1
|
Ballester-Servera C, Alonso J, Taurón M, Rotllán N, Rodríguez C, Martínez-González J. Lysyl oxidase expression in smooth muscle cells determines the level of intima calcification in hypercholesterolemia-induced atherosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:286-298. [PMID: 38402026 DOI: 10.1016/j.arteri.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/26/2024]
Abstract
INTRODUCTION Cardiovascular calcification is an important public health issue with an unmeet therapeutic need. We had previously shown that lysyl oxidase (LOX) activity critically influences vascular wall smooth muscle cells (VSMCs) and valvular interstitial cells (VICs) calcification by affecting extracellular matrix remodeling. We have delved into the participation of LOX in atherosclerosis and vascular calcification, as well as in the mineralization of the aortic valve. METHODS Immunohistochemical and expression studies were carried out in human atherosclerotic lesions and experimental models, valves from patients with aortic stenosis, VICs, and in a genetically modified mouse model that overexpresses LOX in CMLV (TgLOXCMLV). Hyperlipemia and atherosclerosis was induced in mice through the administration of adeno-associated viruses encoding a PCSK9 mutated form (AAV-PCSK9D374Y) combined with an atherogenic diet. RESULTS LOX expression is increased in the neointimal layer of atherosclerotic lesions from human coronary arteries and in VSMC-rich regions of atheromas developed both in the brachiocephalic artery of control (C57BL/6J) animals transduced with PCSK9D374Y and in the aortic root of ApoE-/- mice. In TgLOXCMLV mice, PCSK9D374Y transduction did not significantly alter the enhanced aortic expression of genes involved in matrix remodeling, inflammation, oxidative stress and osteoblastic differentiation. Likewise, LOX transgenesis did not alter the size or lipid content of atherosclerotic lesions in the aortic arch, brachiocephalic artery and aortic root, but exacerbated calcification. Among lysyl oxidase isoenzymes, LOX is the most expressed member of this family in highly calcified human valves, colocalizing with RUNX2 in VICs. The lower calcium deposition and decreased RUNX2 levels triggered by the overexpression of the nuclear receptor NOR-1 in VICs was associated with a reduction in LOX. CONCLUSIONS Our results show that LOX expression is increased in atherosclerotic lesions, and that overexpression of this enzyme in VSMC does not affect the size of the atheroma or its lipid content, but it does affect its degree of calcification. Further, these data suggest that the decrease in calcification driven by NOR-1 in VICs would involve a reduction in LOX. These evidences support the interest of LOX as a therapeutic target in cardiovascular calcification.
Collapse
MESH Headings
- Animals
- Humans
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Protein-Lysine 6-Oxidase/metabolism
- Protein-Lysine 6-Oxidase/genetics
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Disease Models, Animal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Hypercholesterolemia/complications
- Mice, Inbred C57BL
- Aortic Valve Stenosis/pathology
- Aortic Valve Stenosis/metabolism
- Aortic Valve Stenosis/genetics
- Aortic Valve/pathology
- Aortic Valve/metabolism
- Male
- Proprotein Convertase 9/genetics
- Proprotein Convertase 9/metabolism
- Mice, Transgenic
- Tunica Intima/pathology
- Tunica Intima/metabolism
- Diet, Atherogenic/adverse effects
Collapse
Affiliation(s)
- Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud CarlosIII, Madrid, España; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, España
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud CarlosIII, Madrid, España; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, España
| | - Manel Taurón
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud CarlosIII, Madrid, España; Departamento de Cirugía Cardíaca, Hospital de la Santa Creu i Sant Pau-Universitat Autònoma de Barcelona (HSCSP-UAB), Barcelona, España
| | - Noemí Rotllán
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, España; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud CarlosIII, Madrid, España
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud CarlosIII, Madrid, España; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, España
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud CarlosIII, Madrid, España; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, España.
| |
Collapse
|
2
|
Wang Q, Peng F, Yang J, Chen X, Peng Z, Zhang M, Tang D, Liu J, Zhao H. MicroRNAs regulate the vicious cycle of vascular calcification-osteoporosis in postmenopausal women. Mol Biol Rep 2024; 51:622. [PMID: 38709309 DOI: 10.1007/s11033-024-09550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Menopause is a normal physiological process accompanied by changes in various physiological states. The incidence of vascular calcification (VC) increases each year after menopause and is closely related to osteoporosis (OP). Although many studies have investigated the links between VC and OP, the interaction mechanism of the two under conditions of estrogen loss remains unclear. MicroRNAs (miRNAs), which are involved in epigenetic modification, play a critical role in estrogen-mediated mineralization. In the past several decades, miRNAs have been identified as biomarkers or therapeutic targets in diseases. Thus, we hypothesize that these small molecules can provide new diagnostic and therapeutic approaches. In this review, we summarize the close interactions between VC and OP and the role of miRNAs in their interplay.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China
| | - Fei Peng
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Changsha Central Hospital Affiliated to University of South China, Changsha, Hunan, China
| | - Xiaolong Chen
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China
| | - Zhaojie Peng
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China
| | - Minyi Zhang
- The University of South China, Hengyang, Hunan, China
| | - Deqiu Tang
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China
| | - Jianghua Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China.
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Ballester-Servera C, Cañes L, Alonso J, Puertas-Umbert L, Vázquez-Sufuentes P, Taurón M, Roselló-Díez E, Marín F, Rodríguez C, Martínez-González J. Upregulation of NOR-1 in calcified human vascular tissues: impact on osteogenic differentiation and calcification. Transl Res 2024; 264:1-14. [PMID: 37690706 DOI: 10.1016/j.trsl.2023.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Cardiovascular calcification is a significant public health issue whose pathophysiology is not fully understood. NOR-1 regulates critical processes in cardiovascular remodeling, but its contribution to ectopic calcification is unknown. NOR-1 was overexpressed in human calcific aortic valves and calcified atherosclerotic lesions colocalizing with RUNX2, a factor essential for osteochondrogenic differentiation and calcification. NOR-1 and osteogenic markers were upregulated in calcifying human valvular interstitial cells (VICs) and human vascular smooth muscle cells (VSMCs). Gain- and loss-of-function approaches demonstrated that NOR-1 negatively modulates the expression of osteogenic genes relevant for the osteogenic transdifferentiation (RUNX2, IL-6, BMP2, and ALPL) and calcification of VICs. VSMCs from transgenic mice overexpressing NOR-1 in these cells (TgNOR-1VSMC) expressed lower basal levels of osteogenic genes (IL-6, BMP2, ALPL, OPN) than cells from WT littermates, and their upregulation by a high-phosphate osteogenic medium (OM) was completely prevented by NOR-1 transgenesis. Consistently, this was associated with a dramatic reduction in the calcification of both transgenic VSMCs and aortic rings from TgNOR-1VSMC mice exposed to OM. Atherosclerosis and calcification were induce in mice by the administration of AAV-PCSK9D374Y and a high-fat/high-cholesterol diet. Challenged-TgNOR-1VSMC mice exhibited decreased vascular expression of osteogenic markers, and both less atherosclerotic burden (assessed in whole aorta and lesion size in aortic arch and brachiocephalic artery) and less vascular calcification (assessed either by near-infrared fluorescence imaging or histological analysis) than WT mice. Our data indicate that NOR-1 negatively modulates the expression of genes critically involved in the osteogenic differentiation of VICs and VSMCs, thereby restraining ectopic cardiovascular calcification.
Collapse
Affiliation(s)
- Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Lidia Puertas-Umbert
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, Spain
| | - Paula Vázquez-Sufuentes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Manel Taurón
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Departamento de Cirugía Cardíaca, Hospital de la Santa Creu i Sant Pau-Universitat Autònoma de Barcelona (HSCSP-UAB), Barcelona, Spain
| | - Elena Roselló-Díez
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Departamento de Cirugía Cardíaca, Hospital de la Santa Creu i Sant Pau-Universitat Autònoma de Barcelona (HSCSP-UAB), Barcelona, Spain
| | - Francisco Marín
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca-Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, Spain
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.
| |
Collapse
|
4
|
Leizaola D, Dargam V, Leiva K, Alirezaei H, Hutcheson J, Godavarty A. Effect of chronic kidney disease induced calcification on peripheral vascular perfusion using near-infrared spectroscopic imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:277-293. [PMID: 38223173 PMCID: PMC10783904 DOI: 10.1364/boe.503667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 01/16/2024]
Abstract
Low-cost techniques that can detect the presence of vascular calcification (VC) in chronic kidney disease (CKD) patients could improve clinical outcomes. In this study, we established a near-infrared spectroscopy-based imaging technique to determine changes in peripheral hemodynamics due to CKD-induced VC. Mice were fed a high-adenine diet with either normal or high levels of phosphate to induce CKD with and without VC, respectively. The mice tail was imaged to evaluate hemodynamic changes in response to occlusion. The rate of change in oxyhemoglobin in response to occlusion showed a statistically significant difference in the presence of VC in the mice.
Collapse
Affiliation(s)
- Daniela Leizaola
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| | - Valentina Dargam
- Cardiovascular Matrix Remodeling
Laboratory, Biomedical Engineering
Department, 10555 W Flagler St, Miami, FL 33174,
USA
| | - Kevin Leiva
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| | - Haniyeh Alirezaei
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| | - Joshua Hutcheson
- Cardiovascular Matrix Remodeling
Laboratory, Biomedical Engineering
Department, 10555 W Flagler St, Miami, FL 33174,
USA
| | - Anuradha Godavarty
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| |
Collapse
|
5
|
Dhayni K, Chabry Y, Hénaut L, Avondo C, Boudot C, Ouled-Haddou H, Bigot-Corbel E, Touati G, Caus T, Messaoudi H, Bellien J, Tribouilloy C, Messika-Zeitoun D, Zibara K, Kamel S, Bennis Y. Aortic valve calcification is promoted by interleukin-8 and restricted through antagonizing CXC motif chemokine receptor 2. Cardiovasc Res 2023; 119:2355-2367. [PMID: 37517061 DOI: 10.1093/cvr/cvad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 08/01/2023] Open
Abstract
AIMS Inflammatory cytokines play a critical role in the progression of calcific aortic valve disease (CAVD), for which there is currently no pharmacological treatment. The aim of this study was to test the hypothesis that interleukin-8 (IL-8), known to be involved in arterial calcification, also promotes aortic valve calcification (AVC) and to evaluate whether pharmacologically blocking the IL-8 receptor, CXC motif chemokine receptor 2 (CXCR2), could be effective in preventing AVC progression. METHODS AND RESULTS A cohort of 195 patients (median age 73, 74% men) diagnosed with aortic valve stenosis (severe in 16.9% of cases) were prospectively followed by CT for a median time of 2.6 years. A Cox proportional hazards regression analysis indicated that baseline IL-8 serum concentrations were associated with rapid progression of AVC, defined as an annualized change in the calcification score by CT ≥ 110 AU/year, after adjustment for age, gender, bicuspid anatomy, and baseline disease severity. In vitro, exposure of primary human aortic valvular interstitial cells (hVICs) to 15 pg/mL IL-8 induced a two-fold increase in inorganic phosphate (Pi)-induced calcification. IL-8 promoted NFκB pathway activation, MMP-12 expression, and elastin degradation in hVICs exposed to Pi. These effects were prevented by SCH527123, an antagonist of CXCR2. The expression of CXCR2 was confirmed in hVICs and samples of aortic valves isolated from patients with CAVD, in which the receptor was mainly found in calcified areas, along with MMP-12 and a degraded form of elastin. Finally, in a rat model of chronic kidney disease-associated CAVD, SCH527123 treatment (1 mg/kg/day given orally for 11 weeks) limited the decrease in aortic cusp separation, the increase in maximal velocity of the transaortic jet, and the increase in aortic mean pressure gradient measured by echocardiography, effects that were associated with a reduction in hydroxyapatite deposition and MMP-12 expression in the aortic valves. CONCLUSION Overall, these results highlight, for the first time, a significant role for IL-8 in the progression of CAVD by promoting calcification via a CXCR2- and MMP-12-dependent mechanism that leads to elastin degradation, and identify CXCR2 as a promising therapeutic target for the treatment of CAVD.
Collapse
Affiliation(s)
- Kawthar Dhayni
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Yuthiline Chabry
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
- Department of Cardiac Surgery, CHU Amiens-Picardie, 1 Rd-Point du Pr. Christian Cabrol, 80054 Amiens, France
| | - Lucie Hénaut
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Carine Avondo
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Cedric Boudot
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Hakim Ouled-Haddou
- HEMATIM Laboratory, UPJV UR 4666, Université de Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Edith Bigot-Corbel
- Department of Clinical Biochemistry, CHU de Nantes, Bd Jacques-Monod, 44093 Saint-Herblain, France
| | - Gilles Touati
- Department of Cardiac Surgery, CHU Amiens-Picardie, 1 Rd-Point du Pr. Christian Cabrol, 80054 Amiens, France
| | - Thierry Caus
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
- Department of Cardiac Surgery, CHU Amiens-Picardie, 1 Rd-Point du Pr. Christian Cabrol, 80054 Amiens, France
| | - Hind Messaoudi
- EnVI Laboratory, INSERM UMR 1096, Rouen Normandy University, 22 Boulevard Gambetta, 76183 Rouen, France
| | - Jérémy Bellien
- EnVI Laboratory, INSERM UMR 1096, Rouen Normandy University, 22 Boulevard Gambetta, 76183 Rouen, France
| | - Christophe Tribouilloy
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
- Department of Cardiology, CHU Amiens-Picardie, 1 Rd-Point du Pr. Christian Cabrol, 80054 Amiens, France
| | - David Messika-Zeitoun
- Department of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada
| | - Kazem Zibara
- Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Saïd Kamel
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Youssef Bennis
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
- Department of Pharmacology, CHU Amiens-Picardie, 1 Rd-Point du Professeur Christian Cabrol, 80054 Amiens, France
| |
Collapse
|
6
|
Dittfeld C, Winkelkotte M, Scheer A, Voigt E, Schmieder F, Behrens S, Jannasch A, Matschke K, Sonntag F, Tugtekin SM. Challenges of aortic valve tissue culture - maintenance of viability and extracellular matrix in the pulsatile dynamic microphysiological system. J Biol Eng 2023; 17:60. [PMID: 37770970 PMCID: PMC10538250 DOI: 10.1186/s13036-023-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) causes an increasing health burden in the 21st century due to aging population. The complex pathophysiology remains to be understood to develop novel prevention and treatment strategies. Microphysiological systems (MPSs), also known as organ-on-chip or lab-on-a-chip systems, proved promising in bridging in vitro and in vivo approaches by applying integer AV tissue and modelling biomechanical microenvironment. This study introduces a novel MPS comprising different micropumps in conjunction with a tissue-incubation-chamber (TIC) for long-term porcine and human AV incubation (pAV, hAV). RESULTS Tissue cultures in two different MPS setups were compared and validated by a bimodal viability analysis and extracellular matrix transformation assessment. The MPS-TIC conjunction proved applicable for incubation periods of 14-26 days. An increased metabolic rate was detected for pulsatile dynamic MPS culture compared to static condition indicated by increased LDH intensity. ECM changes such as an increase of collagen fibre content in line with tissue contraction and mass reduction, also observed in early CAVD, were detected in MPS-TIC culture, as well as an increase of collagen fibre content. Glycosaminoglycans remained stable, no significant alterations of α-SMA or CD31 epitopes and no accumulation of calciumhydroxyapatite were observed after 14 days of incubation. CONCLUSIONS The presented ex vivo MPS allows long-term AV tissue incubation and will be adopted for future investigation of CAVD pathophysiology, also implementing human tissues. The bimodal viability assessment and ECM analyses approve reliability of ex vivo CAVD investigation and comparability of parallel tissue segments with different treatment strategies regarding the AV (patho)physiology.
Collapse
Affiliation(s)
- Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany.
| | - Maximilian Winkelkotte
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Anna Scheer
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Emmely Voigt
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| |
Collapse
|
7
|
Bakhshian Nik A, Kaiser K, Sun P, Khomtchouk BB, Hutcheson JD. Altered Caveolin-1 Dynamics Result in Divergent Mineralization Responses in Bone and Vascular Calcification. Cell Mol Bioeng 2023; 16:299-308. [PMID: 37811003 PMCID: PMC10550882 DOI: 10.1007/s12195-023-00779-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Though vascular smooth muscle cells adopt an osteogenic phenotype during pathological vascular calcification, clinical studies note an inverse correlation between bone mineral density and arterial mineral-also known as the calcification paradox. Both processes are mediated by extracellular vesicles (EVs) that sequester calcium and phosphate. Calcifying EV formation in the vasculature requires caveolin-1 (CAV1), a membrane scaffolding protein that resides in membrane invaginations (caveolae). Of note, caveolin-1-deficient mice, however, have increased bone mineral density. We hypothesized that caveolin-1 may play divergent roles in calcifying EV formation from vascular smooth muscle cells (VSMCs) and osteoblasts (HOBs). Methods Primary human coronary artery VSMCs and osteoblasts were cultured for up to 28 days in an osteogenic media. CAV1 expression was knocked down using siRNA. Methyl β-cyclodextrin (MβCD) and a calpain inhibitor were used, respectively, to disrupt and stabilize the caveolar domains in VSMCs and HOBs. Results CAV1 genetic variation demonstrates significant inverse relationships between bone-mineral density (BMD) and coronary artery calcification (CAC) across two independent epidemiological cohorts. Culture in osteogenic (OS) media increased calcification in HOBs and VSMCs. siRNA knockdown of CAV1 abrogated VSMC calcification with no effect on osteoblast mineralization. MβCD-mediated caveolae disruption led to a 3-fold increase of calcification in VSMCs treated with osteogenic media (p < 0.05) but hindered osteoblast mineralization (p < 0.01). Conversely, stabilizing caveolae by calpain inhibition prevented VSMC calcification (p < 0.05) without affecting osteoblast mineralization. There was no significant difference in CAV1 content between lipid domains from HOBs cultured in OS and control media. Conclusion Our data indicate fundamental cellular-level differences in physiological and pathophysiological mineralization mediated by CAV1 dynamics. This is the first study to suggest that divergent mechanisms in calcifying EV formation may play a role in the calcification paradox. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00779-7.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
| | - Katherine Kaiser
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
| | - Patrick Sun
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, 535 W Michigan St, IT 477, Indianapolis, IN 46202 USA
| | - Bohdan B. Khomtchouk
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, 535 W Michigan St, IT 477, Indianapolis, IN 46202 USA
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL USA
| |
Collapse
|
8
|
Abstract
Patients with chronic kidney disease (CKD) exhibit tremendously elevated risk for cardiovascular disease, particularly ischemic heart disease, due to premature vascular and cardiac aging and accelerated ectopic calcification. The presence of cardiovascular calcification associates with increased risk in patients with CKD. Disturbed mineral homeostasis and diverse comorbidities in these patients drive increased systemic cardiovascular calcification in different manifestations with diverse clinical consequences, like plaque instability, vessel stiffening, and aortic stenosis. This review outlines the heterogeneity in calcification patterning, including mineral type and location and potential implications on clinical outcomes. The advent of therapeutics currently in clinical trials may reduce CKD-associated morbidity. Development of therapeutics for cardiovascular calcification begins with the premise that less mineral is better. While restoring diseased tissues to a noncalcified homeostasis remains the ultimate goal, in some cases, calcific mineral may play a protective role, such as in atherosclerotic plaques. Therefore, developing treatments for ectopic calcification may require a nuanced approach that considers individual patient risk factors. Here, we discuss the most common cardiac and vascular calcification pathologies observed in CKD, how mineral in these tissues affects function, and the potential outcomes and considerations for therapeutic strategies that seek to disrupt the nucleation and growth of mineral. Finally, we discuss future patient-specific considerations for treating cardiac and vascular calcification in patients with CKD-a population in need of anticalcification therapies.
Collapse
Affiliation(s)
- Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL (J.D.H.)
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Germany (C.G.)
| |
Collapse
|
9
|
Zhu X, Wang C, Duan X, Liang B, Genbo Xu E, Huang Z. Micro- and nanoplastics: A new cardiovascular risk factor? ENVIRONMENT INTERNATIONAL 2023; 171:107662. [PMID: 36473237 DOI: 10.1016/j.envint.2022.107662] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Exposure to micro- and nanoplastics (MNPs) is inevitable due to their omnipresence in the environment. A growing body of studies has advanced our understanding of the potential toxicity of MNPs but knowledge gaps still exist regarding the adverse effects of MNPs on the cardiovascular system and underlying mechanisms, particularly in humans. Here, we reviewed up-to-date data published in the past 10 years on MNP-driven cardiovascular toxicity and mechanisms. Forty-six articles concerning ADME (absorption, distribution, and aggregation behaviors) and toxicity of MNPs in the circulatory system of animals and human cells were analyzed and summarized. The results showed that MNPs affected cardiac functions and caused toxicity on (micro)vascular sites. Direct cardiac toxicity of MNPs included abnormal heart rate, cardiac function impairment, pericardial edema, and myocardial fibrosis. On (micro)vascular sites, MNPs induced hemolysis, thrombosis, blood coagulation, and vascular endothelial damage. The main mechanisms included oxidative stress, inflammation, apoptosis, pyroptosis, and interaction between MNPs and multiple cellular components. Cardiovascular toxicity was determined by the properties (type, size, surface, and structure) of MNPs, exposure dose and duration, protein presence, the life stage, sex, and species of the tested organisms, as well as the interaction with other environmental contamination. The limited quantitative information on MNPs' ADME and the lack of guidelines for MNP cardiotoxicity testing makes risk assessment on cardiac health impossible. Furthermore, the future directions of cardiovascular research on MNPs are recommended to enable more realistic health risk assessment.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chuanxuan Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyu Duan
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark.
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Heuschkel MA, Babler A, Heyn J, van der Vorst EPC, Steenman M, Gesper M, Kappel BA, Magne D, Gouëffic Y, Kramann R, Jahnen-Dechent W, Marx N, Quillard T, Goettsch C. Distinct role of mitochondrial function and protein kinase C in intimal and medial calcification in vitro. Front Cardiovasc Med 2022; 9:959457. [PMID: 36204585 PMCID: PMC9530266 DOI: 10.3389/fcvm.2022.959457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Vascular calcification (VC) is a major risk factor for cardiovascular morbidity and mortality. Depending on the location of mineral deposition within the arterial wall, VC is classified as intimal and medial calcification. Using in vitro mineralization assays, we developed protocols triggering both types of calcification in vascular smooth muscle cells (SMCs) following diverging molecular pathways. Materials and methods and results Human coronary artery SMCs were cultured in osteogenic medium (OM) or high calcium phosphate medium (CaP) to induce a mineralized extracellular matrix. OM induces osteoblast-like differentiation of SMCs-a key process in intimal calcification during atherosclerotic plaque remodeling. CaP mimics hyperphosphatemia, associated with chronic kidney disease-a risk factor for medial calcification. Transcriptomic analysis revealed distinct gene expression profiles of OM and CaP-calcifying SMCs. OM and CaP-treated SMCs shared 107 differentially regulated genes related to SMC contraction and metabolism. Real-time extracellular efflux analysis demonstrated decreased mitochondrial respiration and glycolysis in CaP-treated SMCs compared to increased mitochondrial respiration without altered glycolysis in OM-treated SMCs. Subsequent kinome and in silico drug repurposing analysis (Connectivity Map) suggested a distinct role of protein kinase C (PKC). In vitro validation experiments demonstrated that the PKC activators prostratin and ingenol reduced calcification triggered by OM and promoted calcification triggered by CaP. Conclusion Our direct comparison results of two in vitro calcification models strengthen previous observations of distinct intracellular mechanisms that trigger OM and CaP-induced SMC calcification in vitro. We found a differential role of PKC in OM and CaP-calcified SMCs providing new potential cellular and molecular targets for pharmacological intervention in VC. Our data suggest that the field should limit the generalization of results found in in vitro studies using different calcification protocols.
Collapse
Affiliation(s)
- Marina A. Heuschkel
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Jonas Heyn
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Emiel P. C. van der Vorst
- Interdisciplinary Center for Clinical Research, Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja Steenman
- L’institut Du Thorax, Inserm UMR 1087, CNRS, INSERM, France and Nantes Université, Nantes, France
| | - Maren Gesper
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ben A. Kappel
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David Magne
- ICBMS UMR CNRS 5246, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Yann Gouëffic
- Department of Vascular Surgery, Vascular Center, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, University Hospital, RWTH Aachen, Aachen, Germany
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thibaut Quillard
- L’institut Du Thorax, Inserm UMR 1087, CNRS, INSERM, France and Nantes Université, Nantes, France
- PHY-OS Laboratory, INSERM UMR 1238, Nantes University of Medicine, Nantes, France
| | - Claudia Goettsch
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Dittfeld C, Winkelkotte M, Behrens S, Schmieder F, Jannasch A, Matschke K, Sonntag F, Tugtekin SM. Establishment of a resazurin-based aortic valve tissue viability assay for dynamic culture in a microphysiological system. Clin Hemorheol Microcirc 2021; 79:167-178. [PMID: 34487029 DOI: 10.3233/ch-219112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND/AIM Tissue pathogenesis of aortic valve (AV) stenosis is research focus in cardiac surgery. Model limitations of conventional 2D culture of human or porcine valvular interstitial/endothelial cells (VIC/VECs) isolated from aortic valve tissues but also limited ability of (small) animal models to reflect human (patho)physiological situation in AV position raise the need to establish an in vitro setup using AV tissues. Resulting aim is to approximate (patho)physiological conditions in a dynamic pulsatile Microphysiological System (MPS) to culture human and porcine AV tissue with preservation of tissue viability but also defined ECM composition. MATERIALS/METHODS A tissue incubation chamber (TIC) was designed to implement human or porcine tissues (3×5 mm2) in a dynamic pulsatile culture in conventional cell culture ambience in a MPS. Cell viability assays based on lactate dehydrogenase (LDH)-release or resazurin-conversion were tested for applicability in the system and applied for a culture period of 14 days with interval evaluation of tissue viability on every other day. Resazurin-assay setup was compared in static vs. dynamic culture using varying substance saturation settings (50-300μM), incubation times and tissue masses and was consequently adapted. RESULTS Sterile dynamic culture of human and porcine AV tissue segments was established at a pulsatile flow rate range of 0.9-13.4μl/s. Implementation of tissues was realized by stitching the material in a thermoplastic polyurethane (TPU)-ring and insertion in the TIC-MPS-system. Culture volume of 2 ml caused LDH dilution not detectable in standard membrane integrity assay setup. Therefore, detection of resazurin-conversion of viable tissue was investigated. Optimal incubation time for viability conversion was determined at two hours at a saturated concentration of 300μM resazurin. Measurement in static conditions was shown to offer comparable results as dynamic condition but allowing optimal handling and TIC sterilization protocols for long term culture. Preliminary results revealed favourable porcine AV tissue viability over a 14 day period confirmed via resazurin-assay comparing statically cultured tissue counterparts. CONCLUSIONS Human and porcine AV tissue can be dynamically cultured in a TIC-MPS with monitoring of tissue viability using an adapted resazurin-assay setup. Preliminary results reveal advantageous viability of porcine AV tissues after dynamic TIC-MPS culture compared to static control.
Collapse
Affiliation(s)
- C Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden,Germany
| | - M Winkelkotte
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden,Germany
| | - S Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - F Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - A Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden,Germany
| | - K Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden,Germany
| | - F Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - S M Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden,Germany
| |
Collapse
|
12
|
Petsophonsakul P, Burgmaier M, Willems B, Heeneman S, Stadler N, Gremse F, Reith S, Burgmaier K, Kahles F, Marx N, Natour E, Bidar E, Jacobs M, Mees B, Reutelingsperger C, Furmanik M, Schurgers L. Nicotine promotes vascular calcification via intracellular Ca2+-mediated, Nox5-induced oxidative stress and extracellular vesicle release in vascular smooth muscle cells. Cardiovasc Res 2021; 118:2196-2210. [PMID: 34273166 PMCID: PMC9302892 DOI: 10.1093/cvr/cvab244] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Aims Smokers are at increased risk of cardiovascular events. However, the exact mechanisms through which smoking influences cardiovascular disease resulting in accelerated atherosclerosis and vascular calcification are unknown. The aim of this study was to investigate effects of nicotine on initiation of vascular smooth muscle cell (VSMC) calcification and to elucidate underlying mechanisms. Methods and results We assessed vascular calcification of 62 carotid lesions of both smoking and non-smoking patients using ex vivo micro-computed tomography (µCT) scanning. Calcification was present more often in carotid plaques of smokers (n = 22 of 30, 73.3%) compared to non-smokers (n = 11 of 32, 34.3%; P < 0.001), confirming higher atherosclerotic burden. The difference was particularly profound for microcalcifications, which was 17-fold higher in smokers compared to non-smokers. In vitro, nicotine-induced human primary VSMC calcification, and increased osteogenic gene expression (Runx2, Osx, BSP, and OPN) and extracellular vesicle (EV) secretion. The pro-calcifying effects of nicotine were mediated by Ca2+-dependent Nox5. SiRNA knock-down of Nox5 inhibited nicotine-induced EV release and calcification. Moreover, pre-treatment of hVSMCs with vitamin K2 ameliorated nicotine-induced intracellular oxidative stress, EV secretion, and calcification. Using nicotinic acetylcholine receptor (nAChR) blockers α-bungarotoxin and hexamethonium bromide, we found that the effects of nicotine on intracellular Ca2+ and oxidative stress were mediated by α7 and α3 nAChR. Finally, we showed that Nox5 expression was higher in carotid arteries of smokers and correlated with calcification levels in these vessels. Conclusion In this study, we provide evidence that nicotine induces Nox5-mediated pro-calcific processes as novel mechanism of increased atherosclerotic calcification. We identified that activation of α7 and α3 nAChR by nicotine increases intracellular Ca2+ and initiates calcification of hVSMCs through increased Nox5 activity, leading to oxidative stress-mediated EV release. Identifying the role of Nox5-induced oxidative stress opens novel avenues for diagnosis and treatment of smoking-induced cardiovascular disease.
Collapse
Affiliation(s)
- Ploingarm Petsophonsakul
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Mathias Burgmaier
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.,Department of Cardiology, Medical Clinic I, University Hospital of the RWTH Aachen, Germany
| | - Brecht Willems
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Sylvia Heeneman
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Nadina Stadler
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Felix Gremse
- Experimental Molecular Imaging, University Hospital of the RWTH Aachen, Germany
| | - Sebastian Reith
- Department of Cardiology, St. Franziskus Hospital Münster, Münster, Germany
| | - Kathrin Burgmaier
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Germany
| | - Florian Kahles
- Department of Cardiology, Medical Clinic I, University Hospital of the RWTH Aachen, Germany
| | - Nikolaus Marx
- Department of Cardiology, Medical Clinic I, University Hospital of the RWTH Aachen, Germany
| | - Ehsan Natour
- Department of Cardiovascular Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands.,European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands
| | - Elham Bidar
- Department of Cardiovascular Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands.,European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands
| | - Michael Jacobs
- European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands.,Department of Vascular Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Barend Mees
- European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands.,Department of Vascular Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Malgorzata Furmanik
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Fluid Flow Characteristics of Healthy and Calcified Aortic Valves Using Three-Dimensional Lagrangian Coherent Structures Analysis. FLUIDS 2021. [DOI: 10.3390/fluids6060203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aortic valve calcification is an important cardiovascular disorder that deteriorates the accurate functioning of the valve leaflets. The increasing stiffness due to the calcification prevents the complete closure of the valve and therefore leads to significant hemodynamic alterations. Computational fluid dynamics (CFD) modeling enables the investigation of the entire flow domain by processing medical images from aortic valve patients. In this study, we computationally modeled and simulated a 3D aortic valve using patient-specific dimensions of the aortic root and aortic sinus. Leaflet stiffness is deteriorated in aortic valve disease due to calcification. In order to investigate the influence of leaflet calcification on flow dynamics, three different leaflet-stiffness values were considered for healthy, mildly calcified, and severely calcified leaflets. Time-dependent CFD results were used for applying the Lagrangian coherent structures (LCS) technique by performing finite-time Lyapunov exponent (FTLE) computations along with Lagrangian particle residence time (PRT) analysis to identify unique vortex structures at the front and backside of the leaflets. Obtained results indicated that the peak flow velocity at the valve orifice increased with the calcification rate. For the healthy aortic valve, a low-pressure field was observed at the leaflet tips. This low-pressure field gradually expanded through the entire aortic sinus as the calcification level increased. FTLE field plots of the healthy and calcified valves showed a variety of differences in terms of flow structures. When the number of fluid particles in the healthy valve model was taken as reference, 1.59 and 1.74 times more particles accumulated in the mildly and severely calcified valves, respectively, indicating that the calcified valves were not sufficiently opened to allow normal mass flow rates.
Collapse
|
14
|
Extracellular Matrix in Calcific Aortic Valve Disease: Architecture, Dynamic and Perspectives. Int J Mol Sci 2021; 22:ijms22020913. [PMID: 33477599 PMCID: PMC7831300 DOI: 10.3390/ijms22020913] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is the most common valvular heart disease in developed countries and in the ageing population. It is strongly correlated to median age, affecting up to 13% of the population over the age of 65. Pathophysiological analysis indicates CAVD as a result of an active and degenerative disease, starting with sclerosis and chronic inflammation and then leaflet calcification, which ultimately can account for aortic stenosis. Although CAVD has been firstly recognized as a passive event mostly resulting from a degenerative aging process, much evidences suggests that calcification arises from different active processes, involving both aortic valve-resident cells (valve endothelial cells, valve interstitial cells, mesenchymal stem cells, innate immunity cells) and circulating cells (circulating mesenchymal cells, immunity cells). Moreover, a role for the cell-derived "matrix vesicles" and extracellular matrix (ECM) components has also been recognized. The aim of this work is to review the cellular and molecular alterations occurring in aortic valve during CAVD pathogenesis, focusing on the role of ECM in the natural course of the disease.
Collapse
|
15
|
Kostyunin A, Mukhamadiyarov R, Glushkova T, Bogdanov L, Shishkova D, Osyaev N, Ovcharenko E, Kutikhin A. Ultrastructural Pathology of Atherosclerosis, Calcific Aortic Valve Disease, and Bioprosthetic Heart Valve Degeneration: Commonalities and Differences. Int J Mol Sci 2020; 21:E7434. [PMID: 33050133 PMCID: PMC7587971 DOI: 10.3390/ijms21207434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 01/24/2023] Open
Abstract
Atherosclerosis, calcific aortic valve disease (CAVD), and bioprosthetic heart valve degeneration (alternatively termed structural valve deterioration, SVD) represent three diseases affecting distinct components of the circulatory system and their substitutes, yet sharing multiple risk factors and commonly leading to the extraskeletal calcification. Whereas the histopathology of the mentioned disorders is well-described, their ultrastructural pathology is largely obscure due to the lack of appropriate investigation techniques. Employing an original method for sample preparation and the electron microscopy visualisation of calcified cardiovascular tissues, here we revisited the ultrastructural features of lipid retention, macrophage infiltration, intraplaque/intraleaflet haemorrhage, and calcification which are common or unique for the indicated types of cardiovascular disease. Atherosclerotic plaques were notable for the massive accumulation of lipids in the extracellular matrix (ECM), abundant macrophage content, and pronounced neovascularisation associated with blood leakage and calcium deposition. In contrast, CAVD and SVD generally did not require vasculo- or angiogenesis to occur, instead relying on fatigue-induced ECM degradation and the concurrent migration of immune cells. Unlike native tissues, bioprosthetic heart valves contained numerous specialised macrophages and were not capable of the regeneration that underscores ECM integrity as a pivotal factor for SVD prevention. While atherosclerosis, CAVD, and SVD show similar pathogenesis patterns, these disorders demonstrate considerable ultrastructural differences.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (A.K.); (R.M.); (T.G.); (L.B.); (D.S.); (N.O.); (E.O.)
| |
Collapse
|
16
|
Lotlikar SR, Kayastha BB, Vullo D, Khanam SS, Braga RE, Murray AB, McKenna R, Supuran CT, Patrauchan MA. Pseudomonas aeruginosa β-carbonic anhydrase, psCA1, is required for calcium deposition and contributes to virulence. Cell Calcium 2019; 84:102080. [PMID: 31589941 DOI: 10.1016/j.ceca.2019.102080] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/16/2019] [Accepted: 09/07/2019] [Indexed: 01/07/2023]
Abstract
Calcification of soft tissue leads to serious diseases and has been associated with bacterial chronic infections. However, the origin and the molecular mechanisms of calcification remain unclear. Here we hypothesized that a human pathogen Pseudomonas aeruginosa deposits extracellular calcium, a process requiring carbonic anhydrases (CAs). Transmission electron microscopy confirmed the formation of 0.1-0.2 μm deposits by P. aeruginosa PAO1 growing at 5 mM CaCl2, and X-ray elemental analysis confirmed they contain calcium. Quantitative analysis of deposited calcium showed that PAO1 deposits 0.35 and 0.75 mM calcium/mg protein when grown at 5 mM and 10 mM CaCl2, correspondingly. Fluorescent microscopy indicated that deposition initiates at the cell surface. We have previously characterized three PAO1 β-class CAs: psCA1, psCA2, and psCA3 that hydrate CO2 to HCO3-, among which psCA1 showed the highest catalytic activity (Lotlikar et. al. 2013). According to immunoblot and RT-qPCR, growth at elevated calcium levels increases the expression of psCA1. Analyses of the deletion mutants lacking one, two or all three psCA genes, determined that psCA1 plays a major role in calcium deposition and contributes to the pathogen's virulence. In-silico modeling of the PAO1 β-class CAs identified four amino acids that differ in psCA1 compared to psCA2, and psCA3 (T59, A61A, A101, and A108), and these differences may play a role in catalytic rate and thus calcium deposition. A series of inhibitors were tested against the recombinant psCA1, among which aminobenzene sulfonamide (ABS) and acetazolamide (AAZ), which inhibited psCA1 catalytic activity with KIs of 19 nM and 37 nM, correspondingly. The addition of ABS and AAZ to growing PAO1 reduced calcium deposition by 41 and 78, respectively. Hence, for the first time, we showed that the β-CA psCA1 in P. aeruginosa contributes to virulence likely by enabling calcium salt deposition, which can be partially controlled by inhibiting its catalytic activity.
Collapse
Affiliation(s)
- Shalaka R Lotlikar
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sharmily S Khanam
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Reygan E Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Akilah B Murray
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
17
|
Affiliation(s)
- Maximillian A Rogers
- From the Centers for Interdisciplinary Cardiovascular Sciences (MA.R., M.A., E.A.) and Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- From the Centers for Interdisciplinary Cardiovascular Sciences (MA.R., M.A., E.A.) and Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elena Aikawa
- From the Centers for Interdisciplinary Cardiovascular Sciences (MA.R., M.A., E.A.) and Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
18
|
Deng W, Tang T, Hou Y, Zeng Q, Wang Y, Fan W, Qu S. Extracellular vesicles in atherosclerosis. Clin Chim Acta 2019; 495:109-117. [PMID: 30959044 DOI: 10.1016/j.cca.2019.04.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs), which exist in human blood, are increased in some inflammation-related cardiovascular diseases. EVs are involved in inflammation, immunity, signal transduction, cell survival and apoptosis, angiogenesis, thrombosis, and autophagy, all of which are highly significant for maintaining homeostasis and disease progression. Therefore, EVs are also associated with key steps in atherosclerosis, including cellular lipid metabolism, endothelial dysfunction and vascular wall inflammation, ultimately resulting in vascular remodelling. In this review, we summarize recent studies on EV contents and biological function, focusing on their potential effect in atherosclerosis, including cholesterol metabolism, vascular inflammation, angiogenesis, coagulation and the development of atherosclerotic lesions. EVs may represent potential biomarkers and pharmacological targets for atherosclerotic diseases.
Collapse
Affiliation(s)
- WenYi Deng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - TingTing Tang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - YangFeng Hou
- Clinic Medicine Department, Hengyang Medical School, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Qian Zeng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - YuFei Wang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - WenJing Fan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China; Emergency Department, The Second Affiliated Hospital, University of south China, Hengyang City, Hunan Province 421001, PR China.
| | - ShunLin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
19
|
Cho KI, Sakuma I, Sohn IS, Jo SH, Koh KK. Inflammatory and metabolic mechanisms underlying the calcific aortic valve disease. Atherosclerosis 2018; 277:60-65. [PMID: 30173080 DOI: 10.1016/j.atherosclerosis.2018.08.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/04/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022]
Abstract
Although calcific aortic stenosis is a very common disease with major adverse cardiovascular events and healthcare costs, there are no effective medical interventions to delay or halt its progression. Cardiometabolic risk factors, including smoking and male sex, are linked to aortic stenosis. Emerging studies have identified important regulatory roles for immunological and inflammatory responses, including oxidized lipids, various cytokines, and biomineralization. Recent clinical and experimental studies in atherosclerosis and osteoporosis have demonstrated that oxidative stress and oxidized lipids decrease bone formation in the skeletal system while they increase bone formation in the cardiovascular system. Multidisciplinary factors contribute to vascular calcification, including inflammation and metabolic regulation of osteogenesis in the cardiovascular system via similar signaling pathways as bone formation. Calcific aortic valve disease (CAVD) is no longer considered a simple passive process of calcium deposition that occurs with advanced age. Biomineralization in CAVD is a complex, regulated process that involves valvular, circulating, bone marrow-derived cells, macrophage heterogeneity and genetic factors along with biochemical and mechanical factors. The current review will discuss the recently discovered important role of inflammation, metabolic risk factors, and molecular and cellular mechanisms that promote CAVD, as well as the link between osteogenic signals in the skeletal and cardiovascular systems. This may inform future therapeutic strategies for CAVD progression.
Collapse
Affiliation(s)
- Kyoung Im Cho
- Department of Cardiology, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Ichiro Sakuma
- Cardiovascular Medicine, Hokko Memorial Clinic, Sapporo, Japan; Health Science University of Hokkaido, Tobetsu, Japan
| | - Il Suk Sohn
- Department of Cardiology, Cardiovascular Center, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Sang-Ho Jo
- Department of Cardiology, Hanlym University Hospital at Pyungchon, Pyungchon, Republic of Korea
| | - Kwang Kon Koh
- Department of Cardiovascular Medicine, Heart Center, Gachon University Gil Medical Center, Incheon, Republic of Korea; Gachon Cardiovascular Research Institute, Incheon, Republic of Korea.
| |
Collapse
|
20
|
Mursawa H, Hatakeyama S, Yamamoto H, Tanaka Y, Soma O, Matsumoto T, Yoneyama T, Hashimoto Y, Koie T, Fujita T, Murakami R, Saitoh H, Suzuki T, Narumi S, Ohyama C. Slow Progression of Aortic Calcification Is a Potential Benefit of Pre-emptive Kidney Transplantation. Transplant Proc 2018; 50:145-149. [PMID: 29407299 DOI: 10.1016/j.transproceed.2017.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE Pre-emptive kidney transplantation (PKT) is expected to improve graft and cardiovascular event-free survival compared with standard kidney transplantation. Aortic calcification is reported to be closely associated with renal dysfunction and cardiovascular events; however, its implication in PKT recipients remains incompletely explored. This aim of this study was to evaluate whether PKT confers a protective effect on aortic calcification, renal function, graft survival, and cardiovascular event-free survival. METHODS One hundred adult patients who underwent renal transplantation between January 1996 and March 2016 at Hirosaki University Hospital and Oyokyo Kidney Research Institute were included. Among them, 19 underwent PKT and 81 patients underwent pretransplant dialysis. We retrospectively compared pretransplant and post-transplant aortic calcification index (ACI), renal function (estimated glomerular filtration rate [eGFR]), and graft and cardiovascular event-free survivals between the 2 groups. RESULTS The median age of this cohort was 45 years. Preoperative ACI was significantly lower in PKT recipients. There were no significant differences between the 2 groups regarding postoperative eGFR, graft survival, and cardiovascular event-free survival. However, the ACI progression rate (ΔACI/y) was significantly lower in PKT recipients than in those who underwent pretransplant dialysis. Higher ACI was significantly associated with poor cardiovascular event-free survival. CONCLUSIONS PKT is beneficial in that it contributes to the slow progression of after transplantation. Although we could not observe significant differences in graft and cardiovascular event-free survivals between the 2 groups, slow progression of aortic calcification showed a potential to decrease cardiovascular events in PKT recipients during long-term follow-up.
Collapse
Affiliation(s)
- H Mursawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - S Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - H Yamamoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Y Tanaka
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - O Soma
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - T Matsumoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - T Yoneyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Y Hashimoto
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - T Koie
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - T Fujita
- Departments of Cardiology, Respiratory Medicine, and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - R Murakami
- Departments of Cardiology, Respiratory Medicine, and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - H Saitoh
- Department of Urology, Oyokyo Kidney Research Institute, Hirosaki, Japan
| | - T Suzuki
- Department of Urology, Oyokyo Kidney Research Institute, Hirosaki, Japan
| | - S Narumi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - C Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan; Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
21
|
Bakhshian Nik A, Hutcheson JD, Aikawa E. Extracellular Vesicles As Mediators of Cardiovascular Calcification. Front Cardiovasc Med 2017; 4:78. [PMID: 29322046 PMCID: PMC5732140 DOI: 10.3389/fcvm.2017.00078] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023] Open
Abstract
Involvement of cell-derived extracellular particles, coined as matrix vesicles (MVs), in biological bone formation was introduced by Bonucci and Anderson in mid-1960s. In 1983, Anderson et al. observed similar structures in atherosclerotic lesion calcification using electron microscopy. Recent studies employing new technologies and high- resolution microscopy have shown that although they exhibit characteristics similar to MVs, calcifying extracellular vesicles (EVs) in cardiovascular tissues are phenotypically distinct from their bone counterparts. EVs released from cells within cardiovascular tissues may contain either inhibitors of calcification in normal physiological conditions or promoters in pathological environments. Pathological conditions characterized by mineral imbalance (e.g., atherosclerosis, chronic kidney disease, diabetes) can cause smooth muscle cells, valvular interstitial cells, and macrophages to release calcifying EVs, which contain specific mineralization-promoting cargo. These EVs can arise from either direct budding of the cell plasma membrane or through the release of exosomes from multivesicular bodies. In contrast, MVs are germinated from specific sites on osteoblast, chondrocyte, or odontoblast membranes. Much like MVs, calcifying EVs in the fibrillar collagen extracellular matrix of cardiovascular tissues serve as calcification foci, but the mineral that forms appears different between the tissues. This review highlights recent studies on mechanisms of calcifying EV formation, release, and mineralization in cardiovascular calcification. Furthermore, we address the MV–EV relationship, and offer insight into therapeutic implications to consider for potential targets for each type of mineralization.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Boston, MA, United States.,Cardiovascular Division, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Wu S, Duan B, Qin X, Butcher JT. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering. Acta Biomater 2017; 51:89-100. [PMID: 28110071 DOI: 10.1016/j.actbio.2017.01.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/27/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation. Embedded nano-micro fibrous scaffolds within hydrogel enhanced mechanical strength and physical structural anisotropy of the composite scaffold (similar to native aortic valve leaflets) and also reduced its compaction. We determined that the composite scaffolds supported the growth of human aortic valve interstitial cells (HAVIC), balanced the remodeling of heart valve ECM against shrinkage, and maintained better physiological fibroblastic phenotype in both normal and diseased HAVIC over single materials. These fabricated composite scaffolds enable the engineering of a living heart valve graft with improved anisotropic structure and tissue biomechanics important for maintaining valve cell phenotypes. STATEMENT OF SIGNIFICANCE Heart valve-related disease is an important clinical problem, with over 300,000 surgical repairs performed annually. Tissue engineering offers a promising strategy for heart valve repair and regeneration. In this study, we developed and tissue engineered living nano-micro fibrous woven fabric/hydrogel composite scaffolds by using textile technique combined with bioactive hydrogel formation. The novelty of our technique is that the composite scaffolds can mimic physical structure anisotropy and the mechanical strength of natural aortic valve leaflet. Moreover, the composite scaffolds prevented the matrix shrinkage, which is major problem that causes the failure of TEHV, and better maintained physiological fibroblastic phenotype in both normal and diseased HAVIC. This work marks the first report of a combination composite scaffold using 3D hydrogel enhanced by nano-micro fibrous woven fabric, and represents a promising tissue engineering strategy to treat heart valve injury.
Collapse
|
23
|
Goettsch C, Iwata H, Hutcheson JD, O'Donnell CJ, Chapurlat R, Cook NR, Aikawa M, Szulc P, Aikawa E. Serum Sortilin Associates With Aortic Calcification and Cardiovascular Risk in Men. Arterioscler Thromb Vasc Biol 2017; 37:1005-1011. [PMID: 28279970 DOI: 10.1161/atvbaha.116.308932] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Genome-wide association studies and preclinical studies demonstrated a role of sortilin in lipid metabolism, inflammation, and vascular calcification-all cardiovascular risk factors. We evaluated the association of serum sortilin levels with the risk of major adverse cerebrovascular and cardiovascular events (MACCE) and the severity of abdominal aortic calcification (AAC). APPROACH AND RESULTS A cohort of community-dwelling men aged ≥50 years (n=830) was assessed. At baseline, sortilin levels were measured by ELISA, and AAC was assessed on lateral spine scans obtained by dual-energy X-ray absorptiometry. Men aged ≥60 years (n=745) were followed up prospectively for the incidence of MACCE. During the median follow-up of 7.9 years, 76 MACCE occurred. The unadjusted incidence of MACCE across increasing sortilin quartiles was 8.0, 7.4, 19.8, and 20.3 per 1000 person-years. In multivariate-adjusted analysis, sortilin associated with increased risk of MACCE (hazard ratio, 1.70 per SD; 95% confidence interval, 1.30-2.20; P<0.001). The third and fourth quartiles associated with 3.42-fold (95% confidence interval, 1.61-7.25; P<0.005) and 3.82-fold (95% confidence interval, 1.77-8.26; P<0.001) higher risk of MACCE compared with the first quartile. High sortilin also predicted MACCE independent of traditional Framingham risk factors. Higher sortilin associated with higher odds of severe AAC (score>5) after adjustment for confounders (odds ratio, 1.43 per SD; 95% confidence interval, 1.10-1.85; P<0.01). The highest sortilin quartile associated with 2-fold higher odds of severe AAC (versus 3 lower quartiles combined). After adjustment for low-density lipoprotein cholesterol, the odds of severe AAC remained significant. CONCLUSIONS In older men, higher serum sortilin levels associated with higher MACCE risk and severe AAC independently of relevant confounders, including C-reactive protein and low-density lipoprotein cholesterol. This finding, however, needs to be validated in other cohorts.
Collapse
Affiliation(s)
- Claudia Goettsch
- From the Center for Interdisciplinary Cardiovascular Sciences (C.G., H.I., J.D.H., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Boston VA Healthcare, Department of Cardiology, MA (C.J.O.); INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Department of Rheumatology and Bone Pathology, France (R.C., P.S.); and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.R.C.)
| | - Hiroshi Iwata
- From the Center for Interdisciplinary Cardiovascular Sciences (C.G., H.I., J.D.H., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Boston VA Healthcare, Department of Cardiology, MA (C.J.O.); INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Department of Rheumatology and Bone Pathology, France (R.C., P.S.); and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.R.C.)
| | - Joshua D Hutcheson
- From the Center for Interdisciplinary Cardiovascular Sciences (C.G., H.I., J.D.H., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Boston VA Healthcare, Department of Cardiology, MA (C.J.O.); INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Department of Rheumatology and Bone Pathology, France (R.C., P.S.); and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.R.C.)
| | - Christopher J O'Donnell
- From the Center for Interdisciplinary Cardiovascular Sciences (C.G., H.I., J.D.H., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Boston VA Healthcare, Department of Cardiology, MA (C.J.O.); INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Department of Rheumatology and Bone Pathology, France (R.C., P.S.); and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.R.C.)
| | - Roland Chapurlat
- From the Center for Interdisciplinary Cardiovascular Sciences (C.G., H.I., J.D.H., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Boston VA Healthcare, Department of Cardiology, MA (C.J.O.); INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Department of Rheumatology and Bone Pathology, France (R.C., P.S.); and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.R.C.)
| | - Nancy R Cook
- From the Center for Interdisciplinary Cardiovascular Sciences (C.G., H.I., J.D.H., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Boston VA Healthcare, Department of Cardiology, MA (C.J.O.); INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Department of Rheumatology and Bone Pathology, France (R.C., P.S.); and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.R.C.)
| | - Masanori Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences (C.G., H.I., J.D.H., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Boston VA Healthcare, Department of Cardiology, MA (C.J.O.); INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Department of Rheumatology and Bone Pathology, France (R.C., P.S.); and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.R.C.)
| | - Pawel Szulc
- From the Center for Interdisciplinary Cardiovascular Sciences (C.G., H.I., J.D.H., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Boston VA Healthcare, Department of Cardiology, MA (C.J.O.); INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Department of Rheumatology and Bone Pathology, France (R.C., P.S.); and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.R.C.)
| | - Elena Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences (C.G., H.I., J.D.H., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Boston VA Healthcare, Department of Cardiology, MA (C.J.O.); INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Department of Rheumatology and Bone Pathology, France (R.C., P.S.); and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.R.C.).
| |
Collapse
|
24
|
Nicoll R, Henein M. Arterial calcification: A new perspective? Int J Cardiol 2017; 228:11-22. [DOI: 10.1016/j.ijcard.2016.11.099] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/06/2016] [Indexed: 12/19/2022]
|
25
|
Mukhamadiyarov RA, Rutkovskaya NV, Milto IV, Sidopova OD, Kudryavtseva YА, Barbarash LS. [Investigation of the structure of a functionally intact xenopericardial bioconduit after long-term implantation]. Arkh Patol 2017; 79:25-33. [PMID: 29027526 DOI: 10.17116/patol201779525-33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
AIM to investigate the cellular composition of a functionally intact xenopericardial valve in a recipient with acquired mitral defect after long-term implantation. MATERIAL AND METHODS A Uniline bioconduit (BC) ('Neocor', Kemerovo) removed from the heart in the mitral position at 7.2 years after implantation was investigated. Heart valve leaflets were fixed in a buffered 4% paraformaldehyde solution and imbedded in paraffin or epoxy resin. Slices made from the paraffin samples were stained with hematoxylin and eosin or underwent immunohistochemical (IHC) examination for typing endothelial cells, smooth muscle cells, macrophages, fibroblasts, and T and B lymphocytes. The epoxy resin-embedded samples were examined using light and scanning electron microscopy according to the original procedure. For this, the samples were ground and polished, then stained with toluidine blue and basic fuchsin or contrasted with uranyl acetate and lead citrate. RESULTS Different cell types were found in the outer layers of heart valve leaflets. IHC showed that endothelial cells, macrophages, smooth muscle cells, and fibroblasts were present in the samples. A relationship was found between the degree of degenerative changes in the BC surface and the magnitude of cellular infiltration in xenotissue. This paper debates whether impaired integrity of the surface leaflet layers plays a trigger role in structural dysfunctions of the implanted valves and whether BC endothelialization has a protective effect, which can considerably reduce the immunogenicity of xenotussie and prevent the penetration of recipient cells. CONCLUSION The paper shows that it is expedient to modify the surface of the heart valve leaflets in order to create favorable conditions for the attachment and function of endothelial progenitor cells.
Collapse
Affiliation(s)
- R A Mukhamadiyarov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - N V Rutkovskaya
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - I V Milto
- Siberian State Medical University, Ministry of Health of Russia, Tomsk, Russia; Tomsk National Research Polytechnic University, Tomsk, Russia
| | - O D Sidopova
- Kemerovo State Medical University, Ministry of Health of Russia, Kemerovo, Russia
| | - Yu А Kudryavtseva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia, Siberian State Medical University, Ministry of Health of Russia, Tomsk, Russia, Tomsk National Research Polytechnic University, Tomsk, Russia, Kemerovo State Medical University, Ministry of Health of Russia, Kemerovo, Russia
| | - L S Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
26
|
Hadji F, Boulanger MC, Guay SP, Gaudreault N, Amellah S, Mkannez G, Bouchareb R, Marchand JT, Nsaibia MJ, Guauque-Olarte S, Pibarot P, Bouchard L, Bossé Y, Mathieu P. Altered DNA Methylation of Long Noncoding RNA H19 in Calcific Aortic Valve Disease Promotes Mineralization by Silencing NOTCH1. Circulation 2016; 134:1848-1862. [PMID: 27789555 DOI: 10.1161/circulationaha.116.023116] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/20/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Calcific aortic valve disease is characterized by an abnormal mineralization of the aortic valve. Osteogenic activity in the aortic valve is under the control of NOTCH1, which regulates the expression of key pro-osteogenic genes such as RUNX2 and BMP2. Long noncoding RNAs (lncRNAs) may reprogram cells by altering the gene expression pattern. METHODS Multidimensional genomic profiling was performed in human aortic valves to document the expression of lncRNAs and the DNA methylation pattern in calcific aortic valve disease. In-depth functional assays were carried out to document the impact of lncRNA on the mineralization of the aortic valve. RESULTS We documented that lncRNA H19 (H19) was increased in calcific aortic valve disease. Hypomethylation of the promoter region was observed in mineralized aortic valves and was inversely associated with H19 expression. Knockdown and overexpression experiments showed that H19 induces a strong osteogenic phenotype by altering the NOTCH1 pathway. Gene promoter analyses showed that H19 silenced NOTCH1 by preventing the recruitment of p53 to its promoter. A knockdown of H19 in valve interstitial cells (VICs) increased the expression of NOTCH1 and decreased the level of RUNX2 and BMP2, 2 downstream targets repressed by NOTCH1. In rescue experiments, the transfection of a vector encoding for the active Notch intracellular domain prevented H19-induced mineralization of valve interstitial cells. CONCLUSIONS These findings indicate that a dysregulation of DNA methylation in the promoter of H19 during calcific aortic valve disease is associated with a higher expression of this lncRNA, which promotes an osteogenic program by interfering with the expression of NOTCH1.
Collapse
MESH Headings
- Aged
- Aortic Valve/cytology
- Aortic Valve/metabolism
- Aortic Valve/pathology
- Aortic Valve Stenosis/genetics
- Aortic Valve Stenosis/pathology
- Bone Morphogenetic Protein 2/analysis
- Calcinosis/genetics
- Calcinosis/pathology
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/metabolism
- DNA Methylation
- Female
- Genes, Reporter
- HEK293 Cells
- Humans
- Male
- Middle Aged
- Promoter Regions, Genetic
- RNA Interference
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/metabolism
- Receptor, Notch1/antagonists & inhibitors
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Tumor Suppressor Protein p53/analysis
Collapse
Affiliation(s)
- Fayez Hadji
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Marie-Chloé Boulanger
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Simon-Pierre Guay
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Nathalie Gaudreault
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Soumiya Amellah
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Guada Mkannez
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Rihab Bouchareb
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Joël Tremblay Marchand
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Mohamed Jalloul Nsaibia
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Sandra Guauque-Olarte
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Philippe Pibarot
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Luigi Bouchard
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Yohan Bossé
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Patrick Mathieu
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.).
| |
Collapse
|
27
|
Boraldi F, Bartolomeo A, De Biasi S, Orlando S, Costa S, Cossarizza A, Quaglino D. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction. PLoS One 2016; 11:e0160153. [PMID: 27560136 PMCID: PMC5004589 DOI: 10.1371/journal.pone.0160153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/14/2016] [Indexed: 01/20/2023] Open
Abstract
Introduction Although rare, circulating endothelial and progenitor cells could be
considered as markers of endothelial damage and repair potential, possibly
predicting the severity of cardiovascular manifestations. A number of
studies highlighted the role of these cells in age-related diseases,
including those characterized by ectopic calcification. Nevertheless, their
use in clinical practice is still controversial, mainly due to difficulties
in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+,
CD133-) and circulating progenitor cells (CPC,
CD45dim, CD34bright, CD133+) were
investigated by polychromatic high-speed flow cytometry to detect the
expression of endothelial (CD309+) or osteogenic
(BAP+) differentiation markers in healthy subjects and in
patients affected by peripheral vascular manifestations associated with
ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable
tool to accurately identify rare cells; 2) the balance of CD309+
on CMC/CD309+ on CPC is altered in patients affected by
peripheral vascular manifestations, suggesting the occurrence of vascular
damage and low repair potential; 3) the increase of circulating cells
exhibiting a shift towards an osteoblast-like phenotype (BAP+) is
observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification
indicate that this approach may be useful to better evaluate endothelial
dysfunction in a clinical context.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via
Campi 287, Modena, Italy
| | - Angelica Bartolomeo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via
Campi 287, Modena, Italy
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences,
University of Modena and Reggio Emilia, Via Campi 287, Modena,
Italy
| | - Stefania Orlando
- Department of Life Sciences, University of Modena and Reggio Emilia, Via
Campi 287, Modena, Italy
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Via
Campi 287, Modena, Italy
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences,
University of Modena and Reggio Emilia, Via Campi 287, Modena,
Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Via
Campi 287, Modena, Italy
- * E-mail:
| |
Collapse
|
28
|
Goettsch C, Hutcheson JD, Hagita S, Rogers MA, Creager MD, Pham T, Choi J, Mlynarchik AK, Pieper B, Kjolby M, Aikawa M, Aikawa E. A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardiovascular calcification in mice with no genetic modification. Atherosclerosis 2016; 251:109-118. [PMID: 27318830 PMCID: PMC4983246 DOI: 10.1016/j.atherosclerosis.2016.06.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/29/2016] [Accepted: 06/08/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Studying atherosclerotic calcification in vivo requires mouse models with genetic modifications. Previous studies showed that injection of recombinant adeno-associated virus vector (AAV) encoding a gain-of-function mutant PCSK9 into mice promotes atherosclerosis. We aimed to study cardiovascular calcification induced by PCSK9 AAV in C57BL/6J mice. METHODS 10 week-old C57BL/6J mice received a single injection of AAV encoding mutant mPCSK9 (rAAV8/D377Y-mPCSK9). Ldlr(-/-) mice served as positive controls. Mice consumed a high-fat, high-cholesterol diet for 15 or 20 weeks. Aortic calcification was assessed by fluorescence reflectance imaging (FRI) of a near-infrared calcium tracer. RESULTS Serum levels of PCSK9 (0.14 μg/mL to 20 μg/mL, p < 0.01) and total cholesterol (82 mg/dL to 820 mg/dL, p < 0.01) increased within one week after injection and remained elevated for 20 weeks. Atherosclerotic lesion size was similar between PCSK9 AAV and Ldlr(-/-) mice. Aortic calcification was 0.01% ± 0.01 in PCSK9 AAV mice and 15.3% ± 6.1 in Ldlr(-/-) mice at 15 weeks (p < 0.01); by 20 weeks, the PCSK9 AAV mice aortic calcification grew to 12.4% ± 4.9. Tissue non-specific alkaline phosphatase activity was similar in PCSK9 AAV mice and Ldlr(-/-) mice at 15 and 20 weeks, respectively. As example of the utility of this model in testing modulators of calcification in vivo, PCSK9 AAV injection to sortilin-deficient mice demonstrated reduced aortic calcification by 46.3% (p < 0.05) compared to littermate controls. CONCLUSIONS A single injection of gain-of-function PCSK9 AAV into C57BL/6J mice is a useful tool to study cardiovascular calcification in mice with no genetic manipulation.
Collapse
Affiliation(s)
- Claudia Goettsch
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua D Hutcheson
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sumihiko Hagita
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maximillian A Rogers
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Creager
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tan Pham
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jung Choi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew K Mlynarchik
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brett Pieper
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mads Kjolby
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Danish Diabetes Academy, Department of Biomedicine, Aarhus University, 8000, Denmark
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Shrikant R Mulay
- From Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hans-Joachim Anders
- From Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
30
|
Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, Kjolby M, Rogers M, Michel T, Shibasaki M, Hagita S, Kramann R, Rader DJ, Libby P, Singh SA, Aikawa E. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J Clin Invest 2016; 126:1323-36. [PMID: 26950419 DOI: 10.1172/jci80851] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2016] [Indexed: 12/23/2022] Open
Abstract
Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation of sortilin. In a murine model, Sort1-deficiency reduced arterial calcification but did not affect bone mineralization. Additionally, transfer of sortilin-deficient BM cells to irradiated atherosclerotic mice did not affect vascular calcification, indicating a primary role of SMC-derived sortilin. Together, the results of this study identify sortilin phosphorylation as a potential therapeutic target for ectopic calcification/microcalcification and may clarify the mechanism that underlies the genetic association between the SORT1 gene locus and coronary artery calcification.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Alkaline Phosphatase/biosynthesis
- Alkaline Phosphatase/genetics
- Animals
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Casein Kinase I/genetics
- Casein Kinase I/metabolism
- Casein Kinase II/metabolism
- Cell-Derived Microparticles/genetics
- Cell-Derived Microparticles/metabolism
- Cells, Cultured
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Humans
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Protein Transport
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- rab GTP-Binding Proteins/genetics
- rab GTP-Binding Proteins/metabolism
Collapse
|