune-suppressive effects on TAMCs and their profound implications in cancer progression. We delve into the multifaceted ways in which TEXs influence TAMC functions, subsequently affecting tumor immune evasion. Furthermore, we elucidate various therapeutic strategies aimed at targeting TEX-mediated immune suppression, with the ultimate goal of bolstering antitumor immunity.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Pathology, Medical College, Jinhua Polytechnic, Jinhua, China
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shanshan Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianhao Zhan
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Department of Clinical Medcine, HuanKui Academy, Nanchang University, Nanchang, China
| | - Yuqing Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xiaoping Zeng
- Department of Pathology, Medical College, Jinhua Polytechnic, Jinhua, China
| |
Collapse
|
4
|
Huang X, Nepovimova E, Adam V, Sivak L, Heger Z, Valko M, Wu Q, Kuca K. Neutrophils in Cancer immunotherapy: friends or foes? Mol Cancer 2024; 23:107. [PMID: 38760815 PMCID: PMC11102125 DOI: 10.1186/s12943-024-02004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neutrophils play a Janus-faced role in the complex landscape of cancer pathogenesis and immunotherapy. As immune defense cells, neutrophils release toxic substances, including reactive oxygen species and matrix metalloproteinase 9, within the tumor microenvironment. They also modulate the expression of tumor necrosis factor-related apoptosis-inducing ligand and Fas ligand, augmenting their capacity to induce tumor cell apoptosis. Their involvement in antitumor immune regulation synergistically activates a network of immune cells, bolstering anticancer effects. Paradoxically, neutrophils can succumb to the influence of tumors, triggering signaling cascades such as JAK/STAT, which deactivate the immune system network, thereby promoting immune evasion by malignant cells. Additionally, neutrophil granular constituents, such as neutrophil elastase and vascular endothelial growth factor, intricately fuel tumor cell proliferation, metastasis, and angiogenesis. Understanding the mechanisms that guide neutrophils to collaborate with other immune cells for comprehensive tumor eradication is crucial to enhancing the efficacy of cancer therapeutics. In this review, we illuminate the underlying mechanisms governing neutrophil-mediated support or inhibition of tumor progression, with a particular focus on elucidating the internal and external factors that influence neutrophil polarization. We provide an overview of recent advances in clinical research regarding the involvement of neutrophils in cancer therapy. Moreover, the future prospects and limitations of neutrophil research are discussed, aiming to provide fresh insights for the development of innovative cancer treatment strategies targeting neutrophils.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
5
|
Singhal S, Rao AS, Stadanlick J, Bruns K, Sullivan NT, Bermudez A, Honig-Frand A, Krouse R, Arambepola S, Guo E, Moon EK, Georgiou G, Valerius T, Albelda SM, Eruslanov EB. Human Tumor-Associated Macrophages and Neutrophils Regulate Antitumor Antibody Efficacy through Lethal and Sublethal Trogocytosis. Cancer Res 2024; 84:1029-1047. [PMID: 38270915 PMCID: PMC10982649 DOI: 10.1158/0008-5472.can-23-2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
The clinical benefits of tumor-targeting antibodies (tAb) are modest in solid human tumors. The efficacy of many tAbs is dependent on Fc receptor (FcR)-expressing leukocytes that bind Fc fragments of tAb. Tumor-associated macrophages (TAM) and neutrophils (TAN) represent the majority of FcR+ effectors in solid tumors. A better understanding of the mechanisms by which TAMs and TANs regulate tAb response could help improve the efficacy of cancer treatments. Here, we found that myeloid effectors interacting with tAb-opsonized lung cancer cells used antibody-dependent trogocytosis (ADT) but not antibody-dependent phagocytosis. During this process, myeloid cells "nibbled off" tumor cell fragments containing tAb/targeted antigen (tAg) complexes. ADT was only tumoricidal when the tumor cells expressed high levels of tAg and the effectors were present at high effector-to-tumor ratios. If either of these conditions were not met, which is typical for solid tumors, ADT was sublethal. Sublethal ADT, mainly mediated by CD32hiCD64hi TAM, led to two outcomes: (i) removal of surface tAg/tAb complexes from the tumor that facilitated tumor cell escape from the tumoricidal effects of tAb; and (ii) acquisition of bystander tAgs by TAM with subsequent cross-presentation and stimulation of tumor-specific T-cell responses. CD89hiCD32loCD64lo peripheral blood neutrophils (PBN) and TAN stimulated tumor cell growth in the presence of the IgG1 anti-EGFR Ab cetuximab; however, IgA anti-EGFR Abs triggered the tumoricidal activity of PBN and negated the stimulatory effect of TAN. Overall, this study provides insights into the mechanisms by which myeloid effectors mediate tumor cell killing or resistance during tAb therapy. SIGNIFICANCE The elucidation of the conditions and mechanisms by which human FcR+ myeloid effectors mediate cancer cell resistance and killing during antibody treatment could help develop improved strategies for treating solid tumors.
Collapse
Affiliation(s)
- Sunil Singhal
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abhishek S. Rao
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Stadanlick
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Bruns
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Neil T. Sullivan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andres Bermudez
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Honig-Frand
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Krouse
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sachinthani Arambepola
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily Guo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edmund K. Moon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Thomas Valerius
- Department of Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evgeniy B. Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Sumagin R. Phenotypic and Functional Diversity of Neutrophils in Gut Inflammation and Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2-12. [PMID: 37918801 PMCID: PMC10768535 DOI: 10.1016/j.ajpath.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Neutrophils [polymorphonuclear leukocytes (PMNs)] execute important effector functions protecting the host against invading pathogens. However, their activity in tissue can exacerbate inflammation and inflammation-associated tissue injury and tumorigenesis. Until recently, PMNs were considered to be short-lived, terminally differentiated phagocytes. However, this view is rapidly changing with the emerging evidence of increased PMN lifespan in tissues, PMN plasticity, and phenotypic heterogeneity. Specialized PMN subsets have been identified in inflammation and in developing tumors, consistent with both beneficial and detrimental functions of PMNs in these conditions. Because PMN and tumor-associated neutrophil activity and the resulting beneficial/detrimental impacts primarily occur after homing to inflamed tissue/tumors, studying the underlying mechanisms of PMN/tumor-associated neutrophil trafficking is of high interest and clinical relevance. This review summarizes some of the key findings from over a decade of work from my laboratory and others on the regulation of PMN recruitment and identification of phenotypically and functionally diverse PMN subtypes as they pertain to gut inflammation and colon cancer.
Collapse
Affiliation(s)
- Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
7
|
Delgado M, Garcia-Sanz JA. Therapeutic Monoclonal Antibodies against Cancer: Present and Future. Cells 2023; 12:2837. [PMID: 38132155 PMCID: PMC10741644 DOI: 10.3390/cells12242837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
A series of monoclonal antibodies with therapeutic potential against cancer have been generated and developed. Ninety-one are currently used in the clinics, either alone or in combination with chemotherapeutic agents or other antibodies, including immune checkpoint antibodies. These advances helped to coin the term personalized medicine or precision medicine. However, it seems evident that in addition to the current work on the analysis of mechanisms to overcome drug resistance, the use of different classes of antibodies (IgA, IgE, or IgM) instead of IgG, the engineering of the Ig molecules to increase their half-life, the acquisition of additional effector functions, or the advantages associated with the use of agonistic antibodies, to allow a broad prospective usage of precision medicine successfully, a strategy change is required. Here, we discuss our view on how these strategic changes should be implemented and consider their pros and cons using therapeutic antibodies against cancer as a model. The same strategy can be applied to therapeutic antibodies against other diseases, such as infectious or autoimmune diseases.
Collapse
Affiliation(s)
| | - Jose A. Garcia-Sanz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain;
| |
Collapse
|
8
|
Elia S, Patirelis A, Hardavella G, Santone A, Carlea F, Pompeo E. The Naples Prognostic Score Is a Useful Tool to Assess Surgical Treatment in Non-Small Cell Lung Cancer. Diagnostics (Basel) 2023; 13:3641. [PMID: 38132225 PMCID: PMC10742842 DOI: 10.3390/diagnostics13243641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Different prognostic scores have been applied to identify patients with non-small cell lung cancer who have a higher probability of poor outcomes. In this study, we evaluated whether the Naples Prognostic Score, a novel index that considers both inflammatory and nutritional values, was associated with long-term survival. This study presents a retrospective propensity score matching analysis of patients who underwent curative surgery for non-small cell lung cancer from January 2016 to December 2021. The score considered the following four pre-operative parameters: the neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, serum albumin, and total cholesterol. The Kaplan-Meier method and Cox regression analysis were performed to evaluate the relationship between the score and disease-free survival, overall survival, and cancer-related survival. A total of 260 patients were selected for the study, though this was reduced to 154 after propensity score matching. Post-propensity Kaplan-Meier analysis showed a significant correlation between the Naples Prognostic Score, overall survival (p = 0.018), and cancer-related survival (p = 0.007). Multivariate Cox regression analysis further validated the score as an independent prognostic indicator for both types of survival (p = 0.007 and p = 0.010, respectively). The Naples Prognostic Score proved to be an easily achievable prognostic factor of long-term survival in patients with non-small cell lung cancer after surgical treatment.
Collapse
Affiliation(s)
- Stefano Elia
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
- Thoracic Surgery Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Alexandro Patirelis
- Thoracic Surgery Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Georgia Hardavella
- 9th Department of Respiratory Medicine, Athens Chest Diseases Hospital Sotiria, 11527 Athens, Greece;
| | - Antonella Santone
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Federica Carlea
- Thoracic Surgery Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Eugenio Pompeo
- Thoracic Surgery Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.P.); (E.P.)
| |
Collapse
|
9
|
Gong YT, Zhang LJ, Liu YC, Tang M, Lin JY, Chen XY, Chen YX, Yan Y, Zhang WD, Jin JM, Luan X. Neutrophils as potential therapeutic targets for breast cancer. Pharmacol Res 2023; 198:106996. [PMID: 37972723 DOI: 10.1016/j.phrs.2023.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer (BC) remains the foremost cause of cancer mortality globally, with neutrophils playing a critical role in its pathogenesis. As an essential tumor microenvironment (TME) component, neutrophils are emerging as pivotal factors in BC progression. Growing evidence has proved that neutrophils play a Janus- role in BC by polarizing into the anti-tumor (N1) or pro-tumor (N2) phenotype. Clinical trials are evaluating neutrophil-targeted therapies, including Reparixin (NCT02370238) and Tigatuzumab (NCT01307891); however, their clinical efficacy remains suboptimal. This review summarizes the evidence regarding the close relationship between neutrophils and BC, emphasizing the critical roles of neutrophils in regulating metabolic and immune pathways. Additionally, we summarize the existing therapeutic approaches that target neutrophils, highlighting the challenges, and affirming the rationale for continuing to explore neutrophils as a viable therapeutic target in BC management.
Collapse
Affiliation(s)
- Yi-Ting Gong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Chen Liu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Tang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Yi Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Xu Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Yan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 201203, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
11
|
Gibellini L, Borella R, Santacroce E, Serattini E, Boraldi F, Quaglino D, Aramini B, De Biasi S, Cossarizza A. Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions. Cancers (Basel) 2023; 15:3327. [PMID: 37444436 DOI: 10.3390/cancers15133327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Eugenia Serattini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC), University Hospital GB Morgagni-L Pierantoni, 47121 Forlì, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
12
|
Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C, Wang T, Dong L, Shi M, Qin J, Xue M, Cao Y, Liu J, Liu P, Huang J, Wen C, Zhang J, Xu Z, Bai F, Deng X, Peng C, Chen H, Jiang L, Chen S, Shen B. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut 2023; 72:958-971. [PMID: 35688610 PMCID: PMC10086491 DOI: 10.1136/gutjnl-2021-326070] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/27/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Innate immunity plays important roles in pancreatic ductal adenocarcinoma (PDAC), as non-T-cell-enriched tumour. Neutrophils are major players in innate immune system. Here, we aimed to explore the heterogeneity and pro-tumour mechanisms of neutrophils in PDAC. DESIGN We analysed single-cell transcriptomes of peripheral blood polymorphonuclear leucocytes (PMNs) and tumour-infiltrating immune cells from five patients with PDAC, and performed immunofluorescence/immunohistochemistry staining, multi-omics analysis and in vitro experiments to validate the discoveries of bioinformatics analysis. RESULTS Exploration of the heterogeneity of tumour-associated neutrophils (TANs) revealed a terminally differentiated pro-tumour subpopulation (TAN-1) associated with poor prognosis, an inflammatory subpopulation (TAN-2), a population of transitional stage that have just migrated to tumour microenvironment (TAN-3) and a subpopulation preferentially expressing interferon-stimulated genes (TAN-4). Glycolysis signature was upregulated along neutrophil transition trajectory, and TAN-1 was featured with hyperactivated glycolytic activity. The glycolytic switch of TANs was validated by integrative multi-omics approach of transcriptomics, proteomics and metabolomics analysis. Activation of glycolytic activity by LDHA overexpression induced immunosuppression and pro-tumour functions in neutrophil-like differentiated HL-60 (dHL-60) cells. Mechanistic studies revealed BHLHE40, downstream to hypoxia and endoplasmic reticulum stress, was a key regulator in polarisation of neutrophils towards TAN-1 phenotype, and direct transcriptional regulation of BHLHE40 on TAN-1 marker genes was demonstrated by chromatin immunoprecipitation assay. Pro-tumour and immunosuppression functions were observed in dHL-60 cells overexpressing BHLHE40. Importantly, immunohistochemistry analysis of PDAC tissues revealed the unfavourable prognostic value of BHLHE40+ neutrophils. CONCLUSION The dynamic properties of TANs revealed by this study will be helpful in advancing PDAC therapy targeting innate immunity.
Collapse
Affiliation(s)
- Liwen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ting Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jiejie Qin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Meilin Xue
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Center for Biomedical Big Data, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jun Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Wei S, Wei F, Li M, Yang Y, Zhang J, Li C, Wang J. Target immune components to circumvent sorafenib resistance in hepatocellular carcinoma. Biomed Pharmacother 2023; 163:114798. [PMID: 37121146 DOI: 10.1016/j.biopha.2023.114798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Sorafenib, a multi-kinase inhibitor, has been approved for cancer treatment for decades, especially hepatocellular carcinoma (HCC). Although sorafenib produced substantial clinical benefits in the initial stage, a large proportion of cancer patients acquired drug resistance in subsequent treatment, which always disturbs clinical physicians. Cumulative evidence unraveled the underlying mechanism of sorafenib, but few reports focused on the role of immune subpopulations, since the immunological rationale of sorafenib resistance has not yet been defined. Here, we reviewed the immunoregulatory effects of sorafenib on the tumor microenvironment and emphasized the potential immunological mechanisms of therapeutic resistance to sorafenib. Moreover, we also summarized the clinical outcomes and ongoing trials in combination of sorafenib with immunotherapy, highlighted the immunotherapeutic strategies to improve sorafenib efficacy, and put forward several prospective questions aimed at guiding future research in overcoming sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China
| | - Fenghua Wei
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou City, Guangdong Province, PR China
| | - Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China
| | - Jingwen Zhang
- R & D Management Department, China National Biotec Group, Beijing, PR China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China.
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China.
| |
Collapse
|
14
|
Martinez-Sanz P, Laurent ARG, Slot E, Hoogenboezem M, Bąbała N, van Bruggen R, Rongvaux A, Flavell RA, Tytgat GAM, Franke K, Matlung HL, Kuijpers TW, Amsen D, Karrich JJ. Humanized MISTRG as a preclinical in vivo model to study human neutrophil-mediated immune processes. Front Immunol 2023; 14:1105103. [PMID: 36969261 PMCID: PMC10032520 DOI: 10.3389/fimmu.2023.1105103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionMISTRG mice have been genetically modified to allow development of a human myeloid compartment from engrafted human CD34+ haemopoietic stem cells, making them particularly suited to study the human innate immune system in vivo. Here, we characterized the human neutrophil population in these mice to establish a model that can be used to study the biology and contribution in immune processes of these cells in vivo.Methods and resultsWe could isolate human bone marrow neutrophils from humanized MISTRG mice and confirmed that all neutrophil maturation stages from promyelocytes (CD11b–CD16–) to end-stage segmented cells (CD11b+CD16+) were present. We documented that these cells possessed normal functional properties, including degranulation, reactive oxygen species production, adhesion, and antibody-dependent cellular cytotoxicity towards antibody-opsonized tumor cells ex vivo. The acquisition of functional capacities positively correlated with the maturation state of the cell. We found that human neutrophils were retained in the bone marrow of humanized MISTRG mice during steady state. However, the mature segmented CD11b+CD16+ human neutrophils were released from the bone marrow in response to two well-established neutrophil-mobilizing agents (i.e., G-CSF and/or CXCR4 antagonist Plerixafor). Moreover, the neutrophil population in the humanized MISTRG mice actively reacted to thioglycolate-induced peritonitis and could infiltrate implanted human tumors, as shown by flow cytometry and fluorescent microscopy.DiscussionThese results show that functional human neutrophils are generated and can be studied in vivo using the humanized MISTRG mice, providing a model to study the various functions of neutrophils in inflammation and in tumors.
Collapse
Affiliation(s)
- Paula Martinez-Sanz
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| | - Adrien R. G. Laurent
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Edith Slot
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mark Hoogenboezem
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Nikolina Bąbała
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anthony Rongvaux
- Department of Immunology, University of Washington, Seattle, WA, United States
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, United States
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, United States
| | - Godelieve A. M. Tytgat
- Princess Maxima Center for Pediatric Oncology, Department of Pediatric Oncology, Utrecht, Netherlands
| | - Katka Franke
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L. Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Rheumatology and Infectious Diseases, Emma Children's Hospital, Department of Pediatric Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Derk Amsen
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| | - Julien J. Karrich
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| |
Collapse
|
15
|
The pro-tumorigenic responses in metastatic niches: an immunological perspective. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:333-344. [PMID: 36136272 DOI: 10.1007/s12094-022-02950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023]
Abstract
Metastasis is the leading cause of mortality related to cancer. In the course of metastasis, cancer cells detach from the primary tumor, enter the circulation, extravasate at secondary sites, and colonize there. All of these steps are rate limiting and decrease the efficiency of metastasis. Prior to their arrival, tumor cells can modify the secondary sites. These favorable microenvironments increase the probability of successful dissemination and are referred to as pre-metastatic niches. Cancer cells use different mechanisms to induce and maintain these niches, among which immune cells play prominent roles. The immune system, including innate and adaptive, enhances recruitment, extravasation, and colonization of tumor cells at distant sites. In addition to immune cells, stromal cells can also contribute to forming pre-metastatic niches. This review summarizes the pro-metastatic responses conducted by immune cells and the assistance of stromal cells and endothelial cells in the induction of pre-metastatic niches.
Collapse
|
16
|
Lu C, Liu Y, Ali NM, Zhang B, Cui X. The role of innate immune cells in the tumor microenvironment and research progress in anti-tumor therapy. Front Immunol 2023; 13:1039260. [PMID: 36741415 PMCID: PMC9893925 DOI: 10.3389/fimmu.2022.1039260] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
Innate immune cells in the tumor microenvironment (TME) mainly include macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow derived suppressor cells. They play an anti-tumor or pro-tumor role by secreting various cytokines, chemokines and other factors, and determine the occurrence and development of tumors. Comprehending the role of innate immune cells in tumorigenesis and progression can help improve therapeutic approaches targeting innate immune cells in the TME, increasing the likelihood of favorable prognosis. In this review, we discussed the cell biology of innate immune cells, their role in tumorigenesis and development, and the current status of innate immune cell-based immunotherapy, in order to provide an overview for future research lines and clinical trials.
Collapse
Affiliation(s)
- Chenglin Lu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Nasra Mohamoud Ali
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| |
Collapse
|
17
|
Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci 2022; 23:ijms232415827. [PMID: 36555469 PMCID: PMC9779721 DOI: 10.3390/ijms232415827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Ludmila Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Sewnath CA, Behrens LM, van Egmond M. Targeting myeloid cells with bispecific antibodies as novel immunotherapies of cancer. Expert Opin Biol Ther 2022; 22:983-995. [PMID: 35854649 DOI: 10.1080/14712598.2022.2098675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Most bispecific antibody (BsAb) therapies focus on stimulating the adaptive immune system, in particular T cells, to promote tumor cell killing. Another method to promote tumor eradication is through the engagement of myeloid cells, including macrophages and neutrophils, which are abundantly present and possess intrinsic cytotoxic mechanisms for tumor cell killing, making them interesting effector cells to recruit for BsAb therapy. AREAS COVERED In this review, we describe the evolving knowledge of the role of macrophages and neutrophils in cancer in scientific literature. Moreover, we address the BsAbs that have been developed over the years to recruit these cell types as effector cells in immunotherapy of cancer. This includes the discussion of BsAbs that target Fc receptors (i.e. FcγR and FcαRI) to induce antibody-dependent cellular phagocytosis (ADCP) by macrophages or trogoptosis via neutrophils, as well as BsAbs that interfere with checkpoint inhibition, including the SIRPα-CD47 pathway. EXPERT OPINION Elucidating the complexity of macrophage and neutrophil heterogeneity in cancer may help to specifically enlist the cytotoxic ability of these cells through targeting Fc receptors and checkpoint pathways, which may further enhance anti-cancer immunity.
Collapse
Affiliation(s)
- Celine An Sewnath
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Centre Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Leonie M Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Centre Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Centre Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Tumor-associated neutrophils and neutrophil-targeted cancer therapies. Biochim Biophys Acta Rev Cancer 2022; 1877:188762. [PMID: 35853517 DOI: 10.1016/j.bbcan.2022.188762] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/08/2023]
Abstract
Neutrophils are the frontline cells in response to microbial infections and are involved in a range of inflammatory disorders in the body. In recent years, neutrophils have gained considerable attention in their involvement of complex roles in tumor development and progression. Tumor-associated neutrophils (TANs) that accumulate in local region could be triggered by external stimuli from tumor microenvironment (TME) and switch between anti- and pro-tumor phenotypes. The anti-tumor neutrophils kill tumor cells through direct cytotoxic effects as well as indirect effects by activating adaptive immune responses. In contrast, the pro-tumor phenotype of neutrophils might be associated with cell proliferation, angiogenesis, and immunosuppression in TME. More recently, neutrophils have been proposed as a potential target in cancer therapy for their ability to diminish the pro-tumor pathways, such as by immune checkpoint blockade. This review discusses the complex roles of neutrophils in TME and highlights the strategies in neutrophil targeting in cancer treatment with a particular focus on the progresses of ongoing clinical trials involving neutrophil-targeted therapies.
Collapse
|
20
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
21
|
Hadjigol S, Shah BA, O’Brien-Simpson NM. The 'Danse Macabre'-Neutrophils the Interactive Partner Affecting Oral Cancer Outcomes. Front Immunol 2022; 13:894021. [PMID: 35784290 PMCID: PMC9243430 DOI: 10.3389/fimmu.2022.894021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, tremendous advances in the prevention, diagnosis, and treatment of cancer have taken place. However for head and neck cancers, including oral cancer, the overall survival rate is below 50% and they remain the seventh most common malignancy worldwide. These cancers are, commonly, aggressive, genetically complex, and difficult to treat and the delay, which often occurs between early recognition of symptoms and diagnosis, and the start of treatment of these cancers, is associated with poor prognosis. Cancer development and progression occurs in concert with alterations in the surrounding stroma, with the immune system being an essential element in this process. Despite neutrophils having major roles in the pathology of many diseases, they were thought to have little impact on cancer development and progression. Recent studies are now challenging this notion and placing neutrophils as central interactive players with other immune and tumor cells in affecting cancer pathology. This review focuses on how neutrophils and their sub-phenotypes, N1, N2, and myeloid-derived suppressor cells, both directly and indirectly affect the anti-tumor and pro-tumor immune responses. Emphasis is placed on what is currently known about the interaction of neutrophils with myeloid innate immune cells (such as dendritic cells and macrophages), innate lymphoid cells, natural killer cells, and fibroblasts to affect the tumor microenvironment and progression of oral cancer. A better understanding of this dialog will allow for improved therapeutics that concurrently target several components of the tumor microenvironment, increasing the possibility of constructive and positive outcomes for oral cancer patients. For this review, PubMed, Web of Science, and Google Scholar were searched for manuscripts using keywords and combinations thereof of "oral cancer, OSCC, neutrophils, TANs, MDSC, immune cells, head and neck cancer, and tumor microenvironment" with a focus on publications from 2018 to 2021.
Collapse
Affiliation(s)
- Sara Hadjigol
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| | | | - Neil M. O’Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
22
|
Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol 2022; 15:61. [PMID: 35585567 PMCID: PMC9118588 DOI: 10.1186/s13045-022-01282-8] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotherapies like the adoptive transfer of gene-engineered T cells and immune checkpoint inhibitors are novel therapeutic modalities for advanced cancers. However, some patients are refractory or resistant to these therapies, and the mechanisms underlying tumor immune resistance have not been fully elucidated. Immunosuppressive cells such as myeloid-derived suppressive cells, tumor-associated macrophages, tumor-associated neutrophils, regulatory T cells (Tregs), and tumor-associated dendritic cells are critical factors correlated with immune resistance. In addition, cytokines and factors secreted by tumor cells or these immunosuppressive cells also mediate the tumor progression and immune escape of cancers. Thus, targeting these immunosuppressive cells and the related signals is the promising therapy to improve the efficacy of immunotherapies and reverse the immune resistance. However, even with certain success in preclinical studies or in some specific types of cancer, large perspectives are unknown for these immunosuppressive cells, and the related therapies have undesirable outcomes for clinical patients. In this review, we comprehensively summarized the phenotype, function, and potential therapeutic targets of these immunosuppressive cells in the tumor microenvironment.
Collapse
|
23
|
Ling WL, Su CTT, Lua WH, Yeo JY, Poh JJ, Ng YL, Wipat A, Gan SKE. Variable-heavy (VH) families influencing IgA1&2 engagement to the antigen, FcαRI and superantigen proteins G, A, and L. Sci Rep 2022; 12:6510. [PMID: 35444201 PMCID: PMC9020155 DOI: 10.1038/s41598-022-10388-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/07/2022] [Indexed: 12/18/2022] Open
Abstract
Interest in IgA as an alternative antibody format has increased over the years with much remaining to be investigated in relation to interactions with immune cells. Considering the recent whole antibody investigations showing significant distal effects between the variable (V) and constant (C)- regions that can be mitigated by the hinge regions of both human IgA subtypes A1 and A2, we performed an in-depth mechanistic investigation using a panel of 28 IgA1s and A2s of both Trastuzumab and Pertuzumab models. FcαRI binding were found to be mitigated by the differing glycosylation patterns in IgA1 and 2 with contributions from the CDRs. On their interactions with antigen-Her2 and superantigens PpL, SpG and SpA, PpL was found to sterically hinder Her2 antigen binding with unexpected findings of IgAs binding SpG at the CH2-3 region alongside SpA interacting with IgAs at the CH1. Although the VH3 framework (FWR) is commonly used in CDR grafting, we found the VH1 framework (FWR) to be a possible alternative when grafting IgA1 and 2 owing to its stronger binding to antigen Her2 and weaker interactions to superantigen Protein L and A. These findings lay the foundation to understanding the interactions between IgAs and microbial superantigens, and also guide the engineering of IgAs for future antibody applications and targeting of superantigen-producing microbes.
Collapse
Affiliation(s)
- Wei-Li Ling
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Newcastle University Singapore, Singapore, Singapore
| | - Chinh Tran-To Su
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wai-Heng Lua
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun-Jie Poh
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuen-Ling Ng
- Newcastle University Singapore, Singapore, Singapore
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,James Cook University, Singapore, Singapore. .,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China. .,Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
24
|
Geh D, Leslie J, Rumney R, Reeves HL, Bird TG, Mann DA. Neutrophils as potential therapeutic targets in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2022; 19:257-273. [PMID: 35022608 DOI: 10.1038/s41575-021-00568-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
The success of atezolizumab plus bevacizumab treatment contributed to a shift in systemic therapies for hepatocellular carcinoma (HCC) towards combinations that include cancer immunotherapeutic agents. Thus far, the principal focus of cancer immunotherapy has been on interrupting immune checkpoints that suppress antitumour lymphocytes. As well as lymphocytes, the HCC environment includes numerous other immune cell types, among which neutrophils are emerging as an important contributor to the pathogenesis of HCC. A growing body of evidence supports neutrophils as key mediators of the immunosuppressive environment in which some cancers develop, as well as drivers of tumour progression. If neutrophils have a similar role in HCC, approaches that target or manipulate neutrophils might have therapeutic benefits, potentially including sensitization of tumours to conventional immunotherapy. Several neutrophil-directed therapies for patients with HCC (and other cancers) are now entering clinical trials. This Review outlines the evidence in support of neutrophils as drivers of HCC and details their mechanistic roles in development, progression and metastasis, highlighting the reasons that neutrophils are well worth investigating despite the challenges associated with studying them. Neutrophil-modulating anticancer therapies entering clinical trials are also summarized.
Collapse
Affiliation(s)
- Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rob Rumney
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helen L Reeves
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- The Liver Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Hepatopancreatobiliary Multidisciplinary Team, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, UK
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
25
|
Zhang Y, Liu X, Zhao J, Wang J, Song Q, Zhao C. The phagocytic receptors of β-glucan. Int J Biol Macromol 2022; 205:430-441. [PMID: 35202631 DOI: 10.1016/j.ijbiomac.2022.02.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Phagocytosis is a cellular process maintaining tissue balance and plays an essential role in initiating the innate immune response. The process of phagocytosis was triggered by the binding of pathogen-associated molecular patterns (PAMP) with their cell surface receptors on the phagocytes. These receptors not only perform phagocytic functions, but also bridge the gap between extracellular and intracellular communication, leading to signal transduction and the production of inflammatory mediators, which are crucial for clearing the invading pathogens and maintaining cell homeostasis. For the past few years, the application of β-glucan comes down to immunoregulation and anti-tumor territory. As a well-known PAMP, β-glucan is one of the most abundant polysaccharides in nature. By binding to specific receptors on immune cells and activating intracellular signal transduction pathways, it causes phagocytosis and promotes the release of cytokines. Further retrieval and straightening out literature related to β-glucan phagocytic receptors will help better elucidate their immunomodulatory functions. This review attempts to summarize physicochemical properties and specific processes involved in β-glucan induced phagocytosis, its phagocytic receptors, and cascade events triggered by β-glucan at the cellular and molecular levels.
Collapse
Affiliation(s)
- Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Xinning Liu
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Jun Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Jie Wang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
26
|
Szulc-Kielbik I, Klink M. Polymorphonuclear Neutrophils and Tumors: Friend or Foe? EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:141-167. [PMID: 35165863 DOI: 10.1007/978-3-030-91311-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor microenvironment (TME) is a dynamic network that apart from tumor cells includes also cells of the immune system, e.g., neutrophils, which are recruited from blood circulation. In TME, neutrophils are strongly implicated in the direct and indirect interactions with tumor cells or other immune cells, and they play roles in both preventing and/or facilitating tumor progression and metastasis. The dual role of neutrophils is determined by their high plasticity and heterogeneity. Analogous to the macrophages, neutrophils can express antitumoral (N1) and protumoral (N2) phenotypes which differ substantially in morphology and function. N1 phenotype characterizes with a high cytotoxic and proinflammatory activities, while N2 phenotype with immunosuppressive and prometastatic properties. The antitumoral effect of neutrophils includes for example the production of reactive oxygen species or proapoptotic molecules. The protumoral action of neutrophils relies on releasing of proangiogenic and prometastatic mediators, immunosuppressive factors, as well as on direct helping tumor cells in extravasation process. This chapter summarizes the heterogeneity of neutrophils in TME, as well as their dual role on tumor cells.
Collapse
Affiliation(s)
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
27
|
Gruijs M, Sewnath CAN, Egmond MV. Therapeutic exploitation of neutrophils to fight cancer. Semin Immunol 2021; 57:101581. [PMID: 34922817 DOI: 10.1016/j.smim.2021.101581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Antibody-based immunotherapy is a promising strategy in cancer treatment. Antibodies can directly inhibit tumor growth, induce complement-dependent cytotoxicity and induce Fc receptor-mediated elimination of tumor cells by macrophages and natural killer cells. Until now, however, neutrophils have been largely overlooked as potential effector cells, even though they are the most abundant type of immune cells in the circulation. Neutrophils display heterogeneity, especially in the context of cancer. Therefore, their role in cancer is debated. Nevertheless, neutrophils possess natural anti-tumor properties and appropriate stimulation, i.e. specific targeting via antibody therapy, induces potent tumor cell killing, especially via targeting of the immunoglobulin A Fc receptor (FcαRI, CD89). In this review we address the mechanisms of tumor cell killing by neutrophils and the role of neutrophils in induction of anti-tumor immunity. Moreover, possibilities for therapeutic targeting are discussed.
Collapse
Affiliation(s)
- Mandy Gruijs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Celine A N Sewnath
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol 2021; 14:173. [PMID: 34674757 PMCID: PMC8529570 DOI: 10.1186/s13045-021-01187-y] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, neutrophils have attracted increasing attention because of their cancer-promoting effects. An elevated neutrophil-to-lymphocyte ratio is considered a prognostic indicator for patients with cancer. Neutrophils are no longer regarded as innate immune cells with a single function, let alone bystanders in the pathological process of cancer. Their diversity and plasticity are being increasingly recognized. This review summarizes previous studies assessing the roles and mechanisms of neutrophils in cancer initiation, progression, metastasis and relapse. Although the findings are controversial, the fact that neutrophils play a dual role in promoting and suppressing cancer is undeniable. The plasticity of neutrophils allows them to adapt to different cancer microenvironments and exert different effects on cancer. Given the findings from our own research, we propose a reasonable hypothesis that neutrophils may be reprogrammed into a cancer-promoting state in the cancer microenvironment. This new perspective indicates that neutrophil reprogramming in the course of cancer treatment is a problem worthy of attention. Preventing or reversing the reprogramming of neutrophils may be a potential strategy for adjuvant cancer therapy.
Collapse
Affiliation(s)
- Shumin Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liaoliao Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
29
|
Gruijs M, Ganzevles SH, Stigter-van Walsum M, van der Mast R, van Ostaijen-ten Dam MM, Tuk CW, Schilham MW, Leemans CR, Brakenhoff RH, van Egmond M, van de Ven R, Bakema JE. NK Cell-Dependent Antibody-Mediated Immunotherapy Is Improved In Vitro and In Vivo When Combined with Agonists for Toll-like Receptor 2 in Head and Neck Cancer Models. Int J Mol Sci 2021; 22:11057. [PMID: 34681717 PMCID: PMC8541276 DOI: 10.3390/ijms222011057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The immunosuppressive character of head and neck cancers may explain the relatively low response rates to antibody therapy targeting a tumor antigen, such as cetuximab, and anti-PD-1 checkpoint inhibition. Immunostimulatory agents that overcome tumor-derived inhibitory signals could augment therapeutic efficacy, thereby enhancing tumor elimination and improving patient survival. Here, we demonstrate that cetuximab treatment combined with immunostimulatory agonists for Toll-like receptor (TLR) 2 induces profound immune responses. Natural killer (NK) cells, isolated from healthy individuals or patients with head and neck cancer, harbored enhanced cytotoxic capacity and increased tumor-killing potential in vitro. Additionally, combination treatment increased the release of several pro-inflammatory cytokines and chemokines by NK cells. Tumor-bearing mice that received cetuximab and the TLR2 ligand Pam3CSK4 showed increased infiltration of immune cells into the tumors compared to mice that received cetuximab monotherapy, resulting in a significant delay in tumor growth or even complete tumor regression. Moreover, combination treatment resulted in improved overall survival in vivo. In conclusion, combining tumor-targeting antibody-based immunotherapy with TLR stimulation represents a promising treatment strategy to improve the clinical outcomes of cancer patients. This treatment could well be applied together with other therapeutic strategies such as anti-PD-(L)1 checkpoint inhibition to further overcome immunosuppression.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity/immunology
- Cell Line, Tumor
- Cetuximab/pharmacology
- Cetuximab/therapeutic use
- Cytokines/metabolism
- Drug Therapy, Combination
- Female
- Head and Neck Neoplasms/therapy
- Humans
- Immunotherapy
- Killer Cells, Natural/immunology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lipopeptides/pharmacology
- Lipopeptides/therapeutic use
- Mice
- Mice, Nude
- Receptors, IgG/agonists
- Receptors, IgG/metabolism
- Toll-Like Receptor 2/agonists
- Toll-Like Receptor 2/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Mandy Gruijs
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
| | - Sonja H. Ganzevles
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Marijke Stigter-van Walsum
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Richard van der Mast
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Monique M. van Ostaijen-ten Dam
- Leiden University Medical Center, Department of Pediatrics, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (M.M.v.O.-t.D.); (M.W.S.)
| | - Cornelis W. Tuk
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
| | - Marco W. Schilham
- Leiden University Medical Center, Department of Pediatrics, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (M.M.v.O.-t.D.); (M.W.S.)
| | - C. René Leemans
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Ruud H. Brakenhoff
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Marjolein van Egmond
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
- Amsterdam UMC, Department of Surgery, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Jantine E. Bakema
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| |
Collapse
|
30
|
CD47-SIRPα Checkpoint Inhibition Enhances Neutrophil-Mediated Killing of Dinutuximab-Opsonized Neuroblastoma Cells. Cancers (Basel) 2021; 13:cancers13174261. [PMID: 34503071 PMCID: PMC8428220 DOI: 10.3390/cancers13174261] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Current immunotherapy for high-risk neuroblastoma patients involves treatment with anti-GD2 antibody dinutuximab, which has significantly improved the survival rate. Still, approximately half of the patients succumb to the tumor; therefore, efforts to improve their prognosis are urgently needed. Since T cell targeting immune checkpoint inhibitors in neuroblastoma are limited due to the low immunogenicity of these tumors, alternative immunotherapeutic approaches should be studied. The therapeutic targeting of the innate immune checkpoint CD47-SIRPα has the ability to enhance antitumor effects of myeloid cells, especially in the presence of cancer-opsonizing antibodies. Given that neutrophil ADCC is a dominant effector mechanism leading to the eradication of dinutuximab-opsonized neuroblastoma cells, we have investigated the therapeutic potential of anti-GD2 antibody in combination with CD47-SIRPα inhibition. We demonstrate here that the capacity of neutrophils to kill dinutuximab-opsonized neuroblastoma cells is controlled by the CD47-SIRPα axis and its disruption promotes their cytotoxic potential even further, significantly improving dinutuximab responsiveness. Abstract High-risk neuroblastoma, especially after recurrence, still has a very low survival rate. Immune checkpoint inhibitors targeting T cells have shown remarkable clinical efficacy in adult solid tumors, but their effects in pediatric cancers have been limited so far. On the other hand, targeting myeloid immune checkpoints, such as CD47-SIPRα, provide the opportunity to enhance antitumor effects of myeloid cells, including that of neutrophils, especially in the presence of cancer-opsonizing antibodies. Disialoganglioside (GD2)-expressing neuroblastoma cells targeted with anti-GD2 antibody dinutuximab are in part eradicated by neutrophils, as they recognize and bind the antibody targeted tumor cells through their Fc receptors. Therapeutic targeting of the innate immune checkpoint CD47-SIRPα has been shown to promote the potential of neutrophils as cytotoxic cells in different solid tumor indications using different cancer-targeting antibodies. Here, we demonstrate that the capacity of neutrophils to kill dinutuximab-opsonized neuroblastoma cells is also controlled by the CD47-SIRPα axis and can be further enhanced by antagonizing CD47-SIRPα interactions. In particular, CD47-SIRPa checkpoint inhibition enhanced neutrophil-mediated ADCC of dinutuximab-opsonized adrenergic neuroblastoma cells, whereas mesenchymal neuroblastoma cells may evade immune recognition by a reduction of GD2 expression. These findings provide a rational basis for targeting CD47-SIRPα interactions to potentiate dinutuximab responsiveness in neuroblastomas with adrenergic phenotype.
Collapse
|
31
|
McShane R, Arya S, Stewart AJ, Caie P, Bates M. Prognostic features of the tumour microenvironment in oesophageal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2021; 1876:188598. [PMID: 34332022 DOI: 10.1016/j.bbcan.2021.188598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Oesophageal adenocarcinoma (OAC) is a disease with an incredibly poor survival rate and a complex makeup. The growth and spread of OAC tumours are profoundly influenced by their surrounding microenvironment and the properties of the tumour itself. Constant crosstalk between the tumour and its microenvironment is key to the survival of the tumour and ultimately the death of the patient. The tumour microenvironment (TME) is composed of a complex milieu of cell types including cancer associated fibroblasts (CAFs) which make up the tumour stroma, endothelial cells which line blood and lymphatic vessels and infiltrating immune cell populations. These various cell types and the tumour constantly communicate through environmental cues including fluctuations in pH, hypoxia and the release of mitogens such as cytokines, chemokines and growth factors, many of which help promote malignant progression. Eventually clusters of tumour cells such as tumour buds break away and spread through the lymphatic system to nearby lymph nodes or enter the circulation forming secondary metastasis. Collectively, these factors need to be considered when assessing and treating patients clinically. This review aims to summarise the ways in which these various factors are currently assessed and how they relate to patient treatment and outcome at an individual level.
Collapse
Affiliation(s)
| | - Swati Arya
- School of Medicine, University of St Andrews, Fife, UK
| | | | - Peter Caie
- School of Medicine, University of St Andrews, Fife, UK
| | - Mark Bates
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
32
|
Denis Musquer M, Jouand N, Pere M, Lamer JE, Bézieau S, Matysiak T, Faroux R, Caroli Bosc FX, Rousselet MC, Leclair F, Mosnier JF, Toquet C, Gervois N, Bossard C. High-Density of FcγRIIIA + (CD16 +) Tumor-Associated Neutrophils in Metastases Improves the Therapeutic Response of Cetuximab in Metastatic Colorectal Cancer Patients, Independently of the HLA-E/CD94-NKG2A Axis. Front Oncol 2021; 11:684478. [PMID: 34211852 PMCID: PMC8239306 DOI: 10.3389/fonc.2021.684478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) in the anti-tumor effect of cetuximab in metastatic colorectal cancer (mCRC) is only based on the impact of FcγRIIIA (CD16) polymorphisms as predictive of therapeutic response. However, nature, density and therapeutic impact of FcγRIIIA+ (CD16) effector cells in tumor remain poorly documented. Moreover, the inhibition of cetuximab-mediated ADCC induced by NK cells by the engagement of the new inhibitory CD94-NKG2A immune checkpoint has only been demonstrated in vitro. This multicentric study aimed to determine, on paired primary and metastatic tissue samples from a cohort of mCRC patients treated with cetuximab: 1) the nature and density of FcγRIIIA+ (CD16) immune cells, 2) the expression profile of HLA-E/β2m by tumor cells as well as the density of CD94+ immune cells and 3) their impact on both objective response to cetuximab and survival. We demonstrated that FcγRIIIA+ (CD16) intraepithelial immune cells mainly correspond to tumor-associated neutrophils (TAN), and their high density in metastases was significantly associated with a better response to cetuximab, independently of the expression of the CD94/NKG2A inhibitory immune checkpoint. However, HLA-E/β2m, preferentially overexpressed in metastases compared with primary tumors and associated with CD94+ tumor infiltrating lymphocytes (TILs), was associated with a poor overall survival. Altogether, these results strongly support the use of bispecific antibodies directed against both EGFR and FcγRIIIA (CD16) in mCRC patients, to boost cetuximab-mediated ADCC in RAS wild-type mCRC patients. The preferential overexpression of HLA-E/β2m in metastases, associated with CD94+ TILs and responsible for a poor prognosis, provides convincing arguments to inhibit this new immune checkpoint with monalizumab, a humanized anti-NKG2A antibody, in combination with anti- FcγRIIIA/EGFR bispecific antibodies as a promising therapeutic perspective in RAS wild-type mCRC patients.
Collapse
Affiliation(s)
| | - Nicolas Jouand
- Université de Nantes, Inserm, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| | - Morgane Pere
- Biostatistics Plateform, University Hospital of Nantes, Nantes, France
| | | | - Stéphane Bézieau
- Department of Genetic, University Hospital of Nantes, Nantes, France
| | - Tamara Matysiak
- Department of Gastroenterology, University Hospital of Nantes, Nantes, France
| | - Roger Faroux
- Department of Gastroenterology, Hospital of La Roche sur Yon, La Roche sur Yon, France
| | | | | | - François Leclair
- Department of Pathology, Hospital of La Roche sur Yon, La Roche sur Yon, France
| | | | - Claire Toquet
- Department of Pathology, University Hospital of Nantes, Nantes, France
| | - Nadine Gervois
- Université de Nantes, Inserm, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| | - Céline Bossard
- Department of Pathology, University Hospital of Nantes, Nantes, France.,Université de Nantes, Inserm, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| |
Collapse
|
33
|
Bohländer F, Riehl D, Weißmüller S, Gutscher M, Schüttrumpf J, Faust S. Immunomodulation: Immunoglobulin Preparations Suppress Hyperinflammation in a COVID-19 Model via FcγRIIA and FcαRI. Front Immunol 2021; 12:700429. [PMID: 34177967 PMCID: PMC8223875 DOI: 10.3389/fimmu.2021.700429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
The rapid spread of SARS-CoV-2 has induced a global pandemic. Severe forms of COVID-19 are characterized by dysregulated immune response and "cytokine storm". The role of IgG and IgM antibodies in COVID-19 pathology is reasonably well studied, whereas IgA is neglected. To improve clinical outcome of patients, immune modulatory drugs appear to be beneficial. Such drugs include intravenous immunoglobulin preparations, which were successfully tested in severe COVID-19 patients. Here we established a versatile in vitro model to study inflammatory as well as anti-inflammatory processes by therapeutic human immunoglobulins. We dissect the inflammatory activation on neutrophil-like HL60 cells, using an immune complex consisting of latex beads coated with spike protein of SARS-CoV-2 and opsonized with specific immunoglobulins from convalescent plasma. Our data clarifies the role of Fc-receptor-dependent phagocytosis via IgA-FcαRI and IgG-FcγR for COVID-19 disease followed by cytokine release. We show that COVID-19 associated inflammation could be reduced by addition of human immunoglobulin preparations (IVIG and trimodulin), while trimodulin elicits stronger immune modulation by more powerful ITAMi signaling. Besides IgG, the IgA component of trimodulin in particular, is of functional relevance for immune modulation in this assay setup, highlighting the need to study IgA mediated immune response.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Analytical Development and Validation, Corporate R&D, Biotest AG, Dreieich, Germany
- Corporate R&D, Biotest AG, Dreieich, Germany
| | - Dennis Riehl
- Department of Analytical Development and Validation, Corporate R&D, Biotest AG, Dreieich, Germany
- Corporate R&D, Biotest AG, Dreieich, Germany
| | - Sabrina Weißmüller
- Corporate R&D, Biotest AG, Dreieich, Germany
- Department of Translational Research, Preclinical Research, Corporate R&D, Biotest AG, Dreieich, Germany
| | - Marcus Gutscher
- Department of Analytical Development and Validation, Corporate R&D, Biotest AG, Dreieich, Germany
- Corporate R&D, Biotest AG, Dreieich, Germany
| | | | - Stefanie Faust
- Department of Analytical Development and Validation, Corporate R&D, Biotest AG, Dreieich, Germany
- Corporate R&D, Biotest AG, Dreieich, Germany
| |
Collapse
|
34
|
Xia Y, Ying S, Jin R, Wu H, Shen Y, Yin T, Yan F, Zhang W, Lan F, Zhang B, Zhu C, Li C, Li W, Shen H. Application of a classifier combining bronchial transcriptomics and chest computed tomography features facilitates the diagnostic evaluation of lung cancer in smokers and nonsmokers. Int J Cancer 2021; 149:1290-1301. [PMID: 33963762 DOI: 10.1002/ijc.33675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer screening by computed tomography (CT) reduces mortality but exhibited high false-positive rates. We established a diagnostic classifier combining chest CT features with bronchial transcriptomics. Patients with CT-detected suspected lung cancer were enrolled. The sample collected by bronchial brushing was used for RNA sequencing. The e1071 and pROC packages in R software was applied to build the model. Eventually, a total of 283 patients, including 183 with lung cancer and 100 with benign lesions, were included into final analysis. When incorporating transcriptomic data with radiological characteristics, the advanced model yielded 0.903 AUC with 81.1% NPV. Moreover, the classifier performed well regardless of lesion size, location, stage, histologic type or smoking status. Pathway analysis showed enhanced epithelial differentiation, tumor metastasis, and impaired immunity were predominant in smokers with cancer, whereas tumorigenesis played a central role in nonsmokers with cancer. Apoptosis and oxidative stress contributed critically in metastatic lung cancer; by contrast, immune dysfunction was pivotal in locally advanced lung cancer. Collectively, we devised a minimal-to-noninvasive, efficient diagnostic classifier for smokers and nonsmokers with lung cancer, which provides evidence for different mechanisms of cancer development and metastasis associated with smoking. A negative classifier result will help the physician make conservative diagnostic decisions.
Collapse
Affiliation(s)
- Yang Xia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Jin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Shen
- Hangzhou Mitigenomics Technology Co, Ltd, Hangzhou, China
| | - Tong Yin
- Hangzhou Mitigenomics Technology Co, Ltd, Hangzhou, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhang
- Hangzhou Mitigenomics Technology Co, Ltd, Hangzhou, China
| | - Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Afucosylated IgG Targets FcγRIV for Enhanced Tumor Therapy in Mice. Cancers (Basel) 2021; 13:cancers13102372. [PMID: 34069226 PMCID: PMC8156657 DOI: 10.3390/cancers13102372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Cancer treatments are increasingly based on therapeutic antibodies to clear tumors. While in vivo mouse models are useful to predict effectiveness of human antibodies it is not completely clear how useful these models are to test antibodies engineered with enhanced effector functions designed for humans. One of the changes considered for many new antibody-based drugs is the removal of fucose (resulting in afucosylated IgG) which enhances IgG-Fc receptor (FcγR) mediated effector functions in humans through FcγRIIIa. Here we show that afucosylated human IgG1 also have enhanced effector functions against peritoneal metastasis of melanoma cells in mice through the evolutionary related mouse FcγRIV. This shows that afucosylated human IgG is functionally recognized across species and shows that mouse tumor models can be used to assess the therapeutic potential of afucosylated IgG1. Abstract Promising strategies for maximizing IgG effector functions rely on the introduction of natural and non-immunogenic modifications. The Fc domain of IgG antibodies contains an N-linked oligosaccharide at position 297. Human IgG antibodies lacking the core fucose in this glycan have enhanced binding to human (FcγR) IIIa/b, resulting in enhanced antibody dependent cell cytotoxicity and phagocytosis through these receptors. However, it is not yet clear if glycan-enhancing modifications of human IgG translate into more effective treatment in mouse models. We generated humanized hIgG1-TA99 antibodies with and without core-fucose. C57Bl/6 mice that were injected intraperitoneally with B16F10-gp75 mouse melanoma developed significantly less metastasis outgrowth after treatment with afucosylated hIgG1-TA99 compared to mice treated with wildtype hhIgG1-TA99. Afucosylated human IgG1 showed stronger interaction with the murine FcγRIV, the mouse orthologue of human FcγRIIIa, indicating that this glycan change is functionally conserved between the species. In agreement with this, no significant differences were observed in tumor outgrowth in FcγRIV-/- mice treated with human hIgG1-TA99 with or without the core fucose. These results confirm the potential of using afucosylated therapeutic IgG to increase their efficacy. Moreover, we show that afucosylated human IgG1 antibodies act across species, supporting that mouse models can be suitable to test afucosylated antibodies.
Collapse
|
36
|
Liu H, Sun S, Wang G, Lu M, Zhang X, Wei X, Gao X, Huang C, Li Z, Zheng J, Zhang Q. Tyrosine Kinase Inhibitor Cabozantinib Inhibits Murine Renal Cancer by Activating Innate and Adaptive Immunity. Front Oncol 2021; 11:663517. [PMID: 33954115 PMCID: PMC8089383 DOI: 10.3389/fonc.2021.663517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background Advanced renal cell carcinoma (RCC) has a very dismal prognosis. Cabozantinib, a tyrosine kinase inhibitor, has been approved for the treatment of advanced RCC. However, the impact of cabozantinib on the immune microenvironment of RCC remains poorly understood. Methods Kaplan-Meier survival curves were constructed to examine the correlation between intratumor infiltration of neutrophils and patient prognosis in RCC. Infiltration and effector function of neutrophils and T cells in response to cabozantinib treatment were investigated in a murine RCC model. Results A retrospective study of 307 RCC patients indicated that neutrophils were recruited into tumor tissues, and increased neutrophil infiltration was associated with improved clinical outcomes. In a murine model of RCC, cabozantinib treatment significantly increased both intratumor infiltration and anti-tumor function of neutrophils and T cells. Mechanistically, we found that cabozantinib treatment induced expression of neutrophil-related chemokines (CCL11 and CXCL12) and T cell-related chemokines (CCL8 and CX3CL1) in the tumor microenvironment. Furthermore, depletion of neutrophils and CD8+ T cells compromised the therapeutic efficacy of cabozantinib. Importantly, cabozantinib treatment induced long-term anti-tumor T cell response. Conclusions Our study revealed novel mechanisms of the therapeutic effects of cabozantinib on RCC by activating both neutrophil-mediated innate immunity and T cell-mediated adaptive immunity. These findings are of great significance for guiding the clinical use of cabozantinib and provide a good candidate for future combination therapy with T-cell therapies or other immunotherapies.
Collapse
Affiliation(s)
- Hongyan Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shishuo Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mengmeng Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaokang Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaohuan Wei
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chao Huang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhen Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
37
|
Heemskerk N, Gruijs M, Temming AR, Heineke MH, Gout DY, Hellingman T, Tuk CW, Winter PJ, Lissenberg-Thunnissen S, Bentlage AE, de Donatis M, Bögels M, Rösner T, Valerius T, Bakema JE, Vidarsson G, van Egmond M. Augmented antibody-based anticancer therapeutics boost neutrophil cytotoxicity. J Clin Invest 2021; 131:134680. [PMID: 33561014 DOI: 10.1172/jci134680] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Most clinically used anticancer mAbs are of the IgG isotype, which can eliminate tumor cells through NK cell-mediated antibody-dependent cellular cytotoxicity and macrophage-mediated antibody-dependent phagocytosis. IgG, however, ineffectively recruits neutrophils as effector cells. IgA mAbs induce migration and activation of neutrophils through the IgA Fc receptor (FcαRI) but are unable to activate NK cells and have poorer half-life. Here, we combined the agonistic activity of IgG mAbs and FcαRI targeting in a therapeutic bispecific antibody format. The resulting TrisomAb molecules recruited NK cells, macrophages, and neutrophils as effector cells for eradication of tumor cells in vitro and in vivo. Moreover, TrisomAb had long in vivo half-life and strongly decreased B16F10gp75 tumor outgrowth in mice. Importantly, neutrophils of colorectal cancer patients effectively eliminated tumor cells in the presence of anti-EGFR TrisomAb but were less efficient in mediating killing in the presence of IgG anti-EGFR mAb (cetuximab). The clinical application of TrisomAb may provide potential alternatives for cancer patients who do not benefit from current IgG mAb therapy.
Collapse
Affiliation(s)
- Niels Heemskerk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity, De Boelelaan 1117, Amsterdam, Netherlands
| | - Mandy Gruijs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity, De Boelelaan 1117, Amsterdam, Netherlands
| | - A Robin Temming
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke H Heineke
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity, De Boelelaan 1117, Amsterdam, Netherlands
| | - Dennis Y Gout
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity, De Boelelaan 1117, Amsterdam, Netherlands
| | - Tessa Hellingman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Cornelis W Tuk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity, De Boelelaan 1117, Amsterdam, Netherlands
| | - Paula J Winter
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity, De Boelelaan 1117, Amsterdam, Netherlands
| | - Suzanne Lissenberg-Thunnissen
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arthur Eh Bentlage
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marco de Donatis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity, De Boelelaan 1117, Amsterdam, Netherlands
| | - Marijn Bögels
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity, De Boelelaan 1117, Amsterdam, Netherlands
| | - Thies Rösner
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University and University Hospital Schleswig Holstein, Kiel, Germany
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University and University Hospital Schleswig Holstein, Kiel, Germany
| | - Jantine E Bakema
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head-Neck Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity, De Boelelaan 1117, Amsterdam, Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| |
Collapse
|
38
|
Lara S, Anania JC, Virtanen A, Stenhammar V, Kleinau S. Importance of antibody isotypes in antitumor immunity by monocytes and complement using human-immune tumor models. Eur J Immunol 2021; 51:1218-1233. [PMID: 33533020 DOI: 10.1002/eji.202048885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/31/2020] [Indexed: 02/01/2023]
Abstract
Monoclonal antibodies (mAbs) have revolutionized clinical medicine, especially in the field of cancer immunotherapy. The challenge now is to improve the response rates, as immunotherapy still fails for many patients. Strategies to enhance tumor cell death is a fundamental aim, but relevant model systems for human tumor immunology are lacking. Herein, we have developed a preclinical human immune - three-dimensional (3D) tumor model (spheroids) to map the efficiency of tumor-specific isotypes for improved tumor cell killing. Different anti-CD20 Rituximab (RTX) isotypes alone or in combination, were evaluated for mediating complement-dependent cytotoxicity and antibody-dependent phagocytosis by human monocytic cells in 3D spheroids, in parallel with monolayer cultures, of human CD20+ B-cell lymphomas. We demonstrate that the IgG3 variant of RTX has the greatest tumoricidal effect over other isotypes, and when combined with apoptosis-inducing RTX-IgG2 isotype the therapeutic effect can be substantially enhanced. The results show further that the treatment outcome by RTX isotypes is influenced by tumor morphology and expression of the complement inhibitor CD59. Hence, the human immune-3D tumor model is a clinical relevant and attractive ex vivo system to predict mAbs for best efficacy in cancer immunotherapy.
Collapse
Affiliation(s)
- Sandra Lara
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jessica C Anania
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Center for Cancer Immunology, University of Southampton, Southampton, UK
| | - Alexander Virtanen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Viktoria Stenhammar
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Mantovani A, Marchesi F, Jaillon S, Garlanda C, Allavena P. Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell Mol Immunol 2021; 18:566-578. [PMID: 33473192 PMCID: PMC8027665 DOI: 10.1038/s41423-020-00613-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloid cells in tumor tissues constitute a dynamic immune population characterized by a non-uniform phenotype and diverse functional activities. Both tumor-associated macrophages (TAMs), which are more abundantly represented, and tumor-associated neutrophils (TANs) are known to sustain tumor cell growth and invasion, support neoangiogenesis and suppress anticancer adaptive immune responses. In recent decades, several therapeutic approaches have been implemented in preclinical cancer models to neutralize the tumor-promoting roles of both TAMs and TANs. Some of the most successful strategies have now reached the clinic and are being investigated in clinical trials. In this review, we provide an overview of the recent literature on the ever-growing complexity of the biology of TAMs and TANs and the development of the most promising approaches to target these populations therapeutically in cancer patients.
Collapse
Affiliation(s)
- Alberto Mantovani
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Federica Marchesi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sebastien Jaillon
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| |
Collapse
|
40
|
Simple Peripheral Blood Cell Parameters to Predict Prognosis in Non-Small Cell Lung Cancer. Indian J Surg 2021. [DOI: 10.1007/s12262-020-02237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
41
|
Du K, Li Y, Liu J, Chen W, Wei Z, Luo Y, Liu H, Qi Y, Wang F, Sui J. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol Ther 2021; 29:1572-1584. [PMID: 33429083 DOI: 10.1016/j.ymthe.2021.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/23/2020] [Accepted: 01/02/2021] [Indexed: 02/08/2023] Open
Abstract
Glypican-3 (GPC3) is a well-characterized hepatocellular carcinoma (HCC)-associated antigen, yet anti-GPC3 therapies have achieved only minimal clinical progress. CD47 is a ubiquitously expressed innate immune checkpoint that promotes evasion of tumors from immune surveillance. Given both the specific expression of GPC3 in HCC and the known phagocytosis inhibitory effect of CD47 in liver cancer, we hypothesized that a bispecific antibody (BsAb) that co-engages with GPC3 and CD47 may offer excellent antitumor efficacy with minimal toxicity. Here, we generated a novel BsAb: GPC3/CD47 biAb. With the use of both in vitro and in vivo assays, we found that GPC3/CD47 biAb exerts strong antitumor activity preferentially against dual antigen-expressing tumor cells. In hCD47/human signal regulatory protein alpha (hCD47/hSIRPα) humanized mice, GPC3/CD47 biAb had an extended serum half-life without causing systemic toxicity. Importantly, GPC3/CD47 biAb induced enhanced Fc-mediated effector functions to dual antigen-expressing HCC cells in vitro, and both macrophages and neutrophils are required for its strong efficacy against xenograft HCC tumors. Notably, GPC3/CD47 biAb outperformed monotherapies and a combination therapy with anti-CD47 and anti-GPC3 monoclonal antibodies (mAbs) in a xenograft HCC model. Our study illustrates a strategy for improving HCC treatment by boosting innate immune responses and presents new insights to inform antibody design for the future development of innovative immune therapies.
Collapse
Affiliation(s)
- Kaixin Du
- School of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yulu Li
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Juan Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Wei Chen
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong Luo
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Huisi Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yonghe Qi
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
42
|
Shah A, Rauth S, Aithal A, Kaur S, Ganguly K, Orzechowski C, Varshney GC, Jain M, Batra SK. The Current Landscape of Antibody-based Therapies in Solid Malignancies. Am J Cancer Res 2021; 11:1493-1512. [PMID: 33391547 PMCID: PMC7738893 DOI: 10.7150/thno.52614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past three decades, monoclonal antibodies (mAbs) have revolutionized the landscape of cancer therapy. Still, this benefit remains restricted to a small proportion of patients due to moderate response rates and resistance emergence. The field has started to embrace better mAb-based formats with advancements in molecular and protein engineering technologies. The development of a therapeutic mAb with long-lasting clinical impact demands a prodigious understanding of target antigen, effective mechanism of action, gene engineering technologies, complex interplay between tumor and host immune system, and biomarkers for prediction of clinical response. This review discusses the various approaches used by mAbs for tumor targeting and mechanisms of therapeutic resistance that is not only caused by the heterogeneity of tumor antigen, but also the resistance imposed by tumor microenvironment (TME), including inefficient delivery to the tumor, alteration of effector functions in the TME, and Fc-gamma receptor expression diversity and polymorphism. Further, this article provides a perspective on potential strategies to overcome these barriers and how diagnostic and prognostic biomarkers are being used in predicting response to mAb-based therapies. Overall, understanding these interdependent parameters can improve the current mAb-based formulations and develop novel mAb-based therapeutics for achieving durable clinical outcomes in a large subset of patients.
Collapse
|
43
|
Abstract
Neutrophils are the most abundant white blood cells in the human circulation and are usually associated with inflammation and with fighting infections. In recent years, the role of these cells during cancer progression has been a matter of increasing interest. Tumor-associated neutrophils (TANs) accumulate in cancer patients and represent an important negative prognostic marker in a broad variety of neoplasms. Accordingly, TANs represent a highly attractive therapeutic target. TAN may exhibit tumor-promoting or -inhibiting functions. Pro-tumor neutrophils support tumor angiogenesis and growth and promote metastatic dissemination of tumors via establishment of the premetastatic niche. Studies in animal models have already shown that the depletion of TANs or the inhibition of their migration bears therapeutic potential. Multiple pathways and mediators that induce pro-tumoral functions in neutrophils have been identified. In this review, we provide an up-to-date overview of the pro- and anti-tumor properties of neutrophils as well as the environmental cues that regulate these distinct functions. We also report on our own work that comprehensively investigated the role of neutrophils in head and neck cancer.
Collapse
|
44
|
Furumaya C, Martinez-Sanz P, Bouti P, Kuijpers TW, Matlung HL. Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Front Immunol 2020; 11:2100. [PMID: 32983165 PMCID: PMC7492657 DOI: 10.3389/fimmu.2020.02100] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, cancer immunotherapies such as checkpoint blockade and adoptive T cell transfer have been a game changer in many aspects and have improved the treatment for various malignancies considerably. Despite the clinical success of harnessing the adaptive immunity to combat the tumor, the benefits of immunotherapy are still limited to a subset of patients and cancer types. In recent years, neutrophils, the most abundant circulating leukocytes, have emerged as promising targets for anti-cancer therapies. Traditionally regarded as the first line of defense against infections, neutrophils are increasingly recognized as critical players during cancer progression. Evidence shows the functional plasticity of neutrophils in the tumor microenvironment, allowing neutrophils to exert either pro-tumor or anti-tumor effects. This review describes the tumor-promoting roles of neutrophils, focusing on their myeloid-derived suppressor cell activity, as well as their role in tumor elimination, exerted mainly via antibody-dependent cellular cytotoxicity. We will discuss potential approaches to therapeutically target neutrophils in cancer. These include strategies in humans to either silence the pro-tumor activity of neutrophils, or to activate or enhance their anti-tumor functions. Redirecting neutrophils seems a promising approach to harness innate immunity to improve treatment for cancer patients.
Collapse
Affiliation(s)
- Charita Furumaya
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Paula Martinez-Sanz
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Panagiota Bouti
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
45
|
Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer 2020; 20:485-503. [PMID: 32694624 DOI: 10.1038/s41568-020-0281-y] [Citation(s) in RCA: 615] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Neutrophils play a key role in defence against infection and in the activation and regulation of innate and adaptive immunity. In cancer, tumour-associated neutrophils (TANs) have emerged as an important component of the tumour microenvironment. Here, they can exert dual functions. TANs can be part of tumour-promoting inflammation by driving angiogenesis, extracellular matrix remodelling, metastasis and immunosuppression. Conversely, neutrophils can also mediate antitumour responses by direct killing of tumour cells and by participating in cellular networks that mediate antitumour resistance. Neutrophil diversity and plasticity underlie the dual potential of TANs in the tumour microenvironment. Myeloid checkpoints as well as the tumour and tissue contexture shape neutrophil function in response to conventional therapies and immunotherapy. We surmise that neutrophils can provide tools to tailor current immunotherapy strategies and pave the way to myeloid cell-centred therapeutic strategies, which would be complementary to current approaches.
Collapse
Affiliation(s)
- Sebastien Jaillon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
| | - Andrea Ponzetta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Diletta Di Mitri
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Angela Santoni
- Dipartimento di Medicina Molecolare Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma 'La Sapienza', Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Raffaella Bonecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
46
|
Si Y, Merz SF, Jansen P, Wang B, Bruderek K, Altenhoff P, Mattheis S, Lang S, Gunzer M, Klode J, Squire A, Brandau S. Multidimensional imaging provides evidence for down-regulation of T cell effector function by MDSC in human cancer tissue. Sci Immunol 2020; 4:4/40/eaaw9159. [PMID: 31628161 DOI: 10.1126/sciimmunol.aaw9159] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022]
Abstract
A high intratumoral frequency of neutrophils is associated with poor clinical outcome in most cancer entities. It is hypothesized that immunosuppressive MDSC (myeloid-derived suppressor cell) activity of neutrophils against tumor-reactive T cells contributes to this effect. However, direct evidence for such activity in situ is lacking. Here, we used whole-mount labeling and clearing, three-dimensional (3D) light sheet microscopy and digital image reconstruction supplemented by 2D multiparameter immunofluorescence, for in situ analyses of potential MDSC-T cell interactions in primary human head and neck cancer tissue. We could identify intratumoral hotspots of high polymorphonuclear (PMN)-MDSC and T cell colocalization. In these areas, the expression of effector molecules Granzyme B and Ki67 in T cells was strongly reduced, in particular for T cells that were in close proximity or physically engaged with PMN-MDSC, which expressed LOX-1 and arginase I. Patients with cancer with evidence for strong down-regulation of T cell function by PMN-MDSC had significantly impaired survival. In summary, our approach identifies areas of clinically relevant functional interaction between MDSC and T cells in human cancer tissue and may help to inform patient selection in future combination immunotherapies.
Collapse
Affiliation(s)
- Yu Si
- Department of Otorhinolaryngology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany.,Department of Otolaryngology, Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Simon F Merz
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philipp Jansen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Baoxiao Wang
- Department of Otorhinolaryngology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany.,Department of Otolaryngology, Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Petra Altenhoff
- Department of Otorhinolaryngology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Stefan Mattheis
- Department of Otorhinolaryngology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joachim Klode
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anthony Squire
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany. .,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
47
|
Effects of anti-PD-1 immunotherapy on tumor regression: insights from a patient-derived xenograft model. Sci Rep 2020; 10:7078. [PMID: 32341383 PMCID: PMC7184589 DOI: 10.1038/s41598-020-63796-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapies, such as checkpoint blockade of programmed cell death protein-1 (PD-1), have resulted in unprecedented improvements in survival for patients with lung cancer. Nonetheless, not all patients benefit equally and many issues remain unresolved, including the mechanisms of action and the possible effector function of immune cells from non-lymphoid lineages. The purpose of this study was to investigate whether anti-PD-1 immunotherapy acts on malignant tumor cells through mechanisms beyond those related to T lymphocyte involvement. We used a murine patient-derived xenograft (PDX) model of early-stage non–small cell lung carcinoma (NSCLC) devoid of host lymphoid cells, and studied the tumor and immune non-lymphoid responses to immunotherapy with anti-PD-1 alone or in combination with standard chemotherapy (cisplatin). An antitumor effect was observed in animals that received anti-PD-1 treatment, alone or in combination with cisplatin, likely due to a mechanism independent of T lymphocytes. Indeed, anti-PD-1 treatment induced myeloid cell mobilization to the tumor concomitant with the production of exudates compatible with an acute inflammatory reaction mediated by murine polymorphonuclear leukocytes, specifically neutrophils. Thus, while keeping in mind that more research is needed to corroborate our findings, we report preliminary evidence for a previously undescribed immunotherapy mechanism in this model, suggesting a potential cytotoxic action of neutrophils as PD-1 inhibitor effector cells responsible for tumor regression by necrotic extension.
Collapse
|
48
|
Xu C, Yuan J, Du W, Wu J, Fang Q, Zhang X, Li H. Significance of the Neutrophil-to-Lymphocyte Ratio in p16-Negative Squamous Cell Carcinoma of Unknown Primary in Head and Neck. Front Oncol 2020; 10:39. [PMID: 32083001 PMCID: PMC7001523 DOI: 10.3389/fonc.2020.00039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Objective: The neutrophil-to-lymphocyte ratio (NLR) has been reported to be associated with survival in solid malignancies. The main goal was to evaluate the prognostic significance of the NLR in patients with p16-negative squamous cell carcinoma of unknown primary (SCCUP) in head and neck. Methods: The association between the NLR and clinical pathologic variables was evaluated by the chi-square test. The primary endpoint of interest was disease-specific survival (DSS). Univariate and Coxmodel analyses were used to evaluate prognostic factors. Results: A total of 153 patients were included in the analysis. Cancer cachexia was noted in 10 patients. The mean NLR value was 3.9 (range: 1.4–8.3). A high NLR was significantly associated with cancer cachexia development. The 5-year DSS rate was 58%. In patients with NLRs varying from 1.4 to 3.7, the 5-year DSS rate was 71%; in patients with NLRs varying from 3.7 to 6.0, the 5-year DSS rate was 57%; in patients with NLRs varying from 6.0 to 8.3, the 5-year DSS rate was 39%, and the difference was significant (p = 0.001). Further Cox model analysis confirmed the independence of the NLR in predicting survival. Conclusions: In patients with p16-negative SCCUP, an NLR ≥ 6.0 is significantly associated with worse prognosis.
Collapse
Affiliation(s)
- Chunmiao Xu
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Junhui Yuan
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wei Du
- Department of Head Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Junfu Wu
- Department of Head Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qigen Fang
- Department of Head Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xu Zhang
- Department of Head Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hailiang Li
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
49
|
Davis SK, Selva KJ, Kent SJ, Chung AW. Serum IgA Fc effector functions in infectious disease and cancer. Immunol Cell Biol 2020; 98:276-286. [PMID: 31785006 PMCID: PMC7217208 DOI: 10.1111/imcb.12306] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Immunoglobulin (Ig) A is the most abundant antibody isotype present at mucosal surfaces and the second most abundant in human serum. In addition to preventing pathogen entry at mucosal surfaces, IgA can control and eradicate bacterial and viral infections through a variety of antibody‐mediated innate effector cell mechanisms. The role of mucosal IgA in infection (e.g. neutralization) and in inflammatory homeostasis (e.g. allergy and autoimmunity) has been extensively investigated; by contrast, serum IgA is comparatively understudied. IgA binding to fragment crystallizable alpha receptor plays a dual role in the activation and inhibition of innate effector cell functions. Mounting evidence suggests that serum IgA induces potent effector functions against various bacterial and some viral infections including Neisseria meningitidis and rotavirus. Furthermore, in the era of immunotherapy, serum IgA provides an interesting alternative to classical IgG monoclonal antibodies to treat cancer and infectious pathogens. Here we discuss the role of serum IgA in infectious diseases with reference to bacterial and viral infections and the potential for IgA as a monoclonal antibody therapy.
Collapse
Affiliation(s)
- Samantha K Davis
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin J Selva
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Matlung HL, Babes L, Zhao XW, van Houdt M, Treffers LW, van Rees DJ, Franke K, Schornagel K, Verkuijlen P, Janssen H, Halonen P, Lieftink C, Beijersbergen RL, Leusen JHW, Boelens JJ, Kuhnle I, van der Werff Ten Bosch J, Seeger K, Rutella S, Pagliara D, Matozaki T, Suzuki E, Menke-van der Houven van Oordt CW, van Bruggen R, Roos D, van Lier RAW, Kuijpers TW, Kubes P, van den Berg TK. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Rep 2019; 23:3946-3959.e6. [PMID: 29949776 DOI: 10.1016/j.celrep.2018.05.082] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions.
Collapse
Affiliation(s)
- Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Liane Babes
- Immunology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Xi Wen Zhao
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dieke J van Rees
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Schornagel
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans Janssen
- Division of Cell Biology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pasi Halonen
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap J Boelens
- U-DANCE, Laboratory for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands; Department of Pediatrics, Blood and Marrow Transplantation Program, UMC Utrecht, Utrecht, the Netherlands
| | - Ingrid Kuhnle
- Department of Pediatrics, University Medicine Göttingen, Göttingen, Germany
| | | | - Karl Seeger
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Center for Pediatric and Adolescent Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sergio Rutella
- Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Takashi Matozaki
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Signaling, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | | | - Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rene A W van Lier
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Kubes
- Immunology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|