1
|
Hoffman SE, Dowrey TW, Villacorta Martin C, Bi K, Titchen B, Johri S, DelloStritto L, Patel M, Mackichan C, Inga S, Chen J, Grimaldi G, Napolitano S, Wakiro I, Wu J, Yeung J, Rotem A, Sicinska E, Shannon E, Clancy T, Wang J, Denning S, Brais L, Besson NR, Pfaff KL, Huang Y, Kao KZ, Rodig S, Hornick JL, Vigneau S, Park J, Kulke MH, Chan J, Van Allen EM, Murphy GJ. Intertumoral lineage diversity and immunosuppressive transcriptional programs in well-differentiated gastroenteropancreatic neuroendocrine tumors. SCIENCE ADVANCES 2023; 9:eadd9668. [PMID: 37756410 PMCID: PMC10530100 DOI: 10.1126/sciadv.add9668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Neuroendocrine tumors (NETs) are rare cancers that most often arise in the gastrointestinal tract and pancreas. The fundamental mechanisms driving gastroenteropancreatic (GEP)-NET growth remain incompletely elucidated; however, the heterogeneous clinical behavior of GEP-NETs suggests that both cellular lineage dynamics and tumor microenvironment influence tumor pathophysiology. Here, we investigated the single-cell transcriptomes of tumor and immune cells from patients with gastroenteropancreatic NETs. Malignant GEP-NET cells expressed genes and regulons associated with normal, gastrointestinal endocrine cell differentiation, and fate determination stages. Tumor and lymphoid compartments sparsely expressed immunosuppressive targets commonly investigated in clinical trials, such as the programmed cell death protein-1/programmed death ligand-1 axis. However, infiltrating myeloid cell types within both primary and metastatic GEP-NETs were enriched for genes encoding other immune checkpoints, including VSIR (VISTA), HAVCR2 (TIM3), LGALS9 (Gal-9), and SIGLEC10. Our findings highlight the transcriptomic heterogeneity that distinguishes the cellular landscapes of GEP-NET anatomic subtypes and reveal potential avenues for future precision medicine therapeutics.
Collapse
Affiliation(s)
- Samantha E. Hoffman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
- PhD Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Todd W. Dowrey
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carlos Villacorta Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Kevin Bi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Breanna Titchen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- PhD Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Shreya Johri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- PhD Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | | | - Miraj Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Colin Mackichan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Stephanie Inga
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Judy Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Grace Grimaldi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Sara Napolitano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Isaac Wakiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jingyi Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jason Yeung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Asaf Rotem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ewa Sicinska
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erin Shannon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas Clancy
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiping Wang
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Denning
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Naomi R. Besson
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kathleen L. Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ying Huang
- Molecular Pathology Core Laboratory, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Katrina Z. Kao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jason L. Hornick
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sebastien Vigneau
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Matthew H. Kulke
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Jennifer Chan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - George J. Murphy
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
2
|
Tsujisaka Y, Hatani T, Okubo C, Ito R, Kimura A, Narita M, Chonabayashi K, Funakoshi S, Lucena-Cacace A, Toyoda T, Osafune K, Kimura T, Saito H, Yoshida Y. Purification of human iPSC-derived cells at large scale using microRNA switch and magnetic-activated cell sorting. Stem Cell Reports 2022; 17:1772-1785. [PMID: 35688152 PMCID: PMC9287667 DOI: 10.1016/j.stemcr.2022.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
For regenerative cell therapies using pluripotent stem cell (PSC)-derived cells, large quantities of purified cells are required. Magnetic-activated cell sorting (MACS) is a powerful approach to collect target antigen-positive cells; however, it remains a challenge to purify various cell types efficiently at large scale without using antibodies specific to the desired cell type. Here we develop a technology that combines microRNA (miRNA)-responsive mRNA switch (miR-switch) with MACS (miR-switch-MACS) to purify large amounts of PSC-derived cells rapidly and effectively. We designed miR-switches that detect specific miRNAs expressed in target cells and controlled the translation of a CD4-coding transgene as a selection marker for MACS. For the large-scale purification of induced PSC-derived cardiomyocytes (iPSC-CMs), we transferred miR-208a-CD4 switch-MACS and obtained purified iPSC-CMs efficiently. Moreover, miR-375-CD4 switch-MACS highly purified pancreatic insulin-producing cells and their progenitors expressing Chromogranin A. Overall, the miR-switch-MACS method can efficiently purify target PSC-derived cells for cell replacement therapy. MiR-208a-CD4 switch-MACS can purify a large amount of iPSC-CMs in a short time MiR-208a switch can purify iPSC-CMs in each subtype-specific protocol MiR-375-CD4 switch-MACS can be applied to pancreatic endocrine precursor cells MiR-switch-MACS method can be efficient for large-scale target cell purification
Collapse
Affiliation(s)
- Yuta Tsujisaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takeshi Hatani
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Chikako Okubo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Ryo Ito
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Azuma Kimura
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Megumi Narita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuhisa Chonabayashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shunsuke Funakoshi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa 251-0012, Japan
| | - Antonio Lucena-Cacace
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hirohide Saito
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa 251-0012, Japan.
| |
Collapse
|
3
|
Backx E, Coolens K, Van den Bossche JL, Houbracken I, Espinet E, Rooman I. On the Origin of Pancreatic Cancer: Molecular Tumor Subtypes in Perspective of Exocrine Cell Plasticity. Cell Mol Gastroenterol Hepatol 2021; 13:1243-1253. [PMID: 34875393 PMCID: PMC8881661 DOI: 10.1016/j.jcmgh.2021.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating type of cancer. While many studies have shed light into the pathobiology of PDAC, the nature of PDAC's cell of origin remains under debate. Studies in adult pancreatic tissue have unveiled a remarkable exocrine cell plasticity including transitional states, mostly exemplified by acinar to ductal cell metaplasia, but also with recent evidence hinting at duct to basal cell transitions. Single-cell RNA sequencing has further revealed intrapopulation heterogeneity among acinar and duct cells. Transcriptomic and epigenomic relationships between these exocrine cell differentiation states and PDAC molecular subtypes have started to emerge, suggesting different ontogenies for different tumor subtypes. This review sheds light on these diverse aspects with particular focus on studies with human cells. Understanding the "masked ball" of exocrine cells at origin of PDAC and leaving behind the binary acinar vs duct cell classification may significantly advance our insights in PDAC biology.
Collapse
Affiliation(s)
- Elyne Backx
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katarina Coolens
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan-Lars Van den Bossche
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Houbracken
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elisa Espinet
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Ilse Rooman
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
4
|
Burgos JI, Vallier L, Rodríguez-Seguí SA. Monogenic Diabetes Modeling: In Vitro Pancreatic Differentiation From Human Pluripotent Stem Cells Gains Momentum. Front Endocrinol (Lausanne) 2021; 12:692596. [PMID: 34295307 PMCID: PMC8290520 DOI: 10.3389/fendo.2021.692596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
The occurrence of diabetes mellitus is characterized by pancreatic β cell loss and chronic hyperglycemia. While Type 1 and Type 2 diabetes are the most common types, rarer forms involve mutations affecting a single gene. This characteristic has made monogenic diabetes an interesting disease group to model in vitro using human pluripotent stem cells (hPSCs). By altering the genotype of the original hPSCs or by deriving human induced pluripotent stem cells (hiPSCs) from patients with monogenic diabetes, changes in the outcome of the in vitro differentiation protocol can be analyzed in detail to infer the regulatory mechanisms affected by the disease-associated genes. This approach has been so far applied to a diversity of genes/diseases and uncovered new mechanisms. The focus of the present review is to discuss the latest findings obtained by modeling monogenic diabetes using hPSC-derived pancreatic cells generated in vitro. We will specifically focus on the interpretation of these studies, the advantages and limitations of the models used, and the future perspectives for improvement.
Collapse
Affiliation(s)
- Juan Ignacio Burgos
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ludovic Vallier
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Santiago A. Rodríguez-Seguí
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
5
|
Benáková Š, Holendová B, Plecitá-Hlavatá L. Redox Homeostasis in Pancreatic β-Cells: From Development to Failure. Antioxidants (Basel) 2021; 10:antiox10040526. [PMID: 33801681 PMCID: PMC8065646 DOI: 10.3390/antiox10040526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Redox status is a key determinant in the fate of β-cell. These cells are not primarily detoxifying and thus do not possess extensive antioxidant defense machinery. However, they show a wide range of redox regulating proteins, such as peroxiredoxins, thioredoxins or thioredoxin reductases, etc., being functionally compartmentalized within the cells. They keep fragile redox homeostasis and serve as messengers and amplifiers of redox signaling. β-cells require proper redox signaling already in cell ontogenesis during the development of mature β-cells from their progenitors. We bring details about redox-regulated signaling pathways and transcription factors being essential for proper differentiation and maturation of functional β-cells and their proliferation and insulin expression/maturation. We briefly highlight the targets of redox signaling in the insulin secretory pathway and focus more on possible targets of extracellular redox signaling through secreted thioredoxin1 and thioredoxin reductase1. Tuned redox homeostasis can switch upon chronic pathological insults towards the dysfunction of β-cells and to glucose intolerance. These are characteristics of type 2 diabetes, which is often linked to chronic nutritional overload being nowadays a pandemic feature of lifestyle. Overcharged β-cell metabolism causes pressure on proteostasis in the endoplasmic reticulum, mainly due to increased demand on insulin synthesis, which establishes unfolded protein response and insulin misfolding along with excessive hydrogen peroxide production. This together with redox dysbalance in cytoplasm and mitochondria due to enhanced nutritional pressure impact β-cell redox homeostasis and establish prooxidative metabolism. This can further affect β-cell communication in pancreatic islets through gap junctions. In parallel, peripheral tissues losing insulin sensitivity and overall impairment of glucose tolerance and gut microbiota establish local proinflammatory signaling and later systemic metainflammation, i.e., low chronic inflammation prooxidative properties, which target β-cells leading to their dedifferentiation, dysfunction and eventually cell death.
Collapse
Affiliation(s)
- Štěpánka Benáková
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- Department of Mitochondrial Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Correspondence: ; Tel.: +420-296-442-285
| |
Collapse
|
6
|
Abstract
The pancreas of adult mammals displays a branched structure which transports digestive enzymes produced in the distal acini through a tree-like network of ducts into the duodenum. In contrast to several other branched organs, its branching patterns are not stereotypic. Moreover, the branches do not grow from dichotomic splitting of an initial stem but rather from the formation of microlumen in a mass of cells. These lumen progressively assemble into a hyperconnected network that refines into a tree by the time of birth. We review the cell remodeling events and the molecular mechanisms governing pancreas branching, as well as the role of the surrounding tissues in this process. Furthermore, we draw parallels with other branched organs such as the salivary and mammary gland.
Collapse
Affiliation(s)
- Lydie Flasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Coline Schewin
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anne Grapin-Botton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark.
| |
Collapse
|
7
|
β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev 2020; 163:103634. [PMID: 32711047 DOI: 10.1016/j.mod.2020.103634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
All pancreatic cell populations arise from the standard gut endoderm layer in developing embryos, requiring a regulatory gene network to originate and maintain endocrine lineages and endocrine function. The pancreatic organogenesis is regulated by the temporal expression of transcription factors and plays a diverse role in the specification, development, differentiation, maturation, and functional maintenance. Altered expression and activity of these transcription factors are often associated with diabetes mellitus. Recent advancements in the stem cells and invitro derived islets to treat diabetes mellitus has attracted a great deal of interest in the understanding of factors regulating the development, differentiation, and functions of islets including transcription factors. This review discusses the myriad of transcription factors regulating the development of the pancreas, differentiation of β-islets, and how these factors regulated in normal and disease states. Exploring these factors in such critical context and exogenous or endogenous expression of development and differentiation-specific transcription factors with improved epigenetic plasticity/signaling axis in diabetic milieu would useful for the development of β-cells from other cell sources.
Collapse
|
8
|
Acquisition of Dynamic Function in Human Stem Cell-Derived β Cells. Stem Cell Reports 2019; 12:351-365. [PMID: 30661993 PMCID: PMC6372986 DOI: 10.1016/j.stemcr.2018.12.012] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Recent advances in human pluripotent stem cell (hPSC) differentiation protocols have generated insulin-producing cells resembling pancreatic β cells. While these stem cell-derived β (SC-β) cells are capable of undergoing glucose-stimulated insulin secretion (GSIS), insulin secretion per cell remains low compared with islets and cells lack dynamic insulin release. Herein, we report a differentiation strategy focused on modulating transforming growth factor β (TGF-β) signaling, controlling cellular cluster size, and using an enriched serum-free media to generate SC-β cells that express β cell markers and undergo GSIS with first- and second-phase dynamic insulin secretion. Transplantation of these cells into mice greatly improves glucose tolerance. These results reveal that specific time frames for inhibiting and permitting TGF-β signaling are required during SC-β cell differentiation to achieve dynamic function. The capacity of these cells to undergo GSIS with dynamic insulin release makes them a promising cell source for diabetes cellular therapy. Development of differentiation protocol to β-like cells with enhanced function TGF-β signaling promotes acquisition of dynamic function in maturing β-like cells Transplanted cells rapidly restore glucose tolerance in mice
Collapse
|
9
|
Zhang Z, Zhai W, Liang J, Chen Z, Ma M, Zhao Y, Liang Y, Li X, Teng CB. Mutual inhibitions between epidermal growth factor receptor signaling and miR-124a control pancreatic progenitor proliferation. J Cell Physiol 2018; 234:12978-12988. [PMID: 30537082 DOI: 10.1002/jcp.27967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic stem/progenitor cells convert from a proliferative to a differentiated fate passing through proliferation cease to a resting state. However, the molecular mechanisms of cell cycle arrest are poorly understood. In this study, we demonstrated that the microRNA-124a (miR-124a) inhibited the proliferation of pancreatic progenitor cells both in vitro and ex vivo and promoted a quiescent state. The miR-124a directly targeted SOS Ras/Rac guanine nucleotide exchange factor 1 (SOS1), IQ motif-containing GTPase-activating protein 1 (IQGAP1), signal transducer and activator of transcription 3 (STAT3), and cyclin D2 (CCND2), thereby inactivating epidermal growth factor receptor (EGFR) downstream signaling pathways including mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK), phosphatidylinositol 3-kinase-protein kinase B (PI3K/AKT) and Janus kinase (JAK)/STAT3. miR-124a blocked cell proliferation mainly through targeting STAT3 to inhibit PI3K/AKT and JAK/STAT3 signaling. Moreover, miR-124a expression was negatively regulated by EGFR downstream PI3K/AKT signaling. These results indicated that miR-124a and EGFR signaling mutually interact to form a regulating circuit that determines the proliferation of pancreatic progenitor cells.
Collapse
Affiliation(s)
- Zhenwu Zhang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenjun Zhai
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Jie Liang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zhenbao Chen
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Mingjun Ma
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | | | - Yang Liang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xuyan Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China.,School of Life Science and Technology, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Hashemitabar M, Heidari E. Redefining the signaling pathways from pluripotency to pancreas development: In vitro β-cell differentiation. J Cell Physiol 2018; 234:7811-7827. [PMID: 30480819 DOI: 10.1002/jcp.27736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic β-cells are destroyed by the immune system, in type 1 diabetes (T1D) and are impaired by glucose insensitivity in type 2 diabetes (T2D). Islet-cells transplantation is a promising therapeutic approach based on in vitro differentiation of pluripotent stem cells (PSCs) to insulin-producing cells (IPCs). According to evolutionary stages in β-cell development, there are several distinct checkpoints; each one has a unique characteristic, including definitive endoderm (DE), primitive gut (PG), posterior foregut (PF), pancreatic epithelium (PE), endocrine precursor (EP), and immature β-cells up to functional β-cells. A better understanding of the gene regulatory networks (GRN) and associated transcription factors in each specific developmental stage, guarantees the achievement of the next successful checkpoints and ensures an efficient β-cell differentiation procedure. The new findings in signaling pathways, related to the development of the pancreas are discussed here, including Wnt, Activin/Nodal, FGF, BMP, retinoic acid (RA), sonic hedgehog (Shh), Notch, and downstream regulators, required for β-cell commitment. We also summarized different approaches in the IPCs protocol to conceptually define a standardized system, leading to the creation of a reproducible method for β-cell differentiation. To normalize blood glucose level in diabetic mice, the replacement therapy in the early differentiation stage, such as EP stages was associated with better outcome when compared with the fully differentiated β-cells' graft.
Collapse
Affiliation(s)
- Mahmoud Hashemitabar
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomy and Embryology, Faculty of Medicine, Joundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Heidari
- Department of Anatomy and Embryology, Faculty of Medicine, Joundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Bankaitis ED, Bechard ME, Gu G, Magnuson MA, Wright CVE. ROCK-nmMyoII, Notch and Neurog3 gene-dosage link epithelial morphogenesis with cell fate in the pancreatic endocrine-progenitor niche. Development 2018; 145:dev.162115. [PMID: 30126902 DOI: 10.1242/dev.162115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
Abstract
During mouse pancreas organogenesis, endocrine cells are born from progenitors residing in an epithelial plexus niche. After a period in a lineage-primed Neurog3LO state, progenitors become endocrine committed via upregulation of Neurog3 We find that the Neurog3LO to Neurog3HI transition is associated with distinct stages of an epithelial egression process: narrowing the apical surface of the cell, basalward cell movement and eventual cell-rear detachment from the apical lumen surface to allow clustering as nascent islets under the basement membrane. Apical narrowing, basalward movement and Neurog3 transcriptional upregulation still occur without Neurog3 protein, suggesting that morphogenetic cues deployed within the plexus initiate endocrine commitment upstream or independently of Neurog3. Neurog3 is required for cell-rear detachment and complete endocrine-cell birth. The ROCK-nmMyoII pathway coordinates epithelial-cell morphogenesis and the progression through Neurog3-expressing states. NmMyoII is necessary for apical narrowing, basalward cell displacement and Neurog3 upregulation, but all three are limited by ROCK activity. We propose that ROCK-nmMyoII activity, Neurog3 gene-dose and Notch signaling integrate endocrine fate allocation with epithelial plexus growth and morphogenesis, representing a feedback control circuit that coordinates morphogenesis with lineage diversification in the endocrine-birth niche.
Collapse
Affiliation(s)
- Eric D Bankaitis
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew E Bechard
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Guoqiang Gu
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
12
|
Scavuzzo MA, Hill MC, Chmielowiec J, Yang D, Teaw J, Sheng K, Kong Y, Bettini M, Zong C, Martin JF, Borowiak M. Endocrine lineage biases arise in temporally distinct endocrine progenitors during pancreatic morphogenesis. Nat Commun 2018; 9:3356. [PMID: 30135482 PMCID: PMC6105717 DOI: 10.1038/s41467-018-05740-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
Decoding the molecular composition of individual Ngn3 + endocrine progenitors (EPs) during pancreatic morphogenesis could provide insight into the mechanisms regulating hormonal cell fate. Here, we identify population markers and extensive cellular diversity including four EP subtypes reflecting EP maturation using high-resolution single-cell RNA-sequencing of the e14.5 and e16.5 mouse pancreas. While e14.5 and e16.5 EPs are constantly born and share select genes, these EPs are overall transcriptionally distinct concomitant with changes in the underlying epithelium. As a consequence, e16.5 EPs are not the same as e14.5 EPs: e16.5 EPs have a higher propensity to form beta cells. Analysis of e14.5 and e16.5 EP chromatin states reveals temporal shifts, with enrichment of beta cell motifs in accessible regions at later stages. Finally, we provide transcriptional maps outlining the route progenitors take as they make cell fate decisions, which can be applied to advance the in vitro generation of beta cells. Endocrine progenitors form early in pancreatic development but the diversity of this cell population is unclear. Here, the authors use single cell RNA sequencing of the mouse pancreas at e14.5 and e16.5 to show that endocrine progenitors are temporally distinct and those formed later are more likely to become beta cells
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jolanta Chmielowiec
- Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jessica Teaw
- Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kuanwei Sheng
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuelin Kong
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,The Texas Heart Institute, Houston, TX, 77030, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA. .,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Deconstructing the principles of ductal network formation in the pancreas. PLoS Biol 2018; 16:e2002842. [PMID: 30048442 PMCID: PMC6080801 DOI: 10.1371/journal.pbio.2002842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/07/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022] Open
Abstract
The mammalian pancreas is a branched organ that does not exhibit stereotypic branching patterns, similarly to most other glands. Inside branches, it contains a network of ducts that undergo a transition from unconnected microlumen to a mesh of interconnected ducts and finally to a treelike structure. This ductal remodeling is poorly understood, both on a microscopic and macroscopic level. In this article, we quantify the network properties at different developmental stages. We find that the pancreatic network exhibits stereotypic traits at each stage and that the network properties change with time toward the most economical and optimized delivery of exocrine products into the duodenum. Using in silico modeling, we show how steps of pancreatic network development can be deconstructed into two simple rules likely to be conserved for many other glands. The early stage of the network is explained by noisy, redundant duct connection as new microlumens form. The later transition is attributed to pruning of the network based on the flux of fluid running through the pancreatic network into the duodenum. In the pancreas of mammals, digestive enzymes are transported from their production site in acini (clusters of cells that secrete the enzymes) to the intestine via a network of ducts. During organ development in fetuses, the ducts initially form by the coordinated polarization of cells to form small holes, which will connect and fuse, to constitute a meshwork. This hyperconnected network further develops into a treelike structure by the time of birth. In this article, we use methods originally developed to analyze road, rail, web, or river networks to quantify the network properties at different developmental stages. We find that the pancreatic network properties are similar between individuals at specific time points but eventually change to achieve the most economical and optimized structure to deliver pancreatic juice into the duodenum. Using in silico modeling, we show how the stages of pancreatic network development follow two simple rules, which are likely to be conserved for the development of other glands. The early stage of the network is explained by noisy, redundant duct connection as new small ductal holes form. Later on, the secretion of fluid that runs through the pancreatic network into the duodenum leads to the widening of ducts with the greatest flow, while nonnecessary ducts are eliminated, akin to how river beds are formed.
Collapse
|
14
|
Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M. Cellular and molecular mechanisms coordinating pancreas development. Development 2017; 144:2873-2888. [PMID: 28811309 DOI: 10.1242/dev.140756] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
15
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
16
|
Swisa A, Avrahami D, Eden N, Zhang J, Feleke E, Dahan T, Cohen-Tayar Y, Stolovich-Rain M, Kaestner KH, Glaser B, Ashery-Padan R, Dor Y. PAX6 maintains β cell identity by repressing genes of alternative islet cell types. J Clin Invest 2016; 127:230-243. [PMID: 27941241 DOI: 10.1172/jci88015] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes.
Collapse
|
17
|
Bruin JE, Rezania A, Kieffer TJ. Replacing and safeguarding pancreatic β cells for diabetes. Sci Transl Med 2016; 7:316ps23. [PMID: 26631630 DOI: 10.1126/scitranslmed.aaa9359] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pluripotent stem cells are a scalable source of pancreatic cells for transplantation into patients with diabetes. Here, we describe how the field is gaining momentum toward a β cell replacement therapy.
Collapse
Affiliation(s)
- Jennifer E Bruin
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada. Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
18
|
Kang HS, Takeda Y, Jeon K, Jetten AM. The Spatiotemporal Pattern of Glis3 Expression Indicates a Regulatory Function in Bipotent and Endocrine Progenitors during Early Pancreatic Development and in Beta, PP and Ductal Cells. PLoS One 2016; 11:e0157138. [PMID: 27270601 PMCID: PMC4896454 DOI: 10.1371/journal.pone.0157138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/25/2016] [Indexed: 11/21/2022] Open
Abstract
The transcription factor Glis-similar 3 (Glis3) has been implicated in the development of neonatal, type 1 and type 2 diabetes. In this study, we examined the spatiotemporal expression of Glis3 protein during embryonic and neonatal pancreas development as well as its function in PP cells. To obtain greater insights into the functions of Glis3 in pancreas development, we examined the spatiotemporal expression of Glis3 protein in a knockin mouse strain expressing a Glis3-EGFP fusion protein. Immunohistochemistry showed that Glis3-EGFP was not detectable during early pancreatic development (E11.5 and E12.5) and at E13.5 and 15.5 was not expressed in Ptf1a+ cells in the tip domains indicating that Glis3 is not expressed in multipotent pancreatic progenitors. Glis3 was first detectable at E13.5 in the nucleus of bipotent progenitors in the trunk domains, where it co-localized with Sox9, Hnf6, and Pdx1. It remained expressed in preductal and Ngn3+ endocrine progenitors and at later stages becomes restricted to the nucleus of pancreatic beta and PP cells as well as ductal cells. Glis3-deficiency greatly reduced, whereas exogenous Glis3, induced Ppy expression, as reported for insulin. Collectively, our study demonstrates that Glis3 protein exhibits a temporal and cell type-specific pattern of expression during embryonic and neonatal pancreas development that is consistent with a regulatory role for Glis3 in promoting endocrine progenitor generation, regulating insulin and Ppy expression in beta and PP cells, respectively, and duct morphogenesis.
Collapse
Affiliation(s)
- Hong Soon Kang
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Yukimasa Takeda
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Kilsoo Jeon
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Anton M. Jetten
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
- * E-mail:
| |
Collapse
|
19
|
Redifferentiation of expanded human islet β cells by inhibition of ARX. Sci Rep 2016; 6:20698. [PMID: 26856418 PMCID: PMC4746595 DOI: 10.1038/srep20698] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/11/2016] [Indexed: 12/14/2022] Open
Abstract
Ex-vivo expansion of adult human islet β cells has been evaluated for generation of abundant insulin-producing cells for transplantation; however, lineage-tracing has demonstrated that this process results in β-cell dedifferentiation. Redifferentiation of β-cell-derived (BCD) cells can be achieved using a combination of soluble factors termed Redifferentiation Cocktail (RC); however, this treatment leads to redifferentiation of only a fraction of BCD cells. This study aimed at improving redifferentiation efficiency by affecting the balance of islet progenitor-cell transcription factors activated by RC treatment. Specifically, RC treatment induces the transcription factors PAX4 and ARX, which play key roles in directing pancreas endocrine progenitor cells into the β/δ or α/PP developmental pathways, respectively. Misactivation of ARX in RC-treated BCD cells may inhibit their redifferentiation into β cells. Blocking ARX expression by shRNA elevated insulin mRNA levels 12.8-fold, and more than doubled the number of insulin-positive BCD cells. ARX inhibition in expanded α-cell-derived cells treated with RC did not cause their transdifferentiation into insulin-producing cells. The combination of RC and ARX shRNA treatment may facilitate the generation of abundant insulin-producing cells for transplantation into patients with type 1 diabetes.
Collapse
|
20
|
Bankaitis ED, Bechard ME, Wright CVE. Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche. Genes Dev 2016; 29:2203-16. [PMID: 26494792 PMCID: PMC4617982 DOI: 10.1101/gad.267914.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the mammalian pancreas, endocrine cells undergo lineage allocation upon emergence from a bipotent duct/endocrine progenitor pool, which resides in the "trunk epithelium." Major questions remain regarding how niche environments are organized within this epithelium to coordinate endocrine differentiation with programs of epithelial growth, maturation, and morphogenesis. We used EdU pulse-chase and tissue-reconstruction approaches to analyze how endocrine progenitors and their differentiating progeny are assembled within the trunk as it undergoes remodeling from an irregular plexus of tubules to form the eventual mature, branched ductal arbor. The bulk of endocrine progenitors is maintained in an epithelial "plexus state," which is a transient intermediate during epithelial maturation within which endocrine cell differentiation is continually robust and surprisingly long-lived. Within the plexus, local feedback effects derived from the differentiating and delaminating endocrine cells nonautonomously regulate the flux of endocrine cell birth as well as proliferative growth of the bipotent cell population using Notch-dependent and Notch-independent influences, respectively. These feedback effects in turn maintain the plexus state to ensure prolonged allocation of endocrine cells late into gestation. These findings begin to define a niche-like environment guiding the genesis of the endocrine pancreas and advance current models for how differentiation is coordinated with the growth and morphogenesis of the developing pancreatic epithelium.
Collapse
Affiliation(s)
- Eric D Bankaitis
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Matthew E Bechard
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
21
|
Kofent J, Spagnoli FM. Xenopus as a model system for studying pancreatic development and diabetes. Semin Cell Dev Biol 2016; 51:106-16. [PMID: 26806634 DOI: 10.1016/j.semcdb.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023]
Abstract
Diabetes is a chronic disease caused by the loss or dysfunction of the insulin-producing β-cells in the pancreas. To date, much of our knowledge about β-cells in humans comes from studying rare monogenic forms of diabetes. Importantly, the majority of mutations so far associated to monogenic diabetes are in genes that exert a regulatory role in pancreatic development and/or β-cell function. Thus, the identification and study of novel mutations open an unprecedented window into human pancreatic development. In this review, we summarize major advances in the genetic dissection of different types of monogenic diabetes and the insights gained from a developmental perspective. We highlight future challenges to bridge the gap between the fast accumulation of genetic data through next-generation sequencing and the need of functional insights into disease mechanisms. Lastly, we discuss the relevance and advantages of studying candidate gene variants in vivo using the Xenopus as model system.
Collapse
Affiliation(s)
- Julia Kofent
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Francesca M Spagnoli
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany.
| |
Collapse
|
22
|
Abstract
Lineage tracing studies have revealed that transcription factors play a cardinal role in pancreatic development, differentiation and function. Three transitions define pancreatic organogenesis, differentiation and maturation. In the primary transition, when pancreatic organogenesis is initiated, there is active proliferation of pancreatic progenitor cells. During the secondary transition, defined by differentiation, there is growth, branching, differentiation and pancreatic cell lineage allocation. The tertiary transition is characterized by differentiated pancreatic cells that undergo further remodeling, including apoptosis, replication and neogenesis thereby establishing a mature organ. Transcription factors function at multiple levels and may regulate one another and auto-regulate. The interaction between extrinsic signals from non-pancreatic tissues and intrinsic transcription factors form a complex gene regulatory network ultimately culminating in the different cell lineages and tissue types in the developing pancreas. Mutations in these transcription factors clinically manifest as subtypes of diabetes mellitus. Current treatment for diabetes is not curative and thus, developmental biologists and stem cell researchers are utilizing knowledge of normal pancreatic development to explore novel therapeutic alternatives. This review summarizes current knowledge of transcription factors involved in pancreatic development and β-cell differentiation in rodents.
Collapse
Affiliation(s)
- Reshmi Dassaye
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Strini Naidoo
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Marlon E Cerf
- b Diabetes Discovery Platform, South African Medical Research Council , Cape Town , South Africa
| |
Collapse
|
23
|
Márquez-Aguirre AL, Canales-Aguirre AA, Padilla-Camberos E, Esquivel-Solis H, Díaz-Martínez NE. Development of the endocrine pancreas and novel strategies for β-cell mass restoration and diabetes therapy. ACTA ACUST UNITED AC 2015; 48:765-76. [PMID: 26176316 PMCID: PMC4568803 DOI: 10.1590/1414-431x20154363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/22/2015] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus represents a serious public health problem owing to its global
prevalence in the last decade. The causes of this metabolic disease include
dysfunction and/or insufficient number of β cells. Existing diabetes mellitus
treatments do not reverse or control the disease. Therefore, β-cell mass restoration
might be a promising treatment. Several restoration approaches have been developed:
inducing the proliferation of remaining insulin-producing cells, de
novo islet formation from pancreatic progenitor cells (neogenesis), and
converting non-β cells within the pancreas to β cells (transdifferentiation) are the
most direct, simple, and least invasive ways to increase β-cell mass. However, their
clinical significance is yet to be determined. Hypothetically, β cells or islet
transplantation methods might be curative strategies for diabetes mellitus; however,
the scarcity of donors limits the clinical application of these approaches. Thus,
alternative cell sources for β-cell replacement could include embryonic stem cells,
induced pluripotent stem cells, and mesenchymal stem cells. However, most
differentiated cells obtained using these techniques are functionally immature and
show poor glucose-stimulated insulin secretion compared with native β cells.
Currently, their clinical use is still hampered by ethical issues and the risk of
tumor development post transplantation. In this review, we briefly summarize the
current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation,
including the molecular mechanisms involved. We then discuss two possible approaches
of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and
β-cell replacement. We critically analyze each strategy with respect to the
accessibility of the cells, potential risk to patients, and possible clinical
outcomes.
Collapse
Affiliation(s)
- A L Márquez-Aguirre
- Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C., Guadalajara, Jalisco, MX
| | - A A Canales-Aguirre
- Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C., Guadalajara, Jalisco, MX
| | - E Padilla-Camberos
- Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C., Guadalajara, Jalisco, MX
| | - H Esquivel-Solis
- Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C., Guadalajara, Jalisco, MX
| | - N E Díaz-Martínez
- Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C., Guadalajara, Jalisco, MX
| |
Collapse
|
24
|
De Vas MG, Kopp JL, Heliot C, Sander M, Cereghini S, Haumaitre C. Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors. Development 2015; 142:871-82. [PMID: 25715395 DOI: 10.1242/dev.110759] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterozygous mutations in the human HNF1B gene are associated with maturity-onset diabetes of the young type 5 (MODY5) and pancreas hypoplasia. In mouse, Hnf1b heterozygous mutants do not exhibit any phenotype, whereas the homozygous deletion in the entire epiblast leads to pancreas agenesis associated with abnormal gut regionalization. Here, we examine the specific role of Hnf1b during pancreas development, using constitutive and inducible conditional inactivation approaches at key developmental stages. Hnf1b early deletion leads to a reduced pool of pancreatic multipotent progenitor cells (MPCs) due to decreased proliferation and increased apoptosis. Lack of Hnf1b either during the first or the secondary transitions is associated with cystic ducts. Ductal cells exhibit aberrant polarity and decreased expression of several cystic disease genes, some of which we identified as novel Hnf1b targets. Notably, we show that Glis3, a transcription factor involved in duct morphogenesis and endocrine cell development, is downstream Hnf1b. In addition, a loss and abnormal differentiation of acinar cells are observed. Strikingly, inactivation of Hnf1b at different time points results in the absence of Ngn3(+) endocrine precursors throughout embryogenesis. We further show that Hnf1b occupies novel Ngn3 putative regulatory sequences in vivo. Thus, Hnf1b plays a crucial role in the regulatory networks that control pancreatic MPC expansion, acinar cell identity, duct morphogenesis and generation of endocrine precursors. Our results uncover an unappreciated requirement of Hnf1b in endocrine cell specification and suggest a mechanistic explanation of diabetes onset in individuals with MODY5.
Collapse
Affiliation(s)
- Matias G De Vas
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Janel L Kopp
- Department of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | - Claire Heliot
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Maike Sander
- Department of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | - Silvia Cereghini
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Cécile Haumaitre
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| |
Collapse
|
25
|
Abstract
Diabetes is a common multisystem disease that results in hyperglycemia due to a relative or absolute insulin deficiency. Improved glycemic control decreases the risk of development and progression of microvascular and, to a lesser extent, macrovascular complications and prevents symptomatic hyperglycemia. However, complex treatment regimens aimed at improving glycemic control are associated with an increased incidence of hypoglycemia. On paper at least, cellular therapies arising from reprogramed stem cells or other somatic cell types would provide ideal therapy for diabetes and the prevention of its complications. This hypothesis has led to intensive efforts to grow β cells from various sources. In this review, we provide an overview of β-cell development as well as the efforts reported to date in terms of cellular therapy for diabetes. Engineering β-cell replacement therapy requires an understanding of how β cells respond to other metabolites such as amino acids, free fatty acids, and ketones. Indeed, efforts thus far have been characterized by an inability of cellular replacement products to adequately respond to metabolites that normally couple the metabolic state to β-cell function and insulin secretion. Efforts to date intended to capitalize on current knowledge of islet cell development and stimulus-secretion coupling of the β cell are encouraging but as yet of little clinical relevance.
Collapse
Affiliation(s)
- Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Adrian Vella
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN.
| |
Collapse
|
26
|
Wang P, Fiaschi-Taesch NM, Vasavada RC, Scott DK, García-Ocaña A, Stewart AF. Diabetes mellitus--advances and challenges in human β-cell proliferation. Nat Rev Endocrinol 2015; 11:201-12. [PMID: 25687999 DOI: 10.1038/nrendo.2015.9] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The treatment of diabetes mellitus represents one of the greatest medical challenges of our era. Diabetes results from a deficiency or functional impairment of insulin-producing β cells, alone or in combination with insulin resistance. It logically follows that the replacement or regeneration of β cells should reverse the progression of diabetes and, indeed, this seems to be the case in humans and rodents. This concept has prompted attempts in many laboratories to create new human β cells using stem-cell strategies to transdifferentiate or reprogramme non-β cells into β cells or to discover small molecules or other compounds that can induce proliferation of human β cells. This latter approach has shown promise, but has also proven particularly challenging to implement. In this Review, we discuss the physiology of normal human β-cell replication, the molecular mechanisms that regulate the cell cycle in human β cells, the upstream intracellular signalling pathways that connect them to cell surface receptors on β cells, the epigenetic mechanisms that control human β-cell proliferation and unbiased approaches for discovering novel molecules that can drive human β-cell proliferation. Finally, we discuss the potential and challenges of implementing strategies that replace or regenerate β cells.
Collapse
Affiliation(s)
- Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Nathalie M Fiaschi-Taesch
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Rupangi C Vasavada
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Adolfo García-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
27
|
Téllez N, Montanya E. Gastrin induces ductal cell dedifferentiation and β-cell neogenesis after 90% pancreatectomy. J Endocrinol 2014; 223:67-78. [PMID: 25122000 DOI: 10.1530/joe-14-0222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Induction of β-cell mass regeneration is a potentially curative treatment for diabetes. We have recently found that long-term gastrin treatment results in improved metabolic control and β-cell mass expansion in 95% pancreatectomised (Px) rats. In this study, we investigated the underlying mechanisms of gastrin-induced β-cell mass expansion after Px. After 90%-Px, rats were treated with gastrin (Px+G) or vehicle (Px+V), pancreatic remnants were harvested on days 1, 3, 5, 7, and 14 and used for gene expression, protein immunolocalisation and morphometric analyses. Gastrin- and vehicle-treated Px rats showed similar blood glucose levels throughout the study. Initially, after Px, focal areas of regeneration, showing mesenchymal cells surrounding ductal structures that expressed the cholecystokinin B receptor, were identified. These focal areas of regeneration were similar in size and cell composition in the Px+G and Px+V groups. However, in the Px+G group, the ductal structures showed lower levels of keratin 20 and β-catenin (indicative of duct dedifferentiation) and higher levels of expression of neurogenin 3 and NKX6-1 (indicative of endocrine progenitor phenotype), as compared with Px+V rats. In Px+G rats, β-cell mass and the number of scattered β-cells were significantly increased compared with Px+V rats, whereas β-cell replication and apoptosis were similar in the two groups. These results indicate that gastrin treatment-enhanced dedifferentiation and reprogramming of regenerative ductal cells in Px rats, increased β-cell neogenesis and fostered β-cell mass expansion.
Collapse
Affiliation(s)
- Noèlia Téllez
- CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eduard Montanya
- CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
28
|
Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O'Neil JJ, Kieffer TJ. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 2014; 31:2432-42. [PMID: 23897760 DOI: 10.1002/stem.1489] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/09/2013] [Accepted: 07/01/2013] [Indexed: 12/24/2022]
Abstract
Human embryonic stem cells (hESCs) are considered a potential alternative to cadaveric islets as a source of transplantable cells for treating patients with diabetes. We previously described a differentiation protocol to generate pancreatic progenitor cells from hESCs, composed of mainly pancreatic endoderm (PDX1/NKX6.1-positive), endocrine precursors (NKX2.2/synaptophysin-positive, hormone/NKX6.1-negative), and polyhormonal cells (insulin/glucagon-positive, NKX6.1-negative). However, the relative contributions of NKX6.1-negative versus NKX6.1-positive cell fractions to the maturation of functional β-cells remained unclear. To address this question, we generated two distinct pancreatic progenitor cell populations using modified differentiation protocols. Prior to transplant, both populations contained a high proportion of PDX1-expressing cells (~85%-90%) but were distinguished by their relatively high (~80%) or low (~25%) expression of NKX6.1. NKX6.1-high and NKX6.1-low progenitor populations were transplanted subcutaneously within macroencapsulation devices into diabetic mice. Mice transplanted with NKX6.1-low cells remained hyperglycemic throughout the 5-month post-transplant period whereas diabetes was reversed in NKX6.1-high recipients within 3 months. Fasting human C-peptide levels were similar between groups throughout the study, but only NKX6.1-high grafts displayed robust meal-, glucose- and arginine-responsive insulin secretion as early as 3 months post-transplant. NKX6.1-low recipients displayed elevated fasting glucagon levels. Theracyte devices from both groups contained almost exclusively pancreatic endocrine tissue, but NKX6.1-high grafts contained a greater proportion of insulin-positive and somatostatin-positive cells, whereas NKX6.1-low grafts contained mainly glucagon-expressing cells. Insulin-positive cells in NKX6.1-high, but not NKX6.1-low grafts expressed nuclear MAFA. Collectively, this study demonstrates that a pancreatic endoderm-enriched population can mature into highly functional β-cells with only a minor contribution from the endocrine subpopulation.
Collapse
Affiliation(s)
- Alireza Rezania
- BetaLogics Venture, Janssen R & D LLC, Raritan, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Osipovich AB, Long Q, Manduchi E, Gangula R, Hipkens SB, Schneider J, Okubo T, Stoeckert CJ, Takada S, Magnuson MA. Insm1 promotes endocrine cell differentiation by modulating the expression of a network of genes that includes Neurog3 and Ripply3. Development 2014; 141:2939-49. [PMID: 25053427 PMCID: PMC4197673 DOI: 10.1242/dev.104810] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulinoma associated 1 (Insm1) plays an important role in regulating the development of cells in the central and peripheral nervous systems, olfactory epithelium and endocrine pancreas. To better define the role of Insm1 in pancreatic endocrine cell development we generated mice with an Insm1GFPCre reporter allele and used them to study Insm1-expressing and null populations. Endocrine progenitor cells lacking Insm1 were less differentiated and exhibited broad defects in hormone production, cell proliferation and cell migration. Embryos lacking Insm1 contained greater amounts of a non-coding Neurog3 mRNA splice variant and had fewer Neurog3/Insm1 co-expressing progenitor cells, suggesting that Insm1 positively regulates Neurog3. Moreover, endocrine progenitor cells that express either high or low levels of Pdx1, and thus may be biased towards the formation of specific cell lineages, exhibited cell type-specific differences in the genes regulated by Insm1. Analysis of the function of Ripply3, an Insm1-regulated gene enriched in the Pdx1-high cell population, revealed that it negatively regulates the proliferation of early endocrine cells. Taken together, these findings indicate that in developing pancreatic endocrine cells Insm1 promotes the transition from a ductal progenitor to a committed endocrine cell by repressing a progenitor cell program and activating genes essential for RNA splicing, cell migration, controlled cellular proliferation, vasculogenesis, extracellular matrix and hormone secretion.
Collapse
Affiliation(s)
- Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiaoming Long
- Department of Animal Science, Cornell University, Ithaca, NY 14850, USA
| | - Elisabetta Manduchi
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rama Gangula
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Susan B Hipkens
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Judsen Schneider
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, 252-0374, Japan
| | - Christian J Stoeckert
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Mark A Magnuson
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Hale MA, Swift GH, Hoang CQ, Deering TG, Masui T, Lee YK, Xue J, MacDonald RJ. The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis. Development 2014; 141:3123-33. [PMID: 25063451 DOI: 10.1242/dev.109405] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype.
Collapse
Affiliation(s)
- Michael A Hale
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Galvin H Swift
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Chinh Q Hoang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Tye G Deering
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Toshi Masui
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Youn-Kyoung Lee
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | - Jumin Xue
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Raymond J MacDonald
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| |
Collapse
|
31
|
Avolio F, Pfeifer A, Courtney M, Gjernes E, Ben-Othman N, Vieira A, Druelle N, Faurite B, Collombat P. From pancreas morphogenesis to β-cell regeneration. Curr Top Dev Biol 2014; 106:217-38. [PMID: 24290351 DOI: 10.1016/b978-0-12-416021-7.00006-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Type 1 diabetes is a metabolic disease resulting in the selective loss of pancreatic insulin-producing β-cells and affecting millions of people worldwide. The side effects of diabetes are varied and include cardiovascular, neuropathologic, and kidney diseases. Despite the most recent advances in diabetes care, patients suffering from type 1 diabetes still display a shortened life expectancy compared to their healthy counterparts. In an effort to improve β-cell-replacement therapies, numerous approaches are currently being pursued, most of these aiming at finding ways to differentiate stem/progenitor cells into β-like cells by mimicking embryonic development. Unfortunately, these efforts have hitherto not allowed the generation of fully functional β-cells. This chapter summarizes recent findings, allowing a better insight into the molecular mechanisms underlying the genesis of β-cells during the course of pancreatic morphogenesis. Furthermore, a focus is made on new research avenues concerning the conversion of pre-existing pancreatic cells into β-like cells, such approaches holding great promise for the development of type 1 diabetes therapies.
Collapse
Affiliation(s)
- Fabio Avolio
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, Nice, France; Inserm, iBV, U1091, Nice, France; CNRS, iBV, UMR 7277, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu Y, Jiang X, Zeng Y, Zhou H, Yang J, Cao R. Proliferating pancreatic beta-cells upregulate ALDH. Histochem Cell Biol 2014; 142:685-91. [PMID: 25028343 DOI: 10.1007/s00418-014-1248-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2014] [Indexed: 12/15/2022]
Abstract
High levels of aldehyde dehydrogenase (ALDH) activity have been regarded as a specific feature of progenitor cells and stem cells. Hence, as an indicator of ALDH activity, aldefluor fluorescence has been widely used for the identification and isolation of stem and progenitor cells. ALDH activity was recently detected in embryonic mouse pancreas, and specifically and exclusively in adult centroacinar and terminal duct cells, suggesting that these duct cells may harbor cells of endocrine and exocrine differentiation potential in the adult pancreas. Here, we report the presence of aldefluor+ beta-cells in a beta-cell proliferation model, partial pancreatectomy. The aldefluor+ beta-cells are essentially all positive for Ki-67 and expressed high levels of cell-cycle activators such as CyclinD1, CyclinD2, and CDK4, suggesting that they are mitotic cells. Our data thus reveal a potential change in ALDH activity of proliferating beta-cells, which provides a novel method for the isolation and analysis of proliferating beta-cells. Moreover, our data also suggest that aldefluor lineage-tracing is not a proper method for analyzing progenitor or stem activity in the adult pancreas.
Collapse
Affiliation(s)
- Yinglan Liu
- Department of Endocrinology, The First Affiliated Hospital of Nanhua University, No. 69 Chuanshan Road, Hengyang, 421001, Hunan Province, China
| | | | | | | | | | | |
Collapse
|
33
|
Amer LD, Mahoney MJ, Bryant SJ. Tissue engineering approaches to cell-based type 1 diabetes therapy. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:455-67. [PMID: 24417705 DOI: 10.1089/ten.teb.2013.0462] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus is an autoimmune disease resulting from the destruction of insulin-producing pancreatic β-cells. Cell-based therapies, involving the transplantation of functional β-cells into diabetic patients, have been explored as a potential long-term treatment for this condition; however, success is limited. A tissue engineering approach of culturing insulin-producing cells with extracellular matrix (ECM) molecules in three-dimensional (3D) constructs has the potential to enhance the efficacy of cell-based therapies for diabetes. When cultured in 3D environments, insulin-producing cells are often more viable and secrete more insulin than those in two dimensions. The addition of ECM molecules to the culture environments, depending on the specific type of molecule, can further enhance the viability and insulin secretion. This review addresses the different cell sources that can be utilized as β-cell replacements, the essential ECM molecules for the survival of these cells, and the 3D culture techniques that have been used to benefit cell function.
Collapse
Affiliation(s)
- Luke D Amer
- 1 Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado
| | | | | |
Collapse
|
34
|
Courtney M, Gjernes E, Druelle N, Ravaud C, Vieira A, Ben-Othman N, Pfeifer A, Avolio F, Leuckx G, Lacas-Gervais S, Burel-Vandenbos F, Ambrosetti D, Hecksher-Sorensen J, Ravassard P, Heimberg H, Mansouri A, Collombat P. The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells. PLoS Genet 2013; 9:e1003934. [PMID: 24204325 PMCID: PMC3814322 DOI: 10.1371/journal.pgen.1003934] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing β-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into β-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon+ cells thereby generated being subsequently converted into β-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated β-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional β-cell mass and thereby reverse diabetes following toxin-induced β-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes. Type 1 diabetes is a condition that results from the loss of insulin-producing β-cells. Despite current therapies, diabetic patients are prone to vascular complications. Using the mouse as a model, we previously found that pancreatic glucagon-expressing cells can be regenerated and converted into β-like cells by the forced expression of a single gene, Pax4. Here, we generated transgenic mice allowing both the permanent labeling of α-cells and the inactivation of Arx solely in this cell subtype. Our results indicate that, upon Arx inactivation, α-cells can be continuously regenerated from duct-lining precursors and converted into β-like cells. Importantly, the additional loss of Pax4 does not impact these processes, suggesting that Arx is the main trigger of α-cell-mediated β-like cell neogenesis. Most interestingly, upon chemical induction of diabetes/β-cell loss, while control animals die or remain severely hyperglycemic, a normalization of the glycemia, a clear regeneration of the β-like cell mass, and an extended lifespan are noted in animals with the conditional inactivation of Arx. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.
Collapse
Affiliation(s)
- Monica Courtney
- Université de Nice Sophia Antipolis, iBV, UMR 7277, Nice, France ; Inserm, iBV, U1091, Nice, France ; CNRS, iBV, UMR 7277, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aldh1-expressing endocrine progenitor cells regulate secondary islet formation in larval zebrafish pancreas. PLoS One 2013; 8:e74350. [PMID: 24147152 PMCID: PMC3798260 DOI: 10.1371/journal.pone.0074350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/31/2013] [Indexed: 12/03/2022] Open
Abstract
Aldh1 expression is known to mark candidate progenitor populations in adult and embryonic mouse pancreas, and Aldh1 enzymatic activity has been identified as a potent regulator of pancreatic endocrine differentiation in zebrafish. However, the location and identity of Aldh1-expressing cells in zebrafish pancreas remain unknown. In this study we demonstrate that Aldh1-expressing cells are located immediately adjacent to 2F11-positive pancreatic ductal epithelial cells, and that their abundance dramatically increases during zebrafish secondary islet formation. These cells also express neurod, a marker of endocrine progenitor cells, but do not express markers of more mature endocrine cells such as pax6b or insulin. Using formal cre/lox-based lineage tracing, we further show that Aldh1-expressing pancreatic epithelial cells are the direct progeny of pancreatic notch-responsive progenitor cells, identifying them as a critical intermediate between multi-lineage progenitors and mature endocrine cells. Pharmacologic manipulation of Aldh1 enzymatic activity accelerates cell entry into the Aldh1-expressing endocrine progenitor pool, and also leads to the premature maturation of these cells, as evidenced by accelerated pax6b expression. Together, these findings suggest that Aldh1-expressing cells act as both participants and regulators of endocrine differentiation during zebrafish secondary islet formation.
Collapse
|
36
|
Yang Y, Akinci E, Dutton JR, Banga A, Slack JMW. Stage specific reprogramming of mouse embryo liver cells to a beta cell-like phenotype. Mech Dev 2013; 130:602-12. [PMID: 23994012 DOI: 10.1016/j.mod.2013.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/08/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022]
Abstract
We show that cultures of mouse embryo liver generate insulin-positive cells when transduced with an adenoviral vector encoding the three genes: Pdx1, Ngn3 and MafA (Ad-PNM). Only a proportion of transduced cells become insulin-positive and the highest yield occurs in the period E14-16, declining at later stages. Insulin-positive cells do not divide further although they can persist for several weeks. RT-PCR analysis of their gene expression shows the upregulation of a whole battery of genes characteristic of beta cells including upregulation of the endogenous counterparts of the input genes. Other features, including a relatively low insulin content, the expression of genes for other pancreatic hormones, and the fact that insulin secretion is not glucose-sensitive, indicate that the insulin-positive cells remain immature. The origin of the insulin-positive cells is established both by co-immunostaining for α-fetoprotein and albumin, and by lineage tracing for Sox9, which is expressed in the ductal plate cells giving rise to biliary epithelium. This shows that the majority of insulin-positive cells arise from hepatoblasts with a minority from the ductal plate cells.
Collapse
Affiliation(s)
- Ying Yang
- Stem Cell Institute, University of Minnesota, 2001 6th Street SE, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
37
|
Ben-Othman N, Courtney M, Vieira A, Pfeifer A, Druelle N, Gjernes E, Faurite B, Avolio F, Collombat P. From pancreatic islet formation to beta-cell regeneration. Diabetes Res Clin Pract 2013; 101:1-9. [PMID: 23380136 DOI: 10.1016/j.diabres.2013.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus represents a major healthcare burden and, due to the increasing prevalence of type I diabetes and the complications arising from current treatments, other alternative therapies must be found. Type I diabetes arises as a result of a cell-mediated autoimmune destruction of insulin producing pancreatic β-cells. Thus, a cell replacement therapy would be appropriate, using either in vitro or in vivo cell differentiation/reprogramming from different cell sources. Increasing our understanding of the molecular mechanisms controlling endocrine cell specification during pancreas morphogenesis and gaining further insight into the complex transcriptional network and signaling pathways governing β-cell development should facilitate efforts to achieve this ultimate goal, that is to regenerate insulin-producing β-cells. This review will therefore describe briefly the genetic program underlying mouse pancreas development and present new insights regarding β-cell regeneration.
Collapse
Affiliation(s)
- Nouha Ben-Othman
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Monica Courtney
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Andhira Vieira
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Anja Pfeifer
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Noémie Druelle
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Elisabet Gjernes
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Biljana Faurite
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Fabio Avolio
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Patrick Collombat
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA.
| |
Collapse
|
38
|
|
39
|
Mansouri A. Development and regeneration in the endocrine pancreas. ISRN ENDOCRINOLOGY 2012; 2012:640956. [PMID: 23326678 PMCID: PMC3544272 DOI: 10.5402/2012/640956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
Abstract
The pancreas is composed of two compartments that deliver digestive enzymes and endocrine hormones to control the blood sugar level. The endocrine pancreas consists of functional units organized into cell clusters called islets of Langerhans where insulin-producing cells are found in the core and surrounded by glucagon-, somatostatin-, pancreatic polypeptide-, and ghrelin-producing cells. Diabetes is a devastating disease provoked by the depletion or malfunction of insulin-producing beta-cells in the endocrine pancreas. The side effects of diabetes are multiple, including cardiovascular, neuropathological, and kidney diseases. The analyses of transgenic and knockout mice gave major insights into the molecular mechanisms controlling endocrine pancreas genesis. Moreover, the study of animal models of pancreas injury revealed that the pancreas has the propensity to undergo regeneration and opened new avenues to develop novel therapeutic approaches for the treatment of diabetes. Thus, beside self-replication of preexisting insulin-producing cells, several potential cell sources in the adult pancreas were suggested to contribute to beta-cell regeneration, including acinar, intraislet, and duct epithelia. However, regeneration in the adult endocrine pancreas is still under controversial debate.
Collapse
Affiliation(s)
- Ahmed Mansouri
- Research Group Molecular Cell Differentiation, Department Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany ; Department of Clinical Neurophysiology, University of Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| |
Collapse
|
40
|
Afelik S, Jensen J. Notch signaling in the pancreas: patterning and cell fate specification. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:531-44. [DOI: 10.1002/wdev.99] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|