1
|
Liu Y, Sha S, Ran Q, Shi H, Ma J, Qin B, Li Y, Wang N, Liu X, Wang J, Li L, Liu N, Quan X. The Correlation Between Fecal Amino Acids, Colonic Mucosal Taste Receptors, and Clinical Features and Indicators of Ulcerative Colitis: A Multicenter Exploratory Study. Inflamm Bowel Dis 2025:izae299. [PMID: 39774769 DOI: 10.1093/ibd/izae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Patients with ulcerative colitis (UC) exhibit abnormal amino acid (AA) metabolism. Taste receptors play a crucial role in the detection of intestinal AAs. Nevertheless, it remains unclear whether UC patients exhibit abnormal expression of these receptors in the colon. METHODS An observational, multicenter study was conducted involving adult patients with active UC and healthy controls (HCs), recruited from July 2023 to March 2024. Fresh feces and rectosigmoid mucosal tissues were obtained from each participant. The concentrations of fecal AAs and the expression of taste receptors, including calcium-sensing receptor (CaSR), G protein-coupled receptor family C group 6 member A (GPRC6A), taste receptor type 1 member 1 (T1R1), and metabotropic glutamate receptor 4 (mGLuR4), in the colon were measured. Additionally, the correlation between colonic mucosal taste receptors and clinical characteristics was evaluated. RESULTS Except for GPRC6A, the expression levels of CaSR, mGLuR4, and T1R1 in the colonic mucosa of UC patients were significantly elevated compared to HC. The expression of CaSR was negatively correlated with C-reactive protein and erythrocyte sedimentation rate (ESR). T1R1 expression positively correlated with defecation frequency and an Improved Mayo Endoscopic Score. The total and subtype concentrations of fecal AAs were elevated in UC patients and demonstrated a negative correlation with ESR and fecal calprotectin. CONCLUSIONS The increased levels of taste receptors and fecal AAs in the colon of UC patients suggest an abnormal nutrient-sensing mechanism, potentially playing a crucial role in the development of the disease.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sumei Sha
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiuju Ran
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Juan Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingchao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ning Wang
- Department of Gastroenterology, The Second Affiliated Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiaojing Quan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Di Mattia M, Sallese M, Lopetuso LR. The interplay between gut microbiota and the unfolded protein response: Implications for intestinal homeostasis preservation and dysbiosis-related diseases. Microb Pathog 2025; 200:107279. [PMID: 39761770 DOI: 10.1016/j.micpath.2025.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The unfolded protein response (UPR) is a complex intracellular signal transduction system that orchestrates the cellular response during Endoplasmic Reticulum (ER) stress conditions to reestablish cellular proteostasis. If, on one side, prolonged ER stress conditions can lead to programmed cell death and autophagy as a cytoprotective mechanism, on the other, unresolved ER stress and improper UPR activation represent a perilous condition able to trigger or exacerbate inflammatory responses. Notably, intestinal and immune cells experience ER stress physiologically due to their high protein secretory rate. Indeed, there is evidence of UPR's involvement in both physiological and pathological intestinal conditions, while less is known about its bidirectional interaction with gut microbiota. However, gut microbes and their metabolites can influence ER stress and UPR pathways, and, in turn, ER stress conditions can shape gut microbiota composition, with important implications for overall intestinal health. Thus, targeting UPR components is an intriguing strategy for treating ER stress-linked dysbiosis and diseases, particularly intestinal inflammation.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
3
|
Uhlmann L, Wagner U. Advances in calcium-sensing receptor modulation: biased signaling and therapeutic potential. Signal Transduct Target Ther 2024; 9:362. [PMID: 39676111 DOI: 10.1038/s41392-024-02084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Affiliation(s)
- Luisa Uhlmann
- University Leipzig Medical Center, Department for Rheumatology, Leipzig, Germany.
| | - Ulf Wagner
- University Leipzig Medical Center, Department for Rheumatology, Leipzig, Germany
| |
Collapse
|
4
|
Xu X, Gao Y, Xiao Y, Yu Y, Huang J, Su W, Li N, Xu C, Gao S, Wang X. Characteristics of the gut microbiota and the effect of Bifidobacterium in very early-onset inflammatory bowel disease patients with IL10RA mutations. Front Microbiol 2024; 15:1479779. [PMID: 39687875 PMCID: PMC11647010 DOI: 10.3389/fmicb.2024.1479779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Very early-onset inflammatory bowel disease (VEO-IBD) is a distinct subtype of inflammatory bowel disease (IBD) characterized by onset before the age of 6 years, and patients often exhibit more severe clinical features. Interleukin 10 receptor alpha (IL10RA) is a hotspot mutation in the Chinese population and is associated with a poor prognosis closely linked to the onset of IBD. However, limited knowledge exists regarding how the IL10RA mutation influences the host microbiota and its role in disease development. We employed 16S rRNA sequencing to conduct a comprehensive assessment of microbial changes in different types of IBD, employed database to thoroughly examine the influence of Bifidobacterium in IBD and to demonstrate a potential positive effect exerted by Bifidobacterium breve M16V (M16V) through a mouse model. The study demonstrated a significant reduction in the abundance and diversity of the gut microbiota among children with IL10RA mutations compared to those with late-onset pediatric IBD and nonmutated VEO-IBD. Furthermore, the analysis identified genera capable of distinguishing between various types of IBD, with the genus Bifidobacterium emerging as a potential standalone diagnostic indicator and Bifidobacterium may also be involved in related pathways that influence the progression of IBD, such as the biosynthesis of amino acids and inflammation-related pathways. This study corroborated the efficacy of Bifidobacterium in alleviating intestinal inflammation. The impact of IL10RA mutations on VEO-IBD may be mediated by alterations in microbes. M16V demonstrates efficacy in alleviating colitis and holds promise as a novel microbial therapy.
Collapse
Affiliation(s)
- Xu Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanqi Gao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Su
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenshen Gao
- Clinical Research and Development Center of Shanghai Municipal Hospitals, Shanghai Shenkang Hospital Development Center, Shanghai, China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Huang Q, Wen C, Gu S, Jie Y, Li G, Yan Y, Tian C, Wu G, Yang N. Synergy of gut microbiota and host genome in driving heterosis expression of chickens. J Genet Genomics 2024; 51:1121-1134. [PMID: 38950856 DOI: 10.1016/j.jgg.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Heterosis has been widely utilized in agricultural production. Despite over a century of extensive research, the underlying mechanisms of heterosis remain elusive. Most hypotheses and research have focused on the genetic basis of heterosis. However, the potential role of gut microbiota in heterosis has been largely ignored. Here, we carefully design a crossbreeding experiment with two distinct broiler breeds and conduct 16S rRNA amplicon and transcriptome sequencing to investigate the synergistic role of gut microbiota and host genes in driving heterosis. We find that the breast muscle weight of hybrids exhibits a high heterosis, 6.28% higher than the mid-parent value. A notable difference is observed in the composition and potential function of cecal microbiota between hybrids and their parents. Over 90% of differentially colonized microbiota and differentially expressed genes exhibit nonadditive patterns. Integrative analyses uncover associations between nonadditive genes and nonadditive microbiota, including a connection between the expression of cellular signaling pathways and metabolism-related genes and the abundance of Odoribacter, Oscillibacter, and Alistipes in hybrids. Moreover, higher abundances of these microbiota are related to better meat yield. In summary, these findings highlight the importance of gut microbiota in heterosis, serving as crucial factors that modulate heterosis expression in chickens.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China.
| | - Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuchen Jie
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guangqi Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Yiyuan Yan
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Chuanyao Tian
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Guiqin Wu
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China.
| |
Collapse
|
6
|
Olier M, Naud N, Fouché E, Tondereau V, Ahn I, Leconte N, Blas-Y-Estrada F, Garric G, Heliès-Toussaint C, Harel-Oger M, Marmonier C, Théodorou V, Guéraud F, Jan G, Pierre F. Calcium-rich dairy matrix protects better than mineral calcium against colonic luminal haem-induced alterations in male rats. NPJ Sci Food 2024; 8:43. [PMID: 38956092 PMCID: PMC11220098 DOI: 10.1038/s41538-024-00273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
The haemoglobin content in meat is consistently associated with an increased risk of colorectal cancer, whereas calcium may play a role as a chemopreventive agent. Using rodent models, calcium salts have been shown to prevent the promotion of haem-induced and red meat-induced colorectal carcinogenesis by limiting the bioavailability of the gut luminal haem iron. Therefore, this study aimed to compare impacts of dietary calcium provided as calcium salts or dairy matrix on gut homoeostasis perturbations by high haeminic or non-haeminic iron intakes. A 3-week intervention study was conducted using Fischer 344 rats. Compared to the ferric citrate-enriched diet, the haemoglobin-enriched diet led to increased faecal, mucosal, and urinary lipoperoxidation-related biomarkers, resulting from higher gut luminal haem iron bioavailability. This redox imbalance was associated to a dysbiosis of faecal microbiota. The addition of calcium to haemoglobin-enriched diets limited haem iron bioavailability and counteracted redox imbalance, with improved preventive efficacy when calcium was provided in dairy matrix. Data integration revealed correlations between haem-induced lipoperoxidation products and bacterial communities belonging to Peptococcaceae, Eubacterium coprostanoligenes group, and Bifidobacteriaceae. This integrated approach provides evidence of the benefits of dairy matrix as a dietary calcium vehicle to counteract the deleterious side-effects of meat consumption.
Collapse
Affiliation(s)
- Maïwenn Olier
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Nathalie Naud
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Edwin Fouché
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Valérie Tondereau
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Ingrid Ahn
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | | | - Florence Blas-Y-Estrada
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | | | - Cécile Heliès-Toussaint
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | | | | | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Françoise Guéraud
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Gwénaël Jan
- STLO, INRAE, I'Institut Agro, Rennes, France
| | - Fabrice Pierre
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France.
| |
Collapse
|
7
|
Li YH, Jiang ZX, Xu Q, Jin TT, Huang JF, Luan X, Li C, Chen XY, Wong KH, Dong XL, Sun XR. Inhibition of calcium-sensing receptor by its antagonist promotes gastrointestinal motility in a Parkinson's disease mouse model. Biomed Pharmacother 2024; 174:116518. [PMID: 38565057 DOI: 10.1016/j.biopha.2024.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The Calcium-sensing receptor (CaSR) participates in the regulation of gastrointestinal (GI) motility under normal conditions and might be involved in the regulation of GI dysmotility in patients with Parkinson's disease (PD). METHODS CaSR antagonist-NPS-2143 was applied in in vivo and ex vivo experiments to study the effect and underlying mechanisms of CaSR inhibition on GI dysmotility in the MPTP-induced PD mouse model. FINDINGS Oral intake of NPS-2143 promoted GI motility in PD mice as shown by the increased gastric emptying rate and shortened whole gut transit time together with improved weight and water content in the feces of PD mice, and the lack of influence on normal mice. Meanwhile, the number of cholinergic neurons, the proportion of serotonergic neurons, as well as the levels of acetylcholine and serotonin increased, but the numbers of nitrergic and tyrosine hydroxylase immunoreactive neurons, and the levels of nitric oxide synthase and dopamine decreased in the myenteric plexus in the gastric antrum and colon of PD mice in response to NPS-2143 treatment. Furthermore, the numbers of c-fos positive neurons in the nucleus tractus solitarius (NTS) and cholinergic neurons in the dorsal motor nucleus of the vagus (DMV) increased in NPS-2143 treated PD mice, suggesting the involvement of both the enteric (ENS) and central (CNS) nervous systems. However, ex vivo results showed that NPS-2143 directly inhibited the contractility of antral and colonic strips in PD mice via a non-ENS mediated mechanism. Further studies revealed that NPS-2143 directly inhibited the voltage gated Ca2+ channels, which might, at least in part, explain its direct inhibitory effects on the GI muscle strips. INTERPRETATION CaSR inhibition by its antagonist ameliorated GI dysmotility in PD mice via coordinated neuronal regulation by both ENS and CNS in vivo, although the direct effects of CaSR inhibition on GI muscle strips were suppressive.
Collapse
Affiliation(s)
- Yu-Hang Li
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zhong-Xin Jiang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qian Xu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Ting-Ting Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Department of Pathology, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Jin-Fang Huang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiao Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chong Li
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xin-Yi Chen
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xiao-Li Dong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xiang-Rong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Dontamsetti KD, Pedrosa‐Suarez LC, Aktar R, Peiris M. Sensing of luminal contents and downstream modulation of GI function. JGH Open 2024; 8:e13083. [PMID: 38779131 PMCID: PMC11109814 DOI: 10.1002/jgh3.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The luminal environment is rich in macronutrients coming from our diet and resident microbial populations including their metabolites. Together, they have the capacity to modulate unique cell surface receptors, known as G-protein coupled receptors (GPCRs). Along the entire length of the gut epithelium, enteroendocrine cells express GPCRs to interact with luminal contents, such as GPR93 and the calcium sensing receptor to sense proteins, FFA2 and GPR84 to sense fatty acids, and SGLT1 and T1R to sense carbohydrates. Nutrient-receptor interaction causes the release of hormonal stores such as glucagon-like peptide 1, peptide YY, and cholecystokinin, which further regulate gut function. Existing data show the role of luminal components and microbial fermentation products on gut function. However, there is a lack of understanding in the mechanistic interactions between diet-derived luminal components and microbial products and nutrient-sensing receptors and downstream gastrointestinal modulation. This review summarizes current knowledge on various luminal components and describes in detail the range of nutrients and metabolites and their interaction with nutrient receptors in the gut epithelium and the emerging impact on immune cells.
Collapse
Affiliation(s)
- Kiran Devi Dontamsetti
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Laura Camila Pedrosa‐Suarez
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Rubina Aktar
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
9
|
Tang L, Jin S, Winesett S, Harrell J, Fraebel J, Cheng SX. Ca2+ fortified oral rehydration solution is effective in reducing diarrhea morbidity in cholera toxin-pretreated mice. RESEARCH SQUARE 2023:rs.3.rs-3482753. [PMID: 37961244 PMCID: PMC10635371 DOI: 10.21203/rs.3.rs-3482753/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Diarrhea like cholera remains a leading cause of mortality and morbidity globally. Oral rehydration solution (ORS) that developed in 1970s significantly decreases diarrhea mortality; yet, it does not reduce diarrhea morbidity and its usage has reduced persistently. Patients with diarrhea lose not only monovalent ions Na+, K+, Cl- and HCO3, which are replaced via ORS, but also divalent ions Zn2+ and Ca2+, which are not routinely replaced, particularly for Ca2+. Using several in vitro technologies performed in isolated tissues, we have previously shown that Ca2+, a primary ligand that activates the Ca2+-sensing receptor, can act on intestinal epithelium and enteric nervous system and reverse cholera toxin-induced fluid secretion. In the present study, using the cholera toxin-pretreated C57BL/6 mice as a model, we show that the anti-diarrheal effect of Ca2+ can also occur in vivo. Our results raise a question of whether this divalent ion also needs to be replaced in diarrhea management. Perhaps, an ideal rehydration therapy would be solutions that contain both monovalent ions, which reduce diarrhea mortality, and divalent minerals, which reduce diarrhea morbidity.
Collapse
|
10
|
Sun Y, Song J, Lan X, Ma F, Jiang M, Jiang C. Calcium-Sensitive Receptors Alters Intestinal Microbiota Metabolites Especially SCFAs and Ameliorates Intestinal Barrier Damage in Neonatal Rat Endotoxemia. Infect Drug Resist 2023; 16:5707-5717. [PMID: 37667808 PMCID: PMC10475303 DOI: 10.2147/idr.s420689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose The calcium-sensing receptor (CaSR) acts as a major modulator of tissue responses related to calcium homeostasis and expresses highly in the mammalian intestine. Endotoxemia tends to impair intestinal barrier function and poses significant obstacles in clinical treatment. This work is designed to decipher whether CaSR can protect lipopolysaccharide (LPS)-induced intestinal barrier dysfunction in neonatal rats by targeting intestinal metabolites. Patient and Methods In this study, we utilized gas chromatography (GC) combined with liquid chromatography-mass spectrometry (LC-MS) to quantitatively analyze SCFAs and metabolites in fecal samples of 24 neonatal rats with LPS induced endotoxemia. Results Our results showed that CaSR alleviated endotoxin damage to the intestinal tight junction structure and upregulated the levels of butyric acid, propionic acid, valeric acid, and isovaleric acid in short-chain fatty acids (SCFAs). Non-targeted metabolomics analysis indicated that CaSR improved intestinal metabolic disorders by regulating glycerophospholipid metabolism, α-linolenic acid metabolism, as well as sphingolipids metabolism. Conclusion CaSR can alter intestinal microbiota metabolites, especially SCFAs, and improve intestinal barrier damage in neonatal rat endotoxemia.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Jiayu Song
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai, Guangdong, 519060, People’s Republic of China
| | - Xue Lan
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Fei Ma
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai, Guangdong, 519060, People’s Republic of China
| | - Mingyu Jiang
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Chunming Jiang
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai, Guangdong, 519060, People’s Republic of China
| |
Collapse
|
11
|
Ibrahim I, Syamala S, Ayariga JA, Xu J, Robertson BK, Meenakshisundaram S, Ajayi OS. Modulatory Effect of Gut Microbiota on the Gut-Brain, Gut-Bone Axes, and the Impact of Cannabinoids. Metabolites 2022; 12:1247. [PMID: 36557285 PMCID: PMC9781427 DOI: 10.3390/metabo12121247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is a collection of microorganisms and parasites in the gastrointestinal tract. Many factors can affect this community's composition, such as age, sex, diet, medications, and environmental triggers. The relationship between the human host and the gut microbiota is crucial for the organism's survival and development, whereas the disruption of this relationship can lead to various inflammatory diseases. Cannabidiol (CBD) and tetrahydrocannabinol (THC) are used to treat muscle spasticity associated with multiple sclerosis. It is now clear that these compounds also benefit patients with neuroinflammation. CBD and THC are used in the treatment of inflammation. The gut is a significant source of nutrients, including vitamins B and K, which are gut microbiota products. While these vitamins play a crucial role in brain and bone development and function, the influence of gut microbiota on the gut-brain and gut-bone axes extends further and continues to receive increasing scientific scrutiny. The gut microbiota has been demonstrated to be vital for optimal brain functions and stress suppression. Additionally, several studies have revealed the role of gut microbiota in developing and maintaining skeletal integrity and bone mineral density. It can also influence the development and maintenance of bone matrix. The presence of the gut microbiota can influence the actions of specific T regulatory cells, which can lead to the development of bone formation and proliferation. In addition, its metabolites can prevent bone loss. The gut microbiota can help maintain the bone's equilibrium and prevent the development of metabolic diseases, such as osteoporosis. In this review, the dual functions gut microbiota plays in regulating the gut-bone axis and gut-brain axis and the impact of CBD on these roles are discussed.
Collapse
Affiliation(s)
- Iddrisu Ibrahim
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Soumyakrishnan Syamala
- Departments of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Joseph Atia Ayariga
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Junhuan Xu
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Boakai K. Robertson
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Sreepriya Meenakshisundaram
- Department of Microbiology and Biotechnology, JB Campus, Bangalore University, Bangalore 560 056, Karnataka, India
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
12
|
Elevation of spermine remodels immunosuppressive microenvironment through driving the modification of PD-L1 in hepatocellular carcinoma. Cell Commun Signal 2022; 20:175. [DOI: 10.1186/s12964-022-00981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Spermine is frequently elevated in tumor tissues and body fluids of cancer patients and is critical for cancer cell proliferation, migration and invasion. However, the immune functions of spermine in hepatocellular carcinoma progression remains unknown. In the present study, we aimed to elucidate immunosuppressive role of spermine in hepatocellular carcinoma and to explore the underlying mechanism.
Methods
Whole-blood spermine concentration was measured using HPLC. Human primary HCC tissues were collected to examine the expression of CaSR, p-Akt, β-catenin, STT3A, PD-L1, and CD8. Mouse model of tumorigenesis and lung metastasis were established to evaluate the effects of spermine on hepatocellular carcinoma. Western blotting, immunofluorescence, real time PCR, digital Ca2+ imaging, and chromatin immunoprecipitation assay were used to investigate the underlying mechanisms by which spermine regulates PD-L1 expression and glycosylation in hepatocellular carcinoma cells.
Results
Blood spermine concentration in the HCC patient group was significantly higher than that in the normal population group. Spermine could facilitate tumor progression through inducing PD-L1 expression and decreasing the CD8+ T cell infiltration in HCC. Mechanistically, spermine activates calcium-sensing receptor (CaSR) to trigger Ca2+ entry and thereby promote Akt-dependent β-catenin stabilization and nuclear translocation. Nuclear β-catenin induced by spermine then activates transcriptional expression of PD-L1 and N-glycosyltransferase STT3A, while STT3A in turn increases the stability of PD-L1 through inducing PD-L1 protein N-glycosylation in HCC cells.
Conclusions
This study reveals the crucial function of spermine in establishing immune privilege by increasing the expression and N-glycosylation of PD-L1, providing a potential strategy for the treatment of hepatocellular carcinoma.
Collapse
|
13
|
An S, Chen Y, Yang T, Huang Y, Liu Y. A role for the calcium-sensing receptor in the expression of inflammatory mediators in LPS-treated human dental pulp cells. Mol Cell Biochem 2022; 477:2871-2881. [PMID: 35699827 DOI: 10.1007/s11010-022-04486-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
The aim of this study is to investigate the role of calcium-sensing receptor (CaSR) in the expression of inflammatory mediators of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). The expression profile of CaSR in LPS-simulated hDPCs was detected using immunofluorescence, real time quantitative PCR (RT-qPCR), and Western blot analyses. Then, its regulatory effects on the expression of specific inflammatory mediators such as interleukin (IL)-1β, IL-6, cyclooxygenase 2 (COX2)-derived prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, and IL-10 were determined by RT-qPCR and enzyme-linked immunosorbent assay (ELISA). LPS significantly downregulated the gene expression of CaSR, but upregulated its protein expression level in hDPCs. Treatments by CaSR agonist R568 or its antagonist Calhex231, and their combinations with protein kinase B (AKT) inhibitor LY294002 showed obvious effects on the expression of selected inflammatory mediators in a time-dependent manner. Meanwhile, an opposite direction was found between the action of R568 and Calhex231, as well as the expression of the pro- (IL-1β, IL-6, COX2-derived PGE2, and TNF-α) and anti-inflammatory (IL-10) mediators. The results provide the first evidence that CaSR-phosphatidylinositol-3 kinase (PI3K)-AKT-signaling pathway is involved in the release of inflammatory mediators in LPS-treated hDPCs, suggesting that the activation or blockade of CaSR may provide a novel therapeutic strategy for the treatment of pulp inflammatory diseases.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China.
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Yanhuo Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ting Yang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yiwei Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| |
Collapse
|
14
|
Liu G, Zheng J, Gu K, Wu C, Jia G, Zhao H, Chen X, Wang J. Calcium-sensing receptor protects intestinal integrity and alleviates the inflammatory response via the Rac1/PLCγ1 signaling pathway. Anim Biotechnol 2021:1-14. [PMID: 34762003 DOI: 10.1080/10495398.2021.1998090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study aimed to test the hypothesis that the calcium-sensing receptor (CaSR) can protect intestinal epithelial barrier integrity and decrease inflammatory response mediated by the Ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase Cγ1 (PLC-γ1) signaling pathway. IPEC-J2 monolayers were treated without or with TNF-α in the absence or presence of CaSR antagonist (NPS 2143), CaSR overexpression, and Rac1 silencing, PLCγ1 silencing or spermine. Results showed that spermine increased transepithelial electrical resistance (TER), tight junction protein levels, the protein concentration of Rac1/PLC-γ1 signaling pathway, and decreased paracellular permeability in the presence of TNF-α. NPS2143 inhibited spermine-induced change in above-mentioned parameters. CaSR overexpression increased TER, the levels of tight junction proteins and the protein concentration of CaSR, phosphorylated PLCγ1, Rac1, and IP3, and decreased paracellular permeability and contents of interleukin-8 (IL-8) and TNF-α after TNF-α challenge. Rac1 and PLCγ1 silencing inhibited CaSR-induced increase in barrier function and the protein concentration of phosphorylated PLCγ1, Rac1, and IP3, and decrease in contents of IL-8 and TNF-α after TNF-α challenge. These results suggest that CaSR activation protects intestinal integrity and alleviates the inflammatory response by activating Rac1 and PLCγ1 signaling after TNF-α challenge, and spermine can maintain barrier function via CaSR/Rac1/PLC-γ1 pathway.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Jie Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Liu G, Gu K, Wang F, Jia G, Zhao H, Chen X, Wu C, Zhang R, Tian G, Cai J, Tang J, Wang J. Tryptophan Ameliorates Barrier Integrity and Alleviates the Inflammatory Response to Enterotoxigenic Escherichia coli K88 Through the CaSR/Rac1/PLC-γ1 Signaling Pathway in Porcine Intestinal Epithelial Cells. Front Immunol 2021; 12:748497. [PMID: 34745120 PMCID: PMC8566706 DOI: 10.3389/fimmu.2021.748497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Impaired intestinal barrier integrity plays a crucial role in the development of many diseases such as obesity, inflammatory bowel disease, and type 2 diabetes. Thus, protecting the intestinal barrier from pathological disruption is of great significance. Tryptophan can increase gut barrier integrity, enhance intestinal absorption, and decrease intestinal inflammation. However, the mechanism of tryptophan in decreasing intestinal barrier damage and inflammatory response remains largely unknown. The objective of this study was to test the hypothesis that tryptophan can enhance intestinal epithelial barrier integrity and decrease inflammatory response mediated by the calcium-sensing receptor (CaSR)/Ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase Cγ1 (PLC-γ1) signaling pathway. Methods IPEC-J2 cells were treated with or without enterotoxigenic Escherichia coli (ETEC) K88 in the absence or presence of tryptophan, CaSR inhibitor (NPS-2143), wild-type CaSR overexpression (pcDNA3.1-CaSR-WT), Rac1-siRNA, and PLC-γ1-siRNA. Results The results showed that ETEC K88 decreased the protein concentration of occludin, zonula occludens-1 (ZO-1), claudin-1, CaSR, total Rac1, Rho family member 1 of porcine GTP-binding protein (GTP-rac1), phosphorylated phospholipase Cγ1 (p-PLC-γ1), and inositol triphosphate (IP3); suppressed the transepithelial electrical resistance (TEER); and enhanced the permeability of FITC-dextran compared with the control group. Compared with the control group, 0.7 mM tryptophan increased the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; elevated the TEER; and decreased the permeability of FITC-dextran and contents of interleukin-8 (IL-8) and TNF-α. However, 0.7 mM tryptophan+ETEC K88 reversed the effects induced by 0.7 mM tryptophan alone. Rac1-siRNA+tryptophan+ETEC K88 or PLC-γ1-siRNA+tryptophan+ETEC K88 reduced the TEER, increased the permeability of FITC-dextran, and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. NPS2143+tryptophan+ETEC K88 decreased the TEER and the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; increased the permeability of FITC-dextran; and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. pcDNA3.1-CaSR-WT+Rac1-siRNA+ETEC K88 and pcDNA3.1-CaSR-WT+PLC-γ1-siRNA+ETEC K88 decreased the TEER and enhanced the permeability in porcine intestine epithelial cells compared with pcDNA3.1-CaSR-WT+ETEC K88. Conclusion Tryptophan can improve intestinal epithelial barrier integrity and decrease inflammatory response through the CaSR/Rac1/PLC-γ1 signaling pathway.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Fang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Ruinan Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Sayyahfar S, Sadeghian M, Amrolalaei M. The effect of calcium on the duration of acute gastroenteritis in children: A randomized clinical trial. Med J Islam Repub Iran 2021; 35:83. [PMID: 34291007 PMCID: PMC8285556 DOI: 10.47176/mjiri.35.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Currently, the role of calcium in reducing the duration and severity of diarrhea and its consequences has been considered as a topic of concern. The aim of this study was to evaluate the effect of oral calcium on the duration of acute gastroenteritis in children.
Methods: This single-blind randomized clinical trial was performed from 2014 to 2016 at Ali Asghar Children’s Hospital, Tehran, Iran. Totally, 124 patients (one month to twelve years old) with acute gastroenteritis were enrolled in this study. The patients were divided equally into intervention and placebo groups and received the calcium gluconate 10%, 0.5cc/kg/day and distinct water, respectively. Data analysis was performed using the statistical software SPSS version 20.0 for windows (SPSS Inc., Chicago, IL) and p<0.05 was considered significant.
Results: The mean age of the intervention and placebo groups was 26.43±3.74 and 20.84±2.70 months, respectively, and the difference was not significant (p=0.228). The duration of diarrhea in the intervention and placebo groups was 5.27±2.01 and 6.71 ± 2.44 days respectively (p=0.001). In the placebo group, the plasma calcium level was less than 8mg/dl in 1 (1.6%), 8 - 10 mg/dl in 55 (88.7%) and more than 10mg/dl in 6 cases (9. 7%). In the intervention group, there were 7 (11.3%), 55 (88.7%) and 0 (0%) cases in three groups, respectively (p=0.005).
Conclusion: The oral calcium gluconate might shorten the duration of acute gastroenteritis. Therefore, it could be considered as an adjunctive therapy. Whether the formulation of the oral rehydration solution (ORS) will be updated in the future with adding the calcium salts remains to be defined and needs more investigations.
Collapse
Affiliation(s)
- Shirin Sayyahfar
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sadeghian
- Department of Pediatrics, School of Medicine, Hazrat-e Ali Asghar Pediatrics Hospital, Iran University of Medical sciences, Tehran, Iran
| | - Mojgan Amrolalaei
- Department of Pediatrics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Liu L, Awoyemi AA, Fahy KE, Thapa P, Borchers C, Wu BY, McGlone CL, Schmeusser B, Sattouf Z, Rohan CA, Williams AR, Cates EE, Knisely C, Kelly LE, Bihl JC, Cool DR, Sahu RP, Wang J, Chen Y, Rapp CM, Kemp MG, Johnson RM, Travers JB. Keratinocyte-derived microvesicle particles mediate ultraviolet B radiation-induced systemic immunosuppression. J Clin Invest 2021; 131:144963. [PMID: 33830943 DOI: 10.1172/jci144963] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
A complete carcinogen, ultraviolet B (UVB) radiation (290-320 nm), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator platelet-activating factor (PAF). A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF receptor (PAFR) activation in keratinocytes induce the release of large numbers of microvesicle particles (MVPs; extracellular vesicles ranging from 100 to 1000 nm in size). MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVPs) are dependent on the keratinocyte PAFR. Here, we used both pharmacologic and genetic approaches in cells and mice to show that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Our discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVPs leaving the keratinocyte can be found systemically in mice and humans following UVB exposure. Moreover, we found that UVB-MVPs contained bioactive contents including PAFR agonists that allowed them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression.
Collapse
Affiliation(s)
- Langni Liu
- Department of Pharmacology and Toxicology
| | | | | | | | | | | | | | | | | | - Craig A Rohan
- Department of Pharmacology and Toxicology.,Department of Dermatology, and
| | | | | | | | | | - Ji C Bihl
- Department of Pharmacology and Toxicology
| | | | | | - Jinju Wang
- Department of Pharmacology and Toxicology
| | | | | | | | - R Michael Johnson
- Department of Plastic Surgery, Wright State University, Dayton, Ohio, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology.,Department of Dermatology, and.,Dayton VA Medical Center, Dayton, Ohio, USA
| |
Collapse
|
18
|
Sundararaman SS, van der Vorst EPC. Calcium-Sensing Receptor (CaSR), Its Impact on Inflammation and the Consequences on Cardiovascular Health. Int J Mol Sci 2021; 22:2478. [PMID: 33804544 PMCID: PMC7957814 DOI: 10.3390/ijms22052478] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
The calcium Sensing Receptor (CaSR) is a cell surface receptor belonging to the family of G-protein coupled receptors. CaSR is mainly expressed by parathyroid glands, kidneys, bone, skin, adipose tissue, the gut, the nervous system, and the cardiovascular system. The receptor, as its name implies is involved in sensing calcium fluctuations in the extracellular matrix of cells, thereby having a major impact on the mineral homeostasis in humans. Besides calcium ions, the receptor is also activated by other di- and tri-valent cations, polypeptides, polyamines, antibiotics, calcilytics and calcimimetics, which upon binding induce intracellular signaling pathways. Recent studies have demonstrated that CaSR influences a wide variety of cells and processes that are involved in inflammation, the cardiovascular system, such as vascular calcification, atherosclerosis, myocardial infarction, hypertension, and obesity. Therefore, in this review, the current understanding of the role that CaSR plays in inflammation and its consequences on the cardiovascular system will be highlighted.
Collapse
Affiliation(s)
- Sai Sahana Sundararaman
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
19
|
Kundra P, Rachmühl C, Lacroix C, Geirnaert A. Role of Dietary Micronutrients on Gut Microbial Dysbiosis and Modulation in Inflammatory Bowel Disease. Mol Nutr Food Res 2021. [DOI: 10.1002/mnfr.201901271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Palni Kundra
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Carole Rachmühl
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| |
Collapse
|
20
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
21
|
Areco VA, Kohan R, Talamoni G, Tolosa de Talamoni NG, Peralta López ME. Intestinal Ca 2+ absorption revisited: A molecular and clinical approach. World J Gastroenterol 2020; 26:3344-3364. [PMID: 32655262 PMCID: PMC7327788 DOI: 10.3748/wjg.v26.i24.3344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ has an important role in the maintenance of the skeleton and is involved in the main physiological processes. Its homeostasis is controlled by the intestine, kidney, bone and parathyroid glands. The intestinal Ca2+ absorption occurs mainly via the paracellular and the transcellular pathways. The proteins involved in both ways are regulated by calcitriol and other hormones as well as dietary factors. Fibroblast growth factor 23 (FGF-23) is a strong antagonist of vitamin D action. Part of the intestinal Ca2+ movement seems to be vitamin D independent. Intestinal Ca2+ absorption changes according to different physiological conditions. It is promoted under high Ca2+ demands such as growth, pregnancy, lactation, dietary Ca2+ deficiency and high physical activity. In contrast, the intestinal Ca2+ transport decreases with aging. Oxidative stress inhibits the intestinal Ca2+ absorption whereas the antioxidants counteract the effects of prooxidants leading to the normalization of this physiological process. Several pathologies such as celiac disease, inflammatory bowel diseases, Turner syndrome and others occur with inhibition of intestinal Ca2+ absorption, some hypercalciurias show Ca2+ hyperabsorption, most of these alterations are related to the vitamin D endocrine system. Further research work should be accomplished in order not only to know more molecular details but also to detect possible therapeutic targets to ameliorate or avoid the consequences of altered intestinal Ca2+ absorption.
Collapse
Affiliation(s)
- Vanessa A Areco
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Romina Kohan
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Germán Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Nori G Tolosa de Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - María E Peralta López
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|
22
|
Xing R, Yang H, Wang X, Yu H, Liu S, Li P. Effects of Calcium Source and Calcium Level on Growth Performance, Immune Organ Indexes, Serum Components, Intestinal Microbiota, and Intestinal Morphology of Broiler Chickens. J APPL POULTRY RES 2020. [DOI: 10.3382/japr/pfz033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
23
|
Yin X, Wu H, Zhang B, Zhu N, Chen T, Ma X, Zhang L, Lv L, Zhang M, Wang F, Tang X. Tojapride prevents CaSR-mediated NLRP3 inflammasome activation in oesophageal epithelium irritated by acidic bile salts. J Cell Mol Med 2020; 24:1208-1219. [PMID: 31859410 PMCID: PMC6991659 DOI: 10.1111/jcmm.14631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/23/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Impairment of the oesophageal epithelium in patients with reflux oesophagitis (RE) is a cytokine-mediated injury rather than a chemical burn. The present study was conducted to explore CaSR/NLRP3 inflammasome pathway activation and cytokines IL-1β and IL-18 release in oesophageal epithelia injured by refluxates and the effects of Tojapride on that signal regulation. Using a modified RE rat model with Tojapride administration and Tojapride-pretreated SV40-immortalized human oesophageal epithelial cells (HET-1A) exposed to acidic bile salts pretreated with Tojapride, we evaluated the therapeutic effects of Tojapride on oesophageal epithelial barrier function, the expression of CaSR/NLRP3 inflammasome pathway-related proteins and the release of downstream cytokines in response to acidic bile salt irritation. In vivo, Tojapride treatment ameliorated the general condition and pathological lesions of the oesophageal epithelium in modified RE rats. In addition, Tojapride effectively blocked the CaSR-mediated NLRP3 inflammasome activation in modified RE rats. In vitro, Tojapride treatment can reverse the harmful effect of acidic bile salts, which reduced transepithelial electrical resistance (TEER), up-regulated the CaSR-mediated NLRP3 inflammasome pathway and increased caspase-1 activity, LDH release and cytokines secretion. Taken together, these data show that Tojapride can prevent CaSR-mediated NLRP3 inflammasome activation and alleviate oesophageal epithelial injury induced by acidic bile salt exposure.
Collapse
Affiliation(s)
- Xiao‐Lan Yin
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Hao‐Meng Wu
- Department of Gastroenterology, Guangzhou Higher Education Mega CenterThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Xiao‐gu‐wei JieGuangzhouChina
| | - Bei‐Huang Zhang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Ning‐Wei Zhu
- Department of PharmacyZhejiang Pharmaceutical CollegeNingboChina
| | - Ting Chen
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Xiang‐Xue Ma
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Li‐Ying Zhang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Lin Lv
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Min Zhang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Feng‐Yun Wang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Xu‐Dong Tang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| |
Collapse
|
24
|
Gröschel C, Prinz-Wohlgenannt M, Mesteri I, Karuthedom George S, Trawnicek L, Heiden D, Aggarwal A, Tennakoon S, Baumgartner M, Gasche C, Lang M, Marculescu R, Manhardt T, Schepelmann M, Kallay E. Switching to a Healthy Diet Prevents the Detrimental Effects of Western Diet in a Colitis-Associated Colorectal Cancer Model. Nutrients 2019; 12:E45. [PMID: 31877961 PMCID: PMC7019913 DOI: 10.3390/nu12010045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023] Open
Abstract
Inflammatory bowel disease increases the odds of developing colitis-associated cancer. We hypothesized that Western-style diet (WD) aggravates azoxymethane (AOM)/dextran sulfate sodium salt (DSS)-induced colitis-associated tumorigenesis and that switching to the standard AIN93G diet will ameliorate disease symptoms even after cancer initiation. Female BALB/c mice received either WD (WD group) or standard AIN93G diet (AIN group) for the whole experimental period. After five weeks, the mice received 12.5 mg/kg AOM intraperitoneally, followed by three DSS cycles. In one group of mice, the WD was switched to AIN93G the day before starting the first DSS cycle (WD/AIN group). Feeding the WD during the whole experimental period aggravated colitis symptoms, shortened the colon (p < 0.05), changed microbiota composition and increased tumor promotion. On molecular level, the WD reduced proliferation (p < 0.05) and increased expression of the vitamin D catabolizing enzyme Cyp24a1 (p < 0.001). The switch to the AIN93G diet ameliorated this effect, reflected by longer colons, fewer (p < 0.05) and smaller (p < 0.01) aberrant colonic crypt foci, comparable with the AIN group. Our results show that switching to a healthy diet, even after cancer initiation is able to revert the deleterious effect of the WD and could be an effective preventive strategy to reduce colitis symptoms and prevent tumorigenesis.
Collapse
Affiliation(s)
- Charlotte Gröschel
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (M.P.-W.); (S.K.G.); (L.T.); (D.H.); (A.A.); (S.T.); (T.M.); (M.S.)
| | - Maximilian Prinz-Wohlgenannt
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (M.P.-W.); (S.K.G.); (L.T.); (D.H.); (A.A.); (S.T.); (T.M.); (M.S.)
| | - Ildiko Mesteri
- Institute of Pathology Überlingen, 88662 Überlingen, Germany;
| | - Sobha Karuthedom George
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (M.P.-W.); (S.K.G.); (L.T.); (D.H.); (A.A.); (S.T.); (T.M.); (M.S.)
| | - Lena Trawnicek
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (M.P.-W.); (S.K.G.); (L.T.); (D.H.); (A.A.); (S.T.); (T.M.); (M.S.)
| | - Denise Heiden
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (M.P.-W.); (S.K.G.); (L.T.); (D.H.); (A.A.); (S.T.); (T.M.); (M.S.)
| | - Abhishek Aggarwal
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (M.P.-W.); (S.K.G.); (L.T.); (D.H.); (A.A.); (S.T.); (T.M.); (M.S.)
| | - Samawansha Tennakoon
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (M.P.-W.); (S.K.G.); (L.T.); (D.H.); (A.A.); (S.T.); (T.M.); (M.S.)
| | - Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (C.G.); (M.L.)
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (C.G.); (M.L.)
| | - Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (C.G.); (M.L.)
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Teresa Manhardt
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (M.P.-W.); (S.K.G.); (L.T.); (D.H.); (A.A.); (S.T.); (T.M.); (M.S.)
| | - Martin Schepelmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (M.P.-W.); (S.K.G.); (L.T.); (D.H.); (A.A.); (S.T.); (T.M.); (M.S.)
| | - Enikö Kallay
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (M.P.-W.); (S.K.G.); (L.T.); (D.H.); (A.A.); (S.T.); (T.M.); (M.S.)
| |
Collapse
|
25
|
Raka F, Farr S, Kelly J, Stoianov A, Adeli K. Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis. Am J Physiol Endocrinol Metab 2019; 317:E559-E572. [PMID: 31310579 DOI: 10.1152/ajpendo.00036.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nutrient sensing plays an important role in ensuring that appropriate digestive or hormonal responses are elicited following the ingestion of fuel substrates. Mechanisms of nutrient sensing in the oral cavity have been fairly well characterized and involve lingual taste receptors. These include heterodimers of G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family for sensing sweet (T1R2-T1R3) and umami (T1R1-T1R3) stimuli, the T2R family for sensing bitter stimuli, and ion channels for conferring sour and salty tastes. In recent years, several studies have revealed the existence of additional nutrient-sensing mechanisms along the gastrointestinal tract. Glucose sensing is achieved by the T1R2-T1R3 heterodimer on enteroendocrine cells, which plays a role in triggering the secretion of incretin hormones for improved glycemic and lipemic control. Protein hydrolysates are detected by Ca2+-sensing receptor, the T1R1-T1R3 heterodimer, and G protein-coupled receptor 92/93 (GPR92/93), which leads to the release of the gut-derived satiety factor cholecystokinin. Furthermore, several GPCRs have been implicated in fatty acid sensing: GPR40 and GPR120 respond to medium- and long-chain fatty acids, GPR41 and GPR43 to short-chain fatty acids, and GPR119 to endogenous lipid derivatives. Aside from the recognition of fuel substrates, both the oral cavity and the gastrointestinal tract also possess T2R-mediated mechanisms of recognizing nonnutrients such as environmental contaminants, bacterial toxins, and secondary plant metabolites that evoke a bitter taste. These gastrointestinal sensing mechanisms result in the transmission of neuronal signals to the brain through the release of gastrointestinal hormones that act on vagal and enteric afferents to modulate the physiological response to nutrients, particularly satiety and energy homeostasis. Modulating these orally accessible nutrient-sensing pathways using particular foods, dietary supplements, or pharmaceutical compounds may have therapeutic potential for treating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Fitore Raka
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sarah Farr
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jacalyn Kelly
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexandra Stoianov
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Wongdee K, Rodrat M, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Factors inhibiting intestinal calcium absorption: hormones and luminal factors that prevent excessive calcium uptake. J Physiol Sci 2019; 69:683-696. [PMID: 31222614 PMCID: PMC10717634 DOI: 10.1007/s12576-019-00688-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022]
Abstract
Besides the two canonical calciotropic hormones, namely parathyroid hormone and 1,25-dihydroxyvitamin D [1,25(OH)2D3], there are several other endocrine and paracrine factors, such as prolactin, estrogen, and insulin-like growth factor that have been known to directly stimulate intestinal calcium absorption. Generally, to maintain an optimal plasma calcium level, these positive regulators enhance calcium absorption, which is indirectly counterbalanced by a long-loop negative feedback mechanism, i.e., through calcium-sensing receptor in the parathyroid chief cells. However, several lines of recent evidence have revealed the presence of calcium absorption inhibitors present in the intestinal lumen and extracellular fluid in close vicinity to enterocytes, which could also directly compromise calcium absorption. For example, luminal iron, circulating fibroblast growth factor (FGF)-23, and stanniocalcin can decrease calcium absorption, thereby preventing excessive calcium uptake under certain conditions. Interestingly, the intestinal epithelial cells themselves could lower their rate of calcium uptake after exposure to high luminal calcium concentration, suggesting a presence of an ultra-short negative feedback loop independent of systemic hormones. The existence of neural regulation is also plausible but this requires more supporting evidence. In the present review, we elaborate on the physiological significance of these negative feedback regulators of calcium absorption, and provide evidence to show how our body can efficiently restrict a flood of calcium influx in order to maintain calcium homeostasis.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mayuree Rodrat
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand.
| |
Collapse
|
27
|
Anract J, Baures M, Barry Delongchamps N, Capiod T. Microcalcifications, calcium-sensing receptor, and cancer. Cell Calcium 2019; 82:102051. [PMID: 31276858 DOI: 10.1016/j.ceca.2019.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
Abstract
Calcium stones and calculi are observed in numerous human tissues. They are the result of deposition of calcium salts and are due to high local calcium concentrations. Prostatic calculi are usually classified as endogenous or extrinsic stones. Endogenous stones are commonly caused by obstruction of the prostatic ducts around an enlarged prostate resulting from benign prostatic hyperplasia or from chronic inflammation. The latter occurs mainly around the urethra and is generally caused by reflux of urine into the prostate. Calcium concentrations higher than in the plasma at sites of infection may induce the chemotactic response that eventually leads to recruitment of inflammatory cells. The calcium sensing receptor (CaSR) may be crucial for this recruitment as its expression and activity are increased by cytokines such as IL-6 and high extracellular calcium concentrations, respectively. The links between calcium calculi, inflammation, calcium supplementation, and CaSR functions in prostate cancer patients will be discussed in this review.
Collapse
Affiliation(s)
- Julien Anract
- INSERM Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris 75014, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris 75014, France
| | - Manon Baures
- INSERM Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris 75014, France
| | - Nicolas Barry Delongchamps
- INSERM Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris 75014, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris 75014, France
| | - Thierry Capiod
- INSERM Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris 75014, France.
| |
Collapse
|
28
|
Zhao X, Schindell B, Li W, Ni L, Liu S, Wijerathne CUB, Gong J, Nyachoti CM, O K, Yang C. Distribution and localization of porcine calcium sensing receptor in different tissues of weaned piglets1. J Anim Sci 2019; 97:2402-2413. [PMID: 30887022 PMCID: PMC6541828 DOI: 10.1093/jas/skz096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Taste receptors including calcium sensing receptor (CaSR) are expressed in various animal tissues, and CaSR plays important roles in nutrient sensing and the physiology, growth, and development of animals. However, molecular distribution of porcine CaSR (pCaSR) in different tissues, especially along the longitudinal axis of the digestive tract in weaned piglets, is still unknown. In the present study, we investigated the distribution and localization of pCaSR in the different tissues including intestinal segments of weaned piglets. Six male pigs were anesthetized and euthanized. Different tissues such as intestinal segments were collected. The pCaSR mRNA abundance, protein abundance, and localization were measured by real-time PCR, Western blotting, and immunohistochemistry, respectively. The mRNA and protein of pCaSR were detected in the kidney, lung, liver, stomach, duodenum, jejunum, ileum, and colon. The pCaSR mRNA was much higher (five to 180 times) in the kidney when compared with other tissues (P < 0.05). The ileum had higher pCaSR mRNA and protein abundances than the stomach, duodenum, jejunum, and colon (P < 0.05). Immunohistochemical staining results indicated that the pCaSR protein was mostly located in the epithelia of the stomach, duodenum, jejunum, ileum, and colon. These results demonstrate that pCaSR is widely expressed in different tissues including intestinal segments in weaned piglets and the ileum has a higher expression level of pCaSR. Further research is needed to confirm the expression of CaSR in the different types of epithelial cells isolated from weaned piglets and characterize the functions of pCaSR, its potential ligands and cell signaling pathways related to CaSR activation in enteroendocrine cells and potentially in enterocytes.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Brayden Schindell
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Weiqi Li
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Liju Ni
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- Shanghai Lab-Animal Research Center, Shanghai, China
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Charith U B Wijerathne
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, ON, Canada
| | - C Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
29
|
Kostovcikova K, Coufal S, Galanova N, Fajstova A, Hudcovic T, Kostovcik M, Prochazkova P, Jiraskova Zakostelska Z, Cermakova M, Sediva B, Kuzma M, Tlaskalova-Hogenova H, Kverka M. Diet Rich in Animal Protein Promotes Pro-inflammatory Macrophage Response and Exacerbates Colitis in Mice. Front Immunol 2019; 10:919. [PMID: 31105710 PMCID: PMC6497971 DOI: 10.3389/fimmu.2019.00919] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Diet is a major factor determining gut microbiota composition and perturbances in this complex ecosystem are associated with the inflammatory bowel disease (IBD). Here, we used gnotobiotic approach to analyze, how interaction between diet rich in proteins and gut microbiota influences the sensitivity to intestinal inflammation in murine model of ulcerative colitis. We found that diet rich in animal protein (aHPD) exacerbates acute dextran sulfate sodium (DSS)-induced colitis while diet rich in plant protein (pHPD) does not. The deleterious effect of aHPD was also apparent in chronic DSS colitis and was associated with distinct changes in gut bacteria and fungi. Therefore, we induced acute DSS-colitis in germ-free mice and transferred gut microbiota from aCD or aHPD fed mice to find that this effect requires presence of microbes and aHPD at the same time. The aHPD did not change the number of regulatory T cells or Th17 cells and still worsened the colitis in immuno-deficient RAG2 knock-out mice suggesting that this effect was not dependent on adaptive immunity. The pro-inflammatory effect of aHPD was, however, abrogated when splenic macrophages were depleted with clodronate liposomes. This treatment prevented aHPD induced increase in colonic Ly-6Chigh pro-inflammatory monocytes, but the ratio of resident Ly-6C−/low macrophages was not changed. These data show that the interactions between dietary protein of animal origin and gut microbiota increase sensitivity to intestinal inflammation by promoting pro-inflammatory response of monocytes.
Collapse
Affiliation(s)
- Klara Kostovcikova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia.,Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the CAS, v.v.i., Prague, Czechia
| | - Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Natalie Galanova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Alena Fajstova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the CAS, v.v.i., Nový Hrádek, Czechia
| | - Martin Kostovcik
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | | | - Martina Cermakova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Blanka Sediva
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia.,Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia.,Department of Pharmacology, Institute of Experimental Medicine of the CAS, v.v.i., Prague, Czechia
| |
Collapse
|
30
|
Astragaloside IV Suppresses High Glucose-Induced NLRP3 Inflammasome Activation by Inhibiting TLR4/NF- κB and CaSR. Mediators Inflamm 2019; 2019:1082497. [PMID: 30906223 PMCID: PMC6398021 DOI: 10.1155/2019/1082497] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/14/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023] Open
Abstract
Long-term exposure to high glucose induces vascular endothelial inflammation that can result in cardiovascular disease. Astragaloside IV (As-IV) is widely used for anti-inflammatory treatment of cardiovascular diseases. However, its mechanism of action is still not fully understood. In this study, we investigated the effect of As-IV on high glucose-induced endothelial inflammation and explored its possible mechanisms. In vivo, As-IV (40 and 80 mg/kg/d) was orally administered to rats for 8 weeks after a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg). In vitro, human umbilical vein endothelial cells (HUVECs) were treated with high glucose (33 mM glucose) in the presence or absence of As-IV, NPS2143 (CaSR inhibitor), BAY 11-7082 (NF-κB p65 inhibitor), and INF39 (NLRP3 inhibitor), and overexpression of CaSR was induced by infection of CaSR-overexpressing lentiviral vectors to further discuss the anti-inflammatory property of As-IV. The results showed that high glucose increased the expression of interleukin-18 (IL-18), interleukin-1β (IL-1β), NLRP3, caspase-1, and ASC, as well as the protein level of TLR4, nucleus p65, and CaSR. As-IV can reverse these changes in vivo and in vitro. Meanwhile, NPS2143, BAY 11-7082, and INF39 could significantly abolish the high glucose-enhanced NLRP3, ASC, caspase-1, IL-18, and IL-1β expression in vitro. In addition, both NPS2143 and BAY 11-7082 attenuated high glucose-induced upregulation of NLRP3, ASC, caspase-1, IL-18, and IL-1β expression. In conclusion, this study suggested that As-IV could inhibit high glucose-induced NLRP3 inflammasome activation and subsequent secretion of proinflammatory cytokines via inhibiting TLR4/NF-κB signaling pathway and CaSR, which provides new insights into the anti-inflammatory activity of As-IV.
Collapse
|
31
|
Yang W, Liu L, Keum N, Qian ZR, Nowak JA, Hamada T, Song M, Cao Y, Nosho K, Smith-Warner SA, Zhang S, Masugi Y, Ng K, Kosumi K, Ma Y, Garrett WS, Wang M, Nan H, Giannakis M, Meyerhardt JA, Chan AT, Fuchs CS, Nishihara R, Wu K, Giovannucci EL, Ogino S, Zhang X. Calcium Intake and Risk of Colorectal Cancer According to Tumor-infiltrating T Cells. Cancer Prev Res (Phila) 2019; 12:283-294. [PMID: 30760501 DOI: 10.1158/1940-6207.capr-18-0279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/27/2018] [Accepted: 02/04/2019] [Indexed: 11/16/2022]
Abstract
Calcium intake has been associated with a lower risk of colorectal cancer. Calcium signaling may enhance T-cell proliferation and differentiation, and contribute to T-cell-mediated antitumor immunity. In this prospective cohort study, we investigated the association between calcium intake and colorectal cancer risk according to tumor immunity status to provide additional insights into the role of calcium in colorectal carcinogenesis. The densities of tumor-infiltrating T-cell subsets [CD3+, CD8+ , CD45RO (PTPRC) + , or FOXP3+ cell] were assessed using IHC and computer-assisted image analysis in 736 cancer cases that developed among 136,249 individuals in two cohorts. HRs and 95% confidence intervals (CI) were calculated using Cox proportional hazards regression. Total calcium intake was associated with a multivariable HR of 0.55 (comparing ≥1,200 vs. <600 mg/day; 95% CI, 0.36-0.84; P trend = 0.002) for CD8+ T-cell-low but not for CD8+ T-cell-high tumors (HR = 1.02; 95% CI, 0.67-1.55; P trend = 0.47). Similarly, the corresponding HRs (95% CIs) for calcium for low versus high T-cell-infiltrated tumors were 0.63 (0.42-0.94; P trend = 0.01) and 0.89 (0.58-1.35; P trend = 0.20) for CD3+ ; 0.58 (0.39-0.87; P trend = 0.006) and 1.04 (0.69-1.58; P trend = 0.54) for CD45RO+ ; and 0.56 (0.36-0.85; P trend = 0.006) and 1.10 (0.72-1.67; P trend = 0.47) for FOXP3+ , although the differences by subtypes defined by T-cell density were not statistically significant. These potential differential associations generally appeared consistent regardless of sex, source of calcium intake, tumor location, and tumor microsatellite instability status. Our findings suggest a possible role of calcium in cancer immunoprevention via modulation of T-cell function.
Collapse
Affiliation(s)
- Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea
| | - Zhi Rong Qian
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yin Cao
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Katsuhiko Nosho
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Stephanie A Smith-Warner
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Sui Zhang
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yohei Masugi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Kimmie Ng
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yanan Ma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Hongmei Nan
- Department of Epidemiology, Richard M. School of Public Health, Indianapolis, Indiana
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Charles S Fuchs
- Department of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Medical Oncology, Smilow Cancer Hospital, New Haven, Connecticut
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Xuehong Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
32
|
Friedmann KS, Bozem M, Hoth M. Calcium signal dynamics in T lymphocytes: Comparing in vivo and in vitro measurements. Semin Cell Dev Biol 2019; 94:84-93. [PMID: 30630031 DOI: 10.1016/j.semcdb.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023]
Abstract
Amplitude and kinetics of intracellular Ca2+ signals ([Ca2+]int) determine many immune cell functions. To mimic in vivo changes of [Ca2+]int in human immune cells, two approaches may be best suited: 1) Analyze primary human immune cells taken from blood under conditions resembling best physiological or pathophysiological conditions. 2.) Analyze the immune system in vivo or ex vivo in explanted tissue from small vertebrate animals, such as mice. With the help of genetically encoded Ca2+ indicators and intravital microscopy, [Ca2+]int have been investigated in murine T lymphocytes (T cells) in vivo during the last five years and in explanted lymph node (LN) during the last 10 years. There are several important reasons to compare [Ca2+]int measured in primary murine T lymphocytes in vivo and in vitro with [Ca2+]int measured in primary human T lymphocytes in vitro. First, how do human and murine data compare? Second, how do in vivo and in vitro data compare? Third, can in vitro data predict in vivo data? The last point is particularly important considering the many technical challenges that limit in vivo measurements and to reduce the number of animals sacrificed. This review summarizes and compares the results of the available publications on in vivo and in vitro [Ca2+]int measurements in T lymphocytes stimulated focally by antigen-presenting cells (APC) after forming an immunological synapse.
Collapse
Affiliation(s)
- Kim S Friedmann
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg, Germany
| | - Monika Bozem
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg, Germany.
| |
Collapse
|
33
|
Roesler AM, Wicher SA, Ravix J, Britt RD, Manlove L, Teske JJ, Cummings K, Thompson MA, Farver C, MacFarlane P, Pabelick CM, Prakash YS. Calcium sensing receptor in developing human airway smooth muscle. J Cell Physiol 2019; 234:14187-14197. [PMID: 30624783 DOI: 10.1002/jcp.28115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
Airway smooth muscle (ASM) regulation of airway structure and contractility is critical in fetal/neonatal physiology in health and disease. Fetal lungs experience higher Ca2+ environment that may impact extracellular Ca2+ ([Ca2+ ]o ) sensing receptor (CaSR). Well-known in the parathyroid gland, CaSR is also expressed in late embryonic lung mesenchyme. Using cells from 18-22 week human fetal lungs, we tested the hypothesis that CaSR regulates intracellular Ca2+ ([Ca2+ ]i ) in fetal ASM (fASM). Compared with adult ASM, CaSR expression was higher in fASM, while fluorescence Ca2+ imaging showed that [Ca2+ ]i was more sensitive to altered [Ca2+ ]o . The fASM [Ca2+ ]i responses to histamine were also more sensitive to [Ca2+ ]o (0-2 mM) compared with an adult, enhanced by calcimimetic R568 but blunted by calcilytic NPS2143. [Ca2+ ]i was enhanced by endogenous CaSR agonist spermine (again higher sensitivity compared with adult). Inhibition of phospholipase C (U73122; siRNA) or inositol 1,4,5-triphosphate receptor (Xestospongin C) blunted [Ca2+ ]o sensitivity and R568 effects. NPS2143 potentiated U73122 effects. Store-operated Ca2+ entry was potentiated by R568. Traction force microscopy showed responsiveness of fASM cellular contractility to [Ca2+ ]o and NPS2143. Separately, fASM proliferation showed sensitivity to [Ca2+ ]o and NPS2143. These results demonstrate functional CaSR in developing ASM that modulates airway contractility and proliferation.
Collapse
Affiliation(s)
- Anne M Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jovanka Ravix
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Logan Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Katelyn Cummings
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Carol Farver
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Peter MacFarlane
- Division of Neonatology, Case Western University, Cleveland, Ohio
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
34
|
Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol 2018; 15:33-51. [PMID: 30443043 PMCID: PMC6535143 DOI: 10.1038/s41574-018-0115-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ca2+-sensing receptor (CaSR) is a dimeric family C G protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and the kidneys and signals via G proteins and β-arrestin. The CaSR has a pivotal role in bone and mineral metabolism, as it regulates parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss-of-function and gain-of-function CaSR mutations that cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by the fact that alterations in parathyroid CaSR expression contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca2+ homeostasis: it has noncalcitropic roles in lung and neuronal development, vascular tone, gastrointestinal nutrient sensing, wound healing and secretion of insulin and enteroendocrine hormones. Furthermore, the abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma but increase the malignant potential of prostate and breast cancers.
Collapse
Affiliation(s)
- Fadil M Hannan
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Wenhan Chang
- Endocrine Research Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Luisa Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Iamartino L, Elajnaf T, Kallay E, Schepelmann M. Calcium-sensing receptor in colorectal inflammation and cancer: Current insights and future perspectives. World J Gastroenterol 2018; 24:4119-4131. [PMID: 30271078 PMCID: PMC6158479 DOI: 10.3748/wjg.v24.i36.4119] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) is best known for its action in the parathyroid gland and kidneys where it controls body calcium homeostasis. However, the CaSR has different roles in the gastrointestinal tract, where it is ubiquitously expressed. In the colon, the CaSR is involved in controlling multiple mechanisms, including fluid transport, inflammation, cell proliferation and differentiation. Although the expression pattern and functions of the CaSR in the colonic microenvironment are far from being completely understood, evidence has been accumulating that the CaSR might play a protective role against both colonic inflammation and colorectal cancer. For example, CaSR agonists such as dipeptides have been suggested to reduce colonic inflammation, while dietary calcium was shown to reduce the risk of colorectal cancer. CaSR expression is lost in colonic malignancies, indicating that the CaSR is a biomarker for colonic cancer progression. This dual anti-inflammatory and anti-tumourigenic role of the CaSR makes it especially interesting in colitis-associated colorectal cancer. In this review, we describe the clinical and experimental evidence for the role of the CaSR in colonic inflammation and colorectal cancer, the intracellular signalling pathways which are putatively involved in these actions, and the possibilities to exploit these actions of the CaSR for future therapies of colonic inflammation and cancer.
Collapse
Affiliation(s)
- Luca Iamartino
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Taha Elajnaf
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Enikö Kallay
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Martin Schepelmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
36
|
Welcome MO. Current Perspectives and Mechanisms of Relationship between Intestinal Microbiota Dysfunction and Dementia: A Review. Dement Geriatr Cogn Dis Extra 2018; 8:360-381. [PMID: 30483303 PMCID: PMC6244112 DOI: 10.1159/000492491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Accumulating data suggest a crucial role of the intestinal microbiota in the development and progression of neurodegenerative diseases. More recently, emerging reports have revealed an association between intestinal microbiota dysfunctions and dementia, a debilitating multifactorial disorder, characterized by progressive deterioration of cognition and behavior that interferes with the social and professional life of the sufferer. However, the mechanisms of this association are not fully understood. SUMMARY In this review, I discuss recent data that suggest mechanisms of cross-talk between intestinal microbiota dysfunction and the brain that underlie the development of dementia. Potential therapeutic options for dementia are also discussed. The pleiotropic signaling of the metabolic products of the intestinal microbiota together with their specific roles in the maintenance of both the intestinal and blood-brain barriers as well as regulation of local, distant, and circulating immunocytes, and enteric, visceral, and central neural functions are integral to a healthy gut and brain. KEY MESSAGES Research investigating the effect of intestinal microbiota dysfunctions on brain health should focus on multiple interrelated systems involving local and central neuroendocrine, immunocyte, and neural signaling of microbial products and transmitters and neurohumoral cells that not only maintain intestinal, but also blood brain-barrier integrity. The change in intestinal microbiome/dysbiome repertoire is crucial to the development of dementia.
Collapse
Affiliation(s)
- Menizibeya O. Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|
37
|
Calcium-sensing receptor in nutrient sensing: an insight into the modulation of intestinal homoeostasis. Br J Nutr 2018; 120:881-890. [DOI: 10.1017/s0007114518002088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe animal gut effectively prevents the entry of hazardous substances and microbes while permitting the transfer of nutrients, such as water, electrolytes, vitamins, proteins, lipids, carbohydrates, minerals and microbial metabolites, which are intimately associated with intestinal homoeostasis. The gut maintains biological functions through its nutrient-sensing receptors, including the Ca-sensing receptor (CaSR), which activates a variety of signalling pathways, depending on cellular context. CaSR coordinates food digestion and nutrient absorption, promotes cell proliferation and differentiation, regulates energy metabolism and immune response, stimulates hormone secretion, mitigates secretory diarrhoea and enhances intestinal barrier function. Thus, CaSR is crucial to the maintenance of gut homoeostasis and protection of intestinal health. In this review, we focused on the emerging roles of CaSR in the modulation of intestinal homoeostasis including related underlying mechanisms. By elucidating the relationship between CaSR and animal gut homoeostasis, effective and inexpensive methods for treating intestinal health imbalance through nutritional manipulation can be developed. This article is expected to provide experimental data of the effects of CaSR on animal or human health.
Collapse
|
38
|
Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9171905. [PMID: 29682569 PMCID: PMC5846438 DOI: 10.1155/2018/9171905] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal inflammation. Amino acids, including essential amino acids (EAAs), conditionally essential amino acids (CEAAs), and nonessential amino acids (NEAAs), improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic target of rapamycin (mTOR), inducible nitric oxide synthase (iNOS), calcium-sensing receptor (CaSR), nuclear factor-kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), nuclear erythroid-related factor 2 (Nrf2), general controlled nonrepressed kinase 2 (GCN2), and angiotensin-converting enzyme 2 (ACE2).
Collapse
|
39
|
Fraebel J, Gonzalez-Peralta R, Maximos M, Beasley GL, Jolley CD, Cheng SX. Extracellular Calcium Dictates Onset, Severity, and Recovery of Diarrhea in a Child with Immune-Mediated Enteropathy. Front Pediatr 2018; 6:7. [PMID: 29435439 PMCID: PMC5796911 DOI: 10.3389/fped.2018.00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022] Open
Abstract
Diarrhea causes monovalent and divalent ion losses that can influence clinical outcome. Unlike the losses of monovalent ions, such as Na+, K+, Cl-, and [Formula: see text], which are generally large in quantity (osmoles) and therefore determine the severity of diarrhea, the losses of divalent ions are relatively small in osmoles and are often overlooked during diarrheal treatment. Studies now suggest that despite divalent ions being small in osmoles, their effects are large due to the presence of divalent ion-sensing receptors and their amplifying effects in the gut. As a result, losses of these divalent ions without prompt replacement could also significantly affect the onset, severity, and/or recovery of diarrheal disease. Herein, we report a case of a malnourished child with an immune-mediated enteropathy who developed episodes of "breakthrough" diarrhea with concurrent hypocalcemia while on appropriate immunotherapy. Interestingly, during these periods of diarrhea, stool volume fluctuated with levels of blood Ca2+. When Ca2+ was low, diarrhea occurred; when Ca2+ levels normalized with replacement, diarrhea stopped. Based on this and other observations, a broader question arises as to whether the Ca2+ lost in diarrhea should be replaced promptly in these patients.
Collapse
Affiliation(s)
- Johnathan Fraebel
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, FL, United States
| | - Regino Gonzalez-Peralta
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, FL, United States
| | - Maryann Maximos
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, FL, United States
| | - Genie L Beasley
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, FL, United States
| | - Christopher Douglas Jolley
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, FL, United States
| | - Sam Xianjun Cheng
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Qiang J, Tao F, He J, Sun L, Xu P, Bao W. Effects of exposure to Streptococcus iniae on microRNA expression in the head kidney of genetically improved farmed tilapia (Oreochromis niloticus). BMC Genomics 2017; 18:190. [PMID: 28219342 PMCID: PMC5322787 DOI: 10.1186/s12864-017-3591-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Background Genetically improved farmed tilapia (GIFT, Oreochromis niloticus) are susceptible to infection by Streptococcus iniae when maintained in modern intensive culture systems. GIFT are commercially important fishes that are cultured widely in southern China. The role of microRNAs (miRNAs) in the regulatory response of GIFT to S. iniae infection has been underestimated and has not yet been well studied. Head kidney has an important immune function in teleost fishes. The main aim of this study was to determine the possible function of miRNAs in head kidney of S. iniae-infected GIFT. MiRNAs are small, non-coding RNAs that regulate gene expression by binding to the 3’-untranslated regions of their target mRNAs. MiRNAs are known to regulate immune-regulated signaling and inflammatory response pathways. Results High-throughput deep sequencing of two libraries (control group [CO] and infected group [IN]) of RNA extracted from GIFT head kidney tissues generated 12,089,630 (CO) and 12,624,975 (IN) clean reads. Bioinformatics analysis identified 1736 and 1729 conserved miRNAs and 164 and 165 novel miRNAs in the CO and IN libraries, respectively. Three miRNAs (miR-310-3p, miR-92, and miR-127) were found to be up-regulated and four miRNAs (miR-92d-3p, miR-375-5p, miR-146-3p, and miR-694) were found to be down-regulated in the S. iniae-infected GIFT. The expressions of these miRNAs were verified by quantitative real-time PCR. RNAhybrid and TargetScan were used to identify complementary miRNA and mRNA target sites, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to annotate and predict potential downstream regulation of biological pathways. Seven target genes, which encode immune-related proteins (complement C3, cytidine deaminase, regulator of G-protein Rgs22, mitogen-activated protein kinase Mapk1, metabotropic glutamate receptorm GluR8, calcium-sensing receptor CaSR, and microtubule-associated protein Map1S) were predicted to play crucial roles in the GIFT response to S. iniae infection. Conclusions S. iniae outbreaks have hindered the development of the tilapia industry in China. Understanding the miRNA transcriptome of S. iniae-infected GIFT is important for exploring the immune responses regulated by miRNAs as well as for studying novel regulated networks to prevent and treat S. iniae infections in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3591-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China.
| | - Fanyi Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Lanyi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China.
| | - Wenjin Bao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| |
Collapse
|
41
|
Bravo-Sagua R, Mattar P, Díaz X, Lavandero S, Cifuentes M. Calcium Sensing Receptor as a Novel Mediator of Adipose Tissue Dysfunction: Mechanisms and Potential Clinical Implications. Front Physiol 2016; 7:395. [PMID: 27660614 PMCID: PMC5014866 DOI: 10.3389/fphys.2016.00395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
Obesity is currently a serious worldwide public health problem, reaching pandemic levels. For decades, dietary and behavioral approaches have failed to prevent this disease from expanding, and health authorities are challenged by the elevated prevalence of co-morbid conditions. Understanding how obesity-associated diseases develop from a basic science approach is recognized as an urgent task to face this growing problem. White adipose tissue (WAT) is an active endocrine organ, with a crucial influence on whole-body homeostasis. WAT dysfunction plays a key role linking obesity with its associated diseases such as type 2 diabetes mellitus, cardiovascular disease, and some cancers. Among the regulators of WAT physiology, the calcium-sensing receptor (CaSR) has arisen as a potential mediator of WAT dysfunction. Expression of the receptor has been described in human preadipocytes, adipocytes, and the human adipose cell lines LS14 and SW872. The evidence suggests that CaSR activation in the visceral (i.e., unhealthy) WAT is associated with an increased proliferation of adipose progenitor cells and elevated adipocyte differentiation. In addition, exposure of adipose cells to CaSR activators in vitro elevates proinflammatory cytokine expression and secretion. An increased proinflammatory environment in WAT plays a key role in the development of WAT dysfunction that leads to peripheral organ fat deposition and insulin resistance, among other consequences. We propose that CaSR may be one relevant therapeutic target in the struggle to confront the health consequences of the current worldwide obesity pandemic.
Collapse
Affiliation(s)
- Roberto Bravo-Sagua
- Institute of Nutrition and Food Technology, University of ChileSantiago, Chile; Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile
| | - Pamela Mattar
- Institute of Nutrition and Food Technology, University of ChileSantiago, Chile; Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile
| | - Ximena Díaz
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Sergio Lavandero
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| |
Collapse
|
42
|
Feng G, Zheng K, Song D, Xu K, Huang D, Zhang Y, Cao P, Shen S, Zhang J, Feng X, Zhang D. SIRT1 was involved in TNF-α-promoted osteogenic differentiation of human DPSCs through Wnt/β-catenin signal. In Vitro Cell Dev Biol Anim 2016; 52:1001-1011. [PMID: 27530621 DOI: 10.1007/s11626-016-0070-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023]
Abstract
Dental pulp stem cells (DPSCs), as one type of mesenchymal stem cells (MSCs), have the capability of self-renewal and differentiating along the various directions, including osteogenic, chondrogenic, neurogenic, and adipogenic. We previously study and found that tumor necrosis factor-α (TNF-α) promoted osteogenic differentiation of human DPSCs via the Wnt/β-catenin signaling pathway in low concentration while inhibited that in high concentration. In the abovementioned process, we found that sirtuin-1 (SIRT1) had the same change compared with the characteristic protein of bone formation, such as bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (Runx2), and collagen I (COL1). We asked whether SIRT1 could regulate osteogenesis of DPSCs. In inflammation microenvironment constructed by TNF-α, we tested the expression changing of SIRT1 and analyzed the function of SIRT1 on osteogenic differentiation of DPSCs. SIRT1 deacetylated β-catenin, and then promote its accumulation in the nucleus. Accumulated β-catenin can lead to transcription of osteogenic characteristic genes. Using the activator of SIRT1, resveratrol, could promote the above-mentioned process of osteogenic differentiation. SIRT1 could regulate osteogenesis of DPSCs through Wnt/β-catenin signal. SIRT1, as a regulator of differentiation of DPSCs, may be a new target for cell-based therapy in oral diseases and other regenerative medicine.
Collapse
Affiliation(s)
- Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Zheng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Donghui Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Xu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ye Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Peipei Cao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shuling Shen
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Dongmei Zhang
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, China.
| |
Collapse
|