1
|
Liu XF, Liao YT, Shao JH, He DD, Fan ZH, Xu YN, Li C, Zhang X. Angelicin improves osteoporosis in ovariectomized rats by reducing ROS production in osteoclasts through regulation of the KAT6A/Nrf2 signalling pathway. Chin Med 2024; 19:91. [PMID: 38956695 PMCID: PMC11218408 DOI: 10.1186/s13020-024-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Angelicin, which is found in Psoralea, can help prevent osteoporosis by stopping osteoclast formation, although the precise mechanism remains unclear. METHODS We evaluated the effect of angelicin on the oxidative stress level of osteoclasts using ovariectomized osteoporosis model rats and RAW264.7 cells. Changes in the bone mass of the femur were investigated using H&E staining and micro-CT. ROS content was investigated by DHE fluorescence labelling. Osteoclast-related genes and proteins were examined for expression using Western blotting, immunohistochemistry, tartrate-resistant acid phosphatase staining, and real-time quantitative PCR. The influence of angelicin on osteoclast development was also evaluated using the MTT assay, double luciferin assay, chromatin immunoprecipitation, immunoprecipitation and KAT6A siRNA transfection. RESULTS Rats treated with angelicin had considerably higher bone mineral density and fewer osteoclasts. Angelicin prevented RAW264.7 cells from differentiating into osteoclasts in vitro when stimulated by RANKL. Experiments revealed reduced ROS levels and significantly upregulated intracellular KAT6A, HO-1, and Nrf2 following angelicin treatment. The expression of genes unique to osteoclasts, such as MMP9 and NFATc1, was also downregulated. Finally, KAT6A siRNA transfection increased intracellular ROS levels while decreasing KAT6A, Nrf2, and HO-1 protein expression in osteoclasts. However, in the absence of KAT6A siRNA transfection, angelicin greatly counteracted this effect in osteoclasts. CONCLUSIONS Angelicin increased the expression of KAT6A. This enhanced KAT6A expression helps to activate the Nrf2/HO-1 antioxidant stress system and decrease ROS levels in osteoclasts, thus inhibiting oxidative stress levels and osteoclast formation.
Collapse
Affiliation(s)
- Xiao-Feng Liu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi-Tao Liao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Hao Shao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dan-Dan He
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, 214071, China
| | - Zhi-Hong Fan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye-Nan Xu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Li
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| |
Collapse
|
2
|
Ramirez A, Vyzas CA, Zhao H, Eng K, Degenhardt K, Astrof S. Buffering Mechanism in Aortic Arch Artery Formation and Congenital Heart Disease. Circ Res 2024; 134:e112-e132. [PMID: 38618720 PMCID: PMC11081845 DOI: 10.1161/circresaha.123.322767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease arising from defective morphogenesis of pharyngeal arch arteries (PAAs) and their derivatives. METHODS Mouse genetics, lineage tracing, confocal microscopy, and quantitative image analyses were used to investigate mechanisms of PAA formation and repair. RESULTS The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived endothelial cells (ECs) is regulated by VEGFR2 (vascular endothelial growth factor receptor 2) and Tbx1. Remarkably, when the SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated 3-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of 1 VEGFR2 allele (VEGFR2SHF-HET) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2SHF-KO) abolishes it. The decrease in SHF-derived ECs in VEGFR2SHF-HET and VEGFR2SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2SHF-KO mutants. Blocking the compensatory response in VEGFR2SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1+/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and congenital heart disease. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. CONCLUSIONS Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling.
Collapse
Affiliation(s)
- AnnJosette Ramirez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Christina A. Vyzas
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Kevin Eng
- Department of Statistics, Rutgers University, School of Arts and Sciences, Piscataway, NJ 08854
| | - Karl Degenhardt
- Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| |
Collapse
|
3
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Sabarís G, Fitz‐James MH, Cavalli G. Epigenetic inheritance in adaptive evolution. Ann N Y Acad Sci 2023. [DOI: 10.1111/nyas.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Gonzalo Sabarís
- Institute of Human Genetics, CNRS Montpellier France
- University of Montpellier Montpellier France
| | - Maximilian H. Fitz‐James
- Institute of Human Genetics, CNRS Montpellier France
- University of Montpellier Montpellier France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS Montpellier France
- University of Montpellier Montpellier France
| |
Collapse
|
5
|
Zhang CY, Yan BF, Mutalifu N, Fu YW, Shao J, Wu JJ, Guan Q, Biedelehan SH, Tong LX, Luan XP. Predicting the brain age of children with cerebral palsy using a two-dimensional convolutional neural networks prediction model without gray and white matter segmentation. Front Neurol 2022; 13:1040087. [PMID: 36504669 PMCID: PMC9730825 DOI: 10.3389/fneur.2022.1040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Background Abnormal brain development is common in children with cerebral palsy (CP), but there are no recent reports on the actual brain age of children with CP. Objective Our objective is to use the brain age prediction model to explore the law of brain development in children with CP. Methods A two-dimensional convolutional neural networks brain age prediction model was designed without segmenting the white and gray matter. Training and testing brain age prediction model using magnetic resonance images of healthy people in a public database. The brain age of children with CP aged 5-27 years old was predicted. Results The training dataset mean absolute error (MAE) = 1.85, r = 0.99; test dataset MAE = 3.98, r = 0.95. The brain age gap estimation (BrainAGE) of the 5- to 27-year-old patients with CP was generally higher than that of healthy peers (p < 0.0001). The BrainAGE of male patients with CP was higher than that of female patients (p < 0.05). The BrainAGE of patients with bilateral spastic CP was higher than those with unilateral spastic CP (p < 0.05). Conclusion A two-dimensional convolutional neural networks brain age prediction model allows for brain age prediction using routine hospital T1-weighted head MRI without segmenting the white and gray matter of the brain. At the same time, these findings suggest that brain aging occurs in patients with CP after brain damage. Female patients with CP are more likely to return to their original brain development trajectory than male patients after brain injury. In patients with spastic CP, brain aging is more serious in those with bilateral cerebral hemisphere injury than in those with unilateral cerebral hemisphere injury.
Collapse
|
6
|
Dasgupta P, Halder S, Dari D, Nabeel P, Vajja SS, Nandy B. Evolution of a novel female reproductive strategy in Drosophila melanogaster populations subjected to long-term protein restriction. Evolution 2022; 76:1836-1848. [PMID: 35796749 DOI: 10.1111/evo.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/19/2022] [Indexed: 01/22/2023]
Abstract
Reproductive output is often constrained by availability of macronutrients, especially protein. Long-term protein restriction, therefore, is expected to select for traits maximizing reproduction even under nutritional challenge. We subjected four replicate populations of Drosophila melanogaster to a complete deprivation of yeast supplement, thereby mimicking a protein-restricted ecology. Following 24 generations, compared to their matched controls, females from experimental populations showed increased reproductive output early in life, both in presence and absence of yeast supplement. The observed increase in reproductive output was without associated alterations in egg size, development time, preadult survivorship, body mass at eclosion, and life span of the females. Further, selection was ineffective on lifelong cumulative fecundity. However, females from experiment regime were found to have a significantly faster rate of reproductive senescence following the attainment of the reproductive peak early in life. Therefore, adaptation to yeast deprivation ecology in our study involved a novel reproductive strategy whereby females attained higher reproductive output early in life followed by faster reproductive aging. To the best of our knowledge, this is one of the cleanest demonstrations of optimization of fitness by fine-tuning of reproductive schedule during adaptation to a prolonged nutritional deprivation.
Collapse
Affiliation(s)
- Purbasha Dasgupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Subhasish Halder
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Debapriya Dari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Poolakkal Nabeel
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Central University of Kerala, Tejaswini Hills,Periye, Kasaragod, Kerala, 671316, India
| | - Sai Samhitha Vajja
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Current Address: Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, 462066, India
| | - Bodhisatta Nandy
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| |
Collapse
|
7
|
Paternal environmental exposure-induced spermatozoal small noncoding RNA alteration meditates the intergenerational epigenetic inheritance of multiple diseases. Front Med 2021; 16:176-184. [PMID: 34515940 DOI: 10.1007/s11684-021-0885-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Studies of human and mammalian have revealed that environmental exposure can affect paternal health conditions as well as those of the offspring. However, studies that explore the mechanisms that meditate this transmission are rare. Recently, small noncoding RNAs (sncRNAs) in sperm have seemed crucial to this transmission due to their alteration in sperm in response to environmental exposure, and the methodology of microinjection of isolated total RNA or sncRNAs or synthetically identified sncRNAs gradually lifted the veil of sncRNA regulation during intergenerational inheritance along the male line. Hence, by reviewing relevant literature, this study intends to answer the following research concepts: (1) paternal environmental factors that can be passed on to offspring and are attributed to spermatozoal sncRNAs, (2) potential role of paternal spermatozoal sncRNAs during the intergenerational inheritance process, and (3) the potential mechanism by which spermatozoal sncRNAs meditate intergenerational inheritance. In summary, increased attention highlights the hidden wonder of spermatozoal sncRNAs during intergenerational inheritance. Therefore, in the future, more studies should focus on the origin of RNA alteration, the target of RNA regulation, and how sncRNA regulation during embryonic development can be sustained even in adult offspring.
Collapse
|
8
|
Luu I, Ikert H, Craig PM. Chronic exposure to anthropogenic and climate related stressors alters transcriptional responses in the liver of zebrafish (Danio rerio) across multiple generations. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108918. [PMID: 33141083 DOI: 10.1016/j.cbpc.2020.108918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 01/04/2023]
Abstract
The antidepressant, venlafaxine (VFX), and climate change stressors, such as increased water temperature and decreased dissolved oxygen, are current threats to aquatic environments. This study aimed to determine how microRNAs (miRNAs) and predicted targeted transcripts were altered in livers of zebrafish exposed to these stressors, and livers of their un-exposed F1 and F2 offspring. Following a 21 day exposure to multiple stressors (1 μg/L VFX, +5 °C ambient, 50% O2), then a subsequent 21 day recovery, relative abundances of cyp3a65, hsp70, hsp90, and ppargc1a and miRNAs predicted to target them (miR-142a, miR-16c, miR-181c, and miR-129, respectively) were measured in the liver via quantitative PCR (RT-qPCR). There were significant decreases in miR-142a in the exposed F0 generation and the exposed F1 generation. While there were no changes detected in cyp3a65 relative abundance, there was a significant inverse relationship between cyp3a65 and miR-142a. Hsp70 expression significantly increased in the F1 generation, which persisted to the F2 generation and the relative abundance of hsp90 significantly increased in all generations. There was a significant reduction in miR-181c in the F1 generation, but there was no significant relationship between miR-181c and hsp90. Finally, there was a significant decrease in ppargc1a relative abundance in the F1 generation which was associated with an increase in miR-129. Combined, these results suggest that parental exposure to multiple, environmentally relevant stressors can confer transcriptional and epigenetic responses in the F1 and F2 generations, although identifying which stressor is a driving force becomes unclear.
Collapse
Affiliation(s)
- Ivy Luu
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| | - Heather Ikert
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada.
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
9
|
Nelson P, Masel J. Evolutionary Capacitance Emerges Spontaneously during Adaptation to Environmental Changes. Cell Rep 2018; 25:249-258. [DOI: 10.1016/j.celrep.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/26/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
|
10
|
Canalization and genetic assimilation: Reassessing the radicality of the Waddingtonian concept of inheritance of acquired characters. Semin Cell Dev Biol 2018; 88:4-13. [PMID: 29763656 DOI: 10.1016/j.semcdb.2018.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022]
Abstract
Genetic assimilation is often mixed up with the Baldwin effect. For Waddington, genetic assimilation was both a phenomenon and a specific mechanism of adaptive evolution which was grounded in the concept of canalization. This theoretical link between canalization and genetic assimilation, which was pivotal in Waddington's view, has been weakened since the early 1960s. The aim of the present article is to emphasize the specificity and to reassess the possible radicality of Waddington's proposal. What he claimed to have elaborated was an actual and genuine mechanism of inheritance of acquired characters that did not rely on soft Lamarckian inheritance. Consequently his "theory" of genetic assimilation, unlike the Baldwin effect, might not be as easily integrated in the framework of the Modern Synthesis.
Collapse
|
11
|
Meyer KJ, Anderson MG. Genetic modifiers as relevant biological variables of eye disorders. Hum Mol Genet 2017; 26:R58-R67. [PMID: 28482014 DOI: 10.1093/hmg/ddx180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
From early in the study of mammalian genetics, it was clear that modifiers can have a striking influence on phenotypes. Today, several modifiers have now been studied in enough detail to allow a glimpse of how they function and influence our perspective of disease. With respect to diseases of the eye, some modifiers are an important source of phenotypic variation that can elucidate how genes function in networks to collectively shape ocular anatomy and physiology, thus influencing our understanding of basic biology. Other modifiers represent an opportunity for new therapeutic targets, whose manipulation could be used to mitigate ophthalmic disease. Here, we review progress in the study of genetic modifiers of eye disorders, with examples from mice and humans that together illustrate the ubiquitous nature of genetic modifiers and why they are relevant biological variables in experimental design. Special emphasis is given to ophthalmic modifiers in mice, especially those relevant to selection of genetic background and those that might inadvertently be a source of experimental variability. These modifiers are capable of influencing interpretations of many experiments using targeted genome manipulations such as knockouts or transgenics. Whereas there are fewer examples of modifiers of eye disorders in humans with a molecular identification, there is ample evidence that they exist and should be considered as a relevant biological variable in human genetic studies as well.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA.,Center for Prevention and Treatment of Visual Loss, Iowa City Veterans Administration Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
Joel D, McCarthy MM. Incorporating Sex As a Biological Variable in Neuropsychiatric Research: Where Are We Now and Where Should We Be? Neuropsychopharmacology 2017; 42:379-385. [PMID: 27240659 PMCID: PMC5399245 DOI: 10.1038/npp.2016.79] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 11/09/2022]
Abstract
Understanding the multiplicity of ways in which sex can alter the brain is essential to crafting policies and treatments that are beneficial for all human beings. This is particularly true for the field of neuropsychopharmacology, as many neuropsychiatric disorders exhibit gender bias in the frequency, severity, or response to treatment. The goal of this circumspective is to provide two views on the current state of the art of the relations between sex and the brain, relations that are studied almost exclusively by comparing females and males on specific end points, from gene expression to behavior. We start by suggesting a framework for defining what is being measured and what it means. We suggest that 'sex differences' can be classified on four dimensions: (1) persistent vs transient across the lifespan; (2) context independent vs dependent; (3) dimorphic vs continuous; and (4) a direct vs an indirect consequence of sex. To accurately classify a sex difference along these dimensions, one may need to compare females and males under varied conditions. We next discuss current data on the mechanisms of sexual differentiation of the brain and on sex differences in the brain to conclude that the brain of each male and female is a mosaic of relative masculinization, feminization, and sameness, which theoretically could produce an infinite variety of individuals. We also raise the possibility that sex differences in the brain are canalized, which may act to both enhance and restrain variation between males and females. We end by discussing ways to consider sex when studying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel,School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel, Tel: +972 3 640 8996, Fax: +972 3 640 9547, E-mail:
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
DNMT3L enables accumulation and inheritance of epimutations in transgenic Drosophila. Sci Rep 2016; 6:19572. [PMID: 26795243 PMCID: PMC4726149 DOI: 10.1038/srep19572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/14/2015] [Indexed: 11/25/2022] Open
Abstract
DNMT3L is an important epigenetic regulator in mammals, integrating DNA methylation and histone modification based epigenetic circuits. Here we show DNMT3L to be a part of the machinery that enables inheritance of epigenetic modifications from one generation to the next. Ectopic expression of DNMT3L in Drosophila, which lacks DNMT3L and its normal interacting partners DNMT3A and DNMT3B, lead to nuclear reprogramming that was gradual and progressive, resulting in melanotic tumors that were observed only when these flies were maintained for five generations. This global gene expression misregulation was accompanied by aberrations in the levels of H3K4me3 and H3K36me3, globally as well as at specific gene promoters. The levels of these epigenetic aberrations (epimutations) also increased progressively across successive generations. The accumulation and inheritance of epimutations across multiple generations recapitulates the important role of DNMT3L in intergenerational epigenetic inheritance in mammals.
Collapse
|
14
|
Abstract
Cancer cells have the unusual capacity to limit the cost of the mutation load that they harbor and simultaneously harness its evolutionary potential. This property fuels drug resistance, a key failure mode in oncogene-directed therapy. However, the factors that regulate this capacity might also provide an Achilles' heel that could be exploited therapeutically. Recently, insight has come from a seemingly distant field: protein folding. It is now clear that protein homeostasis broadly supports malignancy and fuels the rapid evolution of drug resistance. Among protein homeostatic mechanisms that influence cancer biology, the essential ATP-driven molecular chaperone heat-shock protein 90 (Hsp90) is especially important. Hsp90 catalyzes folding of many proteins that regulate growth and development. These "client" kinases, transcription factors, and ubiquitin ligases often play critical roles in human disease, especially cancer. Studies in a wide range of systems-from single-celled organisms to human tumor samples-suggest that Hsp90 can broadly reshape the map between genotype and phenotype, acting as a "capacitor" and "potentiator" of genetic variation. Indeed, it has likely done so to such a degree that it has left an impress on diverse genome sequences. Hsp90 can constitute as much as 5% of total protein in transformed cells and increased levels of heat-shock activation correlate with poor prognosis in breast cancer. These findings and others have motivated a flurry of interest in Hsp90 inhibitors as cancer therapeutics, which have met with rather limited success as single agents, but may eventually prove invaluable in limiting the emergence of resistance to other chemotherapeutics, both genotoxic and molecularly targeted. Here, we provide an overview of Hsp90 function, review its relationship to genetic variation and the evolution of new traits, and discuss the importance of these findings for cancer biology and future efforts to drug this pathway.
Collapse
Affiliation(s)
- Daniel Jarosz
- Chemical & Systems Biology, Stanford University School of Medicine, Stanford, California, USA; Developmental Biology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
15
|
McCarthy MM, Pickett LA, VanRyzin JW, Kight KE. Surprising origins of sex differences in the brain. Horm Behav 2015; 76:3-10. [PMID: 25917865 PMCID: PMC4620061 DOI: 10.1016/j.yhbeh.2015.04.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/22/2015] [Accepted: 04/06/2015] [Indexed: 11/22/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Discerning the biologic origins of neuroanatomical sex differences has been of interest since they were first reported in the late 60's and early 70's. The centrality of gonadal hormone exposure during a developmental critical window cannot be denied but hormones are indirect agents of change, acting to induce gene transcription or modulate membrane bound signaling cascades. Sex differences in the brain include regional volume differences due to differential cell death, neuronal and glial genesis, dendritic branching and synaptic patterning. Early emphasis on mechanism therefore focused on neurotransmitters and neural growth factors, but by and large these endpoints failed to explain the origins of neural sex differences. More recently evidence has accumulated in favor of inflammatory mediators and immune cells as principle regulators of brain sexual differentiation and reveal that the establishment of dimorphic circuits is not cell autonomous but instead requires extensive cell-to-cell communication including cells of non-neuronal origin. Despite the multiplicity of cells involved the nature of the sex differences in the neuroanatomical endpoints suggests canalization, a process that explains the robustness of individuals in the face of intrinsic and extrinsic variability. We propose that some neuroanatomical endpoints are canalized to enhance sex differences in the brain by reducing variability within one sex while also preventing the sexes from diverging too greatly. We further propose mechanisms by which such canalization could occur and discuss what relevance this may have to sex differences in behavior.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Lindsay A Pickett
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan W VanRyzin
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine E Kight
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Mazzarella AB, Voje KL, Hansson TH, Taugbøl A, Fischer B. Strong and parallel salinity-induced phenotypic plasticity in one generation of threespine stickleback. J Evol Biol 2015; 28:667-77. [DOI: 10.1111/jeb.12597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/25/2022]
Affiliation(s)
- A. B. Mazzarella
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Oslo Norway
| | - K. L. Voje
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Oslo Norway
| | - T. H. Hansson
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Oslo Norway
| | - A. Taugbøl
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Oslo Norway
| | - B. Fischer
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Oslo Norway
- Department of Theoretical Biology; University of Vienna; Vienna Austria
| |
Collapse
|
17
|
Ruden DM, Cingolani PE, Sen A, Qu W, Wang L, Senut MC, Garfinkel MD, Sollars VE, Lu X. Epigenetics as an answer to Darwin's "special difficulty," Part 2: natural selection of metastable epialleles in honeybee castes. Front Genet 2015; 6:60. [PMID: 25759717 PMCID: PMC4338822 DOI: 10.3389/fgene.2015.00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/08/2015] [Indexed: 11/15/2022] Open
Abstract
In a recent perspective in this journal, Herb (2014) discussed how epigenetics is a possible mechanism to circumvent Charles Darwin's "special difficulty" in using natural selection to explain the existence of the sterile-fertile dimorphism in eusocial insects. Darwin's classic book "On the Origin of Species by Means of Natural Selection" explains how natural selection of the fittest individuals in a population can allow a species to adapt to a novel or changing environment. However, in bees and other eusocial insects, such as ants and termites, there exist two or more castes of genetically similar females, from fertile queens to multiple sub-castes of sterile workers, with vastly different phenotypes, lifespans, and behaviors. This necessitates the selection of groups (or kin) rather than individuals in the evolution of honeybee hives, but group and kin selection theories of evolution are controversial and mechanistically uncertain. Also, group selection would seem to be prohibitively inefficient because the effective population size of a colony is reduced from thousands to a single breeding queen. In this follow-up perspective, we elaborate on possible mechanisms for how a combination of both epigenetics, specifically, the selection of metastable epialleles, and genetics, the selection of mutations generated by the selected metastable epialleles, allows for a combined means for selection amongst the fertile members of a species to increase colony fitness. This "intra-caste evolution" hypothesis is a variation of the epigenetic directed genetic error hypothesis, which proposes that selected metastable epialleles increase genetic variability by directing mutations specifically to the epialleles. Natural selection of random metastable epialleles followed by a second round of natural selection of random mutations generated by the metastable epialleles would allow a way around the small effective population size of eusocial insects.
Collapse
Affiliation(s)
- Douglas M. Ruden
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development and Center for Urban Responses to Environmental Stressors, Institute of Environmental Health Sciences, Wayne State UniversityDetroit, MI, USA
| | - Pablo E. Cingolani
- School of Computer Science and Genome Quebec Innovation Centre, McGill UniversityMontreal, QC, Canada
| | - Arko Sen
- Department of Pharmacology, Wayne State UniversityDetroit, MI, USA
| | - Wen Qu
- Department of Pharmacology, Wayne State UniversityDetroit, MI, USA
| | - Luan Wang
- Institute of Environmental Health Sciences, Wayne State UniversityDetroit, MI, USA
| | - Marie-Claude Senut
- Institute of Environmental Health Sciences, Wayne State UniversityDetroit, MI, USA
| | - Mark D. Garfinkel
- Department of Biological Sciences, University of Alabama in HuntsvilleHuntsville, AL, USA
| | - Vincent E. Sollars
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Xiangyi Lu
- Institute of Environmental Health Sciences, Wayne State UniversityDetroit, MI, USA
| |
Collapse
|
18
|
Abstract
Environmental temperature can have a surprising impact on extremity growth in homeotherms, but the underlying mechanisms have remained elusive for over a century. Limbs of animals raised at warm ambient temperature are significantly and permanently longer than those of littermates housed at cooler temperature. These remarkably consistent lab results closely resemble the ecogeographical tenet described by Allen's "extremity size rule," that appendage length correlates with temperature and latitude. This phenotypic growth plasticity could have adaptive significance for thermal physiology. Shortened extremities help retain body heat in cold environments by decreasing surface area for potential heat loss. Homeotherms have evolved complex mechanisms to maintain tightly regulated internal temperatures in challenging environments, including "facultative extremity heterothermy" in which limb temperatures can parallel ambient. Environmental modulation of tissue temperature can have direct and immediate consequences on cell proliferation, metabolism, matrix production, and mineralization in cartilage. Temperature can also indirectly influence cartilage growth by modulating circulating levels and delivery routes of essential hormones and paracrine regulators. Using an integrated approach, this article synthesizes classic studies with new data that shed light on the basis and significance of this enigmatic growth phenomenon and its relevance for treating human bone elongation disorders. Discussion centers on the vasculature as a gateway to understanding the complex interconnection between direct (local) and indirect (systemic) mechanisms of temperature-enhanced bone lengthening. Recent advances in imaging modalities that enable the dynamic study of cartilage growth plates in vivo will be key to elucidating fundamental physiological mechanisms of long bone growth regulation.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
19
|
Sarkar AA, Nuwayhid SJ, Maynard T, Ghandchi F, Hill JT, Lamantia AS, Zohn IE. Hectd1 is required for development of the junctional zone of the placenta. Dev Biol 2014; 392:368-80. [PMID: 24855001 PMCID: PMC4578812 DOI: 10.1016/j.ydbio.2014.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/17/2023]
Abstract
The placenta plays a critical role in the growth and survival of the fetus. Here we demonstrate that the Homologous to the E6-AP Carboxyl Terminus (HECT) domain E3 ubiquitin ligase, Hectd1, is essential for development of the mouse placenta. Hectd1 is widely expressed during placentation with enrichment in trophoblast giant cells (TGCs) and other trophoblast-derived cell subtypes in the junctional and labyrinth zones of the placenta. Disruption of Hectd1 results in mid-gestation lethality and intrauterine growth restriction (IUGR). Variable defects in the gross structure of the mutant placenta are found including alterations in diameter, thickness and lamination. The number and nuclear size of TGCs is reduced. Examination of subtype specific markers reveals altered TGC development with decreased expression of Placental lactogen-1 and -2 (Pl1 and Pl2) and increased expression of Proliferin (Plf). Reduced numbers of spongiotrophoblasts and glycogen trophoblasts were also found at the junctional zone of the Hectd1 mutant placenta. Finally, there was an increase in immature uterine natural killer (uNK) cells in the maternal decidua of the Hectd1 mutant placenta. Proliferation and apoptosis are differentially altered in the layers of the placenta with an increase in both apoptosis and proliferation in the maternal decidua, a decrease in proliferation and increase in apoptosis in the labyrinth layer and both unchanged in the junctional zone. Together these data demonstrate that Hectd1 is required for development of multiple cell types within the junctional zone of the placenta.
Collapse
Affiliation(s)
- Anjali A Sarkar
- Center for Neuroscience Research, Children׳s Research Institute, and Children׳s National Medical Center, Washington, DC 20010, USA
| | - Samer J Nuwayhid
- Center for Neuroscience Research, Children׳s Research Institute, and Children׳s National Medical Center, Washington, DC 20010, USA
| | - Thomas Maynard
- Department of Pharmacology and Physiology, The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA; The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA
| | - Frederick Ghandchi
- Center for Neuroscience Research, Children׳s Research Institute, and Children׳s National Medical Center, Washington, DC 20010, USA
| | | | - Anthony S Lamantia
- Department of Pharmacology and Physiology, The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA; The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA
| | - Irene E Zohn
- Center for Neuroscience Research, Children׳s Research Institute, and Children׳s National Medical Center, Washington, DC 20010, USA; Department of Pharmacology and Physiology, The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA; The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
20
|
Chemes LB, Camporeale G, Sánchez IE, de Prat-Gay G, Alonso LG. Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles. Biochemistry 2014; 53:1680-96. [PMID: 24559112 DOI: 10.1021/bi401562e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The E7 protein from high-risk human papillomavirus is essential for cell transformation in cervical, oropharyngeal, and other HPV-related cancers, mainly through the inactivation of the retinoblastoma (Rb) tumor suppressor. Its high cysteine content (~7%) and the observation that HPV-transformed cells are under oxidative stress prompted us to investigate the redox properties of the HPV16 E7 protein under biologically compatible oxidative conditions. The seven cysteines in HPV16 E7 remain reduced in conditions resembling the basal reduced state of a cell. However, under oxidative stress, a stable disulfide bridge forms between cysteines 59 and 68. Residue 59 has a protective effect on the other cysteines, and its mutation leads to an overall increase in the oxidation propensity of E7, including cysteine 24 central to the Rb binding motif. Gluthationylation of Cys 24 abolishes Rb binding, which is reversibly recovered upon reduction. Cysteines 59 and 68 are located 18.6 Å apart, and the formation of the disulfide bridge leads to a large structural rearrangement while retaining strong Zn association. These conformational and covalent changes are fully reversible upon restoration of the reductive environment. In addition, this is the first evidence of an interaction between the N-terminal intrinsically disordered and the C-terminal globular domains, known to be highly and separately conserved among human papillomaviruses. The significant conservation of such noncanonical cysteines in HPV E7 proteins leads us to propose a functional redox activity. Such an activity adds to the previously discovered chaperone activity of E7 and supports the picture of a moonlighting pathological role of this paradigmatic viral oncoprotein.
Collapse
Affiliation(s)
- Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Joanna Masel
- Ecology and Evolutionary Biology, University of Arizona, 1041 E, Lowell St, Tucson, AZ 84721, USA.
| |
Collapse
|
22
|
Lu X, Wang L, Ruden DM. Hsp90 inhibitors and the reduction of anti-cancer drug resistance by non-genetic and genetic mechanisms. Pharmaceuticals (Basel) 2012; 5:890-8. [PMID: 24280696 PMCID: PMC3816646 DOI: 10.3390/ph5090890] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 11/26/2022] Open
Abstract
In this review, we focus on how inhibitors of Hsp90 can help prevent the resistance to anti-cancer drugs by synergistically increasing their cancer killing abilities and thereby allowing them to function at much lower concentrations than normally used. Hsp90 helps to fold numerous client proteins, such as Akt, Raf, Src, chromatin-modifying proteins, nuclear hormone receptors, and kinetochore assembly proteins. We discuss four mechanisms by which Hsp90 inhibitors can potentially synergize with anti-cancer drugs: by making a drug-resistant protein that is a client for Hsp90 more sensitive to the drug, by increasing chromosomal aneuploidy and the effectiveness of DNA-damaging drugs, by inhibiting Trithorax proteins which trimethylate histone 3 at lysine 4 (H3K4me3) and thereby decreasing expression of tumor promoter genes, and by interacting with the negative elongation factor (NELF) complex in tumors. We also explain how the evolutionary capacitor function of Hsp90 can be exploited with inhibitors of Hsp90 by exposing new protein variants that can be targeted with other drugs, thereby opening new avenues of combination drug therapy to treat cancer. We believe that inhibition of these processes can increase the efficacy of Hsp90 inhibitors with other anti-cancer drugs.
Collapse
Affiliation(s)
- Xiangyi Lu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (X.L.); (L.W.)
| | - Luan Wang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (X.L.); (L.W.)
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Douglas M. Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (X.L.); (L.W.)
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Author to whom correspondence should be addressed;
| |
Collapse
|
23
|
Lu X, Xiao L, Wang L, Ruden DM. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem Pharmacol 2012; 83:995-1004. [PMID: 22120678 PMCID: PMC3299878 DOI: 10.1016/j.bcp.2011.11.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 12/11/2022]
Abstract
Hsp90 is a chaperone protein that interacts with client proteins that are known to be in the cell cycle, signaling and chromatin-remodeling pathways. Hsp90 inhibitors act additively or synergistically with many other drugs in the treatment of both solid tumors and leukemias in murine tumor models and humans. Hsp90 inhibitors potentiate the actions of anti-cancer drugs that target Hsp90 client proteins, including trastuzumab (Herceptin™) which targets Her2/Erb2B, as Hsp90 inhibition elicits the drug effects in cancer cell lines that are otherwise resistant to the drug. A phase II study of the Hsp90 inhibitor 17-AAG and trastuzumab showed that this combination therapy has anticancer activity in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. In this review, we discuss the results of Hsp90 inhibitors in combination with trastuzumab and other cancer drugs. We also discuss recent results from yeast focused on the genetics of drug resistance when Hsp90 is inhibited and the implications that this might have in understanding the effects of genetic variation in treating cancer in humans.
Collapse
Affiliation(s)
- Xiangyi Lu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
| | - Li Xiao
- University of Alabama at Birmingham, Department of Immunology and Rheumatology, Birmingham, AL 35294
| | - Luan Wang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Douglas M. Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
24
|
Burdge GC, Hoile SP, Uller T, Thomas NA, Gluckman PD, Hanson MA, Lillycrop KA. Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition. PLoS One 2011; 6:e28282. [PMID: 22140567 PMCID: PMC3227644 DOI: 10.1371/journal.pone.0028282] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/04/2011] [Indexed: 01/05/2023] Open
Abstract
Induction of altered phenotypes during development in response to environmental input involves epigenetic changes. Phenotypic traits can be passed between generations by a variety of mechanisms, including direct transmission of epigenetic states or by induction of epigenetic marks de novo in each generation. To distinguish between these possibilities we measured epigenetic marks over four generations in rats exposed to a sustained environmental challenge. Dietary energy was increased by 25% at conception in F0 female rats and maintained at this level to generation F3. F0 dams showed higher pregnancy weight gain, but lower weight gain and food intake during lactation than F1 and F2 dams. On gestational day 8, fasting plasma glucose concentration was higher and β-hydroxybutyrate lower in F0 and F1 dams than F2 dams. This was accompanied by decreased phosphoenolpyruvate carboxykinase (PEPCK) and increased PPARα and carnitine palmitoyl transferase-1 mRNA expression. PEPCK mRNA expression was inversely related to the methylation of specific CpG dinucleotides in its promoter. DNA methyltransferase (Dnmt) 3a2, but not Dnmt1 or Dnmt3b, expression increased and methylation of its promoter decreased from F1 to F3 generations. These data suggest that the regulation of energy metabolism during pregnancy and lactation within a generation is influenced by the maternal phenotype in the preceding generation and the environment during the current pregnancy. The transgenerational effects on phenotype were associated with altered DNA methylation of specific genes in a manner consistent with induction de novo of epigenetic marks in each generation.
Collapse
Affiliation(s)
- Graham C Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ruden DM, Lu X. Hsp90 affecting chromatin remodeling might explain transgenerational epigenetic inheritance in Drosophila. Curr Genomics 2011; 9:500-8. [PMID: 19506739 PMCID: PMC2691676 DOI: 10.2174/138920208786241207] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/08/2008] [Accepted: 08/14/2008] [Indexed: 01/01/2023] Open
Abstract
Transgenerational epigenetic inheritance, while poorly understood, is of great interest because it might help explain the increase in the incidence of diseases with an environmental contribution in humans, such as cancer, diabetes, and heart disease. Here, we review five Drosophila examples of transgenerational epigenetic inheritance and propose a unified mechanism that involves Polycomb Response Element/Trithorax Response Element (PRE/TRE) occupancy by either Polycomb Group (PcG) protein complexes or Trithorax group (TrxG) complexes. Among their other activities, PcG complexes cause histone 3 lysine 27 tri-methylation associated with repressed chromatin, whereas Trithorax group (TrxG) complexes induce histone 3 lysine 4 tri-methylation associated with actively transcribed chromatin. In this model, Hsp90 is an environmentally sensitive chromatin remodeling regulator that causes a switch in the chromatin from a permissive state to a non-permissive state for transcription. Consistent with this model, Hsp90 has recently been shown to be a chaperone for Tah1p (TPR-containing protein associated with Hsp90) and Pih1p (protein interacting with Hsp90), which connect to the chromatin remodelling factor Rvb1p (RuvB-like protein 1)/Rvb2p in yeast [1]. Also, Hsp90 is required for optimal activity of the histone H3 lysine-4 methyltransferase SMYD3 in mammals [2, 3]. Since PcG and TrxG complexes are involved in the post-translational modifications of histones, and since such modifications have been shown to be required to maintain imprinted marks, this unified mechanism might also help to explain transgenerational epigenetic inheritance in humans.
Collapse
Affiliation(s)
- Douglas M Ruden
- Wayne State University, Institute for Environmental Health Sciences, 2727 2 Ave, Room 4000, Detroit, MI 48201, USA
| | | |
Collapse
|
26
|
Takahashi KH, Daborn PJ, Hoffmann AA, Takano-Shimizu T. Environmental stress-dependent effects of deletions encompassing Hsp70Ba on canalization and quantitative trait asymmetry in Drosophila melanogaster. PLoS One 2011; 6:e17295. [PMID: 21541022 PMCID: PMC3081816 DOI: 10.1371/journal.pone.0017295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/28/2011] [Indexed: 12/17/2022] Open
Abstract
Hsp70 genes may influence the expression of wing abnormalities in Drosophila melanogaster but their effects on variability in quantitative characters and developmental instability are unclear. In this study, we focused on one of the six Hsp70 genes, Hsp70Ba, and investigated its effects on within- and among-individual variability in orbital bristle number, sternopleural bristle number, wing size and wing shape under different environmental conditions. To do this, we studied a newly constructed deletion, Df(3R)ED5579, which encompasses Hsp70Ba and nine non-Hsp genes, in the heterozygous condition and another, Hsp70Ba(304), which deletes only Hsp70Ba, in the homozygous condition. We found no significant effect of both deletions on within-individual variation quantified by fluctuating asymmetry (FA) of morphological traits. On the other hand, the Hsp70Ba(304)/Hsp70Ba(304) genotype significantly increased among-individual variation quantified by coefficient of variation (CV) of bristle number and wing size in female, while the Df(3R)ED5579 heterozygote showed no significant effect. The expression level of Hsp70Ba in the deletion heterozygote was 6 to 20 times higher than in control homozygotes, suggesting that the overexpression of Hsp70Ba did not influence developmental stability or canalization significantly. These findings suggest that the absence of expression of Hsp70Ba increases CV of some morphological traits and that HSP70Ba may buffer against environmental perturbations on some quantitative traits.
Collapse
Affiliation(s)
- Kazuo H Takahashi
- Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka-ken, Japan.
| | | | | | | |
Collapse
|
27
|
Jarosz DF, Taipale M, Lindquist S. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu Rev Genet 2011; 44:189-216. [PMID: 21047258 DOI: 10.1146/annurev.genet.40.110405.090412] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changing a single nucleotide in a genome can have profound consequences under some conditions, but the same change can have no consequences under others. Indeed, organisms can be surprisingly robust to environmental and genetic perturbations. Yet, the mechanisms underlying such robustness are controversial. Moreover, how they might affect evolutionary change remains enigmatic. Here, we review the recently appreciated central role of protein homeostasis in buffering and potentiating genetic variation and discuss how these processes mediate the critical influence of the environment on the relationship between genotype and phenotype. Deciphering how robustness emerges from biological organization and the mechanisms by which it is overcome in changing environments will lead to a more complete understanding of both fundamental evolutionary processes and diverse human diseases.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA.
| | | | | |
Collapse
|
28
|
Bittel DC, Butler MG, Kibiryeva N, Marshall JA, Chen J, Lofland GK, O'Brien JE. Gene expression in cardiac tissues from infants with idiopathic conotruncal defects. BMC Med Genomics 2011; 4:1. [PMID: 21208432 PMCID: PMC3023653 DOI: 10.1186/1755-8794-4-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 01/05/2011] [Indexed: 02/06/2023] Open
Abstract
Background Tetralogy of Fallot (TOF) is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. Our goal was to perform genome wide analyses and characterize expression patterns in cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with tetralogy of Fallot. Methods We employed genome wide gene expression microarrays to characterize cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with TOF (16 idiopathic and three with 22q11.2 deletions) and compared gene expression patterns to normally developing subjects. Results We detected a signal from approximately 26,000 probes reflecting expression from about half of all genes, ranging from 35% to 49% of array probes in the three tissues. More than 1,000 genes had a 2-fold change in expression in the right ventricle (RV) of children with TOF as compared to the RV from matched control infants. Most of these genes were involved in compensatory functions (e.g., hypertrophy, cardiac fibrosis and cardiac dilation). However, two canonical pathways involved in spatial and temporal cell differentiation (WNT, p = 0.017 and Notch, p = 0.003) appeared to be generally suppressed. Conclusions The suppression of developmental networks may represent a remnant of a broad malfunction of regulatory pathways leading to inaccurate boundary formation and improper structural development in the embryonic heart. We suggest that small tissue specific genomic and/or epigenetic fluctuations could be cumulative, leading to regulatory network disruption and failure of proper cardiac development.
Collapse
Affiliation(s)
- Douglas C Bittel
- Children's Mercy Hospitals and Clinics, University of Missouri-Kansas City School of Medicine, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Gangaraju VK, Yin H, Weiner MM, Wang J, Huang XA, Lin H. Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation. Nat Genet 2010; 43:153-8. [PMID: 21186352 PMCID: PMC3443399 DOI: 10.1038/ng.743] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/22/2010] [Indexed: 01/01/2023]
Affiliation(s)
- Vamsi K Gangaraju
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
30
|
Mittelman D, Wilson JH. Stress, genomes, and evolution. Cell Stress Chaperones 2010; 15:463-6. [PMID: 20521130 PMCID: PMC3006615 DOI: 10.1007/s12192-010-0205-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 11/27/2022] Open
Abstract
Evolutionary change, whether in populations of organisms or malignant tumor cells, is contingent on the availability of inherited variation for natural selection to act upon. It is becoming clear that the Hsp90 chaperone, which normally functions to buffer client proteins against the effects of genetic variation, plays a central role in this process. Severe environmental stress can overwhelm the chaperone's buffering capacity, causing previously cryptic genetic variation to be expressed. Recent studies now indicate that in addition to exposing existing variation, Hsp90 can induce novel epigenetic and genetic changes. We discuss key findings that suggest a rich set of pathways by which Hsp90 can mediate the influences of the environment on the genome.
Collapse
Affiliation(s)
- David Mittelman
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | |
Collapse
|
31
|
The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system. Genetics 2009; 184:393-400. [PMID: 19917766 DOI: 10.1534/genetics.109.110213] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epigenetically inherited aggregates of the yeast prion [PSI+] cause genomewide readthrough translation that sometimes increases evolvability in certain harsh environments. The effects of natural selection on modifiers of [PSI+] appearance have been the subject of much debate. It seems likely that [PSI+] would be at least mildly deleterious in most environments, but this may be counteracted by its evolvability properties on rare occasions. Indirect selection on modifiers of [PSI+] is predicted to depend primarily on the spontaneous [PSI+] appearance rate, but this critical parameter has not previously been adequately measured. Here we measure this epimutation rate accurately and precisely as 5.8 x 10(-7) per generation, using a fluctuation test. We also determine that genetic "mimics" of [PSI+] account for up to 80% of all phenotypes involving general nonsense suppression. Using previously developed mathematical models, we can now infer that even in the absence of opportunities for adaptation, modifiers of [PSI+] are only weakly deleterious relative to genetic drift. If we assume that the spontaneous [PSI+] appearance rate is at its evolutionary optimum, then opportunities for adaptation are inferred to be rare, such that the [PSI+] system is favored only very weakly overall. But when we account for the observed increase in the [PSI+] appearance rate in response to stress, we infer much higher overall selection in favor of [PSI+] modifiers, suggesting that [PSI+]-forming ability may be a consequence of selection for evolvability.
Collapse
|
32
|
Schlichting CD. Hidden Reaction Norms, Cryptic Genetic Variation, and Evolvability. Ann N Y Acad Sci 2008; 1133:187-203. [DOI: 10.1196/annals.1438.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Ruden DM, Jamison DC, Zeeberg BR, Garfinkel MD, Weinstein JN, Rasouli P, Lu X. The EDGE hypothesis: epigenetically directed genetic errors in repeat-containing proteins (RCPs) involved in evolution, neuroendocrine signaling, and cancer. Front Neuroendocrinol 2008; 29:428-44. [PMID: 18295320 PMCID: PMC2716011 DOI: 10.1016/j.yfrne.2007.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 10/31/2007] [Accepted: 12/18/2007] [Indexed: 11/22/2022]
Abstract
Trans-generational epigenetic phenomena, such as contamination with endocrine-disrupting chemicals (EDCs) that decrease fertility and the global methylation status of DNA in the offspring, are of great concern because they may affect health, particularly the health of children. However, of even greater concern is the possibility that trans-generational changes in the methylation status of the DNA might lead to permanent changes in the DNA sequence itself. By contaminating the environment with EDCs, mankind might be permanently affecting the health of future generations. In this section, we present evidence from our laboratory and others that trans-generational epigenetic changes in DNA might lead to mutations directed to genes encoding amino acid repeat-containing proteins (RCPs) that are important for adaptive evolution or cancer progression. Such epigenetic changes can be induced "naturally" by hormones or "unnaturally" by EDCs or environmental stress. To illustrate the phenomenon, we present new bioinformatic evidence that the only RCP ontological categories conserved from Drosophila to humans are "regulation of splicing," "regulation of transcription," and "regulation of synaptogenesis," which are classes of genes likely to be important for evolutionary processes. Based on that and other evidence, we propose a model for evolution that we call the EDGE (Epigenetically Directed Genetic Errors) hypothesis for the mechanism by which mutations are targeted at epigenetically modified "contingency genes" encoding RCPs. In the model, "epigenetic assimilation" of metastable epialleles of RCPs over many generations can lead to mutations directed to those genes, thereby permanently stabilizing the adaptive phenotype.
Collapse
Affiliation(s)
- Douglas M. Ruden
- Wayne State University, Institute for Environmental Health Sciences, 2727 2 Ave, Room 4000, Detroit, MI 48201
| | - D. Curtis Jamison
- George Mason University, Department of Bioinformatics and Computational Biology, Manassas, VA, 20110; current address Illumina, Inc., San Diego, CA, 92121,
| | - Barry R. Zeeberg
- Genomics & Bioinformatics Group, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Mark D. Garfinkel
- University of Alabama at Birmingham, Department of Environmental Health Sciences, Birmingham, AL 35294-0022
| | - John N. Weinstein
- Genomics & Bioinformatics Group, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Parsa Rasouli
- Wayne State University, Institute for Environmental Health Sciences, 2727 2 Ave, Room 4000, Detroit, MI 48201
| | | |
Collapse
|
34
|
The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 2008; 6:187-98. [PMID: 18246082 DOI: 10.1038/nrmicro1835] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The emergence of drug resistance in pathogenic microorganisms provides an excellent example of microbial evolution that has had profound consequences for human health. The widespread use of antimicrobial agents in medicine and agriculture exerts strong selection for the evolution of drug resistance. Selection acts on the phenotypic consequences of resistance mutations, which are influenced by the genetic variation in particular genomes. Recent studies have revealed a mechanism by which the molecular chaperone heat shock protein 90 (Hsp90) can alter the relationship between genotype and phenotype in an environmentally contingent manner, thereby 'sculpting' the course of evolution. Harnessing Hsp90 holds great promise for treating life-threatening infectious diseases.
Collapse
|
35
|
Abstract
Hsp90 is a specialized molecular chaperone that is capable of buffering the expression of abnormal phenotypes. Inhibition of Hsp90 activity results in the expression of these phenotypes that are otherwise masked. Selection of offspring from the crossing of affected progenies results in inheritance and enrichment of these phenotypes, which can become independent of their original stimuli. The current combined evidence favours a model involving the interplay between genetics and epigenetics. The recent proteomics efforts to characterize the Hsp90 interaction networks provide further clues into the molecular mechanisms behind this complex phenomenon. This review summarizes the most recent experimental observations and briefly discusses the genetic and epigenetic views used in explaining the different observations.
Collapse
Affiliation(s)
- Keith S K Wong
- Department of Biochemistry, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | | |
Collapse
|
36
|
GHALAMBOR CK, McKAY JK, CARROLL SP, REZNICK DN. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01283.x] [Citation(s) in RCA: 1979] [Impact Index Per Article: 116.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Etard C, Behra M, Fischer N, Hutcheson D, Geisler R, Strähle U. The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev Biol 2007; 308:133-43. [PMID: 17586488 DOI: 10.1016/j.ydbio.2007.05.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/09/2007] [Accepted: 05/15/2007] [Indexed: 11/18/2022]
Abstract
Contraction of muscles is mediated by highly organized arrays of myosin motor proteins. We report here the characterization of a mutation of a UCS gene named steif/unc-45b that is required for the formation of ordered myofibrils in both the skeletal and cardiac muscles of zebrafish. We show that Steif/Unc-45b interacts with the chaperone Hsp90a in vitro. The two genes are co-expressed in the skeletal musculature and knockdown of Hsp90a leads to impaired myofibril formation in the same manner as lack of Steif/Unc-45b activity. Transcripts of both genes are up-regulated in steif mutants suggesting co-regulation of the two genes. Our data indicate a requirement of Steif/unc-45b and Hsp90a for the assembly of the contractile apparatus in the vertebrate skeletal musculature.
Collapse
Affiliation(s)
- Christelle Etard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
38
|
Debat V, Milton CC, Rutherford S, Klingenberg CP, Hoffmann AA. HSP90 AND THE QUANTITATIVE VARIATION OF WING SHAPE IN DROSOPHILA MELANOGASTER. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01887.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Stover PJ, Garza C. Nutrition and developmental biology--implications for public health. Nutr Rev 2006; 64:S60-71; discussion S72-91. [PMID: 16770956 DOI: 10.1111/j.1753-4887.2006.tb00248.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recent advances in understanding genome-nutrient and nutrient-network interactions, and the modifying effects of genetic variation on their function, have strengthened interests in acute and long-lasting diet/ nutrition influences on health. Relationships between early and mid-gestational and perinatal conditions (including those related to maternal nutrition) and outcomes, and later-onset chronic diseases have received particular attention. Controlled animal experiments support views that responses with long-lasting effects to nutritional milieus are enabled by epigenetic and other metabolic adjustments during critical windows. Thus, underlying mechanisms are beginning to be understood. For example, chromatin remodeling during development can alter gene expression levels, fix or determine future set points critical to intra- and inter-organ communication networks, alter morphogenesis, initiate remodeling events, etc., all with lifelong consequences. These also may affect DNA mutation rates and thereby influence adult cancer and other risks. There is increasing evidence that nutrient-based strategies will be of value to the prevention or delay of onset of chronic diseases and that these strategies may require initiation during embryonic or fetal stages of development to achieve maximal benefit.
Collapse
Affiliation(s)
- Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
40
|
Rollo CD. Radiation and the regulatory landscape of neo2-Darwinism. Mutat Res 2006; 597:18-31. [PMID: 16414092 DOI: 10.1016/j.mrfmmm.2005.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/24/2005] [Accepted: 09/14/2005] [Indexed: 05/06/2023]
Abstract
Several recently revealed features of eukaryotic genomes were not predicted by earlier evolutionary paradigms, including the relatively small number of genes, the very large amounts of non-functional code and its quarantine in heterochromatin, the remarkable conservation of many functionally important genes across relatively enormous phylogenetic distances, and the prevalence of extra-genomic information associated with chromatin structure and histone proteins. All of these emphasize a paramount role for regulatory evolution, which is further reinforced by recent perspectives highlighting even higher-order regulation governing epigenetics and development (EVO-DEVO). Modern neo2-Darwinism, with its emphasis on regulatory mechanisms and regulatory evolution provides new vision for understanding radiation biology, particularly because free radicals and redox states are central to many regulatory mechanisms and free radicals generated by radiation mimic and amplify endogenous signalling. This paper explores some of these aspects and their implications for low-dose radiation biology.
Collapse
Affiliation(s)
- C David Rollo
- Department of Biology, Life Sciences Building, 1280 Main St. West, Hamilton, Ont., Canada L8S 4K1.
| |
Collapse
|
41
|
Jablonski D. Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 304:504-19. [PMID: 16161067 DOI: 10.1002/jez.b.21075] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The origins of evolutionary innovations have been intensively studied, but relatively little is known about their large-scale ecological patterns. For post-Paleozoic benthic marine invertebrates, which have the richest and most densely sampled fossil record, order-level taxa tend to appear first in onshore, disturbed habitats, even in groups that are now exclusively deep-water (so that present-day distributions are not reliable indicators of original environments). New results presented here show that the onshore-origination pattern is robust to shifts in taxonomic methods and to new paleontological discoveries, and the few available studies suggest that this pattern can also be seen in terms of excursions in morphospace or the acquisition of derived character states, without reference to taxonomic categories. The environmental pattern at high levels contrasts significantly with the origin of low-level novelties (such as defined genera and families) in crinoids, echinoids, and bryozoans, where first appearances tend to conform to their clade-specific bathymetric diversity gradients. This discordance seems to eliminate potential driving mechanisms that simply scale up within-population genetic or ecological processes. Little is known about the factors that promote the onshore-offshore expansion of orders across the continental shelf, or that drive some clades to abandon ancestral habitats for an exclusively deep-water distribution. The origin of evolutionary innovation must ultimately reside in developmental changes, but the onshore-origination bias could emerge from two different dynamics: the pattern could be primarily genetic and developmental, i.e., innovations truly arise onshore; or primarily ecological, i.e., innovations arise randomly but preferentially survive onshore. Whatever the ultimate driving mechanisms, these macroevolutionary patterns show that theories of large-scale evolutionary novelty must include an ecological dimension.
Collapse
Affiliation(s)
- David Jablonski
- Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
42
|
Debat V, Milton CC, Rutherford S, Klingenberg CP, Hoffmann AA. HSP90 AND THE QUANTITATIVE VARIATION OF WING SHAPE IN DROSOPHILA MELANOGASTER. Evolution 2006. [DOI: 10.1554/06-045.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Yi H, Riddle NC, Stokes TL, Woo HR, Richards EJ. Induced and natural epigenetic variation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:155-9. [PMID: 16117645 DOI: 10.1101/sqb.2004.69.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- H Yi
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Standing watch over the proteome, molecular chaperones are an ancient and evolutionarily conserved class of proteins that guide the normal folding, intracellular disposition and proteolytic turnover of many of the key regulators of cell growth, differentiation and survival. This essential guardian function is subverted during oncogenesis to allow malignant transformation and to facilitate rapid somatic evolution. Pharmacologically 'bribing' the essential guard duty of the chaperone HSP90 (heat-shock protein of 90 kDa) seems to offer a unique anticancer strategy of considerable promise.
Collapse
Affiliation(s)
- Luke Whitesell
- Steele Memorial Children's Research Center, University of Arizona, Tucson, Arizona 85724, USA.
| | | |
Collapse
|
45
|
Badyaev AV. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Proc Biol Sci 2005; 272:877-86. [PMID: 16024341 PMCID: PMC1564094 DOI: 10.1098/rspb.2004.3045] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this relationship are poorly understood. Several themes and approaches in recent studies significantly further our understanding of the importance that stress-induced variation plays in evolution. First, stressful environments modify (and often reduce) the integration of neuroendocrinological, morphological and behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of stress-induced variation by developmental systems enables organismal 'memory' of a stressful event as well as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems, a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral genetic variation might be a common property of locally adapted and complex organismal systems, and extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects and stress-resistance strategies often persist for several generations through maternal, ecological and cultural inheritance. These transgenerational effects, along with both the complexity of developmental systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects. Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic accommodation of stress-induced effects, together with the inheritance of stress-induced modifications, ensure the evolutionary persistence of stress-response strategies and provide a link between individual adaptability and evolutionary adaptation.
Collapse
|
46
|
Wong AHC, Gottesman II, Petronis A. Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum Mol Genet 2005; 14 Spec No 1:R11-8. [PMID: 15809262 DOI: 10.1093/hmg/ddi116] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human monozygotic twins and other genetically identical organisms are almost always strikingly similar in appearance, yet they are often discordant for important phenotypes including complex diseases. Such variation among organisms with virtually identical chromosomal DNA sequences has largely been attributed to the effects of environment. Environmental factors can have a strong effect on some phenotypes, but evidence from both animal and human experiments suggests that the impact of environment has been overstated and that our views on the causes of phenotypic differences in genetically identical organisms require revision. New theoretical and experimental opportunities arise if epigenetic factors are considered as part of the molecular control of phenotype. Epigenetic mechanisms may explain paradoxical findings in twin and inbred animal studies when phenotypic differences occur in the absence of observable environmental differences and also when environmental differences do not significantly increase the degree of phenotypic variation.
Collapse
Affiliation(s)
- Albert H C Wong
- The Centre for Addiction and Mental Health, Department of Psychiatry, Toronto, Ontario, Canada
| | | | | |
Collapse
|
47
|
Abstract
Evolutionary capacitors phenotypically reveal a stock of cryptic genetic variation in a reversible fashion. The sudden and reversible revelation of a range of variation is fundamentally different from the gradual introduction of variation by mutation. Here I study the invasion dynamics of modifiers of revelation. A modifier with the optimal rate of revelation mopt has a higher probability of invading any other population than of being counterinvaded. mopt varies with the population size N and the rate theta at which environmental change makes revelation adaptive. For small populations less than a minimum cutoff Nmin, all revelation is selected against. Nmin is typically quite small and increases only weakly, with theta-1/2. For large populations with N>1/theta, mopt is approximately 1/N. Selection for the optimum is highly effective and increases in effectiveness with larger N>>1/theta. For intermediate values of N, mopt is typically a little less than theta and is only weakly favored over less frequent revelation. The model is analogous to a two-locus model for the evolution of a mutator allele. It is a fully stochastic model and so is able to show that selection for revelation can be strong enough to overcome random drift.
Collapse
Affiliation(s)
- Joanna Masel
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
48
|
Ruden DM, Xiao L, Garfinkel MD, Lu X. Hsp90 and environmental impacts on epigenetic states: a model for the trans-generational effects of diethylstibesterol on uterine development and cancer. Hum Mol Genet 2005; 14 Spec No 1:R149-55. [PMID: 15809267 DOI: 10.1093/hmg/ddi103] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hsp90 is a chaperone for over 100 'client proteins' in the cell, most of which are involved in signaling pathways. For example, Hsp90 maintains several nuclear hormone receptors, such as the estrogen receptor (ER), as agonist-receptive monomers in the cytoplasm. In the presence of agonist, Hsp90 dissociates and the receptors dimerize, enter the nucleus and ultimately activate transcription of the target genes. Increasing evidence suggests that Hsp90 also has a role in modifying the chromatin conformation of many genes. For example, Hsp90 has recently been shown to increase the activity of the histone H3 lysine-4 methyltransferase SMYD3, which activates the chromatin of target genes. Further evidence for chromatin-remodeling functions is that Hsp90 acts as a capacitor for morphological evolution by masking epigenetic variation. Release of the capacitor function of Hsp90, such as by environmental stress or by drugs that inhibit the ATP-binding activity of Hsp90, exposes previously hidden morphological phenotypes in the next generation and for several generations thereafter. The chromatin-modifying phenotypes of Hsp90 have striking similarities to the trans-generational effects of the ER agonist diethylstilbesterol (DES). Prenatal and perinatal exposure to DES increases the predisposition to uterine developmental abnormalities and cancer in the daughters and granddaughters of exposed pregnant mice. In this review, we propose that trans-generational epigenetic phenomena involving Hsp90 and DES are related and that chromatin-mediated WNT signaling modifications are required. This model suggests that inhibitors of Hsp90, WNT signaling and chromatin-remodeling enzymes might function as anticancer agents by interfering with epigenetic reprogramming and canalization in cancer stem cells.
Collapse
Affiliation(s)
- Douglas M Ruden
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 35294-0022, USA.
| | | | | | | |
Collapse
|
49
|
Evans TG, Yamamoto Y, Jeffery WR, Krone PH. Zebrafish Hsp70 is required for embryonic lens formation. Cell Stress Chaperones 2005; 10:66-78. [PMID: 15832949 PMCID: PMC1074573 DOI: 10.1379/csc-79r.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/08/2004] [Accepted: 11/15/2004] [Indexed: 02/01/2023] Open
Abstract
Heat shock proteins (Hsps) were originally identified as proteins expressed after exposure of cells to environmental stress. Several Hsps were subsequently shown to play roles as molecular chaperones in normal intracellular protein folding and targeting events and to be expressed during discrete periods in the development of several embryonic tissues. However, only recently have studies begun to address the specific developmental consequences of inhibiting Hsp expression to determine whether these molecular chaperones are required for specific developmental events. We have previously shown that the heat-inducible zebrafish hsp70 gene is expressed during a distinct temporal window of embryonic lens formation at normal growth temperatures. In addition, a 1.5-kb fragment of the zebrafish hsp70 gene promoter is sufficient to direct expression of a gfp reporter gene to the lens, suggesting that the hsp70 gene is expressed as part of the normal lens development program. Here, we used microinjection of morpholino-modified antisense oligonucleotides (MOs) to reduce Hsp70 levels during zebrafish development and to show that Hsp70 is required for normal lens formation. Hsp70-MO-injected embryos exhibited a small-eye phenotype relative to wild-type and control-injected animals, with the phenotype discernable during the second day of development. Histological and immunological analysis revealed a small, underdeveloped lens. Numerous terminal deoxynucleotidyl transferase-mediated dUTP-fluoroscein nick-end labeling (TUNEL)-positive nuclei appeared in the lens of small-eye embryos after 48 hours postfertilization (hpf), whereas they were no longer apparent in untreated embryos by this age. Lenses transplanted from hsp70-MO-injected embryos into wild-type hosts failed to recover and retained the immature morphology characteristic of the small-eye phenotype, indicating that the lens phenotype is lens autonomous. Our data suggest that the lens defect in hsp70-MO-injected embryos is predominantly at the level of postmitotic lens fiber differentiation, a result supported by the appearance of mature lens organization in these embryos by 5 days postfertilization, once morpholino degradation or dilution has occurred.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | |
Collapse
|
50
|
Abstract
Our increased knowledge of epigenetic reprogramming supports the idea that epigenetic marks are not always completely cleared between generations. Incomplete erasure at genes associated with a measurable phenotype can result in unusual patterns of inheritance from one generation to the next. It is also becoming clear that the establishment of epigenetic marks during development can be influenced by environmental factors. In combination, these two processes could provide a mechanism for a rapid form of adaptive evolution.
Collapse
Affiliation(s)
- Suyinn Chong
- School of Molecular and Microbial Biosciences, Biochemistry Building-G08, University of Sydney, New South Wales 2006, Australia
| | | |
Collapse
|