1
|
Xu X, Huang M, Ouyang Y, Iha H, Xu Z. PSK1 coordinates glucose metabolism and utilization and regulates energy-metabolism oscillation in Saccharomyces cerevisiae. Yeast 2020; 37:261-268. [PMID: 31899805 DOI: 10.1002/yea.3458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Energy-metabolism oscillations (EMO) are ultradian biological rhythms observed in in aerobic chemostat cultures of Saccharomyces cerevisiae. EMO regulates energy metabolism such as glucose, carbohydrate storage, O2 uptake, and CO2 production. PSK1 is a nutrient responsive protein kinase involved in regulation of glucose metabolism, sensory response to light, oxygen, and redox state. The aim of this investigation was to assess the function of PSK1 in regulation of EMO. The mRNA levels of PSK1 fluctuated in concert with EMO, and deletion of PSK1 resulted in unstable EMO with disappearance of the fluctuations and reduced amplitude, compared with the wild type. Furthermore, the mutant PSK1Δ showed downregulation of the synthesis and breakdown of glycogen with resultant decrease in glucose concentrations. The redox state represented by NADH also decreased in PSK1Δ compared with the wild type. These data suggest that PSK1 plays an important role in the regulation of energy metabolism and stabilizes ultradian biological rhythms. These results enhance our understanding of the mechanisms of biorhythms in the budding yeast.
Collapse
Affiliation(s)
- Xianyan Xu
- Departments of Anatomy, Pediatrics and Environmental Medicine, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Meixian Huang
- Departments of Anatomy, Pediatrics and Environmental Medicine, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Yuhui Ouyang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy, Beijing TongRen Hospital, Affiliated with the Capital University of Medical Science, Beijing, China
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Zhaojun Xu
- Departments of Anatomy, Pediatrics and Environmental Medicine, Quanzhou Medical College, Quanzhou, Fujian, China.,Second Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
2
|
The Regulation of Cbf1 by PAS Kinase Is a Pivotal Control Point for Lipogenesis vs. Respiration in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:33-46. [PMID: 30381292 PMCID: PMC6325914 DOI: 10.1534/g3.118.200663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PAS kinase 1 (Psk1) is a key regulator of respiration in Saccharomyces cerevisiae. Herein the molecular mechanisms of this regulation are explored through the characterization of its substrate, Centromere binding factor 1 (Cbf1). CBF1-deficient yeast displayed a significant decrease in cellular respiration, while PAS kinase-deficient yeast, or yeast harboring a Cbf1 phosphosite mutant (T211A) displayed a significant increase. Transmission electron micrographs showed an increased number of mitochondria in PAS kinase-deficient yeast consistent with the increase in respiration. Although the CBF1-deficient yeast did not appear to have an altered number of mitochondria, a mitochondrial proteomics study revealed significant differences in the mitochondrial composition of CBF1-deficient yeast including altered Atp3 levels, a subunit of the mitochondrial F1-ATP synthase complex. Both beta-galactosidase reporter assays and western blot analysis confirmed direct transcriptional control of ATP3 by Cbf1. In addition, we confirmed the regulation of yeast lipid genes LAC1 and LAG1 by Cbf1. The human homolog of Cbf1, Upstream transcription factor 1 (USF1), is also known to be involved in lipid biogenesis. Herein, we provide the first evidence for a role of USF1 in respiration since it appeared to complement Cbf1in vivo as determined by respiration phenotypes. In addition, we confirmed USF1 as a substrate of human PAS kinase (hPASK) in vitro. Combined, our data supports a model in which Cbf1/USF1 functions to partition glucose toward respiration and away from lipid biogenesis, while PAS kinase inhibits respiration in part through the inhibition of Cbf1/USF1.
Collapse
|
3
|
Per-Arnt-Sim Kinase (PASK) Deficiency Increases Cellular Respiration on a Standard Diet and Decreases Liver Triglyceride Accumulation on a Western High-Fat High-Sugar Diet. Nutrients 2018; 10:nu10121990. [PMID: 30558306 PMCID: PMC6316003 DOI: 10.3390/nu10121990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes and the related disease metabolic syndrome are epidemic in the United States, in part due to a shift in diet and decrease in physical exercise. PAS kinase is a sensory protein kinase associated with many of the phenotypes of these diseases, including hepatic triglyceride accumulation and metabolic dysregulation in male mice placed on a high-fat diet. Herein we provide the first characterization of the effects of western diet (high-fat high-sugar, HFHS) on Per-Arnt-Sim kinase mice (PASK−/−) and the first characterization of both male and female PASK−/− mice. Soleus muscle from the PASK−/− male mice displayed a 2-fold higher oxidative phosphorylation capacity than wild type (WT) on the normal chow diet. PASK−/− male mice were also resistant to hepatic triglyceride accumulation on the HFHS diet, displaying a 2.7-fold reduction in hepatic triglycerides compared to WT mice on the HFHS diet. These effects on male hepatic triglyceride were further explored through mass spectrometry-based lipidomics. The absence of PAS kinase was found to affect many of the 44 triglycerides analyzed, preventing hepatic triglyceride accumulation in response to the HFHS diet. In contrast, the female mice showed resistance to hepatic triglyceride accumulation on the HFHS diet regardless of genotype, suggesting the effects of PAS kinase may be masked.
Collapse
|
4
|
Zhang DD, Zhang JG, Wu X, Liu Y, Gu SY, Zhu GH, Wang YZ, Liu GL, Li XY. Nuciferine downregulates Per-Arnt-Sim kinase expression during its alleviation of lipogenesis and inflammation on oleic acid-induced hepatic steatosis in HepG2 cells. Front Pharmacol 2015; 6:238. [PMID: 26539118 PMCID: PMC4612658 DOI: 10.3389/fphar.2015.00238] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/02/2015] [Indexed: 12/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disease associated with lipotoxicity, lipid peroxidation, oxidative stress, and inflammation. Nuciferine, an active ingredient extracted from the natural lotus leaf, has been reported to be effective for the prevention and treatment of NAFLD. Per-Arnt-Sim kinase (PASK) is a nutrient responsive protein kinase that regulates lipid and glucose metabolism, mitochondrial respiration, and gene expression. The aim of the present study was to investigate the protective effect of nuciferine against NAFLD and its inhibitory effect on PASK, exploring the possible underlying mechanism of nuciferine-mediated inhibition on NAFLD. Relevant biochemical parameters (lipid accumulation, extent of oxidative stress and release of inflammation cytokines) in oleic acid (OA)-induced HepG2 cells that mimicked steatosis in vitro were measured and compared with the control. It was found that nuciferine and silenced-PASK (siRNA PASK) both inhibited triglyceride (TG) accumulation and was effective in decreasing fatty acid (FFAs). The content of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) were increased respectively by nuciferine and siRNA PASK without increase in glutathione (GSH). Malondialdehyde (MDA) was decreased respectively by nuciferine and siRNA PASK. In addition, nuciferine decreased TNF-a, IL-6 and IL-8 as well as the siRNA PASK group. IL-10 was increased by nuciferine and siRNA PASK respectively. Further investigation revealed that nuciferine and siRNA PASK could respectively regulate the expression of target genes involved in lipogenesis and inflammation, suggesting that nuciferine may be a potential therapeutic treatment for NAFLD. Furthermore, the modulated effect of nuciferine on (OA)-induced HepG2 cells lipogenesis and inflammation, which was accompanied with PASK inhibition, was also consistent with siRNA PASK, implying that PASK might play a role in nuciferine-mediated regulation on NAFLD.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Xin Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Ying Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Sheng-Ying Gu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Guan-Hua Zhu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Yu-Zhu Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Gao-Lin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Xiao-Yu Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| |
Collapse
|
5
|
Zhang DD, Zhang JG, Wang YZ, Liu Y, Liu GL, Li XY. Per-Arnt-Sim Kinase (PASK): An Emerging Regulator of Mammalian Glucose and Lipid Metabolism. Nutrients 2015; 7:7437-50. [PMID: 26371032 PMCID: PMC4586542 DOI: 10.3390/nu7095347] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
Abstract
Per-Arnt-Sim Kinase (PASK) is an evolutionarily-conserved nutrient-responsive protein kinase that regulates lipid and glucose metabolism, mitochondrial respiration, phosphorylation, and gene expression. Recent data suggests that mammalian PAS kinase is involved in glucose metabolism and acts on pancreatic islet α/β cells and glycogen synthase (GS), affecting insulin secretion and blood glucose levels. In addition, PASK knockout mice (PASK-/-) are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet, implying that PASK may be a new target for metabolic syndrome (MetS) treatment as well as the cellular nutrients and energy sensors—adenosine monophosphate (AMP)-activated protein kinase (AMPK) and the targets of rapamycin (m-TOR). In this review, we will briefly summarize the regulation of PASK on mammalian glucose and lipid metabolism and its possible mechanism, and further explore the potential targets for MetS therapy.
Collapse
Affiliation(s)
- Dan-dan Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, School of medicine, Shanghai Jiaotong University, No.100 Haining Road, Shanghai 200025, China.
| | - Ji-gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, School of medicine, Shanghai Jiaotong University, No.100 Haining Road, Shanghai 200025, China.
| | - Yu-zhu Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, School of medicine, Shanghai Jiaotong University, No.100 Haining Road, Shanghai 200025, China.
| | - Ying Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, School of medicine, Shanghai Jiaotong University, No.100 Haining Road, Shanghai 200025, China.
| | - Gao-lin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, School of medicine, Shanghai Jiaotong University, No.100 Haining Road, Shanghai 200025, China.
| | - Xiao-yu Li
- Department of Clinical Pharmacy, Shanghai General Hospital, School of medicine, Shanghai Jiaotong University, No.100 Haining Road, Shanghai 200025, China.
| |
Collapse
|
6
|
Tripodi F, Nicastro R, Reghellin V, Coccetti P. Post-translational modifications on yeast carbon metabolism: Regulatory mechanisms beyond transcriptional control. Biochim Biophys Acta Gen Subj 2015; 1850:620-7. [DOI: 10.1016/j.bbagen.2014.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
|
7
|
DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell 2015; 26:569-82. [PMID: 25428989 PMCID: PMC4310746 DOI: 10.1091/mbc.e14-06-1088] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/29/2014] [Accepted: 11/16/2014] [Indexed: 01/22/2023] Open
Abstract
We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase-deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase-dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low.
Collapse
Affiliation(s)
- Desiree DeMille
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Bryan D Badal
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - J Brady Evans
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Andrew D Mathis
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - Joseph F Anderson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
8
|
DeMille D, Bikman BT, Mathis AD, Prince JT, Mackay JT, Sowa SW, Hall TD, Grose JH. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1. Mol Biol Cell 2014; 25:2199-215. [PMID: 24850888 PMCID: PMC4091833 DOI: 10.1091/mbc.e13-10-0631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PAS kinase is a conserved sensory protein kinase required for glucose homeostasis. The interactome for yeast PAS kinase 1 (Psk1) is identified, revealing 93 binding partners. Evidence is provided for in vivo phosphorylation of Cbf1 and subsequent inhibition of respiration, supporting a role for Psk1 in partitioning glucose for cell growth. Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein–protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase–deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Desiree DeMille
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602
| | - Andrew D Mathis
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - John T Prince
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - Jordan T Mackay
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Steven W Sowa
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Tacie D Hall
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
9
|
Sargis RM. The hijacking of cellular signaling and the diabetes epidemic: mechanisms of environmental disruption of insulin action and glucose homeostasis. Diabetes Metab J 2014; 38:13-24. [PMID: 24627823 PMCID: PMC3950190 DOI: 10.4093/dmj.2014.38.1.13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The burgeoning epidemic of metabolic disease causes significant societal and individual morbidity and threatens the stability of health care systems around the globe. Efforts to understand the factors that contribute to metabolic derangements are critical for reversing these troubling trends. While excess caloric consumption and physical inactivity superimposed on a susceptible genetic background are central drivers of this crisis, these factors alone fail to fully account for the magnitude and rapidity with which metabolic diseases have increased in prevalence worldwide. Recent epidemiological evidence implicates endocrine disrupting chemicals in the pathogenesis of metabolic diseases. These compounds represent a diverse array of chemicals to which humans are exposed via multiple routes in adulthood and during development. Furthermore, a growing ensemble of animal- and cell-based studies provides preclinical evidence supporting the hypothesis that environmental contaminants contribute to the development of metabolic diseases, including diabetes. Herein are reviewed studies linking specific endocrine disruptors to impairments in glucose homeostasis as well as tying these compounds to disturbances in insulin secretion and impairments in insulin signal transduction. While the data remains somewhat incomplete, the current body of evidence supports the hypothesis that our chemically polluted environment may play a contributing role in the current metabolic crisis.
Collapse
Affiliation(s)
- Robert M. Sargis
- Committee on Molecular Metabolism and Nutrition, Kovler Diabetes Center, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Huang M, Xu Q, Mitsui K, Xu Z. PSK1 regulates expression of SOD1 involved in oxidative stress tolerance in yeast. FEMS Microbiol Lett 2013; 350:154-60. [PMID: 24236444 DOI: 10.1111/1574-6968.12329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023] Open
Abstract
The Per-ARNT-Sim (PAS) domain serine/threonine kinase PAS kinase is involved in energy flux and protein synthesis. In yeast, PSK1 and PSK2 are two partially redundant PASK homologs. We recently generated PSK2 deletion mutant and showed that Psk2 acts as a nutrient-sensing protein kinase to modulate Ultradian clock-coupled respiratory oscillation in yeast. Here, we show that deletion of PSK1 increased the sensitivity of yeast cells to oxidative stress (H2 O2 treatment) and partially inhibited cell growth; however, the growth of the PSK2-deleted mutant was similar to that of the wild type. Superoxide dismutase-1 (SOD1) mRNA and protein levels were lower in PSK1-deletion mutant than the wild type. The mRNA levels of stress response genes CTT1, HSP104, ATH1, NTH1 and SOD2 were similar in both the PSK1-deleted mutant and wild-type yeast. Furthermore, intracellular accumulation of reactive oxygen species (ROS) was noted in PSK1-deleted mutant. These results suggest that PSK1 induces SOD1 expression to protect against oxidative stress in yeast.
Collapse
Affiliation(s)
- Meixian Huang
- Quanzhou Medical College, Quanzhou, Fujian, China; The Second Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | | | | | | |
Collapse
|
11
|
Semache M, Zarrouki B, Fontés G, Fogarty S, Kikani C, Chawki MB, Rutter J, Poitout V. Per-Arnt-Sim kinase regulates pancreatic duodenal homeobox-1 protein stability via phosphorylation of glycogen synthase kinase 3β in pancreatic β-cells. J Biol Chem 2013; 288:24825-33. [PMID: 23853095 DOI: 10.1074/jbc.m113.495945] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In pancreatic β-cells, glucose induces the binding of the transcription factor pancreatic duodenal homeobox-1 (PDX-1) to the insulin gene promoter to activate insulin gene transcription. At low glucose levels, glycogen synthase kinase 3β (GSK3β) is known to phosphorylate PDX-1 on C-terminal serine residues, which triggers PDX-1 proteasomal degradation. We previously showed that the serine/threonine Per-Arnt-Sim domain-containing kinase (PASK) regulates insulin gene transcription via PDX-1. However, the mechanisms underlying this regulation are unknown. In this study, we aimed to identify the role of PASK in the regulation of PDX-1 phosphorylation, protein expression, and stability in insulin-secreting cells and isolated rodent islets of Langerhans. We observed that glucose induces a decrease in overall PDX-1 serine phosphorylation and that overexpression of WT PASK mimics this effect. In vitro, PASK directly phosphorylates GSK3β on its inactivating phosphorylation site Ser(9). Overexpression of a kinase-dead (KD), dominant negative version of PASK blocks glucose-induced Ser(9) phosphorylation of GSK3β. Accordingly, GSK3β Ser(9) phosphorylation is reduced in islets from pask-null mice. Overexpression of WT PASK or KD GSK3β protects PDX-1 from degradation and results in increased PDX-1 protein abundance. Conversely, overexpression of KD PASK blocks glucose-induction of PDX-1 protein. We conclude that PASK phosphorylates and inactivates GSK3β, thereby preventing PDX-1 serine phosphorylation and alleviating GSK3β-mediated PDX-1 protein degradation in pancreatic β-cells.
Collapse
Affiliation(s)
- Meriem Semache
- Montreal Diabetes Research Center, CRCHUM, Quebec City H1W4A4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery. Biochem J 2013; 451:313-28. [PMID: 23398362 DOI: 10.1042/bj20121418] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite the development of a number of efficacious kinase inhibitors, the strategies for rational design of these compounds have been limited by target promiscuity. In an effort to better understand the nature of kinase inhibition across the kinome, especially as it relates to off-target effects, we screened a well-defined collection of kinase inhibitors using biochemical assays for inhibitory activity against 234 active human kinases and kinase complexes, representing all branches of the kinome tree. For our study we employed 158 small molecules initially identified in the literature as potent and specific inhibitors of kinases important as therapeutic targets and/or signal transduction regulators. Hierarchical clustering of these benchmark kinase inhibitors on the basis of their kinome activity profiles illustrates how they relate to chemical structure similarities and provides new insights into inhibitor specificity and potential applications for probing new targets. Using this broad dataset, we provide a framework for assessing polypharmacology. We not only discover likely off-target inhibitor activities and recommend specific inhibitors for existing targets, but also identify potential new uses for known small molecules.
Collapse
|