1
|
Ciani C, Ayub M, Falcone C. Evolution of Astrocyte-Neuron Interactions Across Species. ADVANCES IN NEUROBIOLOGY 2024; 39:1-17. [PMID: 39190069 DOI: 10.1007/978-3-031-64839-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Proper functioning of the central nervous system depends on various tightly regulated phenomena, among which astrocyte-neuron interactions are of critical importance. Various studies across the species have highlighted the diverse yet crucial roles of astrocytes in regulating the nervous system development and functions. In simpler organisms like worms or insects, astrocyte-like cells govern basic functions such as structural support to neurons or regulation of extracellular ions. As the species complexity increases, so does the functional and morphological complexity of astrocytes. For example, in fish and amphibians, these cells are involved in synaptic development and ion homeostasis, while in reptiles and birds, astrocytes regulate synaptic transmission and plasticity and are reported to be involved in complex behaviors. Other species like those belonging to mammals and, in particular, primates have a heterogeneous population of astrocytes, exhibiting region-specific functional properties. In primates, these cells are responsible for proper synaptic transmission, neurotransmitter release and metabolism, and higher cognitive functions like learning, memory, or information processing. This chapter highlights the well-established and somewhat conserved roles of astrocytes and astrocyte-neuron interactions across the evolution of both invertebrates and vertebrates.
Collapse
Affiliation(s)
- Caterina Ciani
- Neuroscience Department, Scuola Internazionale di Studi Avanzati (SISSA), Trieste, Italy
| | - Maria Ayub
- Neuroscience Department, Scuola Internazionale di Studi Avanzati (SISSA), Trieste, Italy
| | - Carmen Falcone
- Neuroscience Department, Scuola Internazionale di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
2
|
He L, Wu B, Shi J, Du J, Zhao Z. Regulation of feeding and energy homeostasis by clock-mediated Gart in Drosophila. Cell Rep 2023; 42:112912. [PMID: 37531254 DOI: 10.1016/j.celrep.2023.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/19/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Feeding behavior is essential for growth and survival of animals; however, relatively little is known about its intrinsic mechanisms. Here, we demonstrate that Gart is expressed in the glia, fat body, and gut and positively regulates feeding behavior via cooperation and coordination. Gart in the gut is crucial for maintaining endogenous feeding rhythms and food intake, while Gart in the glia and fat body regulates energy homeostasis between synthesis and metabolism. These roles of Gart further impact Drosophila lifespan. Importantly, Gart expression is directly regulated by the CLOCK/CYCLE heterodimer via canonical E-box, in which the CLOCKs (CLKs) in the glia, fat body, and gut positively regulate Gart of peripheral tissues, while the core CLK in brain negatively controls Gart of peripheral tissues. This study provides insight into the complex and subtle regulatory mechanisms of feeding and lifespan extension in animals.
Collapse
Affiliation(s)
- Lei He
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Binbin Wu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Jian Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China; College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China.
| |
Collapse
|
3
|
Falcone C. Evolution of astrocytes: From invertebrates to vertebrates. Front Cell Dev Biol 2022; 10:931311. [PMID: 36046339 PMCID: PMC9423676 DOI: 10.3389/fcell.2022.931311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) shows incredible diversity across evolution at the anatomical, cellular, molecular, and functional levels. Over the past decades, neuronal cell number and heterogeneity, together with differences in the number and types of neuro-active substances, axonal conduction, velocity, and modes of synaptic transmission, have been rigorously investigated in comparative neuroscience studies. However, astrocytes, a specific type of glial cell in the CNS, play pivotal roles in regulating these features and thus are crucial for the brain's development and evolution. While special attention has been paid to mammalian astrocytes, we still do not have a clear definition of what an astrocyte is from a broader evolutionary perspective, and there are very few studies on astroglia-like structures across all vertebrates. Here, I elucidate what we know thus far about astrocytes and astrocyte-like cells across vertebrates. This information expands our understanding of how astrocytes evolved to become more complex and extremely specialized cells in mammals and how they are relevant to the structure and function of the vertebrate brain.
Collapse
Affiliation(s)
- Carmen Falcone
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
4
|
Single-cell transcriptomic analysis of honeybee brains identifies vitellogenin as caste differentiation-related factor. iScience 2022; 25:104643. [PMID: 35800778 PMCID: PMC9254125 DOI: 10.1016/j.isci.2022.104643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
The honeybee (Apis mellifera) is a well-known eusocial insect. In honeybee colonies, thousands of sterile workers, including nurse and forager bees, perform various tasks within or outside the hive, respectively. The queen is the only fertile female and is responsible for reproduction. The queen and workers share similar genomes but occupy different caste statuses. We established single-cell transcriptomic atlases of brains from queens and worker subcastes and identified five major cell groups: Kenyon, optic lobe, olfactory projection, glial, and hemocyte cells. By dividing Kenyon and glial cells into multiple subtypes based on credible markers, we observed that vitellogenin (vg) was highly expressed in specific glial-cell subtypes in brains of queens. Knockdown of vg at the early larval stage significantly suppressed the development into adult queens. We demonstrate vg expression as a "molecular signature" for the queen caste and suggest involvement of vg in regulating caste differentiation. scRNA-seq revealed distinct gene expression in the brains of queens and workers Vitellogenin (vg) may represent a "molecular signature" of the queen caste Knockdown of vg at early larval stage suppressed development into adult queens Vg may be involved in regulating caste differentiation
Collapse
|
5
|
Krill JL, Dawson-Scully K. Characterization of a novel stimulus-induced glial calcium wave in Drosophila larval peripheral segmental nerves and its role in PKG-modulated thermoprotection. J Neurogenet 2021; 35:221-235. [PMID: 34309496 DOI: 10.1080/01677063.2021.1941945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Insects, as poikilotherms, have adaptations to deal with wide ranges in temperature fluctuation. Allelic variations in the foraging gene that encodes a cGMP dependent protein kinase, were discovered to have effects on behavior in Drosophila by Dr. Marla Sokolowski in 1980. This single gene has many pleiotropic effects and influences feeding behavior, metabolic storage, learning and memory and has been shown to affect stress tolerance. PKG regulation affects motoneuronal thermotolerance in Drosophila larvae as well as adults. While the focus of thermotolerance studies has been on the modulation of neuronal function, other cell types have been overlooked. Because glia are vital to neuronal function and survival, we wanted to determine if glia play a role in thermotolerance as well. In our investigation, we discovered a novel calcium wave at the larval NMJ and set out to characterize the wave's dynamics and the potential mechanism underlying the wave prior to determining what effect, if any, PKG modulation has on the thermotolerance of glia cells. Using pharmacology, we determined that calcium buffering mechanisms of the mitochondria and endoplasmic reticulum play a role in the propagation of our novel glial calcium wave. By coupling pharmacology with genetic manipulation using RNA interference (RNAi), we found that PKG modulation in glia alters thermoprotection of function as well as glial calcium wave dynamics.
Collapse
Affiliation(s)
- Jennifer L Krill
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| |
Collapse
|
6
|
Abstract
As the nervous system evolved from the diffused to centralised form, the neurones were joined by the appearance of the supportive cells, the neuroglia. Arguably, these non-neuronal cells evolve into a more diversified cell family than the neurones are. The first ancestral neuroglia appeared in flatworms being mesenchymal in origin. In the nematode C. elegans proto-astrocytes/supportive glia of ectodermal origin emerged, albeit the ensheathment of axons by glial cells occurred later in prawns. The multilayered myelin occurred by convergent evolution of oligodendrocytes and Schwann cells in vertebrates above the jawless fishes. Nutritive partitioning of the brain from the rest of the body appeared in insects when the hemolymph-brain barrier, a predecessor of the blood-brain barrier was formed. The defensive cellular mechanism required specialisation of bona fide immune cells, microglia, a process that occurred in the nervous system of leeches, bivalves, snails, insects and above. In ascending phylogeny, new type of glial cells, such as scaffolding radial glia, appeared and as the bran sizes enlarged, the glia to neurone ratio increased. Humans possess some unique glial cells not seen in other animals.
Collapse
|
7
|
Abstract
Microglia are neural cells of nonneural origin; they originate from fetal macrophages that invade neural tube early in embryogenesis and undergo the most idiosyncratic metamorphosis which coverts them into elements of neural circuitry. Microglia appeared early in evolution with neural immune cells being operative in leeches and mollusks. Microglial cells acquire specific morphology characterized by small cell bodies and long motile processes which are packed with receptors sensing both physiological and pathological stimuli. Microglial cells actively sculpture neuronal networks through synaptic stripping and phagocytosis of redundant neurons; microglia also secrete neuroactive factors regulating synaptic transmission. Novel techniques emerging in recent decade allowed an in-depth understanding of physiological and pathophysiological functions of microglia.
Collapse
Affiliation(s)
- Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
8
|
Shah AK, Kreibich CD, Amdam GV, Münch D. Metabolic enzymes in glial cells of the honeybee brain and their associations with aging, starvation and food response. PLoS One 2018; 13:e0198322. [PMID: 29927967 PMCID: PMC6013123 DOI: 10.1371/journal.pone.0198322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/17/2018] [Indexed: 12/03/2022] Open
Abstract
The honey bee has been extensively studied as a model for neuronal circuit and memory function and more recently has emerged as an unconventional model in biogerontology. Yet, the detailed knowledge of neuronal processing in the honey bee brain contrasts with the very sparse information available on glial cells. In other systems glial cells are involved in nutritional homeostasis, detoxification, and aging. These glial functions have been linked to metabolic enzymes, such as glutamine synthetase and glycogen phosphorylase. As a step in identifying functional roles and potential differences among honey bee glial types, we examined the spatial distribution of these enzymes and asked if enzyme abundance is associated with aging and other processes essential for survival. Using immunohistochemistry and confocal laser microscopy we demonstrate that glutamine synthetase and glycogen phosphorylase are abundant in glia but appear to co-localize with different glial sub-types. The overall spatial distribution of both enzymes was not homogenous and differed markedly between different neuropiles and also within each neuropil. Using semi-quantitative Western blotting we found that rapid aging, typically observed in shortest-lived worker bees (foragers), was associated with declining enzyme levels. Further, we found enzyme abundance changes after severe starvation stress, and that glutamine synthetase is associated with food response. Together, our data indicate that aging and nutritional physiology in bees are linked to glial specific metabolic enzymes. Enzyme specific localization patterns suggest a functional differentiation among identified glial types.
Collapse
Affiliation(s)
- Ashish K. Shah
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Claus D. Kreibich
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Gro V. Amdam
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Daniel Münch
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- * E-mail:
| |
Collapse
|
9
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
10
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 961] [Impact Index Per Article: 160.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
11
|
Verkhratsky A, Nedergaard M. The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0428. [PMID: 27377722 DOI: 10.1098/rstb.2015.0428] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny, Novgorod 603022, Russia
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
12
|
Zwarts L, Goossens T, Clements J, Kang YY, Callaerts P. Axon Branch-Specific Semaphorin-1a Signaling in Drosophila Mushroom Body Development. Front Cell Neurosci 2016; 10:210. [PMID: 27656129 PMCID: PMC5011136 DOI: 10.3389/fncel.2016.00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022] Open
Abstract
Correct wiring of the mushroom body (MB) neuropil in the Drosophila brain involves appropriate positioning of different axonal lobes, as well as the sister branches that develop from individual axons. This positioning requires the integration of various guidance cues provided by different cell types, which help the axons find their final positions within the neuropil. Semaphorins are well-known for their conserved roles in neuronal development and axon guidance. We investigated the role of Sema-1a in MB development more closely. We show that Sema-1a is expressed in the MBs as well as surrounding structures, including the glial transient interhemispheric fibrous ring, throughout development. By loss- and gain-of-function experiments, we show that the MB axons display lobe and sister branch-specific Sema-1a signaling, which controls different aspects of axon outgrowth and guidance. Furthermore, we demonstrate that these effects are modulated by the integration of MB intrinsic and extrinsic Sema-1a signaling pathways involving PlexA and PlexB. Finally, we also show a role for neuronal- glial interaction in Sema-1a dependent β-lobe outgrowth.
Collapse
Affiliation(s)
- Liesbeth Zwarts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, LeuvenBelgium; Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, LeuvenBelgium
| | - Tim Goossens
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, LeuvenBelgium; Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, LeuvenBelgium
| | - Jason Clements
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, LeuvenBelgium; Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, LeuvenBelgium
| | - Yuan Y Kang
- Department of Biology and Biochemistry, University of Houston, Houston, TX USA
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, LeuvenBelgium; Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, LeuvenBelgium
| |
Collapse
|
13
|
Chen LP, Wang P, Sun YJ, Wu YJ. Direct interaction of avermectin with epidermal growth factor receptor mediates the penetration resistance in Drosophila larvae. Open Biol 2016; 6:150231. [PMID: 27249340 PMCID: PMC4852453 DOI: 10.1098/rsob.150231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/15/2016] [Indexed: 12/13/2022] Open
Abstract
With the widespread use of avermectins (AVMs) for managing parasitic and agricultural pests, the resistance of worms and insects to AVMs has emerged as a serious threat to human health and agriculture worldwide. The reduced penetration of AVMs is one of the main reasons for the development of the resistance to the chemicals. However, the detailed molecular mechanisms remain elusive. Here, we use the larvae of Drosophila melanogaster as the model organism to explore the molecular mechanisms underlying the development of penetration resistance to AVMs. We clearly show that the chitin layer is thickened and the efflux transporter P-glycoprotein (P-gp) is overexpressed in the AVM-resistant larvae epidermis. We reveal that the activation of the transcription factor Relish by the over-activated epidermal growth factor receptor (EGFR)/AKT/ERK pathway induces the overexpression of the chitin synthases DmeCHS1/2 and P-gp in the resistant larvae. Interestingly, we discover for the first time, to the best of our knowledge, that AVM directly interacts with EGFR and leads to the activation of the EGFR/AKT/ERK pathway, which activates the transcription factor Relish and induces the overexpression of DmeCHS1/2 and P-gp. These findings provide new insights into the molecular mechanisms underlying the development of penetration resistance to drugs.
Collapse
Affiliation(s)
- Li-Ping Chen
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Department of Veterinary Medicine and Animal Science, Beijing Agriculture College, Beijing 102206, People's Republic of China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
14
|
Koniszewski NDB, Kollmann M, Bigham M, Farnworth M, He B, Büscher M, Hütteroth W, Binzer M, Schachtner J, Bucher G. The insect central complex as model for heterochronic brain development-background, concepts, and tools. Dev Genes Evol 2016; 226:209-19. [PMID: 27056385 PMCID: PMC4896989 DOI: 10.1007/s00427-016-0542-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/17/2016] [Indexed: 11/28/2022]
Abstract
The adult insect brain is composed of neuropils present in most taxa. However, the relative size, shape, and developmental timing differ between species. This diversity of adult insect brain morphology has been extensively described while the genetic mechanisms of brain development are studied predominantly in Drosophila melanogaster. However, it has remained enigmatic what cellular and genetic mechanisms underlie the evolution of neuropil diversity or heterochronic development. In this perspective paper, we propose a novel approach to study these questions. We suggest using genome editing to mark homologous neural cells in the fly D. melanogaster, the beetle Tribolium castaneum, and the Mediterranean field cricket Gryllus bimaculatus to investigate developmental differences leading to brain diversification. One interesting aspect is the heterochrony observed in central complex development. Ancestrally, the central complex is formed during embryogenesis (as in Gryllus) but in Drosophila, it arises during late larval and metamorphic stages. In Tribolium, it forms partially during embryogenesis. Finally, we present tools for brain research in Tribolium including 3D reconstruction and immunohistochemistry data of first instar brains and the generation of transgenic brain imaging lines. Further, we characterize reporter lines labeling the mushroom bodies and reflecting the expression of the neuroblast marker gene Tc-asense, respectively.
Collapse
Affiliation(s)
- Nikolaus Dieter Bernhard Koniszewski
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany.,Institute of Medical Microbiology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Martin Kollmann
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Mahdiyeh Bigham
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Max Farnworth
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Bicheng He
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Marita Büscher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Wolf Hütteroth
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany.,Department of Biology, Neurobiology, University of Konstanz, Constance, Germany
| | - Marlene Binzer
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Joachim Schachtner
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany.
| |
Collapse
|
15
|
Controlled microfluidics to examine growth-factor induced migration of neural progenitors in the Drosophila visual system. J Neurosci Methods 2015; 262:32-40. [PMID: 26738658 DOI: 10.1016/j.jneumeth.2015.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The developing visual system in Drosophila melanogaster provides an excellent model with which to examine the effects of changing microenvironments on neural cell migration via microfluidics, because the combined experimental system enables direct genetic manipulation, in vivo observation, and in vitro imaging of cells, post-embryo. Exogenous signaling from ligands such as fibroblast growth factor (FGF) is well-known to control glia differentiation, cell migration, and axonal wrapping central to vision. NEW METHOD The current study employs a microfluidic device to examine how controlled concentration gradient fields of FGF are able to regulate the migration of vision-critical glia cells with and without cellular contact with neuronal progenitors. RESULTS Our findings quantitatively illustrate a concentration-gradient dependent chemotaxis toward FGF, and further demonstrate that glia require collective and coordinated neuronal locomotion to achieve directionality, sustain motility, and propagate long cell distances in the visual system. COMPARISON WITH EXISTING METHOD(S) Conventional assays are unable to examine concentration- and gradient-dependent migration. Our data illustrate quantitative correlations between ligand concentration/gradient and glial cell distance traveled, independent or in contact with neurons. CONCLUSIONS Microfluidic systems in combination with a genetically-amenable experimental system empowers researchers to dissect the signaling pathways that underlie cellular migration during nervous system development. Our findings illustrate the need for coordinated neuron-glia migration in the Drosophila visual system, as only glia within heterogeneous populations exhibited increasing motility along distances that increased with increasing FGF concentration. Such coordinated migration and chemotactic dependence can be manipulated for potential therapeutic avenues for NS repair and/or disease treatment.
Collapse
|
16
|
Kim HJ, Ahn HJ, Lee S, Kim JH, Park J, Jeon SH, Kim SH. Intrinsic dorsoventral patterning and extrinsic EGFR signaling genes control glial cell development in the Drosophila nervous system. Neuroscience 2015; 307:242-52. [PMID: 26318336 DOI: 10.1016/j.neuroscience.2015.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 08/08/2015] [Accepted: 08/20/2015] [Indexed: 11/26/2022]
Abstract
Dorsoventral patterning and epidermal growth factor receptor (EGFR) signaling genes are essential for determining neural identity and differentiation of the Drosophila nervous system. Their role in glial cell development in the Drosophila nervous system is not clearly established. Our study demonstrated that the dorsoventral patterning genes, vnd, ind, and msh, are intrinsically essential for the proper expression of a master glial cell regulator, gcm, and a differentiation gene, repo, in the lateral glia. In addition, we showed that esg is particularly required for their expression in the peripheral glia. These results indicate that the dorsoventral patterning and EGFR signaling genes are essential for identity determination and differentiation of the lateral glia by regulating proper expression of gcm and repo in the lateral glia from the early glial development. In contrast, overexpression of vnd, msh, spi, and Egfr genes repressed the expression of Repo in the ventral neuroectoderm, indicating that maintenance of correct columnar identity along the dorsoventral axis by proper expression of these genes is essential for restrictive formation of glial precursor cells in the lateral neuroectoderm. Therefore, the dorsoventral patterning and EGFR signaling genes play essential roles in correct identity determination and differentiation of lateral glia in the Drosophila nervous system.
Collapse
Affiliation(s)
- H J Kim
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - H J Ahn
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - S Lee
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - J H Kim
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - J Park
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - S-H Jeon
- Department of Biology Education, Seoul National University, Seoul 151-742, Republic of Korea
| | - S H Kim
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
17
|
Abstract
Although the ultrastructure of peripheral nerves has been known for nearly 200 years, the developmental origins and functional roles of all five main components of these specialized nervous system conduits are still poorly understood. One of these understudied nerve elements, the perineurium, is a component of the blood-nerve barrier and is essential for protecting axons and their associated Schwann cells from ionic flux, toxins, and infection. However, until recently, it was thought that this vital nerve tissue was derived from the mesoderm and simply served a structural/barrier function with no other influence on the development, maintenance, or regeneration of peripheral nerves. Recent work in zebrafish using in vivo time-lapse imaging, genetic manipulation, and laser axotomy is shedding light on the origin and roles of this previously ignored glial nerve component and is changing how we view development of the nervous system.
Collapse
Affiliation(s)
- Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
18
|
Shklover J, Mishnaevski K, Levy-Adam F, Kurant E. JNK pathway activation is able to synchronize neuronal death and glial phagocytosis in Drosophila. Cell Death Dis 2015; 6:e1649. [PMID: 25695602 PMCID: PMC4669801 DOI: 10.1038/cddis.2015.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Glial phagocytosis of superfluous neurons and damaged or aberrant neuronal material is crucial for normal development and maintenance of the CNS. However, the molecular mechanisms underlying the relationship between neuronal death and glial phagocytosis are poorly understood. We describe a novel mechanism that is able to synchronize neuronal cell death and glial phagocytosis of dying neurons in the Drosophila embryonic CNS. This mechanism involves c-Jun N-terminal kinase (JNK) signaling, which is required for developmental apoptosis of specific neurons during embryogenesis. We demonstrate that the dJNK pathway gain-of-function in neurons leads to dJNK signaling in glia, which results in upregulation of glial phagocytosis. Importantly, this promotion of phagocytosis is not mediated by upregulation of the glial phagocytic receptors SIMU and DRPR, but by increasing glial capacity to degrade apoptotic particles inside phagosomes. The proposed mechanism may be important for removal of damaged neurons in the developing and mature CNS.
Collapse
Affiliation(s)
- J Shklover
- Department of Genetics and Developmental Biology, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - K Mishnaevski
- Department of Genetics and Developmental Biology, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - F Levy-Adam
- Department of Genetics and Developmental Biology, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - E Kurant
- Department of Genetics and Developmental Biology, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
19
|
Effect of the urease-derived peptide Jaburetox on the central nervous system of Triatoma infestans (Insecta: Heteroptera). Biochim Biophys Acta Gen Subj 2015; 1850:255-62. [DOI: 10.1016/j.bbagen.2014.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/31/2014] [Accepted: 11/07/2014] [Indexed: 01/15/2023]
|
20
|
Smith CJ, Morris AD, Welsh TG, Kucenas S. Contact-mediated inhibition between oligodendrocyte progenitor cells and motor exit point glia establishes the spinal cord transition zone. PLoS Biol 2014; 12:e1001961. [PMID: 25268888 PMCID: PMC4181976 DOI: 10.1371/journal.pbio.1001961] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/21/2014] [Indexed: 11/29/2022] Open
Abstract
In vivo experiments in zebrafish determine that CNS-derived glial cells contribute to the myelinating population of cells in the PNS and ensure that CNS and PNS glia remain segregated. Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition. The nervous system is often thought as two distinct halves: the central nervous system (CNS), which consists of the brain and spinal cord, and the peripheral nervous system (PNS), which includes the nerves that control movement and sense the environment. The cells within these two halves, however, do not commonly mix. To address how cells are segregated within these two compartments of the nervous system, we used live, transgenic zebrafish embryos to watch nerve development. Our study shows that CNS-residing myelinating glia (nonneuronal cells that wrap around nerves to ensure nerve impulse conduction) are restricted from entering the PNS by a cell we call motor exit point (MEP) glia. MEP glia originate from within the CNS, and then migrate into the PNS, divide, and produce cells that ensheath and myelinate spinal motor root axons. Ablation of MEP glia causes CNS glia to migrate inappropriately into the PNS, disrupting the normal boundary that is present between the CNS and PNS. Overall, the identification and characterization of MEP glia identifies an aspect of peripheral nerve composition that may be pertinent in human health and disease.
Collapse
Affiliation(s)
- Cody J. Smith
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Angela D. Morris
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Taylor G. Welsh
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Xie X, Gilbert M, Petley-Ragan L, Auld VJ. Loss of focal adhesions in glia disrupts both glial and photoreceptor axon migration in the Drosophila visual system. Development 2014; 141:3072-83. [PMID: 25053436 DOI: 10.1242/dev.101972] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many aspects of glial development are regulated by extracellular signals, including those from the extracellular matrix (ECM). Signals from the ECM are received by cell surface receptors, including the integrin family. Previously, we have shown that Drosophila integrins form adhesion complexes with Integrin-linked kinase and talin in the peripheral nerve glia and have conserved roles in glial sheath formation. However, integrin function in other aspects of glial development is unclear. The Drosophila eye imaginal disc (ED) and optic stalk (OS) complex is an excellent model with which to study glial migration, differentiation and glia-neuron interactions. We studied the roles of the integrin complexes in these glial developmental processes during OS/eye development. The common beta subunit βPS and two alpha subunits, αPS2 and αPS3, are located in puncta at both glia-glia and glia-ECM interfaces. Depletion of βPS integrin and talin by RNAi impaired the migration and distribution of glia within the OS resulting in morphological defects. Reduction of integrin or talin in the glia also disrupted photoreceptor axon outgrowth leading to axon stalling in the OS and ED. The neuronal defects were correlated with a disruption of the carpet glia tube paired with invasion of glia into the core of the OS and the formation of a glial cap. Our results suggest that integrin-mediated extracellular signals are important for multiple aspects of glial development and non-autonomously affect axonal migration during Drosophila eye development.
Collapse
Affiliation(s)
- Xiaojun Xie
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Mary Gilbert
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Lindsay Petley-Ragan
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Vanessa J Auld
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
22
|
Abstract
Post-transcriptional pre-mRNA splicing has emerged as a critical step in the gene expression cascade greatly influencing diversification and spatiotemporal control of the proteome in many developmental processes. The percentage of genes targeted by alternative splicing (AS) is shown to be over 95% in humans and 60% in Drosophila. Therefore, it is evident that deregulation of this process underlies many genetic diseases. Among all tissues, the brain shows the highest transcriptome diversity, which is not surprising in view of the complex inter- and intracellular networks underlying the development of this organ. Reports of isoforms known to function at different steps during Drosophila nervous system development are rapidly increasing as well as knowledge on their regulation and function, highlighting the role of AS during neuronal development in Drosophila.
Collapse
Affiliation(s)
- Carmen Mohr
- Institute of Human Genetics, University Medical Center Freiburg , Freiburg , Germany
| | | |
Collapse
|
23
|
Clark JK, O'keefe A, Mastracci TL, Sussel L, Matise MP, Kucenas S. Mammalian Nkx2.2+ perineurial glia are essential for motor nerve development. Dev Dyn 2014; 243:1116-29. [PMID: 24979729 DOI: 10.1002/dvdy.24158] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/25/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND All vertebrate peripheral nerves connect the central nervous system (CNS) with targets in the periphery and are composed of axons, layers of ensheathing glia and connective tissue. Although the structure of these conduits is well established, very little is known about the origin and developmental roles of some of their elements. One understudied component, the perineurium, ensheaths nerve fascicles and is a component of the blood-nerve-barrier. In zebrafish, the motor nerve perineurium is composed of CNS-derived nkx2.2a(+) perineurial glia, which establish the motor exit point (MEP) during development. To determine if mouse perineurial cells also originate within the CNS and perform a similar function, we created a Nkx2.2:EGFP transgenic reporter line. RESULTS In conjunction with RNA expression analysis and antibody labeling, we observed Nkx2.2(+) cells along peripheral motor nerves at all stages of development and in adult tissue. Additionally, in mice lacking Nkx2.2, we demonstrate that Nkx2.2(+) perineurial glia are essential for motor nerve development and Schwann cell differentiation. CONCLUSIONS Our studies reveal that a subset of mouse perineurial cells are CNS-derived, express Nkx2.2, and are essential for motor nerve development. This work highlights an under-appreciated but essential contribution of CNS-derived cells to the development of the mammalian peripheral nervous system (PNS).
Collapse
Affiliation(s)
- Jessica K Clark
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | |
Collapse
|
24
|
von Hilchen CM, Bustos AE, Giangrande A, Technau GM, Altenhein B. Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system. Development 2013; 140:3657-68. [PMID: 23903191 PMCID: PMC3915570 DOI: 10.1242/dev.093245] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the numerous functions of glial cells in Drosophila is the ensheathment of neurons to isolate them from the potassium-rich haemolymph, thereby establishing the blood-brain barrier. Peripheral nerves of flies are surrounded by three distinct glial cell types. Although all embryonic peripheral glia (ePG) have been identified on a single-cell level, their contribution to the three glial sheaths is not known. We used the Flybow system to label and identify each individual ePG in the living embryo and followed them into third instar larva. We demonstrate that all ePG persist until the end of larval development and some even to adulthood. We uncover the origin of all three glial sheaths and describe the larval differentiation of each peripheral glial cell in detail. Interestingly, just one ePG (ePG2) exhibits mitotic activity during larval stages, giving rise to up to 30 glial cells along a single peripheral nerve tract forming the outermost perineurial layer. The unique mitotic ability of ePG2 and the layer affiliation of additional cells were confirmed by in vivo ablation experiments and layer-specific block of cell cycle progression. The number of cells generated by this glial progenitor and hence the control of perineurial hyperplasia correlate with the length of the abdominal nerves. By contrast, the wrapping and subperineurial glia layers show enormous hypertrophy in response to larval growth. This characterisation of the embryonic origin and development of each glial sheath will facilitate functional studies, as they can now be addressed distinctively and genetically manipulated in the embryo.
Collapse
|
25
|
Pérez-Gómez R, Slováková J, Rives-Quinto N, Krejci A, Carmena A. A Serrate-Notch-Canoe complex mediates glial-neuroepithelial cell interactions essential during Drosophila optic lobe development. J Cell Sci 2013; 126:4873-84. [DOI: 10.1242/jcs.125617] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is firmly established that neuron-glia interactions are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions generating neuroblasts. The proneural gene lethal of scute (l'sc) is transiently activated by the Epidermal Growth Factor Receptor (EGFR)/Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR/Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for glial-neuroepithelial cell interactions during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR/Ras pathway and hence of L'sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling.
Collapse
|
26
|
Avet-Rochex A, Kaul AK, Gatt AP, McNeill H, Bateman JM. Concerted control of gliogenesis by InR/TOR and FGF signalling in the Drosophila post-embryonic brain. Development 2012; 139:2763-72. [PMID: 22745312 PMCID: PMC3392704 DOI: 10.1242/dev.074179] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2012] [Indexed: 12/19/2022]
Abstract
Glial cells are essential for the development and function of the nervous system. In the mammalian brain, vast numbers of glia of several different functional types are generated during late embryonic and early foetal development. However, the molecular cues that instruct gliogenesis and determine glial cell type are poorly understood. During post-embryonic development, the number of glia in the Drosophila larval brain increases dramatically, potentially providing a powerful model for understanding gliogenesis. Using glial-specific clonal analysis we find that perineural glia and cortex glia proliferate extensively through symmetric cell division in the post-embryonic brain. Using pan-glial inhibition and loss-of-function clonal analysis we find that Insulin-like receptor (InR)/Target of rapamycin (TOR) signalling is required for the proliferation of perineural glia. Fibroblast growth factor (FGF) signalling is also required for perineural glia proliferation and acts synergistically with the InR/TOR pathway. Cortex glia require InR in part, but not downstream components of the TOR pathway, for proliferation. Moreover, cortex glia absolutely require FGF signalling, such that inhibition of the FGF pathway almost completely blocks the generation of cortex glia. Neuronal expression of the FGF receptor ligand Pyramus is also required for the generation of cortex glia, suggesting a mechanism whereby neuronal FGF expression coordinates neurogenesis and cortex gliogenesis. In summary, we have identified two major pathways that control perineural and cortex gliogenesis in the post-embryonic brain and have shown that the molecular circuitry required is lineage specific.
Collapse
Affiliation(s)
- Amélie Avet-Rochex
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Aamna K. Kaul
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Ariana P. Gatt
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Helen McNeill
- Samuel Lunenfeld Research Institute, Toronto, Ontario M5G 1X5, Canada
| | - Joseph M. Bateman
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
27
|
Makhijani K, Alexander B, Tanaka T, Rulifson E, Brückner K. The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development 2011; 138:5379-91. [PMID: 22071105 PMCID: PMC3222213 DOI: 10.1242/dev.067322] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2011] [Indexed: 12/13/2022]
Abstract
Interactions of hematopoietic cells with their microenvironment control blood cell colonization, homing and hematopoiesis. Here, we introduce larval hematopoiesis as the first Drosophila model for hematopoietic colonization and the role of the peripheral nervous system (PNS) as a microenvironment in hematopoiesis. The Drosophila larval hematopoietic system is founded by differentiated hemocytes of the embryo, which colonize segmentally repeated epidermal-muscular pockets and proliferate in these locations. Importantly, we show that these resident hemocytes tightly colocalize with peripheral neurons and we demonstrate that larval hemocytes depend on the PNS as an attractive and trophic microenvironment. atonal (ato) mutant or genetically ablated larvae, which are deficient for subsets of peripheral neurons, show a progressive apoptotic decline in hemocytes and an incomplete resident hemocyte pattern, whereas supernumerary peripheral neurons induced by ectopic expression of the proneural gene scute (sc) misdirect hemocytes to these ectopic locations. This PNS-hematopoietic connection in Drosophila parallels the emerging role of the PNS in hematopoiesis and immune functions in vertebrates, and provides the basis for the systematic genetic dissection of the PNS-hematopoietic axis in the future.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Tsubasa Tanaka
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Eric Rulifson
- Department of Anatomy, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
- Department of Anatomy, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| |
Collapse
|
28
|
Xie X, Auld VJ. Integrins are necessary for the development and maintenance of the glial layers in the Drosophila peripheral nerve. Development 2011; 138:3813-22. [PMID: 21828098 DOI: 10.1242/dev.064816] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peripheral nerve development involves multiple classes of glia that cooperate to form overlapping glial layers paired with the deposition of a surrounding extracellular matrix (ECM). The formation of this tubular structure protects the ensheathed axons from physical and pathogenic damage and from changes in the ionic environment. Integrins, a major family of ECM receptors, play a number of roles in the development of myelinating Schwann cells, one class of glia ensheathing the peripheral nerves of vertebrates. However, the identity and the role of the integrin complexes utilized by the other classes of peripheral nerve glia have not been determined in any animal. Here, we show that, in the peripheral nerves of Drosophila melanogaster, two integrin complexes (αPS2βPS and αPS3βPS) are expressed in the different glial layers and form adhesion complexes with integrin-linked kinase and Talin. Knockdown of the common beta subunit (βPS) using inducible RNAi in all glial cells results in lethality and glial defects. Analysis of integrin complex function in specific glial layers showed that loss of βPS in the outermost layer (the perineurial glia) results in a failure to wrap the nerve, a phenotype similar to that of Matrix metalloproteinase 2-mediated degradation of the ECM. Knockdown of βPS integrin in the innermost wrapping glia causes a loss of glial processes around axons. Together, our data suggest that integrins are employed in different glial layers to mediate the development and maintenance of the protective glial sheath in Drosophila peripheral nerves.
Collapse
Affiliation(s)
- Xiaojun Xie
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
29
|
Embryonic expression of Drosophila ceramide synthase schlank in developing gut, CNS and PNS. Gene Expr Patterns 2011; 11:501-10. [PMID: 21907829 DOI: 10.1016/j.gep.2011.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/17/2011] [Accepted: 08/19/2011] [Indexed: 12/17/2022]
Abstract
Schlank is a member of the highly conserved ceramide synthase family and controls growth and body fat in Drosophila. Ceramide synthases are key enzymes in the sphingolipid de novo synthesis pathway. Ceramide synthase proteins and the (dihydro)ceramide produced are involved in a variety of biological processes among them apoptosis and neurodegeneration. The full extent of their involvement in these processes will require a precise analysis of the distribution and expression pattern of ceramide synthases. Paralogs of the ceramide synthase family have been found in all eukaryotes studied, however the mRNA and protein expression patterns have not yet been analysed systematically. In this study, we use antibodies that specifically recognize Schlank, a schlank mRNA probe and an endogenous schlank promoter driven LacZ reporter line to reveal the expression pattern of Schlank throughout embryogenesis. We found that Schlank is expressed in all embryonic epithelia during embryogenesis including the developing epidermis and the gastrointestinal tract. In addition, Schlank is upregulated in the developing central (CNS) and peripheral nervous system (PNS). Co-staining experiments with neuronal and glial markers revealed specific expression of Schlank in glial and neuronal cells of the CNS and PNS.
Collapse
|
30
|
Glycosaminoglycan binding facilitates entry of a bacterial pathogen into central nervous systems. PLoS Pathog 2011; 7:e1002082. [PMID: 21731486 PMCID: PMC3121876 DOI: 10.1371/journal.ppat.1002082] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 04/11/2011] [Indexed: 11/26/2022] Open
Abstract
Certain microbes invade brain microvascular endothelial cells (BMECs) to breach the blood-brain barrier (BBB) and establish central nervous system (CNS) infection. Here we use the leading meningitis pathogen group B Streptococcus (GBS) together with insect and mammalian infection models to probe a potential role of glycosaminoglycan (GAG) interactions in the pathogenesis of CNS entry. Site-directed mutagenesis of a GAG-binding domain of the surface GBS alpha C protein impeded GBS penetration of the Drosophila BBB in vivo and diminished GBS adherence to and invasion of human BMECs in vitro. Conversely, genetic impairment of GAG expression in flies or mice reduced GBS dissemination into the brain. These complementary approaches identify a role for bacterial-GAG interactions in the pathogenesis of CNS infection. Our results also highlight how the simpler yet genetically conserved Drosophila GAG pathways can provide a model organism to screen candidate molecules that can interrupt pathogen-GAG interactions for future therapeutic applications. Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of meningitis in human newborn infants. The bacterial and host factors that allow this pathogen to cross the blood-brain barrier (BBB) and cause central nervous system (CNS) infection are not well understood. Here we demonstrate that GBS expresses a specific protein on its surface that can bind to sugar molecules known as glycosaminoglycans (GAGs) on the surface of brain capillary cells, initiating infection of the BBB. Fruit flies or mice genetically engineered to have reduced GAGs showed decreased dissemination of GBS into the brain tissues following experimental infection. Our results identify a role for bacterial-GAG interactions in the pathogenesis of newborn meningitis and highlight how the simpler yet genetically conserved fruit fly GAG biosynthetic pathways make the fruit fly a good model organism to screen candidate molecules that can interrupt pathogen-GAG interactions for future therapeutic applications.
Collapse
|
31
|
Abstract
The evolutionary origins of glia are lost in time, as soft tissues rarely leave behind fossil footprints, and any molecular footprints they might have been left we have yet to decipher. Nevertheless, because of the growing realization of the importance glia plays in the development and functioning of the nervous system, lessons we can draw about commonalities among different taxa (including vertebrates) brought about either from a common origin, or from common adaptational pressures, shed light on the roles glia play in all nervous systems. The Acoelomorpha, primitive interstitial flatworms with very simple cellular organization and currently at the base of the bilaterian phylogeny, possess glia-like cells. If they indeed represent the ancestors of all other Bilateria, then it is possible that all glias derive from a common ancestor. However, basal taxa lacking convincing glia are found in most major phyletic lines: urochordates, hemichordates, bryozoans, rotifers, and basal platyhelminths. With deep phylogenies currently in flux, it is equally possible that glia in several lines had different origins. If developmental patterns are any indication, glia evolved from ectodermal cells, possibly from a mobile lineage, and even possibly independently in different regions of the body. As to what functions might have brought about the evolution of glia, by-product removal, structural support, phagocytic needs, developmental programming, and circuit modulation may be the more likely. Explaining possible cases of glial loss is more difficult, as once evolved, glia appears to keep inventing new functions, giving it continued value even after the original generative need becomes obsolete. Among all the uncertainties regarding the origin of glia, one thing is certain: that our ideas about those origins will change with every rearrangement in deep phylogeny and with continued advances in invertebrate molecular and developmental areas.
Collapse
Affiliation(s)
- Daniel K Hartline
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
32
|
Circadian rhythms in the morphology of neurons in Drosophila. Cell Tissue Res 2011; 344:381-9. [DOI: 10.1007/s00441-011-1174-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/13/2011] [Indexed: 12/13/2022]
|
33
|
Hartenstein V. Morphological diversity and development of glia in Drosophila. Glia 2011; 59:1237-52. [PMID: 21438012 DOI: 10.1002/glia.21162] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/25/2011] [Indexed: 12/31/2022]
Abstract
Insect glia represents a conspicuous and diverse population of cells and plays a role in controlling neuronal progenitor proliferation, axonal growth, neuronal differentiation and maintenance, and neuronal function. Genetic studies in Drosophila have elucidated many aspects of glial structure, function, and development. Just as in vertebrates, it appears as if different classes of glial cells are specialized for different functions. On the basis of topology and cell shape, glial cells of the central nervous system fall into three classes (Fig. 1A-C): (i) surface glia that extend sheath-like processes to wrap around the entire brain; (ii) cortex glia (also called cell body-associated glia) that encapsulate neuronal somata and neuroblasts which form the outer layer (cortex) of the central nervous system; (iii) neuropile glia that are located at the interface between the cortex and the neuropile, the central domain of the nervous system formed by the highly branched neuronal processes and their synaptic contacts. Surface glia is further subdivided into an outer, perineurial layer, and an inner, subperineurial layer. Likewise, neuropile glia comprises a class of cells that remain at the surface of the neuropile (ensheathing glia), and a second class that forms profuse lamellar processes around nerve fibers within the neuropile (astrocyte-like or reticular glia). Glia also surrounds the peripheral nerves and sensory organs; here, one also recognizes perineurial and subperineurial glia, and a third type called "wrapping glia" that most likely corresponds to the ensheathing glia of the central nervous system. Much more experimental work is needed to determine how fundamental these differences between classes of glial cells are, or how and when during development they are specified. To aid in this work the following review will briefly summarize our knowledge of the classes of glial cells encountered in the Drosophila nervous system, and then survey their development from the embryo to adult.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
34
|
Mangin JM, Gallo V. The curious case of NG2 cells: transient trend or game changer? ASN Neuro 2011; 3:e00052. [PMID: 21288204 PMCID: PMC3052864 DOI: 10.1042/an20110001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/03/2011] [Indexed: 11/17/2022] Open
Abstract
It has been 10 years since the seminal work of Dwight Bergles and collaborators demonstrated that NG2 (nerve/glial antigen 2)-expressing oligodendrocyte progenitor cells (NG2 cells) receive functional glutamatergic synapses from neurons (Bergles et al., 2000), contradicting the old dogma that only neurons possess the complex and specialized molecular machinery necessary to receive synapses. While this surprising discovery may have been initially shunned as a novelty item of undefined functional significance, the study of neuron-to-NG2 cell neurotransmission has since become a very active and exciting field of research. Many laboratories have now confirmed and extended the initial discovery, showing for example that NG2 cells can also receive inhibitory GABAergic synapses (Lin and Bergles, 2004) or that neuron-to-NG2 cell synaptic transmission is a rather ubiquitous phenomenon that has been observed in all brain areas explored so far, including white matter tracts (Kukley et al., 2007; Ziskin et al., 2007; Etxeberria et al., 2010). Thus, while still being in its infancy, this field of research has already brought many surprising and interesting discoveries, and has become part of a continuously growing effort in neuroscience to re-evaluate the long underestimated role of glial cells in brain function (Barres, 2008). However, this area of research is now reaching an important milestone and its long-term significance will be defined by its ability to uncover the still elusive function of NG2 cells and their synapses in the brain, rather than by its sensational but transient successes at upsetting the old order established by neuronal physiology. To participate in the effort to facilitate such a transition, here we propose a critical review of the latest findings in the field of NG2 cell physiology--discussing how they inform us on the possible function(s) of NG2 cells in the brain--and we present some personal views on new directions the field could benefit from in order to achieve lasting significance.
Collapse
Key Words
- α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (ampar)
- nerve/glial antigen 2 (ng2) cells
- neuron
- oligodendrocyte progenitor cell (opc)
- postsynaptic density (psd)
- ampar, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor
- cnp-gfp, c-type natriuretic peptide-green fluorescent protein
- cns, central nervous system
- egfp, enhanced green fluorescent protein
- epsc, excitatory postsynaptic current
- gaba, γ-aminobutyric acid
- gabaar, gaba type a receptor
- ltp, long-term potentiation
- mbp, maltose-binding protein
- ng2, nerve/glial antigen 2
- nmdar, n-methyl-d-aspartate receptor
- ol, oligodendrocyte lineage
- opc, oligodendrocyte progenitor cell
- pdgfrα, platelet-derived growth factor receptor α
- psd, postsynaptic density
- scp, schwann cell progenitor
Collapse
Affiliation(s)
- Jean-Marie Mangin
- Center for Neuroscience Research, Childrens National Medical Center, Washington, DC 20010, USA.
| | | |
Collapse
|
35
|
Danjo R, Kawasaki F, Ordway RW. A tripartite synapse model in Drosophila. PLoS One 2011; 6:e17131. [PMID: 21359186 PMCID: PMC3040228 DOI: 10.1371/journal.pone.0017131] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/21/2011] [Indexed: 11/18/2022] Open
Abstract
Tripartite (three-part) synapses are defined by physical and functional interactions of glia with pre- and post-synaptic elements. Although tripartite synapses are thought to be of widespread importance in neurological health and disease, we are only beginning to develop an understanding of glial contributions to synaptic function. In contrast to studies of neuronal mechanisms, a significant limitation has been the lack of an invertebrate genetic model system in which conserved mechanisms of tripartite synapse function may be examined through large-scale application of forward genetics and genome-wide genetic tools. Here we report a Drosophila tripartite synapse model which exhibits morphological and functional properties similar to those of mammalian synapses, including glial regulation of extracellular glutamate, synaptically-induced glial calcium transients and glial coupling of synapses with tracheal structures mediating gas exchange. In combination with classical and cell-type specific genetic approaches in Drosophila, this model is expected to provide new insights into the molecular and cellular mechanisms of tripartite synapse function.
Collapse
Affiliation(s)
- Rie Danjo
- Department of Biology and Center for Molecular and Cellular Neuroscience, Pennsylvania State University, University Park, Pennsylvania
| | - Fumiko Kawasaki
- Department of Biology and Center for Molecular and Cellular Neuroscience, Pennsylvania State University, University Park, Pennsylvania
| | - Richard W. Ordway
- Department of Biology and Center for Molecular and Cellular Neuroscience, Pennsylvania State University, University Park, Pennsylvania
- * E-mail:
| |
Collapse
|
36
|
Leiserson WM, Keshishian H. Maintenance and regulation of extracellular volume and the ion environment in Drosophila larval nerves. Glia 2011; 59:1312-21. [PMID: 21305613 DOI: 10.1002/glia.21132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/01/2010] [Indexed: 11/07/2022]
Abstract
In mammals and insects, paracellular blood barriers isolate the nervous system from the rest of the animal. Glia and accessory cells of the nervous system use pumps, channels, cotransporters, and exchangers collectively to maintain the extracellular ion environment and osmotic balance in the nervous system. At present, the molecular mechanisms that regulate this process remain unclear. In humans, loss of extracellular ion and volume regulation in the nervous system poses serious health threats. Drosophila is a model genetic organism with a proven track record for uncovering molecular mechanisms relevant to human health and disease. Here, we review what is known about extracellular ion and volume regulation in larval abdominal nerves, present some new data about the impact of neural activity on the extracellular environment, and relate the findings to mammalian systems. Homologies have been found at the level of morphology, physiology, molecular mechanisms, and mutant phenotypes. The Fray-Ncc69 module regulates extracellular volume in larval nerves. Genetic rescue experiments with the mammalian orthologs prove this module has a direct correlate in humans. This and other molecular homologies, together with the similar physiological needs, suggest that uncovering the molecular mechanisms of ion and volume regulation in larval nerves will likely provide significant insights into this process in mammalian systems.
Collapse
Affiliation(s)
- William M Leiserson
- Molecular, Cellular, and Developmental Biology Department, Yale University, P.O. Box 208103, New Haven, Connecticut 06520-8103, USA.
| | | |
Collapse
|
37
|
Hatan M, Shinder V, Israeli D, Schnorrer F, Volk T. The Drosophila blood brain barrier is maintained by GPCR-dependent dynamic actin structures. ACTA ACUST UNITED AC 2011; 192:307-19. [PMID: 21242289 PMCID: PMC3172179 DOI: 10.1083/jcb.201007095] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Formation of actin-rich structures along the lateral borders of subperineurial glial cells are induced and maintained by the G protein–coupled receptor Moody. The blood brain barrier (BBB) is essential for insulation of the nervous system from the surrounding environment. In Drosophila melanogaster, the BBB is maintained by septate junctions formed between subperineurial glia (SPG) and requires the Moody/G protein–coupled receptor (GPCR) signaling pathway. In this study, we describe novel specialized actin-rich structures (ARSs) that dynamically form along the lateral borders of the SPG cells. ARS formation and association with nonmuscle myosin is regulated by Moody/GPCR signaling and requires myosin activation. Consistently, an overlap between ARS localization, elevated Ca2+ levels, and myosin light chain phosphorylation is detected. Disruption of the ARS by inhibition of the actin regulator Arp2/3 complex leads to abrogation of the BBB. Our results suggest a mechanism by which the Drosophila BBB is maintained by Moody/GPCR-dependent formation of ARSs, which is supported by myosin activation. The localization of the ARSs close to the septate junctions enables efficient sealing of membrane gaps formed during nerve cord growth.
Collapse
Affiliation(s)
- Meital Hatan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
38
|
Jackson FR. Glial cell modulation of circadian rhythms. Glia 2010; 59:1341-50. [PMID: 21732426 DOI: 10.1002/glia.21097] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
Abstract
Studies of Drosophila and mammals have documented circadian changes in the morphology and biochemistry of glial cells. In addition, it is known that astrocytes of flies and mammals contain evolutionarily conserved circadian molecular oscillators that are similar to neuronal oscillators. In several sections of this review, I summarize the morphological and biochemical rhythms of glia that may contribute to circadian control. I also discuss the evidence suggesting that glia-neuron interactions may be critical for circadian timing in both flies and mammals. Throughout the review, I attempt to compare and contrast findings from these invertebrate and vertebrate models so as to provide a synthesis of current knowledge and indicate potential research avenues that may be useful for better understanding the roles of glial cells in the circadian system.
Collapse
Affiliation(s)
- F Rob Jackson
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| |
Collapse
|
39
|
Oland LA, Tolbert LP. Roles of glial cells in neural circuit formation: insights from research in insects. Glia 2010; 59:1273-95. [PMID: 21732424 DOI: 10.1002/glia.21096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
Abstract
Investigators over the years have noted many striking similarities in the structural organization and function of neural circuits in higher invertebrates and vertebrates. In more recent years, the discovery of similarities in the cellular and molecular mechanisms that guide development of these circuits has driven a revolution in our understanding of neural development. Cellular mechanisms discovered to underlie axon pathfinding in grasshoppers have guided productive studies in mammals. Genes discovered to play key roles in the patterning of the fruitfly's central nervous system have subsequently been found to play key roles in mice. The diversity of invertebrate species offers to investigators numerous opportunities to conduct experiments that are harder or impossible to do in vertebrate species, but that are likely to shed light on mechanisms at play in developing vertebrate nervous systems. These experiments elucidate the broad suite of cellular and molecular interactions that have the potential to influence neural circuit formation across species. Here we focus on what is known about roles for glial cells in some of the important steps in neural circuit formation in experimentally advantageous insect species. These steps include axon pathfinding and matching to targets, dendritic patterning, and the sculpting of synaptic neuropils. A consistent theme is that glial cells interact with neurons in two-way, reciprocal interactions. We emphasize the impact of studies performed in insects and explore how insect nervous systems might best be exploited next as scientists seek to understand in yet deeper detail the full repertory of functions of glia in development.
Collapse
Affiliation(s)
- Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721-0077, USA.
| | | |
Collapse
|
40
|
von Hilchen CM, Hein I, Technau GM, Altenhein B. Netrins guide migration of distinct glial cells in the Drosophila embryo. Development 2010; 137:1251-62. [DOI: 10.1242/dev.042853] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Development of the nervous system and establishment of complex neuronal networks require the concerted activity of different signalling events and guidance cues, which include Netrins and their receptors. In Drosophila, two Netrins are expressed during embryogenesis by cells of the ventral midline and serve as attractant or repellent cues for navigating axons. We asked whether glial cells, which are also motile, are guided by similar cues to axons, and analysed the influence of Netrins and their receptors on glial cell migration during embryonic development. We show that in Netrin mutants, two distinct populations of glial cells are affected: longitudinal glia (LG) fail to migrate medially in the early stages of neurogenesis, whereas distinct embryonic peripheral glia (ePG) do not properly migrate laterally into the periphery. We further show that early Netrin-dependent guidance of LG requires expression of the receptor Frazzled (Fra) already in the precursor cell. At these early stages, Netrins are not yet expressed by cells of the ventral midline and we provide evidence for a novel Netrin source within the neurogenic region that includes neuroblasts. Later in development, most ePG transiently express uncoordinated 5 (unc5) during their migratory phase. In unc5 mutants, however, two of these cells in particular exhibit defective migration and stall in, or close to, the central nervous system. Both phenotypes are reversible in cell-specific rescue experiments, indicating that Netrin-mediated signalling via Fra (in LG) or Unc5 (in ePG) is a cell-autonomous effect.
Collapse
Affiliation(s)
| | - Irina Hein
- Institute of Genetics, University of Mainz, Saarstrasse 21, D-55122 Mainz, Germany
| | - Gerhard M. Technau
- Institute of Genetics, University of Mainz, Saarstrasse 21, D-55122 Mainz, Germany
| | - Benjamin Altenhein
- Institute of Genetics, University of Mainz, Saarstrasse 21, D-55122 Mainz, Germany
| |
Collapse
|
41
|
Blauth K, Banerjee S, Bhat MA. Axonal ensheathment and intercellular barrier formation in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:93-128. [PMID: 20801419 DOI: 10.1016/s1937-6448(10)83003-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glial cells are critical players in every major aspect of nervous system development, function, and disease. Other than their traditional supportive role, glial cells perform a variety of important functions such as myelination, synapse formation and plasticity, and establishment of blood-brain and blood-nerve barriers in the nervous system. Recent studies highlight the striking functional similarities between Drosophila and vertebrate glia. In both systems, glial cells play an essential role in neural ensheathment thereby isolating the nervous system and help to create a local ionic microenvironment for conduction of nerve impulses. Here, we review the anatomical aspects and the molecular players that underlie ensheathment during different stages of nervous system development in Drosophila and how these processes lead to the organization of neuroglial junctions. We also discuss some key aspects of the invertebrate axonal ensheathment and junctional organization with that of vertebrate myelination and axon-glial interactions. Finally, we highlight the importance of intercellular junctions in barrier formation in various cellular contexts in Drosophila. We speculate that unraveling the genetic and molecular mechanisms of ensheathment across species might provide key insights into human myelin-related disorders and help in designing therapeutic interventions.
Collapse
Affiliation(s)
- Kevin Blauth
- Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
42
|
Spokony RF, Restifo LL. Broad Complex isoforms have unique distributions during central nervous system metamorphosis in Drosophila melanogaster. J Comp Neurol 2009; 517:15-36. [PMID: 19711379 DOI: 10.1002/cne.22119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Broad Complex (BRC) is a highly conserved, ecdysone-pathway gene essential for metamorphosis in Drosophila melanogaster, and possibly all holometabolous insects. Alternative splicing among duplicated exons produces several BRC isoforms, each with one zinc-finger DNA-binding domain (Z1, Z2, Z3, or Z4), highly expressed at the onset of metamorphosis. BRC-Z1, BRC-Z2, and BRC-Z3 represent distinct genetic functions (BRC complementation groups rbp, br, and 2Bc, respectively) and are required at discrete stages spanning final-instar larva through very young pupa. We showed previously that morphogenetic movements necessary for adult CNS maturation require BRC-Z1, -Z2, and -Z3, but not at the same time: BRC-Z1 is required in the mid-prepupa, BRC-Z2 and -Z3 are required earlier, at the larval-prepupal transition. To explore how BRC isoforms controlling the same morphogenesis events do so at different times, we examined their central nervous system (CNS) expression patterns during the approximately 16 hours bracketing the hormone-regulated start of metamorphosis. Each isoform had a unique pattern, with BRC-Z3 being the most distinctive. There was some colocalization of isoform pairs, but no three-way overlap of BRC-Z1, -Z2, and -Z3. Instead, their most prominent expression was in glia (BRC-Z1), neuroblasts (BRC-Z2), or neurons (BRC-Z3). Despite sequence similarity to BRC-Z1, BRC-Z4 was expressed in a unique subset of neurons. These data suggest a switch in BRC isoform choice, from BRC-Z2 in proliferating cells to BRC-Z1, BRC-Z3, or BRC-Z4 in differentiating cells. Together with isoform-selective temporal requirements and phenotype considerations, this cell-type-selective expression suggests a model of BRC-dependent CNS morphogenesis resulting from intercellular interactions, culminating in BRC-Z1-controlled, glia-mediated CNS movements in late prepupa.
Collapse
Affiliation(s)
- Rebecca F Spokony
- Graduate Interdisciplinary Program in Insect Science, University of Arizona, Tucson, Arizona 85721-0108, USA.
| | | |
Collapse
|
43
|
Gibson NJ, Tolbert LP, Oland LA. Roles of specific membrane lipid domains in EGF receptor activation and cell adhesion molecule stabilization in a developing olfactory system. PLoS One 2009; 4:e7222. [PMID: 19787046 PMCID: PMC2746287 DOI: 10.1371/journal.pone.0007222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 09/06/2009] [Indexed: 11/18/2022] Open
Abstract
Background Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. Methodology/Principal Findings We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-β-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. Conclusions/Significance We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
44
|
|
45
|
Gocht D, Wagner S, Heinrich R. Recognition, presence, and survival of locust central nervous glia in situ and in vitro. Microsc Res Tech 2009; 72:385-97. [PMID: 19115332 DOI: 10.1002/jemt.20683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insect glial cells serve functions for the formation, maintenance, and performance of the central nervous system in ways similar to their vertebrate counterparts. Characterization of physiological mechanisms that underlie the roles of glia in invertebrates is largely incomplete, partly due to the lack of markers that universally label all types of glia throughout all developmental stages in various species. Studies on primary cell cultures from brains of Locusta migratoria demonstrated that the absence of anti-HRP immunoreactivity, which has previously been used to identify glial cells in undissociated brains, can also serve as a reliable glial marker in vitro, but only in combination with a viability test. As cytoplasmic membranes of cultured cells are prone to degradation when they lose viability, only cells that are both anti-HRP immunonegative and viable should be regarded as glial cells, whereas the lack of anti-HRP immunoreactivity alone is not sufficient. Cell viability can be assessed by the pattern of nuclear staining with DAPI (4',6-diamidino-2-phenylindole), a convenient, sensitive labeling method that can be used in combination with other immunocytochemical cellular markers. We determined the glia-to-neuron ratio in central brains of fourth nymphal stage of Locusta migratoria to be 1:2 both in situ and in dissociated primary cell cultures. Analysis of primary cell cultures revealed a progressive reduction of glial cells and indicated that dead cells detach from the substrate and vanish from the analysis. Such changes in the composition of cell cultures should be considered in future physiological studies on cell cultures from insect nervous systems.
Collapse
Affiliation(s)
- Daniela Gocht
- Department of Neurobiology, Institute for Zoology, University of Göttingen, Berliner Strasse 28, Göttingen, Germany
| | | | | |
Collapse
|
46
|
Oland LA, Biebelhausen JP, Tolbert LP. Glial investment of the adult and developing antennal lobe of Drosophila. J Comp Neurol 2009; 509:526-50. [PMID: 18537134 DOI: 10.1002/cne.21762] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent years the Drosophila olfactory system, with its unparalleled opportunities for genetic dissection of development and functional organization, has been used to study the development of central olfactory neurons and the molecular basis of olfactory coding. The results of these studies have been interpreted in the absence of a detailed understanding of the steps in maturation of glial cells in the antennal lobe. Here we present a high-resolution study of the glia associated with olfactory glomeruli in adult and developing antennal lobes. The study provides a basis for comparison of findings in Drosophila with those in the moth Manduca sexta that indicate a critical role for glia in antennal lobe development. Using flies expressing GFP under a Nervana2 driver to visualize glia for confocal microscopy, and probing at higher resolution with the electron microscope, we find that glial development in Drosophila differs markedly from that in moths: glial cell bodies remain in a rind around the glomerular neuropil; glial processes ensheathe axon bundles in the nerve layer but likely contribute little to axonal sorting; their processes insinuate between glomeruli only very late and then form only a sparse, open network around each glomerulus; and glial processes invade the synaptic neuropil. Taking our results in the context of previous studies, we conclude that glial cells in the developing Drosophila antennal lobe are unlikely to play a strong role in either axonal sorting or glomerulus stabilization and that in the adult, glial processes do not electrically isolate glomeruli from their neighbors.
Collapse
Affiliation(s)
- Lynne A Oland
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
47
|
Verkhratsky A. Neuronismo y reticulismo: neuronal-glial circuits unify the reticular and neuronal theories of brain organization. Acta Physiol (Oxf) 2009; 195:111-22. [PMID: 18983447 DOI: 10.1111/j.1748-1716.2008.01926.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neuronal doctrine, which shaped the development of neuroscience, was born from a long-lasting struggle between reticularists, who assumed internal continuity of neural networks and neuronists, who defined the brain as a network of physically separated cellular entities, defined as neurones. Modern views regard the brain as a complex of constantly interacting cellular circuits, represented by neuronal networks embedded into internally connected astroglial syncytium. The neuronal-glial circuits endowed with distinct signalling cascades form a 'diffuse nervous net' suggested by Golgi, where millions of synapses belonging to very different neurones are integrated first into neuronal-glial-vascular units and then into more complex structures connected through glial syncytium. These many levels of integration, both morphological and functional, presented by neuronal-glial circuitry ensure the spatial and temporal multiplication of brain cognitive power.
Collapse
Affiliation(s)
- A Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
48
|
Awasaki T, Lai SL, Ito K, Lee T. Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci 2008; 28:13742-53. [PMID: 19091965 PMCID: PMC6671902 DOI: 10.1523/jneurosci.4844-08.2008] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 10/28/2008] [Accepted: 11/01/2008] [Indexed: 11/21/2022] Open
Abstract
Glial cells exist throughout the nervous system, and play essential roles in various aspects of neural development and function. Distinct types of glia may govern diverse glial functions. To determine the roles of glia requires systematic characterization of glia diversity and development. In the adult Drosophila central brain, we identify five different types of glia based on its location, morphology, marker expression, and development. Perineurial and subperineurial glia reside in two separate single-cell layers on the brain surface, cortex glia form a glial mesh in the brain cortex where neuronal cell bodies reside, while ensheathing and astrocyte-like glia enwrap and infiltrate into neuropils, respectively. Clonal analysis reveals that distinct glial types derive from different precursors, and that most adult perineurial, ensheathing, and astrocyte-like glia are produced after embryogenesis. Notably, perineurial glial cells are made locally on the brain surface without the involvement of gcm (glial cell missing). In contrast, the widespread ensheathing and astrocyte-like glia derive from specific brain regions in a gcm-dependent manner. This study documents glia diversity in the adult fly brain and demonstrates involvement of different developmental programs in the derivation of distinct types of glia. It lays an essential foundation for studying glia development and function in the Drosophila brain.
Collapse
Affiliation(s)
- Takeshi Awasaki
- Department of Neurobiology, University of Massachusetts, Worcester, Massachusetts 01605, and
| | - Sen-Lin Lai
- Department of Neurobiology, University of Massachusetts, Worcester, Massachusetts 01605, and
| | - Kei Ito
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Tzumin Lee
- Department of Neurobiology, University of Massachusetts, Worcester, Massachusetts 01605, and
| |
Collapse
|
49
|
Affiliation(s)
- Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, Leipzig University, Jahnallee 59, D-04109 Leipzig, Germany.
| | | |
Collapse
|
50
|
Abstract
Mounting evidence demonstrates that glial cells might have important roles in regulating the physiology and behavior of adult animals. We summarize some of this evidence here, with an emphasis on the roles of glia of the differentiated nervous system in controlling neuronal excitability, behavior and plasticity. In the review we highlight studies in Drosophila and discuss results from the analysis of mammalian astrocytes that demonstrate roles for glia in the adult nervous system.
Collapse
|