1
|
Ryoo GH, Kim GJ, Han AR, Jin CH, Lee H, Nam JW, Choi H, Jung CH. Antimetastatic activity of seongsanamide B in γ-irradiated human lung cancer. Heliyon 2023; 9:e20179. [PMID: 37809399 PMCID: PMC10559954 DOI: 10.1016/j.heliyon.2023.e20179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Lung cancer, which has a high incidence and mortality rates, often metastasizes and exhibits resistance to radiation therapy. Seongsanamide B has conformational features that suggest it has therapeutic potential; however, its antitumor activity has not yet been reported. We evaluated the possibility of seongsanamide B as a radiation therapy efficiency enhancer to suppress γ-irradiation-induced metastasis in non-small cell lung cancer. Seongsanamide B suppressed non-small cell lung cancer cell migration and invasion caused by γ-irradiation. Furthermore, it suppressed γ-irradiation-induced upregulation of Bcl-XL and its downstream signaling molecules, such as superoxide dismutase 2 (SOD2) and phosphorylated Src, by blocking the nuclear translocation of phosphorylated STAT3. Additionally, seongsanamide B markedly modulated the γ-irradiation-induced upregulation of E-cadherin and vimentin. Consistent with the results obtained in vitro, while seongsanamide B did not affect xenograft tumor growth, it significantly suppressed γ-irradiation-induced metastasis by inhibiting Bcl-XL/SOD2/phosphorylated-Src expression and modulating E-cadherin and vimentin expression in a mouse model. Thus, seongsanamide B may demonstrate potential applicability as a radiation therapy efficiency enhancer for lung cancer treatment.
Collapse
Affiliation(s)
- Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Hunmin Lee
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do, 54810, South Korea
| |
Collapse
|
2
|
Zhou Z, Guan B, Xia H, Zheng R, Xu B. Particle radiotherapy in the era of radioimmunotherapy. Cancer Lett 2023:216268. [PMID: 37331583 DOI: 10.1016/j.canlet.2023.216268] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Radiotherapy (RT) is one of the key modalities for cancer treatment, and more than 70% of tumor patients will receive RT during the course of their disease. Particle radiotherapy, such as proton radiotherapy, carbon-ion radiotherapy (CIRT) and boron neutron capture therapy (BNCT), is currently available for the treatment of patients Immunotherapy combined with photon RT has been successfully used in the clinic. The effect of immunotherapy combined with particle RT is an area of interest. However, the molecular mechanisms underlying the effects of combined immunotherapy and particle RT remain largely unknown. In this review, we summarize the properties of different types of particle RT and the mechanisms underlying their radiobiological effects. Additionally, we compared the main molecular players in photon RT and particle RT and the mechanisms involved the RT-mediated immune response.
Collapse
Affiliation(s)
- Zihan Zhou
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Bingjie Guan
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Huang Xia
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China.
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
3
|
Charalampopoulou A, Barcellini A, Ciocca M, Di Liberto R, Pasi F, Pullia MG, Orlandi E, Facoetti A. Factors released by low and high-LET irradiated fibroblasts modulate migration and invasiveness of pancreatic cancer cells. Front Oncol 2022; 12:1003494. [PMID: 36313689 PMCID: PMC9597630 DOI: 10.3389/fonc.2022.1003494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Radiotherapy represents a major treatment option for patients with pancreatic cancer, however, its benefits remain limited also due to the ability of cancer cells to migrate to the surrounding tissues. Low-LET ionizing radiation is well known to promote tumor cell migration and invasion, nevertheless, little data provided by studies using high-LET radiation has led to ambiguous findings. What is hypothesized to be fundamental in the modulation of migration of tumor cells exposed to ionizing radiation is the influence of the microenvironment. Therefore, the properties of cells that populate the tumor stroma cannot be ignored when studying the influence of radiation on the migratory and invasive capacity of cancer cells. This is especially important in the case of pancreatic malignancies that are characterized by an abundance of stromal cells, including cancer-associated fibroblasts, which are known to orchestrate the cross-talk with tumor cells. Aim The current study aims to investigate whether the presence of factors released by irradiated fibroblasts affects the migratory and invasive capacity of pancreatic cancer cells exposed to different doses of photons or C-ions. Materials and methods AsPC-1 and AG01522 cells were irradiated with the same dose of photons or C-ions at room temperature. Through Boyden chamber assay, we tested whether factors secreted by irradiated fibroblasts may influence tumor cell migration, while the invasiveness of AsPC-1 cells was assessed using matrigel precoated inserts in which medium collected from non-irradiated (0 Gy), photon and C-ion irradiated fibroblasts, was added. Data were analyzed by Student t-test using GraphPad software. The mean ± s.d. was determined with a significance level of p<0.05. Results In the presence of conditioned medium collected from 1 Gy and 2 Gy photon irradiated fibroblasts, the number of migrated tumor cells increased (P<0.0360, P<0.0001) but decreased at 4 Gy dose (P<0.002). There was a trend of reduction in migration (P<0.0460, P<0.038, P<0.0024, P<0.0002), as well as a decrease in invasiveness (P<0.0525, P<0.0035, P<0.0868, P<0.0310) after exposure to 0.5 Gy, 1 Gy, 2 Gy and 4 Gy of C-ions. Conclusions The presence of irradiated fibroblasts affected the invasiveness capability of pancreatic cancer cells, probably by the reciprocal release of soluble factors whose production is differently modulated after high or low-LET radiation. Understanding the effects of irradiation on the metastatic potential of pancreatic cancer cells is of utmost importance for improving the outcome and tailoring the therapeutic approach. This challenging scenario requires a continuous and multidisciplinary approach that involves clinicians together with researcher experts in oncological and radiation treatment. In the last years, including preclinical experiences in a multidisciplinary approach has proved to be a winning strategy in clinical oncological research.
Collapse
Affiliation(s)
- Alexandra Charalampopoulou
- Research and Development Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
- *Correspondence: Alexandra Charalampopoulou, ; Amelia Barcellini,
| | - Amelia Barcellini
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
- *Correspondence: Alexandra Charalampopoulou, ; Amelia Barcellini,
| | - Mario Ciocca
- Medical-Physics Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Riccardo Di Liberto
- Department of Medical Physics, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Francesca Pasi
- Medical Oncology Unit, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Marco Giuseppe Pullia
- Research and Development Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Ester Orlandi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Angelica Facoetti
- Research and Development Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
4
|
Alexandrova A, Lomakina M. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers. Front Pharmacol 2022; 13:962652. [PMID: 36278174 PMCID: PMC9582651 DOI: 10.3389/fphar.2022.962652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor shrinkage as a result of antitumor therapy is not the only and sufficient indicator of treatment success. Cancer progression leads to dissemination of tumor cells and formation of metastases - secondary tumor lesions in distant organs. Metastasis is associated with acquisition of mobile phenotype by tumor cells as a result of epithelial-to-mesenchymal transition and further cell migration based on cytoskeleton reorganization. The main mechanisms of individual cell migration are either mesenchymal, which depends on the activity of small GTPase Rac, actin polymerization, formation of adhesions with extracellular matrix and activity of proteolytic enzymes or amoeboid, which is based on the increase in intracellular pressure caused by the enhancement of actin cortex contractility regulated by Rho-ROCK-MLCKII pathway, and does not depend on the formation of adhesive structures with the matrix, nor on the activity of proteases. The ability of tumor cells to switch from one motility mode to another depending on cell context and environmental conditions, termed migratory plasticity, contributes to the efficiency of dissemination and often allows the cells to avoid the applied treatment. The search for new therapeutic targets among cytoskeletal proteins offers an opportunity to directly influence cell migration. For successful treatment it is important to assess the likelihood of migratory plasticity in a particular tumor. Therefore, the search for specific markers that can indicate a high probability of migratory plasticity is very important.
Collapse
|
5
|
Ionizing radiation-induced DNA damage responses affect cell compressibility. Biochem Biophys Res Commun 2022; 603:116-122. [DOI: 10.1016/j.bbrc.2022.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
|
6
|
Abstract
Protons and carbon ions (hadrons) have useful properties for the treatments of patients affected by oncological pathologies. They are more precise than conventional X-rays and possess radiobiological characteristics suited for treating radio-resistant or inoperable tumours. This paper gives an overview of the status of hadron therapy around the world. It focusses on the Italian National Centre for Oncological Hadron therapy (CNAO), introducing operation procedures, system performance, expansion projects, methodologies and modelling to build individualized treatments. There is growing evidence that supports safety and effectiveness of hadron therapy for a variety of clinical situations. However, there is still a lack of high-level evidence directly comparing hadron therapy with modern conventional radiotherapy techniques. The results give an overview of pre-clinical and clinical research studies and of the treatments of 3700 patients performed at CNAO. The success and development of hadron therapy is strongly associated with the creation of networks among hadron therapy facilities, clinics, universities and research institutions. These networks guarantee the growth of cultural knowledge on hadron therapy, favour the efficient recruitment of patients and present available competences for R&D (Research and Development) programmes.
Collapse
|
7
|
Mei J, Böhland C, Geiger A, Baur I, Berner K, Heuer S, Liu X, Mataite L, Melo-Narváez MC, Özkaya E, Rupp A, Siebenwirth C, Thoma F, Kling MF, Friedl AA. Development of a model for fibroblast-led collective migration from breast cancer cell spheroids to study radiation effects on invasiveness. Radiat Oncol 2021; 16:159. [PMID: 34412654 PMCID: PMC8375131 DOI: 10.1186/s13014-021-01883-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invasiveness is a major factor contributing to metastasis of tumour cells. Given the broad variety and plasticity of invasion mechanisms, assessing potential metastasis-promoting effects of irradiation for specific mechanisms is important for further understanding of potential adverse effects of radiotherapy. In fibroblast-led invasion mechanisms, fibroblasts produce tracks in the extracellular matrix in which cancer cells with epithelial traits can follow. So far, the influence of irradiation on this type of invasion mechanisms has not been assessed. METHODS By matrix-embedding coculture spheroids consisting of breast cancer cells (MCF-7, BT474) and normal fibroblasts, we established a model for fibroblast-led invasion. To demonstrate applicability of this model, spheroid growth and invasion behaviour after irradiation with 5 Gy were investigated by microscopy and image analysis. RESULTS When not embedded, irradiation caused a significant growth delay in the spheroids. When irradiating the spheroids with 5 Gy before embedding, we find comparable maximum migration distance in fibroblast monoculture and in coculture samples as seen in unirradiated samples. Depending on the fibroblast strain, the number of invading cells remained constant or was reduced. CONCLUSION In this spheroid model and with the cell lines and fibroblast strains used, irradiation does not have a major invasion-promoting effect. 3D analysis of invasiveness allows to uncouple effects on invading cell number and maximum invasion distance when assessing radiation effects.
Collapse
Affiliation(s)
- Jia Mei
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany.,Department of Physics, LMU Munich, 85748, Garching, Germany
| | - Claudia Böhland
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Anika Geiger
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Iris Baur
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Kristina Berner
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Steffen Heuer
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Xue Liu
- RG Adipocytes & Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Laura Mataite
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | | | - Erdem Özkaya
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Anna Rupp
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | | | - Felix Thoma
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Matthias F Kling
- Department of Physics, LMU Munich, 85748, Garching, Germany.,Center for Advanced Laser Applications, 85748, Garching, Germany
| | - Anna A Friedl
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany.
| |
Collapse
|
8
|
Rouanet J, Quintana M, Auzeloux P, Cachin F, Degoul F. Benzamide derivative radiotracers targeting melanin for melanoma imaging and therapy: Preclinical/clinical development and combination with other treatments. Pharmacol Ther 2021; 224:107829. [PMID: 33662452 DOI: 10.1016/j.pharmthera.2021.107829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Cutaneous melanoma arises from proliferating melanocytes, cells specialized in the production of melanin. This property means melanin can be considered as a target for monitoring melanoma patients using nuclear imaging or targeted radionuclide therapy (TRT). Since the 1970s, many researchers have shown that specific molecules can interfere with melanin. This paper reviews some such molecules: benzamide structures improved to increase their pharmacokinetics for imaging or TRT. We first describe the characteristics and biosynthesis of melanin, and the main features of melanin tracers. The second part summarizes the preclinical and corresponding clinical studies on imaging. The last section presents TRT results from ongoing protocols and discusses combinations with other therapies as an opportunity for melanoma non-responders or patients resistant to treatments.
Collapse
Affiliation(s)
- Jacques Rouanet
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000 Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Mercedes Quintana
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Philippe Auzeloux
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Florent Cachin
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Françoise Degoul
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| |
Collapse
|
9
|
Tinganelli W, Durante M. Tumor Hypoxia and Circulating Tumor Cells. Int J Mol Sci 2020; 21:ijms21249592. [PMID: 33339353 PMCID: PMC7766826 DOI: 10.3390/ijms21249592] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) are a rare tumor cell subpopulation induced and selected by the tumor microenvironment's extreme conditions. Under hypoxia and starvation, these aggressive and invasive cells are able to invade the lymphatic and circulatory systems. Escaping from the primary tumor, CTCs enter into the bloodstream to form metastatic deposits or re-establish themselves in cancer's primary site. Although radiotherapy is widely used to cure solid malignancies, it can promote metastasis. Radiation can disrupt the primary tumor vasculature, increasing the dissemination of CTCs. Radiation also induces epithelial-mesenchymal transition (EMT) and eliminates suppressive signaling, causing the proliferation of existent, but previously dormant, disseminated tumor cells (DTCs). In this review, we collect the results and evidence underlying the molecular mechanisms of CTCs and DTCs and the effects of radiation and hypoxia in developing these cells.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64291 Darmstadt, Germany
- Correspondence:
| |
Collapse
|
10
|
Wong WY, Gilman K, Limesand KH. Yap activation in irradiated parotid salivary glands is regulated by ROCK activity. PLoS One 2020; 15:e0232921. [PMID: 33151927 PMCID: PMC7644026 DOI: 10.1371/journal.pone.0232921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy plays a major role in the curative treatment of head and neck cancer, either as a single modality therapy, or in combination with surgery or chemotherapy, or both. Despite advances to limit radiation-induced side-effects, the major salivary glands are often affected. This frequently leads to hyposalivation which causes an increased risk for xerostomia, dental caries, mucositis, and malnutrition culminating in a significant impact on patients' quality of life. Previous research demonstrated that loss of salivary function is associated with a decrease in polarity regulators and an increase in nuclear Yap localization in a putative stem and progenitor cell (SPC) population. Yap activation has been shown to be essential for regeneration in intestinal injury models; however, the highest levels of nuclear Yap are observed in irradiated salivary SPCs that do not regenerate the gland. Thus, elucidating the inputs that regulate nuclear Yap localization and determining the role that Yap plays within the entire tissue following radiation damage and during regeneration is critical. In this study, we demonstrate that radiation treatment increases nuclear Yap localization in acinar cells and Yap-regulated genes in parotid salivary tissues. Conversely, administration of insulin-like growth factor 1 (IGF1), known to restore salivary function in mouse models, reduces nuclear Yap localization and Yap transcriptional targets to levels similar to untreated tissues. Activation of Rho-associated protein kinase (ROCK) using calpeptin results in increased Yap-regulated genes in primary acinar cells while inhibition of ROCK activity (Y-27632) leads to decreased Yap transcriptional targets. These results suggest that Yap activity is dependent on ROCK activity and provides new mechanistic insights into the regulation of radiation-induced hyposalivation.
Collapse
Affiliation(s)
- Wen Yu Wong
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States of America
| | - Kristy Gilman
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Kirsten H. Limesand
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States of America
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
11
|
Vedoya GM, López Nigro MM, Martín GA. The secretome of non-tumorigenic mammary cells MCF-10A elicits DNA damage in MCF-7 and MDA-MB-231 breast cancer cells. Toxicol In Vitro 2020; 70:105018. [PMID: 33049311 DOI: 10.1016/j.tiv.2020.105018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022]
Abstract
Radiotherapy is used in breast cancer to destroy tumor cells lingering after surgery. It is accepted that lethal effects of ionizing radiation occur as a result of damage to DNA in irradiated (IR) cells. However, response mechanisms may promote cell survival with efficient DNA repair or genomic alterations. Chromosomal aberrations are frequent in surviving cells and may enhance chromosomal instability (CIN) which is associated with increased risk of recurrence and metastasis. Intercellular communication can affect the response in IR cells and cause damage in non-irradiated (N-IR) cells. We evaluated the effect of the secretome of non-tumorigenic mammary cells (MCF-10A) on proliferation and DNA damage in breast cancer cells (MCF-7 and MDA-MB-231). Results showed that conditioned media from IR and N-IR MCF-10A cells produced cycles of DNA double-strand breaks in N-IR and IR tumor cells leaving them with residual damage. CIN markers (micronuclei, nucleoplasmic bridges, nuclear buds) were also increased in IR and N-IR tumor cells, being the effect of conditioned media from IR MCF-10A greater in many cases. The inhibition of phosphorylation/activation of Src kinase in cancer cells hindered CIN markers' increment. Besides, clonogenic survival of tumor cells was differentially modulated by conditioned media from MCF-10A: decreased in MCF-7 and enhanced in MDA-MB-231 cells. These results signal the relevance of tumor-host interaction in tumor behavior and the response to radiotherapy.
Collapse
Affiliation(s)
- Guadalupe M Vedoya
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físicomatemática, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Marcela M López Nigro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica, Laboratorio de Citogenética Humana y Citogenética Toxicológica, Buenos Aires, Argentina
| | - Gabriela A Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físicomatemática, Laboratorio de Radioisótopos, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Li J, Wu DM, Han R, Yu Y, Deng SH, Liu T, Zhang T, Xu Y. Low-Dose Radiation Promotes Invasion and Migration of A549 Cells by Activating the CXCL1/NF-κB Signaling Pathway. Onco Targets Ther 2020; 13:3619-3629. [PMID: 32431513 PMCID: PMC7197943 DOI: 10.2147/ott.s243914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Radiation has well-known and well-characterized direct toxic effects on cells and tissues. However, low-dose ionizing irradiation (LDIR) can also enhance the invasion and migration of tumor cells, and the mechanisms underlying these effects remain unclear. The present study aimed to investigate changes induced in the migration and invasion of A549 cells after LDIR and to explore the potential molecular mechanism. Materials and Methods A549 cells were irradiated with X-rays at different doses (0, 2, 4, and 6 Gy) and cultured for 24 or 48 h. Apoptosis and proliferation were evaluated by lactate dehydrogenase release, CCK8, colony formation, and flow cytometry assays. Wound-healing and transwell assays were performed to detect migration and invasion ability. CXCL1 or p65 were knocked down using lentivirus-mediated siRNA in A549 cell lines. Knockdown efficiency of CXCL1 and p65 was assessed by RT-qPCR. Western blotting and immunofluorescence were used to determine the changes in protein levels. Results In cells irradiated with a dose of 6 Gy, after 48 h, apoptosis was clearly induced while proliferation was inhibited. Irradiation with 4 Gy resulted in the upregulation of CXCL1 expression and activation of the NF-κB signaling pathway. Moreover, upon 4 Gy irradiation, migration, invasion, and epithelial–mesenchymal transition (EMT) were significantly enhanced in A549 cells. Importantly, CXCL1 or p65 knockdown inhibited radiation-induced migration, invasion, and EMT. Conclusion Low-dose radiation upregulates CXCL1 expression and activates the NF-κB signaling to regulate EMT in A549 cells, thereby promoting invasion and migration. These results provide new insights into the prevention of tumor invasion and metastasis induced by radiotherapy.
Collapse
Affiliation(s)
- Jing Li
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Dong-Ming Wu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Rong Han
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Ye Yu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Shi-Hua Deng
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Teng Liu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Ting Zhang
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Ying Xu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
13
|
Konings K, Belmans N, Vermeesen R, Baselet B, Lamers G, Janssen A, Isebaert S, Baatout S, Haustermans K, Moreels M. Targeting the Hedgehog pathway in combination with X‑ray or carbon ion radiation decreases migration of MCF‑7 breast cancer cells. Int J Oncol 2019; 55:1339-1348. [PMID: 31638201 DOI: 10.3892/ijo.2019.4901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/28/2019] [Indexed: 11/06/2022] Open
Abstract
The use of carbon ion therapy for cancer treatment is becoming more widespread due to the advantages of carbon ions compared with X‑rays. Breast cancer patients may benefit from these advantages, as the surrounding healthy tissues receive a lower dose, and the increased biological effectiveness of carbon ions can better control radioresistant cancer cells. Accumulating evidence indicates that the Hedgehog (Hh) pathway is linked to the development and progression of breast cancer, as well as to resistance to X‑irradiation and the migratory capacity of cancer cells. Hence, there is an increasing interest in targeting the Hh pathway in combination with radiotherapy. Several studies have already investigated this treatment strategy with conventional radiotherapy. However, to the best of our knowledge, the combination of Hh inhibitors with particle therapy has not yet been explored. The aim of the present study was to investigate the potential of the Hh inhibitor GANT61 as an effective modulator of radiosensitivity and migration potential in MCF‑7 breast cancer cells, and compare potential differences between carbon ion irradiation and X‑ray exposure. Although Hh targeting was not able to radiosensitise cells to any radiation type used, the combination of GANT61 with X‑rays or carbon ions (energy: 95 MeV/n; linear energy transfer: 73 keV/µm) was more effective in decreasing MCF‑7 cell migration compared with either radiation type alone. Gene expression of the Hh pathway was affected to different degrees in response to X‑ray and carbon ion irradiation, as well as in response to the combination of GANT61 with irradiation. In conclusion, combining Hh inhibition with radiation (X‑rays or carbon ions) more effectively decreased breast cancer cell migration compared with radiation treatment alone.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Niels Belmans
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Greta Lamers
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Sofie Isebaert
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Flemish‑Brabant, 3000 Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Flemish‑Brabant, 3000 Leuven, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| |
Collapse
|
14
|
Carrier F, Liao Y, Mendenhall N, Guerrieri P, Todor D, Ahmad A, Dominello M, Joiner MC, Burmeister J. Three Discipline Collaborative Radiation Therapy (3DCRT) Special Debate: I would treat prostate cancer with proton therapy. J Appl Clin Med Phys 2019; 20:7-14. [PMID: 31166085 PMCID: PMC6612688 DOI: 10.1002/acm2.12621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- France Carrier
- Department of Radiation OncologyUniversity of MarylandBaltimoreMDUSA
| | - Yixiang Liao
- Department of Radiation OncologyRush University Medical CenterChicagoILUSA
| | | | | | - Dorin Todor
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Anis Ahmad
- Department of Radiation OncologyUniversity of Miami, Sylvester Comprehensive Cancer Center, Miller School of MedicineMiamiFLUSA
| | - Michael Dominello
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Michael C. Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|
15
|
Konings K, Vandevoorde C, Belmans N, Vermeesen R, Baselet B, Walleghem MV, Janssen A, Isebaert S, Baatout S, Haustermans K, Moreels M. The Combination of Particle Irradiation With the Hedgehog Inhibitor GANT61 Differently Modulates the Radiosensitivity and Migration of Cancer Cells Compared to X-Ray Irradiation. Front Oncol 2019; 9:391. [PMID: 31139573 PMCID: PMC6527843 DOI: 10.3389/fonc.2019.00391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the advantages of charged particles compared to conventional radiotherapy, a vast increase is noted in the use of particle therapy in the clinic. These advantages include an improved dose deposition and increased biological effectiveness. Metastasis is still an important cause of mortality in cancer patients and evidence has shown that conventional radiotherapy can increase the formation of metastasizing cells. An important pathway involved in the process of metastasis is the Hedgehog (Hh) signaling pathway. Recent studies have demonstrated that activation of the Hh pathway, in response to X-rays, can lead to radioresistance and increased migratory, and invasive capabilities of cancer cells. Here, we investigated the effect of X-rays, protons, and carbon ions on cell survival, migration, and Hh pathway gene expression in prostate cancer (PC3) and medulloblastoma (DAOY) cell lines. In addition, the potential modulation of cell survival and migration by the Hh pathway inhibitor GANT61 was investigated. We found that in both cell lines, carbon ions were more effective in decreasing cell survival and migration as well as inducing more significant alterations in the Hh pathway genes compared to X-rays or protons. In addition, we show here for the first time that the Hh inhibitor GANT61 is able to sensitize DAOY medulloblastoma cells to particle radiation (proton and carbon ion) but not to conventional X-rays. This important finding demonstrates that the results of combination treatment strategies with X-ray radiotherapy cannot be automatically extrapolated to particle therapy and should be investigated separately. In conclusion, combining GANT61 with particle radiation could offer a benefit for specific cancer types with regard to cancer cell survival.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium.,Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Niels Belmans
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium.,Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Merel Van Walleghem
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Sofie Isebaert
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| |
Collapse
|
16
|
Wozny AS, Vares G, Alphonse G, Lauret A, Monini C, Magné N, Cuerq C, Fujimori A, Monboisse JC, Beuve M, Nakajima T, Rodriguez-Lafrasse C. ROS Production and Distribution: A New Paradigm to Explain the Differential Effects of X-ray and Carbon Ion Irradiation on Cancer Stem Cell Migration and Invasion. Cancers (Basel) 2019; 11:cancers11040468. [PMID: 30987217 PMCID: PMC6521340 DOI: 10.3390/cancers11040468] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Although conventional radiotherapy promotes the migration/invasion of cancer stem cells (CSCs) under normoxia, carbon ion (C-ion) irradiation actually decreases these processes. Unraveling the mechanisms of this discrepancy, particularly under the hypoxic conditions that pertain in niches where CSCs are preferentially localized, would provide a better understanding of the origins of metastases. Invasion/migration, proteins involved in epithelial-to-mesenchymal transition (EMT), and expression of MMP-2 and HIF-1α were quantified in the CSC subpopulations of two head-and-neck squamous cell carcinoma (HNSCC) cell lines irradiated with X-rays or C-ions. X-rays triggered HNSCC-CSC migration/invasion under normoxia, however this effect was significantly attenuated under hypoxia. C-ions induced fewer of these processes in both oxygenation conditions. The differential response to C-ions was associated with a lack of HIF-1α stabilization, MMP-2 expression, or activation of kinases of the main EMT signaling pathways. Furthermore, we demonstrated a major role of reactive oxygen species (ROS) in the triggering of invasion/migration in response to X-rays. Monte-Carlo simulations demonstrated that HO● radicals are quantitatively higher after C-ions than after X-rays, however they are very differently distributed within cells. We postulate that the uniform distribution of ROS after X-rays induces the mechanisms leading to invasion/migration, which ROS concentrated in C-ion tracks are unable to trigger.
Collapse
Affiliation(s)
- Anne-Sophie Wozny
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, 69921 Oullins Cedex, France.
- Centre Hospitalier Lyon-Sud, Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, 69495 Pierre-Bénite, France.
| | - Guillaume Vares
- Advanced Medical Instrumentation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan.
| | - Gersende Alphonse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, 69921 Oullins Cedex, France.
- Centre Hospitalier Lyon-Sud, Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, 69495 Pierre-Bénite, France.
| | - Alexandra Lauret
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, 69921 Oullins Cedex, France.
| | - Caterina Monini
- Univ Lyon, Université Lyon 1, UMR CNRS5822 /IN2P3, IPNL, PRISME, PHABIO, 69322 Villeurbanne, France.
| | - Nicolas Magné
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, 69921 Oullins Cedex, France.
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, 42270 St Priest en Jarez, France.
| | - Charlotte Cuerq
- Centre Hospitalier Lyon-Sud, Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, 69495 Pierre-Bénite, France.
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Inage-ku, 263-8555 Chiba, Japan.
| | - Jean-Claude Monboisse
- Université de Reims Champagne-Ardenne, CNRS UMR 7369, CHU de Reims, 51100 Reims, France.
| | - Michael Beuve
- Univ Lyon, Université Lyon 1, UMR CNRS5822 /IN2P3, IPNL, PRISME, PHABIO, 69322 Villeurbanne, France.
| | - Tetsuo Nakajima
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan.
| | - Claire Rodriguez-Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, 69921 Oullins Cedex, France.
- Centre Hospitalier Lyon-Sud, Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, 69495 Pierre-Bénite, France.
| |
Collapse
|
17
|
Fujita M, Somasundaram V, Basudhar D, Cheng RYS, Ridnour LA, Higuchi H, Imadome K, No JH, Bharadwaj G, Wink DA. Role of nitric oxide in pancreatic cancer cells exhibiting the invasive phenotype. Redox Biol 2019; 22:101158. [PMID: 30852389 PMCID: PMC6409427 DOI: 10.1016/j.redox.2019.101158] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a highly metastatic tumor with an extremely low 5-year survival rate. Lack of efficient diagnostics and dearth of effective therapeutics that can target the cancer as well as the microenvironment niche are the reasons for limited success in treatment and management of this disease. Cell invasion through extracellular matrix (ECM) involves the complex regulation of adhesion to and detachment from ECM and its understanding is critical to metastatic potential of pancreatic cancer. To understand the characteristics of these cancer cells and their ability to metastasize, we compared human pancreatic cancer cell line, PANC-1 and its invading phenotype (INV) collected from transwell inserts. The invasive cell type, INV, exhibited higher resistance to Carbon-ion radiation compared to whole cultured (normally dish-cultured) PANC-1 (WCC), and had more efficient in vitro spheroid formation capability. Invasiveness of INV was hampered by nitric oxide synthase (NOS) inhibitors, suggesting that nitric oxide (NO) plays a cardinal role in PANC-1 invasion. In addition, in vitro studies indicated that a MEK-ERK-dependent, JAK independent mechanism through which NOS/NO modulate PANC-1 invasiveness. Suspended INV showed enhanced NO production as well as induction of several pro-metastatic, and stemness-related genes. NOS inhibitor, l-NAME, reduced the expression of these pro-metastatic or stemness-related genes, and dampened spheroid formation ability, suggesting that NO can potentially influence pancreatic cancer aggressiveness. Furthermore, xenograft studies with INV and WCC in NSG mouse model revealed a greater ability of INV compared to WCC, to metastasize to the liver and l-NAME diminished the metastatic lesions in mice injected with INV. Overall, data suggest that NO is a key player associated with resistance to radiation and metastasis of pancreatic cancer; and inhibition of NOS demonstrates therapeutic potential as observed in the animal model by specifically targeting the metastatic cells that harbor stem-like features and are potentially responsible for relapse. Highly invasive pancreatic cancer cell line, collected from transwell inserts showed increased resistance to C-ion radiation. NO is a key player in pancreatic cancer aggressiveness inducing pro-metastatic and stemness-related genes. NOS/NO modulate invasiveness through a MEK-ERK dependent, JAK signaling independent mechanism. NOS inhibition showed promising therapeutic potential in mouse model by reversing the pro-metastatic phenotype.
Collapse
Affiliation(s)
- Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA; Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA
| | - Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA
| | - Harumi Higuchi
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaori Imadome
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jae Hong No
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA.
| |
Collapse
|
18
|
Mitochondrial superoxide dismutase 2 mediates γ-irradiation-induced cancer cell invasion. Exp Mol Med 2019; 51:1-10. [PMID: 30755594 PMCID: PMC6372678 DOI: 10.1038/s12276-019-0207-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/04/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
Sublethal doses of γ-rays promote cancer cell invasion by stimulating a signaling pathway that sequentially involves p53, sulfatase 2 (SULF2), β-catenin, interleukin-6 (IL-6), signal transducer and activator of transcription 3 (STAT3), and Bcl-XL. Given that Bcl-XL can increase O2•− production by stimulating respiratory complex I, the possible role of mitochondrial reactive oxygen species (ROS) in γ-irradiation-induced cell invasion was investigated. Indeed, γ-irradiation promoted cell invasion by increasing mitochondrial ROS levels, which was prevented by metformin, an inhibitor of complex I. γ-Irradiation-stimulated STAT3 increased the expression of superoxide dismutase 2 (SOD2), a mitochondrial enzyme that catalyzes the conversion of O2•− to hydrogen peroxide (H2O2). In contrast to O2•−, H2O2 functions as a signaling molecule. γ-Irradiation consistently stimulated the Src-dependent invasion pathway in a manner dependent on both complex I and SOD2. SOD2 was also essential for the invasion of un-irradiated cancer cells induced by upregulation of Bcl-XL, an intracellular oncogene, or extracellular factors, such as SULF2 and IL-6. Overall, these data suggested that SOD2 is critical for the malignant effects of radiotherapy and tumor progression through diverse endogenous factors. A drug usually used to treat type 2 diabetes may also help to prevent cancer relapse following radiotherapy, which is commonly used to kill cancer cells. However, any tumor cells that survive radiation are highly invasive, sometimes causing tumors to spread. Hong-Duck Um and co-workers at the Korea Institute of Radiological & Medical Sciences in Seoul, South Korea, noticed that the surviving cells often showed higher levels of a key enzyme, superoxide dismutase 2 (SOD2), which is involved in energy production in the cellular powerhouse, the mitochondria. Artificially increasing levels of SOD2, without radiation, made cells more invasive. Treatment with metformin, which prevents production of the molecule that SOD2 acts on, prevented cells from becoming invasive. SOD2 has been implicated in many cancers, and is therefore a very promising therapeutic target.
Collapse
|
19
|
Yu CC, Chen CA, Fu SL, Lin HY, Lee MS, Chiou WY, Su YC, Hung SK. Andrographolide enhances the anti-metastatic effect of radiation in Ras-transformed cells via suppression of ERK-mediated MMP-2 activity. PLoS One 2018; 13:e0205666. [PMID: 30359388 PMCID: PMC6201887 DOI: 10.1371/journal.pone.0205666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/30/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Activation of Ras oncogene in human tumors is associated with radiation-associated metastatic potential. Although ionizing radiation is one important method of cancer treatments, it has been shown to enhance matrix metalloproteinases (MMPs) activity and facilitates a more aggressive cancer phenotype. Our previous studies showed that andrographolide with lower dose rates of radiation could inhibit RAS-transformed cancer metastasis in vivo; however, the molecular mechanisms are not yet clear. In this study, we aimed to explore the anti-metastatic effect of andrographolide combined with radiation on Ras-transformed cells. METHODS RAS-transformed cells were treated with andrographolide in the presence or absence of irradiation (2-4 Gy) or angiotensin II to examine cell invasion. In vivo tumorigenesis assays were also performed. The MMP-2 activity was detected by using Gelatin zymography. Signal transduction of NF-κB subunit, p65 and phosphor-ERK 1/2, were examined by using Western blotting analysis. RESULTS Treatment with andrographolide inhibited migration of Ras-transformed cells. Andrographolide treatment with radiation significantly inhibited cancer metastasis in vivo. We found that andrographolide exhibited anti-migration and anti-invasive ability against cancer metastasis via inhibition of MMP2 activity rather than affected MMP-9 and EMT. In addition, combined andrographolide with radiation appeared to be more effective in reducing MMP-2 expression, and this effect was accompanied by suppression of ERK activation that inhibits cancer cell migration and invasion. CONCLUSIONS These findings suggest that andrographolide enhances the anti-metastatic effect of radiation in Ras-transformed cells via suppression of ERK-mediated MMP-2 activity.
Collapse
Affiliation(s)
- Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
| | - Chien-An Chen
- Department of Radiation Oncology, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Yu-Chieh Su
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
20
|
Jung CH, Han AR, Chung HJ, Ha IH, Um HD. Linarin inhibits radiation-induced cancer invasion by downregulating MMP-9 expression via the suppression of NF-κB activation in human non-small-cell lung cancer A549. Nat Prod Res 2018; 33:3582-3586. [PMID: 29897257 DOI: 10.1080/14786419.2018.1484460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Radiotherapy is routinely used in the treatment of lung cancer patients. However, it often causes malignant effects, such as promoting cancer cell migration and invasion. Previous studies demonstrated that ionizing radiation (IR) promotes cancer cell invasion by stimulating the β-catenin, IL-6, STAT3, and Bcl-XL signaling pathway or the PI3K, Akt, and NF-κB signaling pathway. Both Bcl-XL and NF-κB stimulate the secretion of matrix metalloproteases (MMPs), including MMP-2 and MMP-9. In the present study, linarin isolated from Chrysanthemum morifolium flowers significantly decreased the IR-induced cell migration and invasion at a concentration of 5 μM in A549 cells. This effect was mediated via MMP-9 downregulation and the suppression of NF-κB activation by inhibiting NF-κB and IκB-α phosphorylation. However, linarin did not affect the STAT3/Bcl-XL pathway or the stabilization of β-catenin. Overall, these results suggest that linarin repressed the MMP-9-dependent invasion pathway by regulating NF-κB activity, thereby inhibiting IR-induced cancer metastasis.
Collapse
Affiliation(s)
- Chan-Hun Jung
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation , Seoul , Republic of Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute , Jeongeup , Republic of Korea
| | - Hwa-Jin Chung
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation , Seoul , Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation , Seoul , Republic of Korea
| | - Hong-Duck Um
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| |
Collapse
|
21
|
Shi F, Li T, Liu Z, Qu K, Shi C, Li Y, Qin Q, Cheng L, Jin X, Yu T, Di W, Que J, Xia H, She J. FOXO1: Another avenue for treating digestive malignancy? Semin Cancer Biol 2018; 50:124-131. [PMID: 28965871 PMCID: PMC5874167 DOI: 10.1016/j.semcancer.2017.09.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022]
Abstract
Digestive malignancies are the leading cause of mortality among all neoplasms, contributing to estimated 3 million deaths in 2012 worldwide. The mortality rate hassurpassed lung cancer and prostate cancer in recent years. The transcription factor Forkhead Box O1 (FOXO1) is a key member of Forkhead Box family, regulating diverse cellular functions during tumor initiation, progression and metastasis. In this review, we focus on recent studies investigating the antineoplastic role of FOXO1 in digestive malignancy. This review aims to serve as a guide for further research and implicate FOXO1 as a potent therapeutic target in digestive malignancy.
Collapse
Affiliation(s)
- Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, Shaanxi, China
| | - Zhi Liu
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Chengxin Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Yaguang Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Qian Qin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Liang Cheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Xin Jin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Jianwen Que
- Center for Human Development & Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, 10032, NY, USA
| | - Hongping Xia
- Laboratory of Cancer Genomics, National Cancer Centre, Singapore 169610, Singapore
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
22
|
Abstract
Radiotherapy remains one of the corner stones in the treatment of various malignancies and often leads to an improvement in overall survival. Nonetheless, pre-clinical evidence indicates that radiation can entail pro-metastatic effects via multiple pathways. Via direct actions on cancer cells and indirect actions on the tumor microenvironment, radiation has the potential to enhance epithelial-to-mesenchymal transition, invasion, migration, angiogenesis and metastasis. However, the data remains ambiguous and clinical observations that unequivocally prove these findings are lacking. In this review we discuss the pre-clinical and clinical data on the local and systemic effect of irradiation on the metastatic process with an emphasis on the molecular pathways involved.
Collapse
|
23
|
Locally Ablative Radiation Therapy of a Primary Human Small Cell Lung Cancer Tumor Decreases the Number of Spontaneous Metastases in Two Xenograft Models. Int J Radiat Oncol Biol Phys 2018; 100:1044-1056. [DOI: 10.1016/j.ijrobp.2017.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 11/19/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
|
24
|
Feng H, Zhao JK, Schiergens TS, Wang PX, Ou BC, Al-Sayegh R, Li ML, Lu AG, Yin S, Thasler WE. Bone marrow-derived mesenchymal stromal cells promote colorectal cancer cell death under low-dose irradiation. Br J Cancer 2018; 118:353-365. [PMID: 29384527 PMCID: PMC5808030 DOI: 10.1038/bjc.2017.415] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Radiotherapy remains one of the cornerstones to improve the outcome of colorectal cancer (CRC) patients. Radiotherapy of the CRC not only help to destroy cancer cells but also remodel the tumour microenvironment by enhancing tumour-specific tropism of bone marrow-derived mesenchymal stromal cell (BM-MSC) from the peripheral circulation. However, the role of local MSCs and recruited BM-MSC under radiation were not well defined. Indeed, the functions of BM-MSC without irradiation intervention remained controversial in tumour progression: BM-MSC was previously shown to modulate the immune function of major immune cells, resulting in an impaired immunological sensitivity and to induce an increased risk of tumour recurrence. In contrast, it could also secrete various cytokines and possess anticancer effect. METHODS Three co-cultivation modules, 3D culture modules, and cancer organoids were established. The induction of cytokines secretion in hBM-MSCs after irradiation was analysed by ELISA array and flow cytometry. AutoMac separator was used to separate hBM-MSC and CRC automatically. Cells from the co-cultured group and the control group were then irradiated by UV-C lamp and X-ray. Proliferation assay and viability assay were performed. RESULTS In this study, we show that BM-MSCs can induce the EMT progression of CRC cells in vitro. When irradiated with low doses of ultraviolet radiation and X-rays, BM-MSCs show an anti-tumour effect by secreting certain cytokine (TNF-α, IFN-γ) that lead to the inhibition of proliferation and induction of apoptosis of CRC cells. This was further verified in a 3D culture model of a CRC cell in vitro. Furthermore, irradiation on the co-culture system induced the cleavage of caspase3, and attenuated the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase in cancer cells. The signal pathways above might contribute to the cancer cell death. CONCLUSIONS Taken together, we show that BM-MSC can potentially promote the effect of radiotherapy in CRC.
Collapse
Affiliation(s)
- Hao Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Jing-kun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Tobias S Schiergens
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Pu-xiongzhi Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bao-chi Ou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rami Al-Sayegh
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Ming-lun Li
- Department of Radiation Oncology, University Hospital of LMU Munich, Munich 81377, Germany
| | - Ai-guo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuai Yin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
- Department of General Surgery, State Hospital of Anhui Province, Hefei 230000, China
| | - Wolfgang E Thasler
- Department of General and Visceral Surgery, Red Cross Hospital, Munich 80634, Germany
| |
Collapse
|
25
|
Jung CH, Ho JN, Park JK, Kim EM, Hwang SG, Um HD. Involvement of SULF2 in y-irradiation-induced invasion and resistance of cancer cells by inducing IL-6 expression. Oncotarget 2017; 7:16090-103. [PMID: 26895473 PMCID: PMC4941299 DOI: 10.18632/oncotarget.7449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
Cancer cells that survive radiotherapy often display enhanced invasiveness and resistance to death stimuli. Previous findings have suggested that ionizing radiation (IR) induces such undesirable effects by stimulating the STAT3/Bcl-XL pathway. To identify novel cellular components that mediate these actions of IR, we irradiated lung cancer cells with sublethal doses of y-rays and screened for the induction of IR-responsive genes by microarray analysis. The genes encoding 2 extracellular proteins, SULF2 and IL-6, were found to be upregulated, and these results were confirmed by polymerase chain reactions and western blot analyses. Because the IR-mediated induction of SULF2 was a novel finding, we also confirmed the phenomenon in vivo using xenograft tumors in mice. Analyses of signaling processes revealed that IR induced SULF2 expression via p53, which then promoted IL-6 expression by stabilizing β-catenin, followed by stimulation of the STAT3/Bcl-XL pathway. Consistently, both SULF2 and IL-6 mediated IR-induced invasion and resistance to death stimuli. To investigate whether SULF2 contributes to IR-induced tumor metastasis, we irradiated tumors in mice with sublethal doses of IR. This treatment promoted the entry of tumor cells into the blood stream (intravasation), which was abolished by downregulating SULF2 expression in tumor cells. These results demonstrated that SULF2 can mediate the detrimental effects of IR in vivo. Therefore, SULF2 may be potentially used as a therapeutic and diagnostic target to predict and overcome the malignant effects of IR, particularly in tumors expressing p53 wild-type.
Collapse
Affiliation(s)
- Chan-Hun Jung
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Jin-Nyoung Ho
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.,Present address: Biomedical Research Institute, Department of Urology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Jong Kuk Park
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Eun Mi Kim
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Hong-Duck Um
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| |
Collapse
|
26
|
Blyth BJ, Cole AJ, MacManus MP, Martin OA. Radiation therapy-induced metastasis: radiobiology and clinical implications. Clin Exp Metastasis 2017; 35:223-236. [PMID: 29159430 DOI: 10.1007/s10585-017-9867-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/11/2017] [Indexed: 12/19/2022]
Abstract
Radiation therapy is an effective means of achieving local control in a wide range of primary tumours, with the reduction in the size of the tumour(s) thought to mediate the observed reductions in metastatic spread in clinical trials. However, there is evidence to suggest that the complex changes induced by radiation in the tumour environment can also present metastatic risks that may counteract the long-term efficacy of the treatment. More than 25 years ago, several largely theoretical mechanisms by which radiation exposure might increase metastatic risk were postulated. These include the direct release of tumour cells into the circulation, systemic effects of tumour and normal tissue irradiation and radiation-induced changes in tumour cell phenotype. Here, we review the data that has since emerged to either support or refute these putative mechanisms focusing on how the unique radiobiology underlying modern radiotherapy modalities might alter these risks.
Collapse
Affiliation(s)
- Benjamin J Blyth
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.
| | - Aidan J Cole
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Lisburn Road, Belfast, BT9 7BL, UK
| | - Michael P MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
27
|
Veelken C, Bakker GJ, Drell D, Friedl P. Single cell-based automated quantification of therapy responses of invasive cancer spheroids in organotypic 3D culture. Methods 2017; 128:139-149. [PMID: 28739118 DOI: 10.1016/j.ymeth.2017.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/19/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022] Open
Abstract
Organotypic in vitro culture of 3D spheroids in an extracellular matrix represent a promising cancer therapy prediction model for personalized medicine screens due to their controlled experimental conditions and physiological similarities to in vivo conditions. As in tumors in vivo, 3D invasion cultures identify intratumor heterogeneity of growth, invasion and apoptosis induction by cytotoxic therapy. We here combine in vitro 3D spheroid invasion culture with irradiation and automated nucleus-based segmentation for single cell analysis to quantify growth, survival, apoptosis and invasion response during experimental radiation therapy. As output, multi-parameter histogram-based representations deliver an integrated insight into therapy response and resistance. This workflow may be suited for high-throughput screening and identification of invasive and therapy-resistant tumor sub-populations.
Collapse
Affiliation(s)
- Cornelia Veelken
- Department of Cell Biology, Radboudumc Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Gert-Jan Bakker
- Department of Cell Biology, Radboudumc Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - David Drell
- MetaViLabs, 16238 Ranch Road 620 North Suite F-347, Austin TX 78717, USA
| | - Peter Friedl
- Department of Cell Biology, Radboudumc Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Genomics Center, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
28
|
Walenta S, Mueller-Klieser W. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models. Front Oncol 2016; 6:30. [PMID: 26942125 PMCID: PMC4766872 DOI: 10.3389/fonc.2016.00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/28/2016] [Indexed: 01/31/2023] Open
Abstract
This review is focused on the radiobiology of carbon ions compared to X-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review, deals with radiation-induced cell migration and mucositis. Multicellular spheroids from V79 hamster cells were irradiated with X-rays or carbon ions under ambient or restricted oxygen supply conditions. Reliable oxygen enhancement ratios could be derived to be 2.9, 2.8, and 1.4 for irradiation with photons, 12C+6 in the plateau region, and 12C+6 in the Bragg peak, respectively. Similarly, a relative biological effectiveness of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M and a dose-dependent massive induction of apoptosis. These data clearly show that heavy charged particles are more efficient in sterilizing tumor cells than conventional irradiation even under hypoxic conditions. Clinically relevant doses (3 Gy) of X-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in β1 integrin expression. The photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor and AKT-ERK1/2 pathway. Such a hyperphosphorylation did not occur during 12C+6 irradiation under all conditions registered. Comparing the gene toxicity of X-rays with that of particles using the γH2AX technique in organotypic cultures of the oral mucosa, the superior effectiveness of heavy ions was confirmed by a twofold higher number of foci per nucleus. However, proinflammatory signs were similar for both treatment modalities, e.g., the activation of NFκB and the release of IL6 and IL8. The presence of peripheral blood mononuclear cell increased the radiation-induced release of the proinflammatory cytokines by factors of 2–3. Carbon ions are part of the cosmic radiation. Long-term exposure to such particles during extended space flights, as planned by international space agencies, may thus impose a medical and safety risk on the astronauts by a potential induction of mucositis. In summary, particle irradiation is superior to gamma-rays due to a higher radiobiological effectiveness, a reduced hypoxia-induced radioresistance, a multicellular radiosensitization, and the absence of a radiation-induced cell motility. However, the potential of inducing mucositis is similar for both radiation types.
Collapse
Affiliation(s)
- Stefan Walenta
- Institute of Pathophysiology, University Medical Center, University of Mainz , Mainz , Germany
| | | |
Collapse
|
29
|
Affiliation(s)
- Ira Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|