1
|
Tu Q, Xia F, Meng Y, Wang C, Zhang H, Yao H, Fu Y, Guo P, Chen W, Zhou X, Zhou L, Gan L, Wang J, Han G, Qiu C. The siEGFR nanoplexes for the enhanced brain glioma treatment: Endoplasmic reticulum biomimetic strategy to induce homing effect and non-degradable intracellular transport. Biomed Pharmacother 2024; 179:117413. [PMID: 39260325 DOI: 10.1016/j.biopha.2024.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in tumor progression and is an essential therapeutic target for treating malignant gliomas. Small interfering RNA (siRNA) has the potential to selectively degrade EGFR mRNA, yet its clinical utilization is impeded by various challenges, such as inefficient targeting and limited escape from lysosomes. Our research introduces polyethylene glycol (PEG) and endoplasmic reticulum membrane-coated siEGFR nanoplexes (PEhCv/siEGFR NPs) as an innovative approach to brain glioma therapy by overcoming several obstacles: 1) Tumor-derived endoplasmic reticulum membrane modifications provide a homing effect, facilitating targeted accumulation and cellular uptake; 2) Endoplasmic reticulum membrane proteins mediate a non-degradable "endosome-Golgi-endoplasmic reticulum" transport pathway, circumventing lysosomal degradation. These nanoplexes demonstrated significantly enhanced siEGFR gene silencing in both in vitro and in vivo U87 glioma models. The findings of this study pave the way for the advanced design and effective application of nucleic acid-based therapeutic nanocarriers.
Collapse
Affiliation(s)
- Qingchao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hailu Yao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanfeng Fu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Pengbo Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiqi Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinyu Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Licheng Gan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; Department of Nephrology,Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen ClinicalResearch Center for Geriatric, Shenzhen People's Hospital (The Second ClinicalMedical College, Jinan University, The First Affiliated Hospital, SouthernUniversity of Science and Technology), Shenzhen 518020, China.
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Gilleron J, Chafik A, Lacas-Gervais S, Tanti JF, Cormont M. Golgi-associated retrograde protein (GARP) complex-dependent endosomes to trans Golgi network retrograde trafficking is controlled by Rab4b. Cell Mol Biol Lett 2024; 29:54. [PMID: 38627612 PMCID: PMC11020649 DOI: 10.1186/s11658-024-00574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The trafficking of cargoes from endosomes to the trans-Golgi network requires numerous sequential and coordinated steps. Cargoes are sorted into endosomal-derived carriers that are transported, tethered, and fused to the trans-Golgi network. The tethering step requires several complexes, including the Golgi-associated retrograde protein complex, whose localization at the trans-Golgi network is determined by the activity of small GTPases of the Arl and Rab family. However, how the Golgi-associated retrograde protein complex recognizes the endosome-derived carriers that will fuse with the trans-Golgi network is still unknown. METHODS We studied the retrograde trafficking to the trans-Golgi network by using fluorescent cargoes in cells overexpressing Rab4b or after Rab4b knocked-down by small interfering RNA in combination with the downregulation of subunits of the Golgi-associated retrograde protein complex. We used immunofluorescence and image processing (Super Resolution Radial Fluctuation and 3D reconstruction) as well as biochemical approaches to characterize the consequences of these interventions on cargo carriers trafficking. RESULTS We reported that the VPS52 subunit of the Golgi-associated retrograde protein complex is an effector of Rab4b. We found that overexpression of wild type or active Rab4b increased early endosomal to trans-Golgi network retrograde trafficking of the cation-independent mannose-6-phosphate receptor in a Golgi-associated retrograde protein complex-dependent manner. Conversely, overexpression of an inactive Rab4b or Rab4b knockdown attenuated this trafficking. In the absence of Rab4b, the internalized cation-independent mannose 6 phosphate receptor did not have access to VPS52-labeled structures that look like endosomal subdomains and/or endosome-derived carriers, and whose subcellular distribution is Rab4b-independent. Consequently, the cation-independent mannose-6-phosphate receptor was blocked in early endosomes and no longer had access to the trans-Golgi network. CONCLUSION Our results support that Rab4b, by controlling the sorting of the cation-independent mannose-6-phosphate receptor towards VPS52 microdomains, confers a directional specificity for cargo carriers en route to the trans-Golgi network. Given the importance of the endocytic recycling in cell homeostasis, disruption of the Rab4b/Golgi-associated retrograde protein complex-dependent step could have serious consequences in pathologies.
Collapse
Affiliation(s)
- Jérôme Gilleron
- Université Côte d'Azur, INSERM, Mediterranean Center of Molecular Medicine (C3M), Team "Insulin Resistance in Obesity and Type 2 Diabetes", Bâtiment Archimed, 151 Route de Saint Antoine de Ginestière, BP 2 3194, 06200, Nice Cedex 03, France.
| | - Abderrahman Chafik
- Université Côte d'Azur, INSERM, Mediterranean Center of Molecular Medicine (C3M), Team "Insulin Resistance in Obesity and Type 2 Diabetes", Bâtiment Archimed, 151 Route de Saint Antoine de Ginestière, BP 2 3194, 06200, Nice Cedex 03, France
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, CCMA, Centre Commun de Microscopie Appliquée (CCMA), Nice, France
| | - Jean-François Tanti
- Université Côte d'Azur, INSERM, Mediterranean Center of Molecular Medicine (C3M), Team "Insulin Resistance in Obesity and Type 2 Diabetes", Bâtiment Archimed, 151 Route de Saint Antoine de Ginestière, BP 2 3194, 06200, Nice Cedex 03, France
| | - Mireille Cormont
- Université Côte d'Azur, INSERM, Mediterranean Center of Molecular Medicine (C3M), Team "Insulin Resistance in Obesity and Type 2 Diabetes", Bâtiment Archimed, 151 Route de Saint Antoine de Ginestière, BP 2 3194, 06200, Nice Cedex 03, France.
| |
Collapse
|
3
|
Puvvula PK, Martinez-Medina L, Cinar M, Feng L, Pisarev A, Johnson A, Bernal-Mizrachi L. A retrotransposon-derived DNA zip code internalizes myeloma cells through Clathrin-Rab5a-mediated endocytosis. Front Oncol 2024; 14:1288724. [PMID: 38463228 PMCID: PMC10920344 DOI: 10.3389/fonc.2024.1288724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction We have demonstrated that transposons derived from ctDNA can be transferred between cancer cells. The present research aimed to investigate the cellular uptake and intracellular trafficking of Multiple Myeloma-zip code (MM-ZC), a cell-specific zip code, in myeloma cell lines. We demonstrated that MM-ZC uptake by myeloma cells was concentration-, time- and cell-type-dependent. Methods Flow cytometry and confocal microscopy methods were used to identify the level of internalization of the zip codes in MM cells. To screen for the mechanism of internalization, we used multiple inhibitors of endocytosis. These experiments were followed by biotin pulldown and confocal microscopy for validation. Single interference RNA (siRNA) targeting some of the proteins involved in endocytosis was used to validate the role of this pathway in ZC cell internalization. Results Endocytosis inhibitors identified that Monensin and Chlorpromazine hydrochloride significantly reduced MM-ZC internalization. These findings suggested that Clathrin-mediated endocytosis and endosomal maturation play a crucial role in the cellular uptake of MM-ZC. Biotin pulldown and confocal microscopic studies revealed the involvement of proteins such as Clathrin, Rab5a, Syntaxin-6, and RCAS1 in facilitating the internalization of MM-ZC. Knockdown of Rab5a and Clathrin proteins reduced cellular uptake of MM-ZC and conclusively demonstrated the involvement of Clathrin-Rab5a pathways in MM-ZC endocytosis. Furthermore, both Rab5a and Clathrin reciprocally affected their association with MM-ZC when we depleted their proteins by siRNAs. Additionally, the loss of Rab5a decreased the Syntaxin-6 association with MMZC but not vice versa. Conversely, MM-ZC treatment enhanced the association between Clathrin and Rab5a. Conclusion Overall, the current study provides valuable insights into the cellular uptake and intracellular trafficking of MM-ZC in myeloma cells. Identifying these mechanisms and molecular players involved in MM-ZC uptake contributes to a better understanding of the delivery and potential applications of cell-specific Zip-Codes in gene delivery and drug targeting in cancer research.
Collapse
Affiliation(s)
| | | | - Munevver Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Lei Feng
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | - Andrey Pisarev
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | | | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Qiu C, Xia F, Zhang J, Shi Q, Meng Y, Wang C, Pang H, Gu L, Xu C, Guo Q, Wang J. Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery. RESEARCH (WASHINGTON, D.C.) 2023; 6:0148. [PMID: 37250954 PMCID: PMC10208951 DOI: 10.34133/research.0148] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chong Qiu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiaoli Shi
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital,
Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| |
Collapse
|
5
|
Da Graça J, Charles J, Djebar M, Alvarez-Valadez K, Botti J, Morel E. A SNX1-SNX2-VAPB partnership regulates endosomal membrane rewiring in response to nutritional stress. Life Sci Alliance 2023; 6:6/3/e202201652. [PMID: 36585258 PMCID: PMC9806675 DOI: 10.26508/lsa.202201652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Nutrient deprivation ("starvation") is a major catabolic stress faced by mammalian cells in both pathological and physiological situations. Starvation induces autophagosome biogenesis in the immediate vicinity of ER and leads to lysosome spatial repositioning, but little is known about the consequences of nutritional stress on endosomes. Here, we report that starvation induces tethering of endosomal tubules to ER subregions, fostering autophagosome assembly. We show that this endosomal membrane generation is regulated by sorting nexin 1 (SNX1) protein and is important for the autophagic response. These newly formed SNX1 endosomal tubules establish connections with ER subdomains engaged in early autophagic machinery mobilization. Such endosome-ER transient tethers are regulated by a local dialog between SNX2, an endosomal partner of SNX1, and VAPB, an ER protein associated with autophagy initiation stage regulation. We propose that in a very early response to starvation, SNX1 and SNX2 cooperation induces and regulates endosomal membrane tubulation towards VAPB-positive ER subdomains involved in autophagosome biogenesis, highlighting the contribution of early endosomes in the cellular response to nutritional stress.
Collapse
Affiliation(s)
- Juliane Da Graça
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Juliette Charles
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Morgane Djebar
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Karla Alvarez-Valadez
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Joëlle Botti
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Etienne Morel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| |
Collapse
|
6
|
Kendall AK, Chandra M, Xie B, Wan W, Jackson LP. Improved mammalian retromer cryo-EM structures reveal a new assembly interface. J Biol Chem 2022; 298:102523. [PMID: 36174678 PMCID: PMC9636581 DOI: 10.1016/j.jbc.2022.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 12/05/2022] Open
Abstract
Retromer (VPS26/VPS35/VPS29 subunits) assembles with multiple sorting nexin proteins on membranes to mediate endosomal recycling of transmembrane protein cargoes. Retromer has been implicated in other cellular processes, including mitochondrial homeostasis, nutrient sensing, autophagy, and fission events. Mechanisms for mammalian retromer assembly remain undefined, and retromer engages multiple sorting nexin proteins to sort cargoes to different destinations. Published structures demonstrate mammalian retromer forms oligomers in vitro, but several structures were poorly resolved. We report here improved retromer oligomer structures using single-particle cryo-EM by combining data collected from tilted specimens with multiple advancements in data processing, including using a 3D starting model for enhanced automated particle picking in RELION. We used a retromer mutant (3KE retromer) that breaks VPS35-mediated interfaces to determine a structure of a new assembly interface formed by the VPS26A and VPS35 N-termini. The interface reveals how an N-terminal VPS26A arrestin saddle can link retromer chains by engaging a neighboring VPS35 N- terminus, on the opposite side from the well-characterized C-VPS26/N-VPS35 interaction observed within heterotrimers. The new interaction interface exhibits substantial buried surface area (∼7000 Å2) and further suggests that metazoan retromer may serve as an adaptable scaffold.
Collapse
Affiliation(s)
- Amy K Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - William Wan
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
8
|
Ruffini N, Klingenberg S, Heese R, Schweiger S, Gerber S. The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Front Aging Neurosci 2022; 14:866886. [PMID: 35832065 PMCID: PMC9271745 DOI: 10.3389/fnagi.2022.866886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The common features of all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease, are the accumulation of aggregated and misfolded proteins and the progressive loss of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate manifestation, the affected brain region, and the kind of proteinopathy. In the last decades, a vast number of processes have been described as associated with neurodegenerative diseases, making it increasingly harder to keep an overview of the big picture forming from all those data. In this meta-study, we analyzed genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned diseases using the data of 234 studies in a network-based approach to study significant general coherences but also specific processes in individual diseases or omics levels. In the analysis part, we focus on only some of the emerging findings, but trust that the meta-study provided here will be a valuable resource for various other researchers focusing on specific processes or genes contributing to the development of neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Leibniz Association, Mainz, Germany
| | - Susanne Klingenberg
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Raoul Heese
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
9
|
Zhang Y, Zhang S, Zhou H, Ma X, Wu L, Tian M, Li S, Qian X, Gao X, Chai R. Dync1li1 is required for the survival of mammalian cochlear hair cells by regulating the transportation of autophagosomes. PLoS Genet 2022; 18:e1010232. [PMID: 35727824 PMCID: PMC9249241 DOI: 10.1371/journal.pgen.1010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 07/01/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Dync1li1, a subunit of cytoplasmic dynein 1, is reported to play important roles in intracellular retrograde transport in many tissues. However, the roles of Dync1li1 in the mammalian cochlea remain uninvestigated. Here we first studied the expression pattern of Dync1li1 in the mouse cochlea and found that Dync1li1 is highly expressed in hair cells (HCs) in both neonatal and adult mice cochlea. Next, we used Dync1li1 knockout (KO) mice to investigate its effects on hearing and found that deletion of Dync1li1 leads to early onset of progressive HC loss via apoptosis and to subsequent hearing loss. Further studies revealed that loss of Dync1li1 destabilizes dynein and alters the normal function of dynein. In addition, Dync1li1 KO results in a thinner Golgi apparatus and the accumulation of LC3+ autophagic vacuoles, which triggers HC apoptosis. We also knocked down Dync1li1 in the OC1 cells and found that the number of autophagosomes were significantly increased while the number of autolysosomes were decreased, which suggested that Dync1li1 knockdown leads to impaired transportation of autophagosomes to lysosomes and therefore the accumulation of autophagosomes results in HC apoptosis. Our findings demonstrate that Dync1li1 plays important roles in HC survival through the regulation of autophagosome transportation. Hearing loss is one of the most common sensorial disorders globally. The main reason of hearing loss is the irreversible loss or malfunction of cochlear hair cells. Identifying new hearing loss-related genes and investigating their roles and mechanisms in HC survival are important for the prevention and treatment of hereditary hearing loss. Cytoplasmic dynein 1 is reported to play important roles in in ciliogenesis and protein transport in the mouse photoreceptors. Here, we described the expression pattern of Dyncili1 (a subunit of cytoplasmic dynein 1) in the mouse cochlea and used knockout mice to investigate its specific role in the hair cell of cochlea.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| |
Collapse
|
10
|
Molière A, Beer KB, Wehman AM. Dopey proteins are essential but overlooked regulators of membrane trafficking. J Cell Sci 2022; 135:274973. [PMID: 35388894 DOI: 10.1242/jcs.259628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Dopey family proteins play crucial roles in diverse processes from morphogenesis to neural function and are conserved from yeast to mammals. Understanding the mechanisms behind these critical functions could have major clinical significance, as dysregulation of Dopey proteins has been linked to the cognitive defects in Down syndrome, as well as neurological diseases. Dopey proteins form a complex with the non-essential GEF-like protein Mon2 and an essential lipid flippase from the P4-ATPase family. Different combinations of Dopey, Mon2 and flippases have been linked to regulating membrane remodeling, from endosomal recycling to extracellular vesicle formation, through their interactions with lipids and other membrane trafficking regulators, such as ARL1, SNX3 and the kinesin-1 light chain KLC2. Despite these important functions and their likely clinical significance, Dopey proteins remain understudied and their roles elusive. Here, we review the major scientific discoveries relating to Dopey proteins and detail key open questions regarding their function to draw attention to these fascinating enigmas.
Collapse
Affiliation(s)
- Adrian Molière
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Katharina B Beer
- Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.,Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| |
Collapse
|
11
|
Sun X, Mahajan D, Chen B, Song Z, Lu L. A quantitative study of the Golgi retention of glycosyltransferases. J Cell Sci 2021; 134:272560. [PMID: 34533190 DOI: 10.1242/jcs.258564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
How Golgi glycosyltransferases and glycosidases (hereafter glycosyltransferases) localize to the Golgi is still unclear. Here, we first investigated the post-Golgi trafficking of glycosyltransferases. We found that glycosyltransferases can escape the Golgi to the plasma membrane, where they are subsequently endocytosed to the endolysosome. Post-Golgi glycosyltransferases are probably degraded by ectodomain shedding. We discovered that most glycosyltransferases are not retrieved from post-Golgi sites, indicating that retention rather than retrieval is the primary mechanism for their Golgi localization. We therefore used the Golgi residence time to study Golgi retention of glycosyltransferases quantitatively and systematically. Quantitative analysis of chimeras of ST6GAL1 and either transferrin receptor or tumor necrosis factor α revealed the contributions of three regions of ST6GAL1, namely the N-terminal cytosolic tail, the transmembrane domain and the ectodomain, to Golgi retention. We found that each of the three regions is sufficient for Golgi retention in an additive manner. N-terminal cytosolic tail length negatively affects the Golgi retention of ST6GAL1, similar to effects observed for the transmembrane domain. Therefore, the long N-terminal cytosolic tail and transmembrane domain could act as Golgi export signals for transmembrane secretory cargos. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiuping Sun
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore138668
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| |
Collapse
|
12
|
Capitani N, Baldari CT. F-Actin Dynamics in the Regulation of Endosomal Recycling and Immune Synapse Assembly. Front Cell Dev Biol 2021; 9:670882. [PMID: 34249926 PMCID: PMC8265274 DOI: 10.3389/fcell.2021.670882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Membrane proteins endocytosed at the cell surface as vesicular cargoes are sorted at early endosomes for delivery to lysosomes for degradation or alternatively recycled to different cellular destinations. Cargo recycling is orchestrated by multimolecular complexes that include the retromer, retriever, and the WASH complex, which promote the polymerization of new actin filaments at early endosomes. These endosomal actin pools play a key role at different steps of the recycling process, from cargo segregation to specific endosomal subdomains to the generation and mobility of tubulo-vesicular transport carriers. Local F-actin pools also participate in the complex redistribution of endomembranes and organelles that leads to the acquisition of cell polarity. Here, we will present an overview of the contribution of endosomal F-actin to T-cell polarization during assembly of the immune synapse, a specialized membrane domain that T cells form at the contact with cognate antigen-presenting cells.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
13
|
Turegano-Lopez M, Santuy A, DeFelipe J, Merchan-Perez A. Size, Shape, and Distribution of Multivesicular Bodies in the Juvenile Rat Somatosensory Cortex: A 3D Electron Microscopy Study. Cereb Cortex 2021; 30:1887-1901. [PMID: 31665237 PMCID: PMC7132939 DOI: 10.1093/cercor/bhz211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022] Open
Abstract
Multivesicular bodies (MVBs) are membrane-bound organelles that belong to the endosomal pathway. They participate in the transport, sorting, storage, recycling, degradation, and release of multiple substances. They interchange cargo with other organelles and participate in their renovation and degradation. We have used focused ion beam milling and scanning electron microscopy (FIB-SEM) to obtain stacks of serial sections from the neuropil of the somatosensory cortex of the juvenile rat. Using dedicated software, we have 3D-reconstructed 1618 MVBs. The mean density of MVBs was 0.21 per cubic micron. They were unequally distributed between dendrites (39.14%), axons (18.16%), and nonsynaptic cell processes (42.70%). About one out of five MVBs (18.16%) were docked on mitochondria, representing the process by which the endosomal pathway participates in mitochondrial maintenance. Other features of MVBs, such as the presence of tubular protrusions (6.66%) or clathrin coats (19.74%) can also be interpreted in functional terms, since both are typical of early endosomes. The sizes of MVBs follow a lognormal distribution, with differences across cortical layers and cellular compartments. The mean volume of dendritic MVBs is more than twice as large as the volume of axonic MVBs. In layer I, they are smaller, on average, than in the other layers.
Collapse
Affiliation(s)
- M Turegano-Lopez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - A Santuy
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - J DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda Doctor Arce, 37, 28002 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, Madrid, Spain
| | - A Merchan-Perez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, Madrid, Spain.,Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
14
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Tebaldi G, Pritchard SM, Nicola AV. Herpes Simplex Virus Entry by a Nonconventional Endocytic Pathway. J Virol 2020; 94:e01910-20. [PMID: 33028710 PMCID: PMC7925185 DOI: 10.1128/jvi.01910-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) causes significant morbidity and mortality in humans worldwide. HSV-1 enters epithelial cells via an endocytosis mechanism that is low-pH dependent. However, the precise intracellular pathway has not been identified, including the compartment where fusion occurs. In this study, we utilized a combination of molecular and pharmacological approaches to better characterize HSV entry by endocytosis. HSV-1 entry was unaltered in both cells treated with small interfering RNA (siRNA) to Rab5 or Rab7 and cells expressing dominant negative forms of these GTPases, suggesting entry is independent of the conventional endo-lysosomal network. The fungal metabolite brefeldin A (BFA) and the quinoline compound Golgicide A (GCA) inhibited HSV-1 entry via beta-galactosidase reporter assay and impaired incoming virus transport to the nuclear periphery, suggesting a role for trans-Golgi network (TGN) functions and retrograde transport in HSV entry. Silencing of Rab9 or Rab11 GTPases, which are involved in the retrograde transport pathway, resulted in only a slight reduction in HSV infection. Together, these results suggest that HSV enters host cells by an intracellular route independent of the lysosome-terminal endocytic pathway.IMPORTANCE Herpes simplex virus 1 (HSV-1), the prototype alphaherpesvirus, is ubiquitous in the human population and causes lifelong infection that can be fatal in neonatal and immunocompromised individuals. HSV enters many cell types by endocytosis, including epithelial cells, the site of primary infection in the host. The intracellular itinerary for HSV entry remains unclear. We probed the potential involvement of several Rab GTPases in HSV-1 entry and suggest that endocytic entry of HSV-1 is independent of the canonical lysosome-terminal pathway. A nontraditional endocytic route may be employed, such as one that intersects with the trans-Golgi network (TGN). These results may lead to novel targets for intervention.
Collapse
Affiliation(s)
- Giulia Tebaldi
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Suzanne M Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
16
|
Neil D, Moran L, Horsfield C, Curtis E, Swann O, Barclay W, Hanley B, Hollinshead M, Roufosse C. Ultrastructure of cell trafficking pathways and coronavirus: how to recognise the wolf amongst the sheep. J Pathol 2020; 252:346-357. [PMID: 32918747 DOI: 10.1002/path.5547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in an urgent need to understand the pathophysiology of SARS-CoV-2 infection, to assist in the identification of treatment strategies. Viral tissue tropism is an active area of investigation, one approach to which is identification of virus within tissues by electron microscopy of post-mortem and surgical specimens. Most diagnostic histopathologists have limited understanding of the ultrastructural features of normal cell trafficking pathways, which can resemble intra- and extracellular coronavirus; in addition, viral replication pathways make use of these trafficking pathways. Herein, we review these pathways and their ultrastructural appearances, with emphasis on structures which may be confused with coronavirus. In particular, we draw attention to the fact that, when using routine fixation and processing, the typical 'crown' that characterises a coronavirus is not readily identified on intracellular virions, which are located in membrane-bound vacuoles. In addition, the viral nucleocapsid is seen as black dots within the virion and is more discriminatory in differentiating virions from other cellular structures. The identification of the viral replication organelle, a collection of membranous structures (convoluted membranes) seen at a relatively low scanning power, may help to draw attention to infected cells, which can be sparse. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Desley Neil
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,School of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Linda Moran
- North West London Pathology, Imperial College Healthcare NHS Trust, London, UK.,Department of Immunology and Inflammation, Centre for Inflammatory Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Catherine Horsfield
- Department of Histopathology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Elizabeth Curtis
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Olivia Swann
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Wendy Barclay
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Brian Hanley
- North West London Pathology, Imperial College Healthcare NHS Trust, London, UK.,Department of Immunology and Inflammation, Centre for Inflammatory Diseases, Faculty of Medicine, Imperial College London, London, UK
| | | | - Candice Roufosse
- North West London Pathology, Imperial College Healthcare NHS Trust, London, UK.,Department of Immunology and Inflammation, Centre for Inflammatory Diseases, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
17
|
Tu Y, Zhao L, Billadeau DD, Jia D. Endosome-to-TGN Trafficking: Organelle-Vesicle and Organelle-Organelle Interactions. Front Cell Dev Biol 2020; 8:163. [PMID: 32258039 PMCID: PMC7093645 DOI: 10.3389/fcell.2020.00163] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network (TGN) diverts proteins and lipids away from lysosomal degradation. It is essential for maintaining cellular homeostasis and signaling. In recent years, significant advancements have been made in understanding this classical pathway, revealing new insights into multiple steps of vesicular trafficking as well as critical roles of ER-endosome contacts for endosomal trafficking. In this review, we summarize up-to-date knowledge about this trafficking pathway, in particular, mechanisms of cargo recognition at endosomes and vesicle tethering at the TGN, and contributions of ER-endosome contacts.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Finetti F, Capitani N, Baldari CT. Emerging Roles of the Intraflagellar Transport System in the Orchestration of Cellular Degradation Pathways. Front Cell Dev Biol 2019; 7:292. [PMID: 31803744 PMCID: PMC6877659 DOI: 10.3389/fcell.2019.00292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Ciliated cells exploit a specific transport system, the intraflagellar transport (IFT) system, to ensure the traffic of molecules from the cell body to the cilium. However, it is now clear that IFT activity is not restricted to cilia-related functions. This is strikingly exemplified by the observation that IFT proteins play important roles in cells lacking a primary cilium, such as lymphocytes. Indeed, in T cells the IFT system regulates the polarized transport of endosome-associated T cell antigen receptors and signaling mediators during assembly of the immune synapse, a specialized interface that forms on encounter with a cognate antigen presenting cell and on which T cell activation and effector function crucially depend. Cellular degradation pathways have recently emerged as new extraciliary functions of the IFT system. IFT proteins have been demonstrated to regulate autophagy in ciliated cells through their ability to recruit the autophagy machinery to the base of the cilium. We have now implicated the IFT component IFT20 in another central degradation process that also controls the latest steps in autophagy, namely lysosome function, by regulating the cation-independent mannose-6-phosphate receptor (CI-MPR)-dependent lysosomal targeting of acid hydrolases. This involves the ability of IFT20 to act as an adaptor coupling the CI-MPR to dynein for retrograde transport to the trans-Golgi network. In this short review we will discuss the emerging roles of IFT proteins in cellular degradation pathways.
Collapse
Affiliation(s)
| | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
19
|
Ishida M, Bonifacino JS. ARFRP1 functions upstream of ARL1 and ARL5 to coordinate recruitment of distinct tethering factors to the trans-Golgi network. J Cell Biol 2019; 218:3681-3696. [PMID: 31575603 PMCID: PMC6829661 DOI: 10.1083/jcb.201905097] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
SNARE-mediated fusion of endosome-derived transport carriers with the trans-Golgi network (TGN) depends on the concerted action of two types of tethering factors: long coiled-coil tethers of the golgin family, and the heterotetrameric complex GARP. Whereas the golgins mediate long-distance capture of the carriers, GARP promotes assembly of the SNAREs. It remains to be determined, however, how the functions of these tethering factors are coordinated. Herein we report that the ARF-like (ARL) GTPase ARFRP1 functions upstream of two other ARL GTPases, ARL1 and ARL5, which in turn recruit golgins and GARP, respectively, to the TGN. We also show that this mechanism is essential for the delivery of retrograde cargos to the TGN. Our findings thus demonstrate that ARFRP1 is a master regulator of retrograde-carrier tethering to the TGN. The coordinated recruitment of distinct tethering factors by a bifurcated GTPase cascade may be paradigmatic of other vesicular fusion events within the cell.
Collapse
Affiliation(s)
- Morié Ishida
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Dopey1-Mon2 complex binds to dual-lipids and recruits kinesin-1 for membrane trafficking. Nat Commun 2019; 10:3218. [PMID: 31324769 PMCID: PMC6642134 DOI: 10.1038/s41467-019-11056-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/14/2019] [Indexed: 11/18/2022] Open
Abstract
Proteins are transported among eukaryotic organelles along the cytoskeleton in membrane carriers. The mechanism regarding the motility of carriers and the positioning of organelles is a fundamental question in cell biology that remains incompletely understood. Here, we find that Dopey1 and Mon2 assemble into a complex and localize to the Golgi, endolysosome and endoplasmic reticulum exit site. The Golgi localization of Dopey1 and Mon2 requires their binding to phosphatidylinositol-4-phosphate and phosphatidic acid, respectively, two lipids known for the biogenesis of membrane carriers and the specification of organelle identities. The N-terminus of Dopey1 further interacts with kinesin-1, a plus-end or centrifugal-direction microtubule motor. Dopey1-Mon2 complex functions as a dual-lipid-regulated cargo-adaptor to recruit kinesin-1 to secretory and endocytic organelles or membrane carriers for centrifugally biased bidirectional transport. Dopey1-Mon2 complex therefore provides an important missing link to coordinate the budding of a membrane carrier and subsequent bidirectional transport along the microtubule. Proteins are transported among eukaryotic organelles along the cytoskeleton in membrane carriers. Here authors find that the Dopey1-Mon2 complex functions as a dual-lipid-regulated cargo-adaptor to recruit kinesin-1 to secretory and endocytic organelles or membrane carriers.
Collapse
|
21
|
Finetti F, Cassioli C, Cianfanelli V, Onnis A, Paccagnini E, Kabanova A, Baldari CT. The intraflagellar transport protein IFT20 controls lysosome biogenesis by regulating the post-Golgi transport of acid hydrolases. Cell Death Differ 2019; 27:310-328. [PMID: 31142807 DOI: 10.1038/s41418-019-0357-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/16/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023] Open
Abstract
The assembly and function of the primary cilium depends on multimolecular intraflagellar transport (IFT) complexes that shuttle their cargo along the axonemal microtubules through their interaction with molecular motors. The IFT system has been moreover recently implicated in a reciprocal interplay between autophagy and ciliogenesis. We have previously reported that IFT20 and other components of the IFT complexes participate in the assembly of the immune synapse in the non-ciliated T cell, suggesting that other cellular processes regulated by the IFT system in ciliated cells, including autophagy, may be shared by cells lacking a cilium. Starting from the observation of a defect in autophagic clearance and an accumulation of lipid droplets in IFT20-deficient T cells, we show that IFT20 is required for lysosome biogenesis and function by controlling the lysosomal targeting of acid hydrolases. This function involves its ability to regulate the retrograde traffic of the cation-independent mannose-6-phosphate receptor (CI-MPR) to the trans-Golgi network, which is achieved by coupling recycling CI-MPRs to the microtubule motor dynein. Consistent with the lysosomal defect, an upregulation of the TFEB-dependent expression of the lysosomal gene network can be observed in IFT20-deficient cells, which is associated with defective tonic T-cell antigen receptor signaling and mTOR activity. We additionally show that the lysosome-related function of IFT20 extends to non-ciliated cells other than T cells, as well as to ciliated cells. Our findings provide the first evidence that a component of the IFT system that controls ciliogenesis is implicated in the biogenesis of lysosomes.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Chiara Cassioli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Valentina Cianfanelli
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Anna Onnis
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Eugenio Paccagnini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Anna Kabanova
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| |
Collapse
|
22
|
Olsen C, Memarzadeh K, Ulu A, Carr HS, Bean AJ, Frost JA. Regulation of Somatostatin Receptor 2 Trafficking by C-Tail Motifs and the Retromer. Endocrinology 2019; 160:1031-1043. [PMID: 30822353 PMCID: PMC6462214 DOI: 10.1210/en.2018-00865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
The Gi-coupled somatostatin receptor 2 (SST2) is a G protein-coupled receptor (GPCR) that mediates many of somatostatin's neuroendocrine actions. Upon stimulation, SST2 is rapidly internalized and transported to early endosomes before being recycled to the plasma membrane. However, little is known about the intracellular itinerary of SST2 after it moves to the early endosomal compartment or the cytoplasmic proteins that regulate its trafficking. As postsynaptic density protein/discs large 1/zonula occludens-1 (PDZ) domain interactions often regulate the trafficking and signaling potential of GPCRs, we examined the role of the SST2 PDZ ligand and additional C-terminal residues in controlling its intracellular trafficking. We determined that SST2 can recycle to the plasma membrane via multiple pathways, including a LAMP1/Rab7-positive late endosome to the trans-Golgi network (TGN) pathway. Trafficking from the late endosome to the TGN is often regulated by the retromer complex of endosomal coat proteins, and disrupting the retromer components sorting nexins 1/2 inhibits the budding of SST2 from late endosomes. Moreover, trafficking through the late endosomal/TGN pathway is dependent on an intact PDZ ligand and C-terminal tail, as truncating either the 3 or 10 C-terminal amino acids of SST2 alters the pathway through which it recycles to the plasma membrane. Moreover, addition of these amino acids to a heterologous receptor is sufficient to redirect it from a degradation pathway to a recycling itinerary. Our results demonstrate that endosomal trafficking of SST2 is dependent on numerous regulatory mechanisms controlled by its C terminus and the retromer machinery.
Collapse
Affiliation(s)
- Courtney Olsen
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Kimiya Memarzadeh
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, Texas
| | - Arzu Ulu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Heather S Carr
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Andrew J Bean
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, Texas
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
23
|
Fritsch J, Tchikov V, Hennig L, Lucius R, Schütze S. A toolbox for the immunomagnetic purification of signaling organelles. Traffic 2019; 20:246-258. [PMID: 30569578 DOI: 10.1111/tra.12631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Homeostasis and the complex functions of organisms and cells rely on the sophisticated spatial and temporal regulation of signaling in different intra- and extracellular compartments and via different mediators. We here present a set of fast and easy to use protocols for the target-specific immunomagnetic enrichment of receptor containing endosomes (receptosomes), plasma membranes, lysosomes and exosomes. Isolation of subcellular organelles and exosomes is prerequisite for and will advance their detailed subsequent biochemical and functional analysis. Sequential application of the different subprotocols allows isolation of morphological and functional intact organelles from one pool of cells. The enrichment is based on a selective labelling using receptor ligands or antibodies together with superparamagnetic microbeads followed by separation in a patented matrix-free high-gradient magnetic purification device. This unique magnetic chamber is based on a focusing system outside of the empty separation column, generating an up to 3 T high-gradient magnetic field focused at the wall of the column.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany.,Institute for Clinical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Vladimir Tchikov
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Lena Hennig
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
24
|
Tie HC, Ludwig A, Sandin S, Lu L. The spatial separation of processing and transport functions to the interior and periphery of the Golgi stack. eLife 2018; 7:41301. [PMID: 30499774 PMCID: PMC6294550 DOI: 10.7554/elife.41301] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
It is unclear how the two principal functions of the Golgi complex, processing and transport, are spatially organized. Studying such spatial organization by optical imaging is challenging, partially due to the dense packing of stochastically oriented Golgi stacks. Using super-resolution microscopy and markers such as Giantin, we developed a method to identify en face and side views of individual nocodazole-induced Golgi mini-stacks. Our imaging uncovered that Golgi enzymes preferentially localize to the cisternal interior, appearing as a central disk or inner-ring, whereas components of the trafficking machinery reside at the periphery of the stack, including the cisternal rim. Interestingly, conventional secretory cargos appeared at the cisternal interior during their intra-Golgi trafficking and transiently localized to the cisternal rim before exiting the Golgi. In contrast, bulky cargos were found only at the rim. Our study therefore directly demonstrates the spatial separation of processing and transport functions within the Golgi complex.
Collapse
Affiliation(s)
- Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
25
|
Amino acids stimulate the endosome-to-Golgi trafficking through Ragulator and small GTPase Arl5. Nat Commun 2018; 9:4987. [PMID: 30478271 PMCID: PMC6255761 DOI: 10.1038/s41467-018-07444-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/31/2018] [Indexed: 11/22/2022] Open
Abstract
The endosome-to-Golgi or endocytic retrograde trafficking pathway is an important post-Golgi recycling route. Here we show that amino acids (AAs) can stimulate the retrograde trafficking and regulate the cell surface localization of certain Golgi membrane proteins. By testing components of the AA-stimulated mTORC1 signaling pathway, we demonstrate that SLC38A9, v-ATPase and Ragulator, but not Rag GTPases and mTORC1, are essential for the AA-stimulated trafficking. Arl5, an ARF-like family small GTPase, interacts with Ragulator in an AA-regulated manner and both Arl5 and its effector, the Golgi-associated retrograde protein complex (GARP), are required for the AA-stimulated trafficking. We have therefore identified a mechanistic connection between the nutrient signaling and the retrograde trafficking pathway, whereby SLC38A9 and v-ATPase sense AA-sufficiency and Ragulator might function as a guanine nucleotide exchange factor to activate Arl5, which, together with GARP, a tethering factor, probably facilitates the endosome-to-Golgi trafficking. Amino acid levels are known to regulate anabolic and catabolic pathways. Here, the authors report that amino acids also affect membrane trafficking by stimulating endosome-to-Golgi retrograde trafficking and regulating cell surface localization of certain Golgi proteins through Ragulator and Arl5.
Collapse
|
26
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
27
|
Kinesin-2 Controls the Motility of RAB5 Endosomes and Their Association with the Spindle in Mitosis. Int J Mol Sci 2018; 19:ijms19092575. [PMID: 30200238 PMCID: PMC6163544 DOI: 10.3390/ijms19092575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
RAB5 is a small GTPase that belongs to the wide family of Rab proteins and localizes on early endosomes. In its active GTP-bound form, RAB5 recruits downstream effectors that, in turn, are responsible for distinct aspects of early endosome function, including their movement along microtubules. We previously reported that, at the onset of mitosis, RAB5positive vesicles cluster around the spindle poles and, during metaphase, move along spindle microtubules. RNAi-mediated depletion of the three RAB5 isoforms delays nuclear envelope breakdown at prophase and severely affects chromosome alignment and segregation. Here we show that depletion of the Kinesin-2 motor complex impairs long-range movement of RAB5 endosomes in interphase cells and prevents localization of these vesicles at the spindle during metaphase. Similarly to the effect caused by RAB5 depletion, functional ablation of Kinesin-2 delays nuclear envelope breakdown resulting in prolonged prophase. Altogether these findings suggest that endosomal transport at the onset of mitosis is required to control timing of nuclear envelope breakdown.
Collapse
|
28
|
Kanatsu K, Hori Y, Ebinuma I, Chiu YW, Tomita T. Retrograde transport of γ-secretase from endosomes to the trans-Golgi network regulates Aβ42 production. J Neurochem 2018; 147:110-123. [PMID: 29851073 DOI: 10.1111/jnc.14477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/08/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023]
Abstract
The aberrant metabolism of amyloid-β protein (Aβ) in the human brain has been implicated in the etiology of Alzheimer disease (AD). γ-Secretase is the enzyme that generates various forms of Aβ, such as Aβ40 and Aβ42, the latter being an aggregation-prone toxic peptide that is involved in the pathogenesis of AD. Recently, we found that clathrin-mediated endocytosis of γ-secretase affects the production and deposition of Aβ42 in vivo, suggesting that the membrane trafficking of γ-secretase affects its enzymatic activity. However, the detailed intracellular trafficking pathway of γ-secretase and its contribution to Aβ42 generation remain unclear. Here, we show that Retro-2, which inhibits the retrograde transport, elevated the Aβ42-generating activity both in cultured cells and mice brain. However, the result of in vitro γ-secretase assay using a recombinant substrate suggested that Retro-2 did not elevate the intrinsic Aβ42-production activity of γ-secretase. Immunocytochemistry and cell-surface biotinylation experiments revealed that γ-secretase is recycled via the endosome-to-trans-Golgi network transport. In addition, γ-secretase is retrogradely transported by syntaxin 5/6, known as targets of Retro-2, independent pathway. Conversely, TPT-260, which enhances the trafficking function of retromers, lowered Aβ42 levels and the Aβ42/(Aβ40 + Aβ42) ratio in secreted Aβ from cultured cells. Our results strongly suggest that the endosome-to-trans-Golgi network trafficking of γ-secretase regulates its Aβ42 production activity. Modulation of this trafficking pathway might be a potential target for the development of Aβ42-lowering AD therapeutics. OPEN PRACTICES Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Kunihiko Kanatsu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ihori Ebinuma
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yung Wen Chiu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Quantitative Imaging Flow Cytometry of Legionella-Infected Dictyostelium Amoebae Reveals the Impact of Retrograde Trafficking on Pathogen Vacuole Composition. Appl Environ Microbiol 2018; 84:AEM.00158-18. [PMID: 29602783 DOI: 10.1128/aem.00158-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/27/2018] [Indexed: 01/15/2023] Open
Abstract
The ubiquitous environmental bacterium Legionella pneumophila survives and replicates within amoebae and human macrophages by forming a Legionella-containing vacuole (LCV). In an intricate process governed by the bacterial Icm/Dot type IV secretion system and a plethora of effector proteins, the nascent LCV interferes with a number of intracellular trafficking pathways, including retrograde transport from endosomes to the Golgi apparatus. Conserved retrograde trafficking components, such as the retromer coat complex or the phosphoinositide (PI) 5-phosphatase D. discoideum 5-phosphatase 4 (Dd5P4)/oculocerebrorenal syndrome of Lowe (OCRL), restrict intracellular replication of L. pneumophila by an unknown mechanism. Here, we established an imaging flow cytometry (IFC) approach to assess in a rapid, unbiased, and large-scale quantitative manner the role of retrograde-linked PI metabolism and actin dynamics in the LCV composition. Exploiting Dictyostelium discoideum genetics, we found that Dd5P4 modulates the acquisition of fluorescently labeled LCV markers, such as calnexin, the small GTPase Rab1 (but not Rab7 and Rab8), and retrograde trafficking components (Vps5, Vps26, Vps35). The actin-nucleating protein and retromer interactor WASH (Wiskott-Aldrich syndrome protein [WASP] and suppressor of cAMP receptor [SCAR] homologue) promotes the accumulation of Rab1 and Rab8 on LCVs. Collectively, our findings validate IFC for the quantitative and unbiased analysis of the pathogen vacuole composition and reveal the impact of retrograde-linked PI metabolism and actin dynamics on the LCV composition. The IFC approach employed here can be adapted for a molecular analysis of the pathogen vacuole composition of other amoeba-resistant pathogens.IMPORTANCELegionella pneumophila is an amoeba-resistant environmental bacterium which can cause a life-threatening pneumonia termed Legionnaires' disease. In order to replicate intracellularly, the opportunistic pathogen forms a protective compartment, the Legionella-containing vacuole (LCV). An in-depth analysis of the LCV composition and the complex process of pathogen vacuole formation is crucial for understanding the virulence of L. pneumophila Here, we established an imaging flow cytometry (IFC) approach to assess in a rapid, unbiased, and quantitative manner the accumulation of fluorescently labeled markers and probes on LCVs. Using IFC and L. pneumophila-infected Dictyostelium discoideum or defined mutant amoebae, a role for phosphoinositide (PI) metabolism, retrograde trafficking, and the actin cytoskeleton in the LCV composition was revealed. In principle, the powerful IFC approach can be used to analyze the molecular composition of any cellular compartment harboring bacterial pathogens.
Collapse
|
30
|
Elwell C, Engel J. Emerging Role of Retromer in Modulating Pathogen Growth. Trends Microbiol 2018; 26:769-780. [PMID: 29703496 DOI: 10.1016/j.tim.2018.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
Intracellular pathogens have developed elegant mechanisms to modulate host endosomal trafficking. The highly conserved retromer pathway has emerged as an important target of viruses and intravacuolar bacteria. Some pathogens require retromer function to survive. For others, retromer activity restricts intracellular growth; these pathogens must disrupt retromer function to survive. In this review, we discuss recent paradigm changes to the current model for retromer assembly and cargo selection. We highlight how the study of pathogen effectors has contributed to these fundamental insights, with a special focus on the biology and structure of two recently described bacterial effectors, Chlamydia trachomatis IncE and Legionella pneumophila RidL. These two pathogens employ distinct strategies to target retromer components and overcome restriction of intracellular growth imposed by retromer.
Collapse
Affiliation(s)
- Cherilyn Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget 2018; 7:86871-86888. [PMID: 27894086 PMCID: PMC5349960 DOI: 10.18632/oncotarget.13508] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022] Open
Abstract
2-hydroxyoleic acid (OHOA, Minerval®) is an example of a substance used for membrane lipid therapy, where the cellular membranes rather than specific proteins constitute the therapeutical target. OHOA is thought to mediate its anti-tumor effect by affecting the biophysical properties of membranes, which leads to altered recruitment and activation of amphitropic proteins, altered cellular signaling, and eventual cell death. Little is known about the initial signaling events upon treatment with OHOA, and whether the altered membrane properties would have any impact on the dynamic intracellular transport system. In the present study we demonstrate that treatment with OHOA led to a rapid release of intracellular calcium and activation of multiple signaling pathways in HeLa cells, including the PI3K-AKT1-MTOR pathway and several MAP kinases, in a process independent of the EGFR. By lipidomics we confirmed that OHOA was incorporated into several lipid classes. Concomitantly, OHOA potently increased retrograde transport of the plant toxin ricin from endosomes to the Golgi and further to the endoplasmic reticulum. The OHOA-stimulated ricin transport seemed to require several amphitropic proteins, including Src, phospholipase C, protein kinase C, and also Ca2+/calmodulin. Interestingly, OHOA induced a slight increase in endosomal localization of the retromer component VPS35. Thus, our data show that addition of a lipid known to alter membrane properties not only affects signaling, but also intracellular transport.
Collapse
|
32
|
Callow MG, Watanabe C, Wickliffe KE, Bainer R, Kummerfield S, Weng J, Cuellar T, Janakiraman V, Chen H, Chih B, Liang Y, Haley B, Newton K, Costa MR. CRISPR whole-genome screening identifies new necroptosis regulators and RIPK1 alternative splicing. Cell Death Dis 2018; 9:261. [PMID: 29449584 PMCID: PMC5833675 DOI: 10.1038/s41419-018-0301-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 12/04/2022]
Abstract
The necroptotic cell death pathway is a key component of human pathogen defense that can become aberrantly derepressed during tissue homeostasis to contribute to multiple types of tissue damage and disease. While formation of the necrosome kinase signaling complex containing RIPK1, RIPK3, and MLKL has been extensively characterized, additional mechanisms of its regulation and effector functions likely remain to be discovered. We screened 19,883 mouse protein-coding genes by CRISPR/Cas9-mediated gene knockout for resistance to cytokine-induced necroptosis and identified 112 regulators and mediators of necroptosis, including 59 new candidate pathway components with minimal or no effect on cell growth in the absence of necroptosis induction. Among these, we further characterized the function of PTBP1, an RNA binding protein whose activity is required to maintain RIPK1 protein abundance by regulating alternative splice-site selection.
Collapse
Affiliation(s)
- Marinella G Callow
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Colin Watanabe
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Katherine E Wickliffe
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Russell Bainer
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sarah Kummerfield
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Julie Weng
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Trinna Cuellar
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | | | - Honglin Chen
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ben Chih
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuxin Liang
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michael R Costa
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
33
|
Carpier JM, Zucchetti AE, Bataille L, Dogniaux S, Shafaq-Zadah M, Bardin S, Lucchino M, Maurin M, Joannas LD, Magalhaes JG, Johannes L, Galli T, Goud B, Hivroz C. Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. J Exp Med 2018; 215:1245-1265. [PMID: 29440364 PMCID: PMC5881459 DOI: 10.1084/jem.20162042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/30/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
The adapter molecule linker for activation of T cells (LAT) orchestrates the formation of signalosomes upon T cell receptor (TCR) stimulation. LAT is present in different intracellular pools and is dynamically recruited to the immune synapse upon stimulation. However, the intracellular traffic of LAT and its function in T lymphocyte activation are ill defined. We show herein that LAT, once internalized, transits through the Golgi-trans-Golgi network (TGN), where it is repolarized to the immune synapse. This retrograde transport of LAT depends on the small GTPase Rab6 and the target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) Syntaxin-16, two regulators of the endosome-to-Golgi/TGN retrograde transport. We also show in vitro in Syntaxin-16- or Rab6-silenced human cells and in vivo in CD4+ T lymphocytes of the Rab6 knockout mouse that this retrograde traffic controls TCR stimulation. These results establish that the retrograde traffic of LAT from the plasma membrane to the Golgi-TGN controls the polarized delivery of LAT at the immune synapse and T lymphocyte activation.
Collapse
Affiliation(s)
- Jean-Marie Carpier
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Andres E Zucchetti
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Laurence Bataille
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Stéphanie Dogniaux
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Sabine Bardin
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Marco Lucchino
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Mathieu Maurin
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Leonel D Joannas
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Joao Gamelas Magalhaes
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Ludger Johannes
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Thierry Galli
- Center of Psychiatry and Neurosciences, Membrane Traffic in Health and Diseased Brain, Université Paris Descartes, Sorbonne Paris Cité, INSERM ERL U950, Paris, France
| | - Bruno Goud
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Claire Hivroz
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| |
Collapse
|
34
|
Sun M, Zhang H. Par3 and aPKC regulate BACE1 endosome-to-TGN trafficking through PACS1. Neurobiol Aging 2017; 60:129-140. [PMID: 28946017 PMCID: PMC5653456 DOI: 10.1016/j.neurobiolaging.2017.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
The cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) is the rate-limiting step in beta amyloid generation during Alzheimer's disease (AD) pathogenesis. In AD brains, BACE1 is abnormally accumulated in endocytic compartments, where the acidic pH is optimal for its activity. However, mechanisms regulating the endosome-to-trans-Golgi network (TGN) retrieval of BACE1 remain unclear. Here, we show that partitioning defective 3 (Par3) facilitates BACE1 retrograde trafficking from endosomes to the TGN. Par3 functions through aPKC-mediated phosphorylation of BACE1 on Ser498, which in turn promotes the interaction between BACE1 and phosphofurin acidic cluster sorting protein 1 and facilitates the retrograde trafficking of BACE1 to the TGN. In human AD brains, there is a significant decrease in Ser498 phosphorylation of BACE1 suggesting that defective phosphorylation-dependent retrograde transport of BACE1 is important in AD pathogenesis. Together, our studies provide mechanistic insight into a novel role for Par3 and aPKC in regulating the retrograde endosome-to-TGN trafficking of BACE1 and shed light on the mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Miao Sun
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
35
|
Bärlocher K, Welin A, Hilbi H. Formation of the Legionella Replicative Compartment at the Crossroads of Retrograde Trafficking. Front Cell Infect Microbiol 2017; 7:482. [PMID: 29226112 PMCID: PMC5706426 DOI: 10.3389/fcimb.2017.00482] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Retrograde trafficking from the endosomal system through the Golgi apparatus back to the endoplasmic reticulum is an essential pathway in eukaryotic cells, serving to maintain organelle identity and to recycle empty cargo receptors delivered by the secretory pathway. Intracellular replication of several bacterial pathogens, including Legionella pneumophila, is restricted by the retrograde trafficking pathway. L. pneumophila employs the Icm/Dot type IV secretion system (T4SS) to form the replication-permissive Legionella-containing vacuole (LCV), which is decorated with multiple components of the retrograde trafficking machinery as well as retrograde cargo receptors. The L. pneumophila effector protein RidL is secreted by the T4SS and interferes with retrograde trafficking. Here, we review recent evidence that the LCV interacts with the retrograde trafficking pathway, discuss the possible sites of action and function of RidL in the retrograde route, and put forth the hypothesis that the LCV is an acceptor compartment of retrograde transport vesicles.
Collapse
Affiliation(s)
- Kevin Bärlocher
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Amanda Welin
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
36
|
Yeast dynamin associates with the GARP tethering complex for endosome-to-Golgi traffic. Eur J Cell Biol 2017; 96:612-621. [DOI: 10.1016/j.ejcb.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
|
37
|
Tie HC, Chen B, Sun X, Cheng L, Lu L. Quantitative Localization of a Golgi Protein by Imaging Its Center of Fluorescence Mass. J Vis Exp 2017. [PMID: 28829416 DOI: 10.3791/55996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Golgi complex consists of serially stacked membrane cisternae which can be further categorized into sub-Golgi regions, including the cis-Golgi, medial-Golgi, trans-Golgi and trans-Golgi network. Cellular functions of the Golgi are determined by the characteristic distribution of its resident proteins. The spatial resolution of conventional light microscopy is too low to resolve sub-Golgi structure or cisternae. Thus, the immuno-gold electron microscopy is a method of choice to localize a protein at the sub-Golgi level. However, the technique and instrument are beyond the capability of most cell biology labs. We describe here our recently developed super-resolution method called Golgi protein localization by imaging centers of mass (GLIM) to systematically and quantitatively localize a Golgi protein. GLIM is based on standard fluorescence labeling protocols and conventional wide-field or confocal microscopes. It involves the calibration of chromatic-shift aberration of the microscopic system, the image acquisition and the post-acquisition analysis. The sub-Golgi localization of a test protein is quantitatively expressed as the localization quotient. There are four main advantages of GLIM; it is rapid, based on conventional methods and tools, the localization result is quantitative, and it affords ~ 30 nm practical resolution along the Golgi axis. Here we describe the detailed protocol of GLIM to localize a test Golgi protein.
Collapse
Affiliation(s)
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University
| | - Xiuping Sun
- School of Biological Sciences, Nanyang Technological University
| | - Li Cheng
- Bioinformatics Institute; School of Computing, National University of Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University;
| |
Collapse
|
38
|
Priya A, Sugatha J, Parveen S, Lacas-gervais S, Raj P, Gilleron J, Datta S. Essential and selective role of SNX12 in transport of endocytic and retrograde cargo. J Cell Sci 2017; 130:2707-2721. [DOI: 10.1242/jcs.201905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022] Open
Abstract
The endosomal protein sorting machineries play vital roles in diverse physiologically important cellular processes. Much of the core membrane sorting apparatus are conserved in evolution, such as retromer, involved in the recycling of a diverse set of cargoes via retrograde trafficking route. Here, using a RNAi based loss of function study, we identified that SNX12 when suppressed, leads to severe blockage in CIM6PR transport and alters the morphology of the endocytic compartments. We demonstrate that SNX12 is involved in the early phase of CIM6PR transport and mediates receptor recycling upstream of the other well established SNX components of retromer. Ultra-structural analysis revealed that SNX12 resides on tubulo-vesicular structures, inspite of lacking a BAR domain. Further, we illustrate that SNX12 plays a key role in intraluminal vesicle formation and in the maturation of a sub-population of early endosomes to late endosomes thereby regulating selective endocytic transport of cargo for degradation. This study therefore provides evidence for the existence of early endosomal sub-populations, which have differential roles in sorting of the cargoes along endocytic degradative pathways.
Collapse
Affiliation(s)
- Amulya Priya
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462023, India
| | - Jini Sugatha
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462023, India
| | - Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462023, India
| | - Sandra Lacas-gervais
- Centre Commun de Microscopie Appliquée, Université Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Prateek Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Jérôme Gilleron
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire C3M, Nice, France
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462023, India
| |
Collapse
|
39
|
The Effector Cig57 Hijacks FCHO-Mediated Vesicular Trafficking to Facilitate Intracellular Replication of Coxiella burnetii. PLoS Pathog 2016; 12:e1006101. [PMID: 28002452 PMCID: PMC5176192 DOI: 10.1371/journal.ppat.1006101] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023] Open
Abstract
Coxiella burnetii is an intracellular bacterial pathogen that infects alveolar macrophages and replicates within a unique lysosome-derived vacuole. When Coxiella is trafficked to a host cell lysosome the essential Dot/Icm type IV secretion system is activated allowing over 130 bacterial effector proteins to be translocated into the host cytosol. This cohort of effectors is believed to manipulate host cell functions to facilitate Coxiella-containing vacuole (CCV) biogenesis and bacterial replication. Transposon mutagenesis has demonstrated that the Dot/Icm effector Cig57 is required for CCV development and intracellular replication of Coxiella. Here, we demonstrate a role for Cig57 in subverting clathrin-mediated traffic through its interaction with FCHO2, an accessory protein of clathrin coated pits. A yeast two-hybrid screen identified FCHO2 as a binding partner of Cig57 and this interaction was confirmed during infection using immunoprecipitation experiments. The interaction between Cig57 and FCHO2 is dependent on one of three endocytic sorting motif encoded by Cig57. Importantly, complementation analysis demonstrated that this endocytic sorting motif is required for full function of Cig57. Consistent with the intracellular growth defect in cig57-disrupted Coxiella, siRNA gene silencing of FCHO2 or clathrin (CLTC) inhibits Coxiella growth and CCV biogenesis. Clathrin is recruited to the replicative CCV in a manner that is dependent on the interaction between Cig57 and FCHO2. Creation of an FCHO2 knockout cell line confirmed the importance of this protein for CCV expansion, intracellular replication of Coxiella and clathrin recruitment to the CCV. Collectively, these results reveal Cig57 to be a significant virulence factor that co-opts clathrin-mediated trafficking, via interaction with FCHO2, to facilitate the biogenesis of the fusogenic Coxiella replicative vacuole and enable intracellular success of this human pathogen. Human Q fever is caused by the intracellular bacterium Coxiella burnetii. Successful infection of human cells relies on a Dot/Icm secretion system and the translocation of effector proteins into the host cell cytosol. The functions of many Coxiella effector proteins, and their contribution to bacterial growth and host manipulation, remain unknown. We show that a unique effector, Cig57, has an important role in manipulation of host cellular clathrin-mediated trafficking. In particular, Cig57 binds FCHO2, a protein involved in formation of clathrin-coated vesicles, in a manner that is dependent on a tyrosine-based endocytic sorting motif. Through engaging proteins in the clathrin pathway, Cig57 facilitates expansion of the Coxiella replicative vacuole and enables the pathogen to replicate to large numbers. Thus, we identify a relationship between a host process and a key virulence protein that are required for pathogen success.
Collapse
|
40
|
Schopf K, Huber A. Membrane protein trafficking in Drosophila photoreceptor cells. Eur J Cell Biol 2016; 96:391-401. [PMID: 27964885 DOI: 10.1016/j.ejcb.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022] Open
Abstract
Membrane protein trafficking occurs throughout the lifetime of neurons and includes the initial protein synthesis and anterograde transport to the plasma membrane as well as internalization, degradation, and recycling of plasma membrane proteins. Defects in protein trafficking can result in neuronal degeneration and underlie blinding diseases such as retinitis pigmentosa as well as other neuronal disorders. Drosophila photoreceptor cells have emerged as a model system for identifying the components and mechanisms involved in membrane protein trafficking in neurons. Here we summarize the current knowledge about trafficking of three Drosophila phototransduction proteins, the visual pigment rhodopsin and the two light-activated ion channels TRP (transient receptor potential) and TRPL (TRP-like). Despite some common requirements shared by rhodopsin and TRP, details in the trafficking of these proteins differ considerably, suggesting the existence of several trafficking pathways for these photoreceptor proteins.
Collapse
Affiliation(s)
- Krystina Schopf
- University of Hohenheim, Institute of Physiology, Department of Biosensorics, Stuttgart, Germany
| | - Armin Huber
- University of Hohenheim, Institute of Physiology, Department of Biosensorics, Stuttgart, Germany.
| |
Collapse
|
41
|
Zhang F, Song Y, Ebrahimi M, Niu L, Teng M, Li X. Structural and functional insight into the N-terminal domain of the clathrin adaptor Ent5 from Saccharomyces cerevisiae. Biochem Biophys Res Commun 2016; 477:786-793. [PMID: 27369074 DOI: 10.1016/j.bbrc.2016.06.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022]
Abstract
Clathrin-coated vesicles (CCVs) play critical roles in multiple cellular processes, including nutrient uptake, endosome/lysosome biogenesis, pathogen invasion, regulation of signalling receptors, etc. Saccharomyces cerevisiae Ent5 (ScEnt5) is one of the two major adaptors supporting the CCV-mediated TGN/endosome traffic in yeast cells. However, the classification and phosphoinositide binding characteristic of ScEnt5 remain elusive. Here we report the crystal structures of the ScEnt5 N-terminal domain, and find that ScEnt5 contains an insertion α' helix that does not exist in other ENTH or ANTH domains. Furthermore, we investigate the classification of ScEnt5-N(31-191) by evolutionary history analyses and structure comparisons, and find that the ScEnt5 N-terminal domain shows different phosphoinositide binding property from rEpsin1 and rCALM. Above results facilitate the understanding of the ScEnt5-mediated vesicle coat formation process.
Collapse
Affiliation(s)
- Fan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China; Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Yang Song
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China; Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Mohammad Ebrahimi
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China; Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China; Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China; Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China.
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China; Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
42
|
Thomas RS, Henson A, Gerrish A, Jones L, Williams J, Kidd EJ. Decreasing the expression of PICALM reduces endocytosis and the activity of β-secretase: implications for Alzheimer's disease. BMC Neurosci 2016; 17:50. [PMID: 27430330 PMCID: PMC4949774 DOI: 10.1186/s12868-016-0288-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Polymorphisms in the gene for phosphatidylinositol binding clathrin assembly protein (PICALM), an endocytic-related protein, are associated with a small, increased risk of developing Alzheimer's disease (AD), strongly suggesting that changes in endocytosis are involved in the aetiology of the disease. We have investigated the involvement of PICALM in the processing of amyloid precursor protein (APP) to understand how PICALM could be linked to the development of AD. We used siRNA to deplete levels of PICALM, its isoforms and clathrin heavy chain in the human brain-derived H4 neuroglioma cell line that expresses endogenous levels of APP. We then used Western blotting, ELISA and immunohistochemistry to detect intra- and extracellular protein levels of endocytic-related proteins, APP and APP metabolites including β-amyloid (Aβ). Levels of functional endocytosis were quantified using ALEXA 488-conjugated transferrin and flow cytometry as a marker of clathrin-mediated endocytosis (CME). RESULTS Following depletion of all the isoforms of PICALM by siRNA in H4 cells, levels of intracellular APP, intracellular β-C-terminal fragment (β-CTF) and secreted sAPPβ (APP fragments produced by β-secretase cleavage) were significantly reduced but Aβ40 was not affected. Functional endocytosis was significantly reduced after both PICALM and clathrin depletion, highlighting the importance of PICALM in this process. However, depletion of clathrin did not affect APP but did reduce β-CTF levels. PICALM depletion altered the intracellular distribution of clathrin while clathrin reduction affected the subcellular pattern of PICALM labelling. Both PICALM and clathrin depletion reduced the expression of BACE1 mRNA and PICALM siRNA reduced protein levels. Individual depletion of PICALM isoforms 1 and 2 did not affect APP levels while clathrin depletion had a differential effect on the isoforms, increasing isoform 1 while decreasing isoform 2 expression. CONCLUSIONS The depletion of PICALM in brain-derived cells has significant effects on the processing of APP, probably by reducing CME. In particular, it affects the production of β-CTF which is increasingly considered to be an important mediator in AD independent of Aβ. Thus a decrease in PICALM expression in the brain could be beneficial to slow or prevent the development of AD.
Collapse
Affiliation(s)
- Rhian S. Thomas
- />School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB UK
| | - Alex Henson
- />School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB UK
| | - Amy Gerrish
- />MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
- />West Midlands Regional Genetics Laboratory, Birmingham Women’s NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TG UK
| | - Lesley Jones
- />MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Julie Williams
- />MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Emma J. Kidd
- />School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB UK
| |
Collapse
|
43
|
Bacterial genotoxins: The long journey to the nucleus of mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:567-75. [DOI: 10.1016/j.bbamem.2015.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/17/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023]
|
44
|
Li C, Shah SZA, Zhao D, Yang L. Role of the Retromer Complex in Neurodegenerative Diseases. Front Aging Neurosci 2016; 8:42. [PMID: 26973516 PMCID: PMC4772447 DOI: 10.3389/fnagi.2016.00042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
The retromer complex is a protein complex that plays a central role in endosomal trafficking. Retromer dysfunction has been linked to a growing number of neurological disorders. The process of intracellular trafficking and recycling is crucial for maintaining normal intracellular homeostasis, which is partly achieved through the activity of the retromer complex. The retromer complex plays a primary role in sorting endosomal cargo back to the cell surface for reuse, to the trans-Golgi network (TGN), or alternatively to specialized endomembrane compartments, in which the cargo is not subjected to lysosomal-mediated degradation. In most cases, the retromer acts as a core that interacts with associated proteins, including sorting nexin family member 27 (SNX27), members of the vacuolar protein sorting 10 (VPS10) receptor family, the major endosomal actin polymerization-promoting complex known as Wiskott-Aldrich syndrome protein and scar homolog (WASH), and other proteins. Some of the molecules carried by the retromer complex are risk factors for neurodegenerative diseases. Defects such as haplo-insufficiency or mutations in one or several units of the retromer complex lead to various pathologies. Here, we summarize the molecular architecture of the retromer complex and the roles of this system in intracellular trafficking related the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chaosi Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| | - Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| |
Collapse
|
45
|
Tie HC, Mahajan D, Chen B, Cheng L, VanDongen AMJ, Lu L. A novel imaging method for quantitative Golgi localization reveals differential intra-Golgi trafficking of secretory cargoes. Mol Biol Cell 2016; 27:848-61. [PMID: 26764092 PMCID: PMC4803310 DOI: 10.1091/mbc.e15-09-0664] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/07/2016] [Indexed: 12/02/2022] Open
Abstract
A novel imaging-based method is introduced to quantitatively localize Golgi proteins at nanometer resolution. The method reveals different intra-Golgi trafficking of secretory cargoes. Cellular functions of the Golgi are determined by the unique distribution of its resident proteins. Currently, electron microscopy is required for the localization of a Golgi protein at the sub-Golgi level. We developed a quantitative sub-Golgi localization method based on centers of fluorescence masses of nocodazole-induced Golgi ministacks under conventional optical microscopy. Our method is rapid, convenient, and quantitative, and it yields a practical localization resolution of ∼30 nm. The method was validated by the previous electron microscopy data. We quantitatively studied the intra-Golgi trafficking of synchronized secretory membrane cargoes and directly demonstrated the cisternal progression of cargoes from the cis- to the trans-Golgi. Our data suggest that the constitutive efflux of secretory cargoes could be restricted at the Golgi stack, and the entry of the trans-Golgi network in secretory pathway could be signal dependent.
Collapse
Affiliation(s)
- Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Li Cheng
- Bioinformatics Institute, Singapore 138671 School of Computing, National University of Singapore, Singapore 117417
| | - Antonius M J VanDongen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 169857
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
46
|
Steffen A, Stradal TEB, Rottner K. Signalling Pathways Controlling Cellular Actin Organization. Handb Exp Pharmacol 2016; 235:153-178. [PMID: 27757765 DOI: 10.1007/164_2016_35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.
Collapse
Affiliation(s)
- Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| |
Collapse
|
47
|
The GTP- and Phospholipid-Binding Protein TTD14 Regulates Trafficking of the TRPL Ion Channel in Drosophila Photoreceptor Cells. PLoS Genet 2015; 11:e1005578. [PMID: 26509977 PMCID: PMC4624897 DOI: 10.1371/journal.pgen.1005578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023] Open
Abstract
Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP) and TRP-like (TRPL) and generates the visual response. The signaling proteins are located in a plasma membrane compartment called rhabdomere. The major rhodopsin (Rh1) and TRP are predominantly localized in the rhabdomere in light and darkness. In contrast, TRPL translocates between the rhabdomeral plasma membrane in the dark and a storage compartment in the cell body in the light, from where it can be recycled to the plasma membrane upon subsequent dark adaptation. Here, we identified the gene mutated in trpl translocation defective 14 (ttd14), which is required for both TRPL internalization from the rhabdomere in the light and recycling of TRPL back to the rhabdomere in the dark. TTD14 is highly conserved in invertebrates and binds GTP in vitro. The ttd14 mutation alters a conserved proline residue (P75L) in the GTP-binding domain and abolishes binding to GTP. This indicates that GTP binding is essential for TTD14 function. TTD14 is a cytosolic protein and binds to PtdIns(3)P, a lipid enriched in early endosome membranes, and to phosphatidic acid. In contrast to TRPL, rhabdomeral localization of the membrane proteins Rh1 and TRP is not affected in the ttd14P75L mutant. The ttd14P75L mutation results in Rh1-independent photoreceptor degeneration and larval lethality suggesting that other processes are also affected by the ttd14P75L mutation. In conclusion, TTD14 is a novel regulator of TRPL trafficking, involved in internalization and subsequent sorting of TRPL into the recycling pathway that enables this ion channel to return to the plasma membrane. Protein trafficking in neurons occurs throughout the lifetime of a cell and includes the internalization and redistribution of plasma membrane proteins. Regulated protein trafficking controls the equipment of the plasma membrane with receptors and ion channels and thereby attenuates or enhances neuronal function. Defects in recycling of plasma membrane proteins can cause detrimental neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and Down´s syndrome. In Drosophila photoreceptors, the TRPL ion channel, together with the TRP channel, mediates vision and light-dependently shuttles between an endomembrane storage compartment and the apical plasma membrane. Here, we report the identification of a mutation in the ttd14 gene that inhibits TRPL-trafficking in both directions and also results in photoreceptor degeneration. The TTD14 protein contains a region with weak homology to a PX-domain, which is also found in proteins that sort cargo in the endosome and enable protein recycling. We characterize TTD14 as a new regulator of photoreceptor maintenance and ion channel trafficking that binds to GTP and PtdIns(3)P, a phospholipid enriched in early endosomes.
Collapse
|
48
|
Jaarsma D, Hoogenraad CC. Cytoplasmic dynein and its regulatory proteins in Golgi pathology in nervous system disorders. Front Neurosci 2015; 9:397. [PMID: 26578860 PMCID: PMC4620150 DOI: 10.3389/fnins.2015.00397] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/09/2015] [Indexed: 12/15/2022] Open
Abstract
The Golgi apparatus is a dynamic organelle involved in processing and sorting of lipids and proteins. In neurons, the Golgi apparatus is important for the development of axons and dendrites and maintenance of their highly complex polarized morphology. The motor protein complex cytoplasmic dynein has an important role in Golgi apparatus positioning and function. Together, with dynactin and other regulatory factors it drives microtubule minus-end directed motility of Golgi membranes. Inhibition of dynein results in fragmentation and dispersion of the Golgi ribbon in the neuronal cell body, resembling the Golgi abnormalities observed in some neurodegenerative disorders, in particular motor neuron diseases. Mutations in dynein and its regulatory factors, including the dynactin subunit p150Glued, BICD2 and Lis-1, are associated with several human nervous system disorders, including cortical malformation and motor neuropathy. Here we review the role of dynein and its regulatory factors in Golgi function and positioning, and the potential role of dynein malfunction in causing Golgi apparatus abnormalities in nervous system disorders.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| | | |
Collapse
|
49
|
Owen DJ, Crump CM, Graham SC. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses. Viruses 2015; 7:5084-114. [PMID: 26393641 PMCID: PMC4584305 DOI: 10.3390/v7092861] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called "tegument" that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei.
Collapse
Affiliation(s)
- Danielle J Owen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
50
|
|