1
|
Fu H, Cheng J, Hu L, Heng BC, Zhang X, Deng X, Liu Y. Mitochondria-targeting materials and therapies for regenerative engineering. Biomaterials 2025; 316:123023. [PMID: 39708774 DOI: 10.1016/j.biomaterials.2024.123023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The hemostatic, inflammatory, proliferative, and remodeling phases of healing require precise spatiotemporal coordination and orchestration of numerous biological processes. As the primary energy generators in the cell, mitochondria play multifunctional roles in regulating metabolism, stress reactions, immunity, and cell density during the process of tissue regeneration. Mitochondrial dynamics involves numerous crucial processes, fusion, fission, autophagy, and translocation, which are all necessary for preserving mitochondrial function, distributing energy throughout cells, and facilitating cellular signaling. Tissue regeneration is specifically associated with mitochondrial dynamics due to perturbations of Ca2+, H2O2 and ROS levels, which can result in mitochondrial malfunction. Increasing evidence from multiple models suggests that clinical interventions or medicinal drugs targeting mitochondrial dynamics could be a promising approach. This review highlights significant advances in the understanding of mitochondrial dynamics in tissue regeneration, with specific attention on mitochondria-targeting biomaterials that accelerate multiple tissues' regeneration by regulating mitochondrial metabolism. The innovations in nanomaterials and nanosystems enhance mitochondrial-targeting therapies are critically examined with the prospects of modulating mitochondrial dynamics for new therapies in regenerative engineering.
Collapse
Affiliation(s)
- Hongying Fu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Jingrong Cheng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Le Hu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Xuliang Deng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Yang Liu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
He X, Zhong L, Wang N, Zhao B, Wang Y, Wu X, Zheng C, Ruan Y, Hou J, Luo Y, Yin Y, He Y, Xiang AP, Wang J. Gastric Cancer Actively Remodels Mechanical Microenvironment to Promote Chemotherapy Resistance via MSCs-Mediated Mitochondrial Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404994. [PMID: 39392399 DOI: 10.1002/advs.202404994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Chemotherapy resistance is the main reason of treatment failure in gastric cancer (GC). However, the mechanism of oxaliplatin (OXA) resistance remains unclear. Here, we demonstrate that extracellular mechanical signaling plays crucial roles in OXA resistance within GC. We selected OXA-resistant GC patients and analyzed tumor tissues by single-cell sequencing, and found that the mitochondrial content of GC cells increased in a biosynthesis-independent manner. Moreover, we found that the increased mitochondria of GC cells were mainly derived from mesenchymal stromal cells (MSCs), which could repair the mitochondrial function and reduce the levels of mitophagy in GC cells, thus leading to OXA resistance. Furthermore, we investigated the underlying mechanism and found that mitochondrial transfer was mediated by mechanical signals of the extracellular matrix (ECM). After OXA administration, GC cells actively secreted ECM in the tumor microenvironment (TEM), increasing matrix stiffness of the tumor tissues, which promoted mitochondria to transfer from MSCs to GC cells via microvesicles (MVs). Meanwhile, inhibiting the mechanical-related RhoA/ROCK1 pathway could alleviate OXA resistance in GC cells. In summary, these results indicate that matrix stiffness could be used as an indicator to identify chemotherapy resistance, and targeting mechanical-related pathway could effectively alleviate OXA resistance and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Xin He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Zhong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Nan Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Baiwei Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yannan Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinxiang Wu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Changyu Zheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yueheng Ruan
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianfeng Hou
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yusheng Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuehan Yin
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
3
|
Wang Q, Wang X, Shang Z, Zhao L. Mechanism and prospects of mitochondrial transplantation for spinal cord injury treatment. Stem Cell Res Ther 2024; 15:457. [PMID: 39609871 PMCID: PMC11606159 DOI: 10.1186/s13287-024-04077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Spinal cord injury (SCI) involves a continuous and dynamic cascade of complex reactions, with mitochondrial damage and dysfunction-induced energy metabolism disorders playing a central role throughout the process. These disorders not only determine the severity of secondary injuries but also influence the potential for axonal regeneration. Given the critical role of energy metabolism disturbances in the pathology of SCI, strategies such as enhancing mitochondrial transport within axons to alleviate local energy deficits, or transplanting autologous or allogeneic mitochondria to restore energy supply to damaged tissues, have emerged as potential approaches for SCI repair. These strategies also aim to modulate local inflammatory responses and apoptosis. Preclinical studies have initially demonstrated that mitochondrial transplantation (MT) significantly reduces neuronal death and promotes axonal regeneration following spinal cord injury. MT achieves this by regulating signaling pathways such as MAPK/ERK and PI3K/Akt, promoting the expression of growth-associated protein-43 (GAP-43) in neurons, and inhibiting the expression of apoptosis-related proteins like Grp78, Chop, and P-Akt, thereby enhancing the survival and regeneration of damaged neurons. Additionally, MT plays a role in promoting the expression of vascular endothelial growth factor, facilitating tissue repair, and reducing the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Furthermore, MT modulates neuronal apoptosis and inflammatory responses by decreasing the expression of p-JNK, a member of the MAPK family. In summary, by reviewing the detailed mechanisms underlying the cascade of pathological processes in SCI, we emphasize the changes in endogenous mitochondria post-SCI and the potential of exogenous MT in SCI repair. This review aims to provide insights and a basis for developing more effective clinical treatments for SCI.
Collapse
Affiliation(s)
- Qin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Zhizhong Shang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Long Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Datta S, Rahman MA, Koka S, Boini KM. High Mobility Group Box 1 (HMGB1): Molecular Signaling and Potential Therapeutic Strategies. Cells 2024; 13:1946. [PMID: 39682695 DOI: 10.3390/cells13231946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a highly conserved non-histone chromatin-associated protein across species, primarily recognized for its regulatory impact on vital cellular processes, like autophagy, cell survival, and apoptosis. HMGB1 exhibits dual functionality based on its localization: both as a non-histone protein in the nucleus and as an inducer of inflammatory cytokines upon extracellular release. Pathophysiological insights reveal that HMGB1 plays a significant role in the onset and progression of a vast array of diseases, viz., atherosclerosis, kidney damage, cancer, and neurodegeneration. However, a clear mechanistic understanding of HMGB1 release, translocation, and associated signaling cascades in mediating such physiological dysfunctions remains obscure. This review presents a detailed outline of HMGB1 structure-function relationship and its regulatory role in disease onset and progression from a signaling perspective. This review also presents an insight into the status of HMGB1 druggability, potential limitations in understanding HMGB1 pathophysiology, and future perspective of studies that can be undertaken to address the existing scientific gap. Based on existing paradigm of various studies, HMGB1 is a critical regulator of inflammatory cascades and drives the onset and progression of a broad spectrum of dysfunctions. Studies focusing on HMGB1 druggability have enabled the development of biologics with potential clinical benefits. However, deeper understanding of post-translational modifications, redox states, translocation mechanisms, and mitochondrial interactions can potentially enable the development of better courses of therapy against HMGB1-mediated physiological dysfunctions.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
5
|
Wu X, Wang K, Chen H, Cao B, Wang Y, Wang Z, Dai C, Yao M, Ji X, Jiang X, Zhang W, Pan Z, Xue D. Hypoxia-induced mitochondrial fission regulates the fate of bone marrow mesenchymal stem cells by maintaining HIF1α stabilization. Free Radic Biol Med 2024; 225:127-144. [PMID: 39366470 DOI: 10.1016/j.freeradbiomed.2024.10.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
For mesenchymal stem cells derived from bone marrow, a controlled reduction in ambient oxygen concentration has been recognized as a facilitator of osteogenic differentiation and the formation of calcium nodules. However, the specific molecular mechanisms underlying this phenotype remain unclear. The aim of this study was to elucidate the impact of hypoxia on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and to explore the involvement of mitophagy and the regulation of mitochondrial dynamics mediated by the mitochondrial dynamic regulatory factor FUN14 domain-containing 1 (FUNDC1). Our findings suggest that FUNDC1 is required for promoting osteogenic differentiation in BMSCs under hypoxic conditions. However, this effect was not dependent on FUNDC1-mediated mitophagy but rather on FUNDC1-mediated regulation of mitochondrial fission. At the mechanistic level, FUNDC1 binds more DNM1L and less OPA1 under hypoxic conditions, leading to an upsurge in mitochondrial division. This heightened mitochondrial division culminates in the increased translocation of Parkin to mitochondria, diminishing its interactions with HIF1α in the cytoplasm and consequently facilitating HIF1α deubiquitination and stabilization. In summary, FUNDC1-regulated mitochondrial division in hypoxic culture emerges as a critical determinant for the translocation of Parkin to mitochondria, ultimately maintaining HIF1α stabilization and promoting osteogenic differentiation.
Collapse
Affiliation(s)
- Xiaoyong Wu
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Kanbin Wang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Hongyu Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Binhao Cao
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Yibo Wang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongxiang Wang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Chengxin Dai
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Minjun Yao
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Xiaoxiao Ji
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Xiaowen Jiang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Weijun Zhang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Zhijun Pan
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China.
| | - Deting Xue
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
6
|
Wang M, Wu W, Lu J, Lu R, Min L, Song A, Zhao B, Li Y, Xie K, Gu L. Mitochondrial-Derived Signaling Mediates Differentiation of Parietal Epithelial Cells into Podocytes. Antioxid Redox Signal 2024. [PMID: 39212658 DOI: 10.1089/ars.2024.0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aims: Parietal epithelial cells (PECs) are potential stem cells within the glomerulus, migrating into site of podocyte loss to differentiate into podocytes. Little is known about the mechanism mediating differentiation of PECs into podocytes. Results: In vitro differentiation of PECs into podocytes led to upregulation of podocyte markers such as Wilms' tumor gene 1 (WT-1), Forkhead box C1 (FOXC1), synaptopodin and podocin, accompanied by increased mitochondrial abundance. Preincubation with a mitochondrial reactive oxygen species (ROS) inhibitor prevented all these events in PECs. In vivo, adriamycin (ADR)-treated mice exhibited albuminuria, decreased WT1 positive cells, and claudin-1 expressed in glomerular capillary tuft, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) overproduction in PECs. Expression of the ROS-related molecule nuclear factor erythroid 2-related factor 2 (Nrf2) and its target protein Brahma-related gene 1 (Brg1) increased during differentiation of PECs into podocytes. Suppressing Nrf2 or Brg1 reduced the differentiation of PECs, whereas overexpression had the opposite effect. Brg1 directly regulated WT-1 transcription in PECs. Activation of Nrf2 with bardoxolone-methyl (CDDO-Me) resulted in less proteinuria and more WT1 positive cells in ADR mice. PECs conditional human Nrf2 knock-in mice showed increased WT1 cell numbers. Conclusion: It concluded that mitochondria-derived ROS mediated differentiation of PECs into podocytes via Nrf2 and Brg1 signaling.
Collapse
Affiliation(s)
- Minzhou Wang
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangshu Wu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayue Lu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renhua Lu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulin Min
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ahui Song
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingru Zhao
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Department of Nephrology, Shanghai Jiading District Central Hospital, Shanghai, China
| | - Kewei Xie
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nephrology, Shanghai Jiading District Central Hospital, Shanghai, China
| |
Collapse
|
7
|
Bourebaba L, Bourebaba N, Galuppo L, Marycz K. Artificial mitochondrial transplantation (AMT) reverses aging of mesenchymal stromal cells and improves their immunomodulatory properties in LPS-induced synoviocytes inflammation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119806. [PMID: 39098401 DOI: 10.1016/j.bbamcr.2024.119806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Nowadays, regenerative medicine techniques are usually based on the application of mesenchymal stromal cells (MSCs) for the repair or restoration of injured damaged tissues. However, the effectiveness of autologous therapy is limited as therapeutic potential of MSCs declines due to patient's age, health condition and prolonged in vitro cultivation as a result of decreased growth rate. For that reason, there is an urgent need to develop strategies enabling the in vitro rejuvenation of MSCs prior transplantation in order to enhance their in vivo therapeutic efficiency. In presented study, we attempted to mimic the naturally occurring mitochondrial transfer (MT) between neighbouring cells and verify whether artificial MT (AMT) could reverse MSCs aging and improve their biological properties. For that reason, mitochondria were isolated from healthy donor equine adipose-derived stromal cells (ASCs) and transferred into metabolically impaired recipient ASCs derived from equine metabolic syndrome (EMS) affected horses, which were subsequently subjected to various analytical methods in order to verify the cellular and molecular outcomes of the applied AMT. Mitochondria recipient cells were characterized by decreased apoptosis, senescence and endoplasmic reticulum stress while insulin sensitivity was enhanced. Furthermore, we observed increased mitochondrial fragmentation and associated PARKIN protein accumulation, which indicates on the elimination of dysfunctional organelles via mitophagy. AMT further promoted physioxia and regulated autophagy fluxes. Additionally, rejuvenated ASCs displayed an improved anti-inflammatory activity toward LPS-stimulated synoviocytes. The presented findings highlight AMT as a promising alternative and effective method for MSCs rejuvenation, for potential application in autologous therapies in which MSCs properties are being strongly deteriorated due to patients' condition.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland.
| | - Nabila Bourebaba
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Larry Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95516, United States
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA 95516, United States.
| |
Collapse
|
8
|
Javadpour P, Abbaszadeh F, Ahmadiani A, Rezaei M, Ghasemi R. Mitochondrial Transportation, Transplantation, and Subsequent Immune Response in Alzheimer's Disease: An Update. Mol Neurobiol 2024; 61:7151-7167. [PMID: 38368286 DOI: 10.1007/s12035-024-04009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by memory impairment and a progressive decline in cognitive function. Mitochondrial dysfunction has been identified as an important contributor to the development of AD, leading to oxidative stress and energy deficits within the brain. While current treatments for AD aim to alleviate symptoms, there is an urgent need to target the underlying mechanisms. The emerging field of mitotherapy, which involves the transplantation of healthy mitochondria into damaged cells, has gained substantial attention and has shown promising results. However, research in the context of AD remains limited, necessitating further investigations. In this review, we summarize the mitochondrial pathways that contribute to the progression of AD. Additionally, we discuss mitochondrial transfer among brain cells and mitotherapy, with a focus on different administration routes, various sources of mitochondria, and potential modifications to enhance transplantation efficacy. Finally, we review the limited available evidence regarding the immune system's response to mitochondrial transplantation in damaged brain regions.
Collapse
Affiliation(s)
- Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wang J, Zhang M, Wang H. Emerging Landscape of Mesenchymal Stem Cell Senescence Mechanisms and Implications on Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:2306-2325. [PMID: 39144566 PMCID: PMC11320744 DOI: 10.1021/acsptsci.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Mesenchymal stem cells (MSCs) hold significant promise for regenerative medicine and tissue engineering due to their unique multipotent differentiation ability and immunomodulatory properties. MSC therapy is widely discussed and utilized in clinical treatment. However, during both in vitro expansion and in vivo transplantation, MSCs are prone to senescence, an irreversible growth arrest characterized by morphological, gene expression, and functional changes in genomic regulation. The microenvironment surrounding MSCs plays a crucial role in modulating their senescence phenotype, influenced by factors such as hypoxia, inflammation, and aging status. Numerous strategies targeting MSC senescence have been developed, including senolytics and senomorphic agents, antioxidant and exosome therapies, mitochondrial transfer, and niche modulation. Novel approaches addressing replicative senescence have also emerged. This paper comprehensively reviews the current molecular manifestations of MSC senescence, addresses the environmental impact on senescence, and highlights potential therapeutic strategies to mitigate senescence in MSC-based therapies. These insights aim to enhance the efficacy and understanding of MSC therapies.
Collapse
Affiliation(s)
- Jing Wang
- Department
of Cellular and Molecular Medicine, University
of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Muqing Zhang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21215, United States
| | - Hu Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21215, United States
| |
Collapse
|
10
|
Liang J, Wang J, Sui B, Tong Y, Chai J, Zhou Q, Zheng C, Wang H, Kong L, Zhang H, Bai Y. Ptip safeguards the epigenetic control of skeletal stem cell quiescence and potency in skeletogenesis. Sci Bull (Beijing) 2024; 69:2099-2113. [PMID: 38493069 DOI: 10.1016/j.scib.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/23/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
Stem cells remain in a quiescent state for long-term maintenance and preservation of potency; this process requires fine-tuning regulatory mechanisms. In this study, we identified the epigenetic landscape along the developmental trajectory of skeletal stem cells (SSCs) in skeletogenesis governed by a key regulator, Ptip (also known as Paxip1, Pax interaction with transcription-activation domain protein-1). Our results showed that Ptip is required for maintaining the quiescence and potency of SSCs, and loss of Ptip in type II collagen (Col2)+ progenitors causes abnormal activation and differentiation of SSCs, impaired growth plate morphogenesis, and long bone dysplasia. We also found that Ptip suppressed the glycolysis of SSCs through downregulation of phosphoglycerate kinase 1 (Pgk1) by repressing histone H3 lysine 27 acetylation (H3K27ac) at the promoter region. Notably, inhibition of glycolysis improved the function of SSCs despite Ptip deficiency. To the best of our knowledge, this is the first study to establish an epigenetic framework based on Ptip, which safeguards skeletal stem cell quiescence and potency through metabolic control. This framework is expected to improve SSC-based treatments of bone developmental disorders.
Collapse
Affiliation(s)
- Jianfei Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Bingdong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yibo Tong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jihua Chai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Qin Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Chenxi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Hao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Haojian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430079, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| | - Yi Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
11
|
Zhang Q, Pan RL, Wang H, Wang JJ, Lu SH, Zhang M. Nanoporous Titanium Implant Surface Accelerates Osteogenesis via the Piezo1/Acetyl-CoA/β-Catenin Pathway. NANO LETTERS 2024; 24:8257-8267. [PMID: 38920296 PMCID: PMC11247543 DOI: 10.1021/acs.nanolett.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Osseointegration is the most important factor determining implant success. The surface modification of TiO2 nanotubes prepared by anodic oxidation has remarkable advantages in promoting bone formation. However, the mechanism behind this phenomenon is still unintelligible. Here we show that the nanomorphology exhibited open and clean nanotube structure and strong hydrophilicity, and the nanomorphology significantly facilitated the adhesion, proliferation, and osteogenesis differentiation of stem cells. Exploring the mechanism, we found that the nanomorphology can enhance mitochondrial oxidative phosphorylation (OxPhos) by activating Piezo1 and increasing intracellular Ca2+. The increase in OxPhos can significantly uplift the level of acetyl-CoA in the cytoplasm but not significantly raise the level of acetyl-CoA in the nucleus, which was beneficial for the acetylation and stability of β-catenin and ultimately promoted osteogenesis. This study provides a new interpretation for the regulatory mechanism of stem cell osteogenesis by nanomorphology.
Collapse
Affiliation(s)
- Qian Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Run-Long Pan
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Hui Wang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Jun-Jun Wang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Song-He Lu
- Scientific
Research Department, Air Force Medical University, Xi’an 710032, China
| | - Min Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
12
|
Ding P, Gao C, Zhou J, Mei J, Li G, Liu D, Li H, Liao P, Yao M, Wang B, Lu Y, Peng X, Jiang C, Yin J, Huang Y, Zheng M, Gao Y, Zhang C, Gao J. Mitochondria from osteolineage cells regulate myeloid cell-mediated bone resorption. Nat Commun 2024; 15:5094. [PMID: 38877020 PMCID: PMC11178781 DOI: 10.1038/s41467-024-49159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Interactions between osteolineage cells and myeloid cells play important roles in maintaining skeletal homeostasis. Herein, we find that osteolineage cells transfer mitochondria to myeloid cells. Impairment of the transfer of mitochondria by deleting MIRO1 in osteolineage cells leads to increased myeloid cell commitment toward osteoclastic lineage cells and promotes bone resorption. In detail, impaired mitochondrial transfer from osteolineage cells alters glutathione metabolism and protects osteoclastic lineage cells from ferroptosis, thus promoting osteoclast activities. Furthermore, mitochondrial transfer from osteolineage cells to myeloid cells is involved in the regulation of glucocorticoid-induced osteoporosis, and glutathione depletion alleviates the progression of glucocorticoid-induced osteoporosis. These findings reveal an unappreciated mechanism underlying the interaction between osteolineage cells and myeloid cells to regulate skeletal metabolic homeostasis and provide insights into glucocorticoid-induced osteoporosis progression.
Collapse
Affiliation(s)
- Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Chuan Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Jialun Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Gan Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Xiaoyuan Peng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Chenyi Jiang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Jimin Yin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yigang Huang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| |
Collapse
|
13
|
Taniguchi T, Okahashi N, Matsuda F. 13C-metabolic flux analysis reveals metabolic rewiring in HL-60 neutrophil-like cells through differentiation and immune stimulation. Metab Eng Commun 2024; 18:e00239. [PMID: 38883865 PMCID: PMC11176794 DOI: 10.1016/j.mec.2024.e00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
Neutrophils are innate immune cells and the first line of defense for the maintenance of homeostasis. However, our knowledge of the metabolic rewiring associated with their differentiation and immune stimulation is limited. Here, quantitative 13C-metabolic flux analysis was performed using HL-60 cells as the neutrophil model. A metabolic model for 13C-metabolic flux analysis of neutrophils was developed based on the accumulation of 13C in intracellular metabolites derived from 13C-labeled extracellular carbon sources and intracellular macromolecules. Aspartate and glutamate in the medium were identified as carbon sources that enter central carbon metabolism. Furthermore, the breakdown of macromolecules, estimated to be fatty acids and nucleic acids, was observed. Based on these results, a modified metabolic model was used for 13C-metabolic flux analysis of undifferentiated, differentiated, and lipopolysaccharide (LPS)-activated HL-60 cells. The glucose uptake rate and glycolytic flux decreased with differentiation, whereas the tricarboxylic acid (TCA) cycle flux remained constant. The addition of LPS to differentiated HL-60 cells activated the glucose uptake rate and pentose phosphate pathway (PPP) flux levels, resulting in an increased rate of total NADPH regeneration, which could be used to generate reactive oxygen species. The flux levels of fatty acid degradation and synthesis were also increased in LPS-activated HL-60 cells. Overall, this study highlights the quantitative metabolic alterations in multiple pathways via the differentiation and activation of HL-60 cells using 13C-metabolic flux analysis.
Collapse
Affiliation(s)
- Takeo Taniguchi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Jin N, Zhang M, Zhou L, Jin S, Cheng H, Li X, Shi Y, Xiang T, Zhang Z, Liu Z, Zhao H, Xie J. Mitochondria transplantation alleviates cardiomyocytes apoptosis through inhibiting AMPKα-mTOR mediated excessive autophagy. FASEB J 2024; 38:e23655. [PMID: 38767449 DOI: 10.1096/fj.202400375r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
The disruption of mitochondria homeostasis can impair the contractile function of cardiomyocytes, leading to cardiac dysfunction and an increased risk of heart failure. This study introduces a pioneering therapeutic strategy employing mitochondria derived from human umbilical cord mesenchymal stem cells (hu-MSC) (MSC-Mito) for heart failure treatment. Initially, we isolated MSC-Mito, confirming their functionality. Subsequently, we monitored the process of single mitochondria transplantation into recipient cells and observed a time-dependent uptake of mitochondria in vivo. Evidence of human-specific mitochondrial DNA (mtDNA) in murine cardiomyocytes was observed after MSC-Mito transplantation. Employing a doxorubicin (DOX)-induced heart failure model, we demonstrated that MSC-Mito transplantation could safeguard cardiac function and avert cardiomyocyte apoptosis, indicating metabolic compatibility between hu-MSC-derived mitochondria and recipient mitochondria. Finally, through RNA sequencing and validation experiments, we discovered that MSC-Mito transplantation potentially exerted cardioprotection by reinstating ATP production and curtailing AMPKα-mTOR-mediated excessive autophagy.
Collapse
Affiliation(s)
- Ning Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, China
| | - Mengyao Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Li Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shanshan Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Haiqin Cheng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xuewei Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yaqian Shi
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Tong Xiang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zongxiao Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Guan F, Wu X, Zhou J, Lin Y, He Y, Fan C, Zeng Z, Xiong W. Mitochondrial transfer in tunneling nanotubes-a new target for cancer therapy. J Exp Clin Cancer Res 2024; 43:147. [PMID: 38769583 PMCID: PMC11106947 DOI: 10.1186/s13046-024-03069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Fan Guan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaomin Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiatong Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuzhe Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuqing He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chunmei Fan
- Department of Histology and Embryology, School of Basic Medicine Sciences, Central South University, Changsha, Hunan Province, 410013, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| |
Collapse
|
16
|
Liu Y, Chen P, Zhou T, Zeng J, Liu Z, Wang R, Xu Y, Yin W, Rong M. Co-culture of STRO1 + human gingival mesenchymal stem cells and human umbilical vein endothelial cells in 3D spheroids: enhanced in vitro osteogenic and angiogenic capacities. Front Cell Dev Biol 2024; 12:1378035. [PMID: 38770153 PMCID: PMC11102987 DOI: 10.3389/fcell.2024.1378035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Stem cell spheroid is a promising graft substitute for bone tissue engineering. Spheroids obtained by 3D culture of STRO1+ Gingival Mesenchymal Stem Cells (sGMSCs) (sGMSC spheroids, GS) seldom express angiogenic factors, limiting their angiogenic differentiation in vivo. This study introduced a novel stem cell spheroid with osteogenic and angiogenic potential through 3D co-culture of sGMSCs and Human Umbilical Vein Endothelial Cells (HUVECs) (sGMSC/HUVEC spheroids, GHS). GHS with varying seeding ratios of sGMSCs to HUVECs (GHR) were developed. Cell fusion within the GHS system was observed via immunofluorescence. Calcein-AM/PI staining and chemiluminescence assay indicated cellular viability within the GHS. Furthermore, osteogenic and angiogenic markers, including ALP, OCN, RUNX2, CD31, and VEGFA, were quantified and compared with the control group comprising solely of sGMSCs (GS). Incorporating HUVECs into GHS extended cell viability and stability, initiated the expression of angiogenic factors CD31 and VEGFA, and upregulated the expression of osteogenic factors ALP, OCN, and RUNX2, especially when GHS with a GHR of 1:1. Taken together, GHS, derived from the 3D co-culture of sGMSCs and HUVECs, enhanced osteogenic and angiogenic capacities in vitro, extending the application of cell therapy in bone tissue engineering.
Collapse
Affiliation(s)
- Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tengfei Zhou
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ruijie Wang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yiwei Xu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
| | - Wuwei Yin
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Shi Y, Kang Q, Zhou H, Yue X, Bi Y, Luo Q. Aberrant LETM1 elevation dysregulates mitochondrial functions and energy metabolism and promotes lung metastasis in osteosarcoma. Genes Dis 2024; 11:100988. [PMID: 38292199 PMCID: PMC10825238 DOI: 10.1016/j.gendis.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/10/2023] [Accepted: 05/25/2023] [Indexed: 02/01/2024] Open
Abstract
Osteosarcoma is a differentiation-deficient disease, and despite the unique advantages and great potential of differentiation therapy, there are only a few known differentiation inducers, and little research has been done on their targets. Cell differentiation is associated with an increase in mitochondrial content and activity. The metabolism of some tumor cells is characterized by impaired oxidative phosphorylation, as well as up-regulation of aerobic glycolysis and pentose phosphate pathways. Leucine-containing zipper and EF-hand transmembrane protein 1 (LETM1) is involved in the maintenance of mitochondrial morphology and is closely associated with tumorigenesis and progression, as well as cancer cell stemness. We found that MG63 and 143B osteosarcoma cells overexpress LETM1 and exhibit abnormalities in mitochondrial structure and function. Knockdown of LETM1 partially restored the mitochondrial structure and function, inhibited the pentose phosphate pathway, promoted oxidative phosphorylation, and led to osteogenic differentiation. It also inhibited spheroid cell formation, proliferation, migration, and invasion in an in vitro model. When LETM1 was knocked down in vivo, there was reduced tumor formation and lung metastasis. These data suggest that mitochondria are aberrant in LETM1-overexpressing osteosarcoma cells, and knockdown of LETM1 partially restores the mitochondrial structure and function, inhibits the pentose phosphate pathway, promotes oxidative phosphorylation, and increases osteogenic differentiation, thereby reducing malignant biological behavior of the cells.
Collapse
Affiliation(s)
- Yulu Shi
- Stem Cell Biology and Therapy Laboratory, The Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Quan Kang
- Department of Pediatric Surgery, The Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hong Zhou
- Stem Cell Biology and Therapy Laboratory, The Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiaohan Yue
- Stem Cell Biology and Therapy Laboratory, The Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, The Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Qing Luo
- Stem Cell Biology and Therapy Laboratory, The Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
18
|
Peng C, Chen J, Wu R, Jiang H, Li J. Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Front Med 2024; 18:205-236. [PMID: 38165533 DOI: 10.1007/s11684-023-1033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
19
|
Sendera A, Adamczyk-Grochala J, Pikuła B, Cholewa M, Banaś-Ząbczyk A. Electromagnetic field (50 Hz) enhance metabolic potential and induce adaptive/reprogramming response mediated by the increase of N6-methyladenosine RNA methylation in adipose-derived mesenchymal stem cells in vitro. Toxicol In Vitro 2024; 95:105743. [PMID: 38040129 DOI: 10.1016/j.tiv.2023.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Electromagnetic fields (EMF) have an impact on numerous cellular processes. It can positively and negatively affect adipose-derived stem cells (ASCs) thus their fate through the influence of specific factors and protein secretion. EMF can be a great factor for preconditioning ASCs for regenerative medicine purposes, however, understanding the cell's biological response to its effects in vitro is essential. METHODS ASCs were exposed to the EMF (50 Hz; 1.5 mT) for 24 and 48 h, and then cell biological response was analyzed. RESULTS 24 h exposure of ASCs to EMF, significantly increased N6-methyladenosine (m6A) RNA methylation, indicating epitranscriptomic changes as an important factor in ASCs preconditioning. Furthermore, the expression of stem cell markers such as Nanog, Oct-4, Sox-2, CD44, and CD105 increased after 24 h of EMF exposure. Besides, western blot analysis showed upregulation of p21 and DNMT2/TRDMT1 protein levels compared to control cells with no differences in the p53 profile. Moreover, after 24 h of exposure to EMF, cell membrane flexibility, the metabolic potential of cells as well as the distribution, morphology, and metabolism of mitochondria were altered. CONCLUSION ASCs undergo a process of mobilization and adaptation under the EMF influence through the increased m6A RNA modifications. These conditions may "force" ASCs to redefine their stem cell fate mediated by RNA-modifying enzymes and alter their reprogramming decision of as differentiation begins.
Collapse
Affiliation(s)
- Anna Sendera
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Barbara Pikuła
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Marian Cholewa
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Agnieszka Banaś-Ząbczyk
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland.
| |
Collapse
|
20
|
Sipos F, Műzes G. Sirtuins Affect Cancer Stem Cells via Epigenetic Regulation of Autophagy. Biomedicines 2024; 12:386. [PMID: 38397988 PMCID: PMC10886574 DOI: 10.3390/biomedicines12020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sirtuins (SIRTs) are stress-responsive proteins that regulate several post-translational modifications, partly by acetylation, deacetylation, and affecting DNA methylation. As a result, they significantly regulate several cellular processes. In essence, they prolong lifespan and control the occurrence of spontaneous tumor growth. Members of the SIRT family have the ability to govern embryonic, hematopoietic, and other adult stem cells in certain tissues and cell types in distinct ways. Likewise, they can have both pro-tumor and anti-tumor effects on cancer stem cells, contingent upon the specific tissue from which they originate. The impact of autophagy on cancer stem cells, which varies depending on the specific circumstances, is a very intricate phenomenon that has significant significance for clinical and therapeutic purposes. SIRTs exert an impact on the autophagy process, whereas autophagy reciprocally affects the activity of certain SIRTs. The mechanism behind this connection in cancer stem cells remains poorly understood. This review presents the latest findings that position SIRTs at the point where cancer cells and autophagy interact. Our objective is to highlight the various roles of distinct SIRTs in cancer stem cell-related functions through autophagy. This would demonstrate their significance in the genesis and recurrence of cancer and offer a more precise understanding of their treatment possibilities in relation to autophagy.
Collapse
Affiliation(s)
- Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | | |
Collapse
|
21
|
Liu H, Xu K, He Y, Huang F. Mitochondria in Multi-Directional Differentiation of Dental-Derived Mesenchymal Stem Cells. Biomolecules 2023; 14:12. [PMID: 38275753 PMCID: PMC10813276 DOI: 10.3390/biom14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The pursuit of tissue regeneration has fueled decades of research in regenerative medicine. Among the numerous types of mesenchymal stem cells (MSCs), dental-derived mesenchymal stem cells (DMSCs) have recently emerged as a particularly promising candidate for tissue repair and regeneration. In recent years, evidence has highlighted the pivotal role of mitochondria in directing and orchestrating the differentiation processes of DMSCs. Beyond mitochondrial energy metabolism, the multifaceted functions of mitochondria are governed by the mitochondrial quality control (MQC) system, encompassing biogenesis, autophagy, and dynamics. Notably, mitochondrial energy metabolism not only governs the decision to differentiate but also exerts a substantial influence on the determination of differentiation directions. Furthermore, the MQC system exerts a nuanced impact on the differentiation of DMSCs by finely regulating the quality and mass of mitochondria. The review aims to provide a comprehensive overview of the regulatory mechanisms governing the multi-directional differentiation of DMSCs, mediated by both mitochondrial energy metabolism and the MQC system. We also focus on a new idea based on the analysis of data from many research groups never considered before, namely, DMSC-based regenerative medicine applications.
Collapse
Affiliation(s)
| | | | - Yifan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510000, China; (H.L.); (K.X.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510000, China; (H.L.); (K.X.)
| |
Collapse
|
22
|
Lee H, Jeong OY, Park HJ, Lee SL, Bok EY, Kim M, Suh YS, Cheon YH, Kim HO, Kim S, Chun SH, Park JM, Lee YJ, Lee SI. Promising Therapeutic Effects of Embryonic Stem Cells-Origin Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis Models: Immunomodulatory and Anti-Apoptotic Mechanisms. Immune Netw 2023; 23:e45. [PMID: 38188598 PMCID: PMC10767550 DOI: 10.4110/in.2023.23.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Interstitial lung disease (ILD) involves persistent inflammation and fibrosis, leading to respiratory failure and even death. Adult tissue-derived mesenchymal stem cells (MSCs) show potential in ILD therapeutics but obtaining an adequate quantity of cells for drug application is difficult. Daewoong Pharmaceutical's MSCs (DW-MSCs) derived from embryonic stem cells sustain a high proliferative capacity following long-term culture and expansion. The aim of this study was to investigate the therapeutic potential of DW-MSCs in experimental mouse models of ILD. DW-MSCs were expanded up to 12 passages for in vivo application in bleomycin-induced pulmonary fibrosis and collagen-induced connective tissue disease-ILD mouse models. We assessed lung inflammation and fibrosis, lung tissue immune cells, fibrosis-related gene/protein expression, apoptosis and mitochondrial function of alveolar epithelial cells, and mitochondrial transfer ability. Intravenous administration of DW-MSCs consistently improved lung fibrosis and reduced inflammatory and fibrotic markers expression in both models across various disease stages. The therapeutic effect of DW-MSCs was comparable to that following daily oral administration of nintedanib or pirfenidone. Mechanistically, DW-MSCs exhibited immunomodulatory effects by reducing the number of B cells during the early phase and increasing the ratio of Tregs to Th17 cells during the late phase of bleomycin-induced pulmonary fibrosis. Furthermore, DW-MSCs exhibited anti-apoptotic effects, increased cell viability, and improved mitochondrial respiration in alveolar epithelial cells by transferring their mitochondria to alveolar epithelial cells. Our findings indicate the strong potential of DW-MSCs in the treatment of ILD owing to their high efficacy and immunomodulatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon 51427, Korea
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Ok-Yi Jeong
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Hee Jin Park
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Eun-yeong Bok
- College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Mingyo Kim
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Young Sun Suh
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon 51427, Korea
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Yun-Hong Cheon
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Hyun-Ok Kim
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon 51427, Korea
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Suhee Kim
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Sung Hak Chun
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Jung Min Park
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Young Jin Lee
- Cell Therapy Center, Daewoong Pharmaceutical, Co., Ltd., Yongin 17028, Korea
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| |
Collapse
|
23
|
Lee HJ, Chae CW, Han HJ. Enhancing the therapeutic efficacy of mesenchymal stem cell transplantation in diabetes: Amelioration of mitochondrial dysfunction-induced senescence. Biomed Pharmacother 2023; 168:115759. [PMID: 37865993 DOI: 10.1016/j.biopha.2023.115759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation offers significant potential for the treatment of diabetes mellitus (DM) and its complications. However, hyperglycemic conditions can induce senescence and dysfunction in both transplanted and resident MSCs, thereby limiting their therapeutic potential. Mitochondrial dysfunction and oxidative stress are key contributors to this process in MSCs exposed to hyperglycemia. As such, strategies aimed at mitigating mitochondrial dysfunction could enhance the therapeutic efficacy of MSC transplantation in DM. In this review, we provide an updated overview of how mitochondrial dysfunction mediates MSC senescence. We present experimental evidence for the molecular mechanisms behind high glucose-induced mitochondrial dysfunction in MSCs, which include impairment of mitochondrial biogenesis, mitochondrial calcium regulation, the mitochondrial antioxidant system, mitochondrial fusion-fission dynamics, mitophagy, and intercellular mitochondrial transfer. Furthermore, we propose potential pharmacological candidates that could improve the efficacy of MSC transplantation by enhancing mitochondrial function in patients with DM and related complications.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of South Korea; Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Republic of South Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
24
|
Zhang C, Ye W, Zhao M, Xia D, Fan Z. tRNA-derived small RNA changes in bone marrow stem cells under hypoxia and osteogenic conduction. J Oral Rehabil 2023; 50:1487-1497. [PMID: 37574812 DOI: 10.1111/joor.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Tissue engineering using bone mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic for bone regeneration. However, the effect of bone regeneration remains unsatisfactory due to the BMSCs' functional abnormality influenced by hypoxia. In this study, we attempt to explore the mechanism of osteogenic differentiation of BMSCs under hypoxic conditions from the perspective of non-coding RNA regulation. METHODS The study employed BMSCs obtained from healthy donors and simulated hypoxia using CoCl2 stimulation. High-throughput sequencing technique was used to identify differential expression profiles of tRNA-derived small RNA (tsRNA) in three experimental groups: BMSCs-0d, BMSCs-7d and BMSCs-0d-CoCl2 . TargetScan and miRanda algorithms were used to determine tsRNA target genes, while Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were employed for the prediction of biological functions. Real-time reverse transcriptase-polymerase chain reaction (Real-time RT-PCR) was carried out on four selected differentially expressed tsRNAs. RESULTS After the osteogenic induction and CoCl2 stimulated separately, there were 19 tsRNAs differentially expressed in BMSCs, including 14 upregulated and five downregulated. According to the analysis of biological information, these tsRNAs may regulate 311 potential target genes and mainly enrich the pathways such as metabolic pathways, Wnt signalling pathway, osteoclast differentiation, cellular senescence and mTOR signalling pathway. The results of Real-time RT-PCR for 3'tiRNA-41-GlnTTG-6, 3'tiRNA-42-LysTTT-8, 5'tiRNA-35-CysACA-1 and tRF3a-AsnGTT-9 were consistent with small RNA sequencing data. CONCLUSION We discovered the tsRNA that changes the process of osteogenesis and hypoxia, which provides new targets for promoting survival and regeneration functions after BMSCs transplantation.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weilong Ye
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Mengyao Zhao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Dengsheng Xia
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Jiang Z, Shi C, Han H, Fu M, Zhu H, Han T, Fei J, Huang Y, Jin Z, He J, Wang Y, Chen X, Shen H. Autologous non-invasively derived stem cells mitochondria transfer shows therapeutic advantages in human embryo quality rescue. Biol Res 2023; 56:60. [PMID: 37978575 PMCID: PMC10657142 DOI: 10.1186/s40659-023-00470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The decline in the quantity and quality of mitochondria are closely associated with infertility, particularly in advanced maternal age. Transferring autologous mitochondria into the oocytes of infertile females represents an innovative and viable strategy for treating infertility, with no concerns regarding ethical considerations. As the donor cells of mitochondria, stem cells have biological advantages but research and evidence in this area are quite scarce. METHODS To screen out suitable human autologous ooplasmic mitochondrial donor cells, we performed comprehensive assessment of mitochondrial physiology, function and metabolic capacity on a varity of autologous adipose, marrow, and urine-derived mesenchymal stromal cells (ADSC, BMSC and USC) and ovarian germline granulosa cells (GC). Further, to explore the biosafety, effect and mechanism of stem cell-derived mitochondria transfer on human early embryo development, randomized in-vitro basic studies were performed in both of the young and aged oocytes from infertile females. RESULTS Compared with other types of mesenchymal stromal cells, USC demonstrated a non-fused spherical mitochondrial morphology and low oxidative stress status which resembled the oocyte stage. Moreover, USC mitochondrial content, activity and function were all higher than other cell types and less affected by age, and it also exhibited a biphasic metabolic pattern similar to the pre-implantation stage of embryonic development. After the biosafety identification of the USC mitochondrial genome, early embryos after USC mitochondrial transfer showed improvements in mitochondrial content, activity, and cytoplasmic Ca2+ levels. Further, aging embryos also showed improvements in embryonic morphological indicators, euploidy rates, and oxidative stress status. CONCLUSION Autologous non-invasively derived USC mitochondria transfer may be an effective strategy to improve embryonic development and metabolism, especially in infertile females with advanced age or repeated pregnancy failure. It provides evidence and possibility for the autologous treatment of infertile females without invasive and ethical concerns.
Collapse
Affiliation(s)
- Zhixin Jiang
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Cheng Shi
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Hongjing Han
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Min Fu
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Honglan Zhu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Tingting Han
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Jia Fei
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, 102629, China
| | - Yining Huang
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, 102629, China
| | - Zhiping Jin
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, 102629, China
| | - Jianan He
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, 102629, China
| | - Yanbin Wang
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China.
| | - Xi Chen
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China.
| | - Huan Shen
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China.
| |
Collapse
|
26
|
Yao S, Pang M, Wang Y, Wang X, Lin Y, Lv Y, Xie Z, Hou J, Du C, Qiu Y, Guan Y, Liu B, Wang J, Xiang AP, Rong L. Mesenchymal stem cell attenuates spinal cord injury by inhibiting mitochondrial quality control-associated neuronal ferroptosis. Redox Biol 2023; 67:102871. [PMID: 37699320 PMCID: PMC10506061 DOI: 10.1016/j.redox.2023.102871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Ferroptosis is a newly discovered form of iron-dependent oxidative cell death and drives the loss of neurons in spinal cord injury (SCI). Mitochondrial damage is a critical contributor to neuronal death, while mitochondrial quality control (MQC) is an essential process for maintaining mitochondrial homeostasis to promote neuronal survival. However, the role of MQC in neuronal ferroptosis has not been clearly elucidated. Here, we further demonstrate that neurons primarily suffer from ferroptosis in SCI at the single-cell RNA sequencing level. Mechanistically, disordered MQC aggravates ferroptosis through excessive mitochondrial fission and mitophagy. Furthermore, mesenchymal stem cells (MSCs)-mediated mitochondrial transfer restores neuronal mitochondria pool and inhibits ferroptosis through mitochondrial fusion by intercellular tunneling nanotubes. Collectively, these results not only suggest that neuronal ferroptosis is regulated in an MQC-dependent manner, but also fulfill the molecular mechanism by which MSCs attenuate neuronal ferroptosis at the subcellular organelle level. More importantly, it provides a promising clinical translation strategy based on stem cell-mediated mitochondrial therapy for mitochondria-related central nervous system disorders.
Collapse
Affiliation(s)
- Senyu Yao
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Guangdong Engineering Technology Research Center of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Guangdong Engineering Technology Research Center of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yanheng Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaokang Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Guangdong Engineering Technology Research Center of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yaobang Lin
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanyan Lv
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ziqi Xie
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianfeng Hou
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cong Du
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuanjun Guan
- Core Facility of Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Guangdong Engineering Technology Research Center of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Jiancheng Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China; Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China; Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Guangdong Engineering Technology Research Center of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
27
|
Sohrabi A, Lefebvre AEYT, Harrison MJ, Condro MC, Sanazzaro TM, Safarians G, Solomon I, Bastola S, Kordbacheh S, Toh N, Kornblum HI, Digman MA, Seidlits SK. Microenvironmental stiffness induces metabolic reprogramming in glioblastoma. Cell Rep 2023; 42:113175. [PMID: 37756163 PMCID: PMC10842372 DOI: 10.1016/j.celrep.2023.113175] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The mechanical properties of solid tumors influence tumor cell phenotype and the ability to invade surrounding tissues. Using bioengineered scaffolds to provide a matrix microenvironment for patient-derived glioblastoma (GBM) spheroids, this study demonstrates that a soft, brain-like matrix induces GBM cells to shift to a glycolysis-weighted metabolic state, which supports invasive behavior. We first show that orthotopic murine GBM tumors are stiffer than peritumoral brain tissues, but tumor stiffness is heterogeneous where tumor edges are softer than the tumor core. We then developed 3D scaffolds with μ-compressive moduli resembling either stiffer tumor core or softer peritumoral brain tissue. We demonstrate that the softer matrix microenvironment induces a shift in GBM cell metabolism toward glycolysis, which manifests in lower proliferation rate and increased migration activities. Finally, we show that these mechanical cues are transduced from the matrix via CD44 and integrin receptors to induce metabolic and phenotypic changes in cancer cells.
Collapse
Affiliation(s)
- Alireza Sohrabi
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Austin E Y T Lefebvre
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA
| | - Mollie J Harrison
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael C Condro
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Talia M Sanazzaro
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Itay Solomon
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Soniya Bastola
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shadi Kordbacheh
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nadia Toh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Harley I Kornblum
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA
| | - Stephanie K Seidlits
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Pielok A, Kępska M, Steczkiewicz Z, Grobosz S, Bourebaba L, Marycz K. Equine Hoof Progenitor Cells Display Increased Mitochondrial Metabolism and Adaptive Potential to a Highly Pro-Inflammatory Microenvironment. Int J Mol Sci 2023; 24:11446. [PMID: 37511204 PMCID: PMC10379971 DOI: 10.3390/ijms241411446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Medicinal signaling cells (MSC) exhibit distinct molecular signatures and biological abilities, depending on the type of tissue they originate from. Recently, we isolated and described a new population of stem cells residing in the coronary corium, equine hoof progenitor cells (HPCs), which could be a new promising cell pool for the treatment of laminitis. Therefore, this study aimed to compare native populations of HPCs to well-established adipose-derived stem cells (ASCs) in standard culture conditions and in a pro-inflammatory milieu to mimic a laminitis condition. ASCs and HPCs were either cultured in standard conditions or subjected to priming with a cytokines cocktail mixture. The cells were harvested and analyzed for expression of key markers for phenotype, mitochondrial metabolism, oxidative stress, apoptosis, and immunomodulation using RT-qPCR. The morphology and migration were assessed based on fluorescent staining. Microcapillary cytometry analyses were performed to assess the distribution in the cell cycle, mitochondrial membrane potential, and oxidative stress. Native HPCs exhibited a similar morphology to ASCs, but a different phenotype. The HPCs possessed lower migration capacity and distinct distribution across cell cycle phases. Native HPCs were characterized by different mitochondrial dynamics and oxidative stress levels. Under standard culture conditions, HPCs displayed different expression patterns of apoptotic and immunomodulatory markers than ASCs, as well as distinct miRNA expression. Interestingly, after priming with the cytokines cocktail mixture, HPCs exhibited different mitochondrial dynamics than ASCs; however, the apoptosis and immunomodulatory marker expression was similar in both populations. Native ASCs and HPCs exhibited different baseline expressions of markers involved in mitochondrial dynamics, the oxidative stress response, apoptosis and inflammation. When exposed to a pro-inflammatory microenvironment, ASCs and HPCs differed in the expression of mitochondrial condition markers and chosen miRNAs.
Collapse
Affiliation(s)
- Ariadna Pielok
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Martyna Kępska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Zofia Steczkiewicz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Sylwia Grobosz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
| |
Collapse
|
29
|
Lippi M, Maione AS, Chiesa M, Perrucci GL, Iengo L, Sattin T, Cencioni C, Savoia M, Zeiher AM, Tundo F, Tondo C, Pompilio G, Sommariva E. Omics Analyses of Stromal Cells from ACM Patients Reveal Alterations in Chromatin Organization and Mitochondrial Homeostasis. Int J Mol Sci 2023; 24:10017. [PMID: 37373166 DOI: 10.3390/ijms241210017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by ventricular arrhythmias, contractile dysfunctions and fibro-adipose replacement of myocardium. Cardiac mesenchymal stromal cells (CMSCs) participate in disease pathogenesis by differentiating towards adipocytes and myofibroblasts. Some altered pathways in ACM are known, but many are yet to be discovered. We aimed to enrich the understanding of ACM pathogenesis by comparing epigenetic and gene expression profiles of ACM-CMSCs with healthy control (HC)-CMSCs. Methylome analysis identified 74 differentially methylated nucleotides, most of them located on the mitochondrial genome. Transcriptome analysis revealed 327 genes that were more expressed and 202 genes that were less expressed in ACM- vs. HC-CMSCs. Among these, genes implicated in mitochondrial respiration and in epithelial-to-mesenchymal transition were more expressed, and cell cycle genes were less expressed in ACM- vs. HC-CMSCs. Through enrichment and gene network analyses, we identified differentially regulated pathways, some of which never associated with ACM, including mitochondrial functioning and chromatin organization, both in line with methylome results. Functional validations confirmed that ACM-CMSCs exhibited higher amounts of active mitochondria and ROS production, a lower proliferation rate and a more pronounced epicardial-to-mesenchymal transition compared to the controls. In conclusion, ACM-CMSC-omics revealed some additional altered molecular pathways, relevant in disease pathogenesis, which may constitute novel targets for specific therapies.
Collapse
Affiliation(s)
- Melania Lippi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Medicine and Surgery, Università Degli Studi di Milano Bicocca, 20126 Milan, Italy
| | - Angela Serena Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133 Milan, Italy
| | - Gianluca Lorenzo Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Lara Iengo
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Tommaso Sattin
- Department of Arrhythmology and Electrophysiology, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Chiara Cencioni
- Istituto di Analisi dei Sistemi ed Informatica "A. Ruberti", Consiglio Nazionale delle Ricerche (IASI-CNR), 00185 Rome, Italy
| | - Matteo Savoia
- Department of Medicine III, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Department of Medicine III, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Fabrizio Tundo
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Claudio Tondo
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| |
Collapse
|
30
|
Kong Y, Ao J, Chen Q, Su W, Zhao Y, Fei Y, Ma J, Ji M, Mi L. Evaluating Differentiation Status of Mesenchymal Stem Cells by Label-Free Microscopy System and Machine Learning. Cells 2023; 12:1524. [PMID: 37296645 PMCID: PMC10252613 DOI: 10.3390/cells12111524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in tissue engineering, as their differentiation status directly affects the quality of the final cultured tissue, which is critical to the success of transplantation therapy. Furthermore, the precise control of MSC differentiation is essential for stem cell therapy in clinical settings, as low-purity stem cells can lead to tumorigenic problems. Therefore, to address the heterogeneity of MSCs during their differentiation into adipogenic or osteogenic lineages, numerous label-free microscopic images were acquired using fluorescence lifetime imaging microscopy (FLIM) and stimulated Raman scattering (SRS), and an automated evaluation model for the differentiation status of MSCs was built based on the K-means machine learning algorithm. The model is capable of highly sensitive analysis of individual cell differentiation status, so it has great potential for stem cell differentiation research.
Collapse
Affiliation(s)
- Yawei Kong
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Jianpeng Ao
- Department of Physics, Fudan University, Shanghai 200433, China;
| | - Qiushu Chen
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Wenhua Su
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Yinping Zhao
- Human Phenome Institute, Fudan University, Shanghai 200433, China;
| | - Yiyan Fei
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Jiong Ma
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Minbiao Ji
- Department of Physics, Fudan University, Shanghai 200433, China;
| | - Lan Mi
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
31
|
Gopalarethinam J, Nair AP, Iyer M, Vellingiri B, Subramaniam MD. Advantages of mesenchymal stem cell over the other stem cells. Acta Histochem 2023; 125:152041. [PMID: 37167794 DOI: 10.1016/j.acthis.2023.152041] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/13/2023]
Abstract
A stem cell is a particular group of cells that has the extraordinary potential to convert within the body into particular cell types. They are used to regenerate tissues and cells in the body that have been damaged or destroyed by the disease. Stem cells come in three different varieties: adult stem cells, embryonic stem cells and induced pluripotent stem cells (iPSCs). Embryonic stem cells have a high chance of immune rejection and also have ethical dilemmas and iPSCs have genetic instability. Adult stem cells are difficult to analyze and extract for research since they are frequently insufficient in native tissues. However, mesenchymal stem cells (MSC) one of the categories of adult stem cells are stromal cells with a variety of potentials that can differentiate into a wide range of cell types. MSCs can be transplanted into a variety of people without worrying about rejection because they have demonstrated the ability to prevent an adverse reaction from the immune system. These transplants have powerful anti-inflammatory and immunosuppressive effects and greatly enhance the body's inherent healing capacity. While MSCs do not offer treatment for illnesses, the idea behind them is to enable the body to recover sufficiently for a protracted reduction in symptoms. In many cases, this is sufficient to significantly enhance the patient's well-being. Inspite of several advantages some potential long-term concerns connected to MSC therapy are maldifferentiation, immunosuppression and cancerous tumor growth. In this review, we will compare the mesenchymal stem cells with other stem cells with respect to the source of origin, their properties and therapeutic applications, and discuss the MSC's disadvantages.
Collapse
Affiliation(s)
- Janani Gopalarethinam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Aswathy P Nair
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Balachandar Vellingiri
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.
| |
Collapse
|
32
|
Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater 2023; 164:1-14. [PMID: 36972808 DOI: 10.1016/j.actbio.2023.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: : • This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Junning Kang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
33
|
Romantsik O, Moreira A, Thébaud B, Ådén U, Ley D, Bruschettini M. Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants. Cochrane Database Syst Rev 2023; 2:CD013201. [PMID: 36790019 PMCID: PMC9932000 DOI: 10.1002/14651858.cd013201.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) and encephalopathy of prematurity (EoP) remain substantial issues in neonatal intensive care units worldwide. Current therapies to prevent or treat these conditions are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. This is an update of the 2019 review, which did not include EoP. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for prevention or treatment of GM-IVH and EoP in preterm infants. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search was April 2022. SELECTION CRITERIA We attempted to include randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing 1. stem cell-based interventions versus control; 2. mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; 3. stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or 4. MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH or EoP; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH or with EoP. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. all-cause neonatal mortality, 2. major neurodevelopmental disability, 3. GM-IVH, 4. EoP, and 5. extension of pre-existing non-severe GM-IVH or EoP. We planned to use GRADE to assess certainty of evidence for each outcome. MAIN RESULTS We identified no studies that met our inclusion criteria. Three studies are currently registered and ongoing. Phase 1 trials are described in the 'Excluded studies' section. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment or prevention of GM-IVH or EoP in preterm infants. We identified three ongoing studies, with a sample size range from 20 to 200. In two studies, autologous cord blood mononuclear cells will be administered to extremely preterm infants via the intravenous route; in one, intracerebroventricular injection of MSCs will be administered to preterm infants up to 34 weeks' gestational age.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Ulrika Ådén
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
34
|
Ma S, Ding R, Cao J, Liu Z, Li A, Pei D. Mitochondria transfer reverses the inhibitory effects of low stiffness on osteogenic differentiation of human mesenchymal stem cells. Eur J Cell Biol 2023; 102:151297. [PMID: 36791653 DOI: 10.1016/j.ejcb.2023.151297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Microenvironment biophysical factors such as matrix stiffness can noticeably affect the differentiation of mesenchymal stem cells (MSCs). In this mechanobiology transduction process, mitochondria are shown to be an active participant. The present study aims to systematically elucidate the phenotypic and functional changes of mitochondria during the stiffness-mediated osteogenic differentiation. Additionally, the effect of mitochondria transfer on the osteogenesis of impaired MSCs caused by stiffness was investigated. Human periodontal ligament stem cells (PDLSCs) were used as model cells in the current study. Low stiffness restrained the cell spreading and significantly inhibited the proliferation and osteogenic differentiation of PDLSCs. Mitochondria of PDLSCs cultured on low stiffness exhibited shorter length, rounded shape, fusion/fission imbalance, ROS and mitophagy level increase, and ATP production reduction. The inhibited mitochondria function and osteogenic differentiation capacity were recovered to near-normal levels after transferring the mitochondria of PDLSCs cultured on the high stiffness. This study indicated that low matrix stiffness altered the mitochondrial morphology and induced systematical mitochondrial dysfunction during the osteogenic differentiation of MSCs. Mitochondria transfer was proved to be a feasible technique for maintaining MSCs function in vitro by reversing the osteogenesis ability.
Collapse
Affiliation(s)
- Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiao Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
35
|
Sun H, Zheng M, Liu J, Fan W, He H, Huang F. Melatonin promoted osteogenesis of human periodontal ligament cells by regulating mitochondrial functions through the translocase of the outer mitochondrial membrane 20. J Periodontal Res 2023; 58:53-69. [PMID: 36373245 DOI: 10.1111/jre.13068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Melatonin plays an important role in various beneficial functions, including promoting differentiation. However, effects on osteogenic differentiation, especially in human periodontal cells (hPDLCs), still remain inconclusive. Mitochondria are highly dynamic organelles that play an important role in various biological processes in cells, including energy metabolism and oxidative stress reaction. Furthermore, the translocase of the outer mitochondrial membrane 20 (TOM20) is responsible for recognizing and transporting precursor proteins. Thus, the objective of this study was to evaluate the functionality of melatonin on osteogenesis in human periodontal cells and to explore the involved mechanism of mitochondria. METHODS The hPDLCs were extracted and identified by flow cytometry and multilineage differentiation. We divided hPDLCs into control group, osteogenic induction group, and osteogenesis with melatonin treatment group (100, 10, and 1 μM). Then we used a specific siRNA to achieve interference of TOM20. Alizarin red and Alkaline phosphatase staining and activity assays were performed to evaluate osteogenic differentiation. Osteogenesis-related genes and proteins were measured by qPCR and western blot. Mitochondrial functions were tested using ATP, NAD+/NADH, JC-1, and Seahorse Mito Stress Test kits. Finally, TOM20 and mitochondrial dynamics-related molecules expression were also assessed by qPCR and western blot. RESULTS Our results showed that melatonin-treated hPDLCs had higher calcification and ALP activity as well as upregulated OCN and Runx2 expression at mRNA and protein levels, which was the most obvious in 1 μM melatonin-treated group. Meanwhile, melatonin supplement elevated intracellular ATP production and mitochondrial membrane potential by increasing mitochondrial oxidative metabolism, hence causing a lower NAD+ /NADH ratio. In addition, we also found that melatonin treatment raised TOM20 level and osteogenesis and mitochondrial functions were both suppressed after knocking down TOM20. CONCLUSION We found that melatonin promoted osteogenesis of hPDLCs and 1 μM melatonin had the most remarkable effect. Melatonin treatment can reinforce mitochondrial functions by upregulating TOM20.
Collapse
Affiliation(s)
- Haoyun Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Miaomiao Zheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jiawei Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
36
|
Ma F, Luo S, Lu C, Jiang X, Chen K, Deng J, Ma S, Li Z. The role of Nrf2 in periodontal disease by regulating lipid peroxidation, inflammation and apoptosis. Front Endocrinol (Lausanne) 2022; 13:963451. [PMID: 36482997 PMCID: PMC9723463 DOI: 10.3389/fendo.2022.963451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Nuclear factor E2-related factor 2(Nrf2) is a transcription factor that mainly regulates oxidative stress in the body. It initiates the expression of several downstream antioxidants, anti-inflammatory proteins and detoxification enzymes through the Kelch-like ECH-associating protein 1 (Keap1) -nuclear factor E2-related factor 2(Nrf2) -antioxidant response element (ARE) signaling pathway. Its anti-apoptosis, anti-oxidative stress and anti-inflammatory effects have gradually become the focus of periodontal disease research in recent years. In this paper, the structure and function of Nrf2 pathway and its mechanism of action in the treatment of periodontitis in recent years were analyzed and summarized, so as to further clarify the relationship between Nrf2 pathway and oxidative stress in the occurrence and development of periodontitis, and to provide ideas for the development of new treatment drugs targeting Nrf2 pathway.
Collapse
Affiliation(s)
- Fengyu Ma
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Shangdie Luo
- Department of Orthodontics, Huizhou Stomatological Hospital, Huizhou, Guangdong, China
| | - Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xinrong Jiang
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Kexiao Chen
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Jianwen Deng
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Shuyuan Ma
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zejian Li
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
- Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou, Guangdong, China
| |
Collapse
|
37
|
Li X, Feng L, Zhang C, Wang J, Wang S, Hu L. Insulin-like growth factor binding proteins 7 prevents dental pulp-derived mesenchymal stem cell senescence via metabolic downregulation of p21. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2218-2232. [PMID: 35633481 DOI: 10.1007/s11427-021-2096-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
Cellular senescence affects the efficacy of mesenchymal stem cells (MSCs)-mediated tissue regeneration. Insulin-like growth factor binding proteins-7 (IGFBP7), as a member of the IGF family, is associated with osteogenic differentiation and the senescence of MSCs, but its exact function and mechanism remain unclear. We found IGFBP7 promoted the osteogenic differentiation and prevented the senescence of dental pulp-derived MSCs (DPSCs), as observed in the gain-of-function and loss-of-function analyses, the senescence-associated marker p21 showed the most pronounced expression changes. We demonstrated that IGFBP7 activated the biological activity of SIRT1 deacetylase via metabolism, resulting in a deacetylation of H3K36ac and a decrease of the binding affinity of H3K36ac to p21 promoter, thereby reducing the transcription of p21, which ultimately prevents DPSCs senescence and promotes tissue regeneration. The activation of the mitochondrial electron transport chain (ETC) by Coenzyme Q10 could rescue the promotion of DPSC senescence induced by the knockdown of IGFBP7, whereas the inhibition of ETC by rotenone attenuated the prevention of DPSC senescence induced by IGFBP7 overexpression. In conclusion, our present results reveal a novel function of IGFBP7 in preventing DPSC senescence via the metabolism-induced deacetylation of H3K36ac and reduction of p21 transcription, suggesting that IGFBP7 is a potential target for promoting tissue regeneration in an aging environment.
Collapse
Affiliation(s)
- Xiaoyu Li
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Liang Feng
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, 100069, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, 100069, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100700, China.
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100700, China.
- Department of Prosthodontics, Capital Medical University School of Stomatology, Beijing, 100050, China.
| |
Collapse
|
38
|
Zhang TG, Miao CY. Mitochondrial transplantation as a promising therapy for mitochondrial diseases. Acta Pharm Sin B 2022; 13:1028-1035. [PMID: 36970208 PMCID: PMC10031255 DOI: 10.1016/j.apsb.2022.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial diseases are a group of inherited or acquired metabolic disorders caused by mitochondrial dysfunction which may affect almost all the organs in the body and present at any age. However, no satisfactory therapeutic strategies have been available for mitochondrial diseases so far. Mitochondrial transplantation is a burgeoning approach for treatment of mitochondrial diseases by recovery of dysfunctional mitochondria in defective cells using isolated functional mitochondria. Many models of mitochondrial transplantation in cells, animals, and patients have proved effective via various routes of mitochondrial delivery. This review presents different techniques used in mitochondrial isolation and delivery, mechanisms of mitochondrial internalization and consequences of mitochondrial transplantation, along with challenges for clinical application. Despite some unknowns and challenges, mitochondrial transplantation would provide an innovative approach for mitochondrial medicine.
Collapse
Affiliation(s)
| | - Chao-yu Miao
- Corresponding author. Tel: +86 21 81871271; fax: +86 21 65493951.
| |
Collapse
|
39
|
Li B, Wang J, Liao J, Wu M, Yuan X, Fang H, Shen L, Jiang M. YY1 promotes pancreatic cancer cell proliferation by enhancing mitochondrial respiration. Cancer Cell Int 2022; 22:287. [PMID: 36123703 PMCID: PMC9484254 DOI: 10.1186/s12935-022-02712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
KRAS-driven metabolic reprogramming is a known peculiarity features of pancreatic ductal adenocarcinoma (PDAC) cells. However, the metabolic roles of other oncogenic genes, such as YY1, in PDAC development are still unclear. In this study, we observed significantly elevated expression of YY1 in human PDAC tissues, which positively correlated with a poor disease progression. Furthermore, in vitro studies confirmed that YY1 deletion inhibited PDAC cell proliferation and tumorigenicity. Moreover, YY1 deletion led to impaired mitochondrial RNA expression, which further inhibited mitochondrial oxidative phosphorylation (OXPHOS) complex assembly and altered cellular nucleotide homeostasis. Mechanistically, the impairment of mitochondrial OXPHOS function reduced the generation of aspartate, an output of the tricarboxylic acid cycle (TCA), and resulted in the inhibition of cell proliferation owing to unavailability of aspartate-associated nucleotides. Conversely, exogenous supplementation with aspartate fully restored PDAC cell proliferation. Our findings suggest that YY1 promotes PDAC cell proliferation by enhancing mitochondrial respiration and the TCA, which favors aspartate-associated nucleotide synthesis. Thus, targeting nucleotide biosynthesis is a promising strategy for PDAC treatment.
Collapse
Affiliation(s)
- Bin Li
- Department of Laboratory Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Junyi Wang
- Department of Clinical Laboratory Examination, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Jing Liao
- Key Laboratory of Laboratory Medicine, Ministry of Education; Zhejiang Provincial Key Laboratory of Medical Genetics; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Minghui Wu
- Department of Laboratory Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xiangshu Yuan
- Key Laboratory of Laboratory Medicine, Ministry of Education; Zhejiang Provincial Key Laboratory of Medical Genetics; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education; Zhejiang Provincial Key Laboratory of Medical Genetics; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lijun Shen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Minghua Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
40
|
Yoshioka H, Komura S, Kuramitsu N, Goto A, Hasegawa T, Amizuka N, Ishimoto T, Ozasa R, Nakano T, Imai Y, Akiyama H. Deletion of Tfam in Prx1-Cre expressing limb mesenchyme results in spontaneous bone fractures. J Bone Miner Metab 2022; 40:839-852. [PMID: 35947192 DOI: 10.1007/s00774-022-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Osteoblasts require substantial amounts of energy to synthesize the bone matrix and coordinate skeleton mineralization. This study analyzed the effects of mitochondrial dysfunction on bone formation, nano-organization of collagen and apatite, and the resultant mechanical function in mouse limbs. MATERIALS AND METHODS Limb mesenchyme-specific Tfam knockout (Tfamf/f;Prx1-Cre: Tfam-cKO) mice were analyzed morphologically and histologically, and gene expressions in the limb bones were assessed by in situ hybridization, qPCR, and RNA sequencing (RNA-seq). Moreover, we analyzed the mitochondrial function of osteoblasts in Tfam-cKO mice using mitochondrial membrane potential assay and transmission electron microscopy (TEM). We investigated the pathogenesis of spontaneous bone fractures using immunohistochemical analysis, TEM, birefringence analyzer, microbeam X-ray diffractometer and nanoindentation. RESULTS Forelimbs in Tfam-cKO mice were significantly shortened from birth, and spontaneous fractures occurred after birth, resulting in severe limb deformities. Histological and RNA-seq analyses showed that bone hypoplasia with a decrease in matrix mineralization was apparent, and the expression of type I collagen and osteocalcin was decreased in osteoblasts of Tfam-cKO mice, although Runx2 expression was unchanged. Decreased type I collagen deposition and mineralization in the matrix of limb bones in Tfam-cKO mice were associated with marked mitochondrial dysfunction. Tfam-cKO mice bone showed a significantly lower Young's modulus and hardness due to poor apatite orientation which is resulted from decreased osteocalcin expression. CONCLUSION Mice with limb mesenchyme-specific Tfam deletions exhibited spontaneous limb bone fractures, resulting in severe limb deformities. Bone fragility was caused by poor apatite orientation owing to impaired osteoblast differentiation and maturation.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Norishige Kuramitsu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Atsushi Goto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
41
|
Cao L, Zhou S, Qiu X, Qiu S. Trehalose improves palmitic acid-induced apoptosis of osteoblasts by regulating SIRT3-medicated autophagy via the AMPK/mTOR/ULK1 pathway. FASEB J 2022; 36:e22491. [PMID: 35947089 DOI: 10.1096/fj.202200608rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 12/08/2022]
Abstract
Accumulation of lipid substances decreased the activity of osteoblasts. Trehalose is a typical stress metabolite to form a protective membrane on cell surface which has been demonstrated to regulate lipid metabolism. This activity of Trehalose indicates the potential effect of osteoporosis treatment. Our study aimed to determine the therapeutic effect of Trehalose in high fat-induced osteoporosis. We used palmitic acid (PA) to mimic the state of high fat and observed the apoptosis ratio of osteoblasts increased. After adding Trehalose, the apoptosis ratio decreased obviously. Autophagy is a regulatory means involved in the process of apoptosis. We detected the autophagy protein and found that the expression of Beclin-1, Atg5, and LC3 II increased, and p62 decreased after Trehalose treatment. When adding an autophagy inhibitor (3-MA), the expression of Beclin-1, Atg5, and LC3 II decreased, and p62 increased. These results indicated autophagy was an important factor involved in the preventive effect of Trehalose in PA-induced apoptosis. SIRT3 is a mitochondrial gene that can inhibit apoptosis, which has been reported to promote autophagy. We used SIRT3-siRNA to silence the expression of SIRT3 and found the effect of Trehalose was counteracted. The apoptosis ratio increased and the expression of Beclin-1, Atg5, and LC3 II decreased, p62 increased. Additionally, we also fed the mice with a high-fat diet (HFD) and intragastrical Trehalose. The results showed that Trehalose could inhibit the bone mass loss with HFD. Our study revealed the effect and mechanism of Trehalose in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China
| | - Siming Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences, Shenyang, China
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
42
|
Sun J, Lo HTJ, Fan L, Yiu TL, Shakoor A, Li G, Lee WYW, Sun D. High-efficiency quantitative control of mitochondrial transfer based on droplet microfluidics and its application on muscle regeneration. SCIENCE ADVANCES 2022; 8:eabp9245. [PMID: 35977014 PMCID: PMC9385153 DOI: 10.1126/sciadv.abp9245] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/01/2022] [Indexed: 05/31/2023]
Abstract
Mitochondrial transfer is a spontaneous process to restore damaged cells in various pathological conditions. The transfer of mitochondria to cell therapy products before their administration can enhance therapeutic outcomes. However, the low efficiency of previously reported methods limits their clinical application. Here, we developed a droplet microfluidics-based mitochondrial transfer technique that can achieve high-efficiency and high-throughput quantitative mitochondrial transfer to single cells. Because mitochondria are essential for muscles, myoblast cells and a muscle injury model were used as a proof-of-concept model to evaluate the proposed technique. In vitro and in vivo experiments demonstrated that C2C12 cells with 31 transferred mitochondria had significant improvements in cellular functions compared to those with 0, 8, and 14 transferred mitochondria and also had better therapeutic effects on muscle regeneration. The proposed technique can considerably promote the clinical application of mitochondrial transfer, with optimized cell function improvements, for the cell therapy of mitochondria-related diseases.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hiu Tung Jessica Lo
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tsz Lam Yiu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Adnan Shakoor
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Wayne Y. W. Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Robotics and Automation, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
43
|
BMSCs-derived Mitochondria Improve Osteoarthritis by Ameliorating Mitochondrial Dysfunction and Promoting Mitochondrial Biogenesis in Chondrocytes. Stem Cell Rev Rep 2022; 18:3092-3111. [PMID: 35943688 DOI: 10.1007/s12015-022-10436-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes and microvesicles can effectively improve knee osteoarthritis. We found that microvesicles performed a superior effect on improving mitochondrial function in chondrocytes than exosomes, which may be related to the ability of microvesicles carrying active mitochondria to replace damaged ones in chondrocytes. This study investigated the therapeutic effect of direct mitochondrial transplantation (MT) on knee osteoarthritis. IL-1β stimulated the osteoarthritis phenotype of rat chondrocytes, and the effect of BMSCs-derived mitochondria transplantation was observed in vitro. Knee osteoarthritis rat model was established by collagenase induction to observe the effect of intra-articular injection of mitochondria. Results showed that the mitochondria of BMSCs could be ingested by rat chondrocytes via co-incubation in vitro, and significantly improved osteoarthritis phenotype and mitochondrial function, and inhibited chondrocytes apoptosis. In vivo, BMSCs-derived mitochondria could be ingested by cartilage via intra-articular injection, ameliorated pathological cartilage injury, suppressed inflammation, inhibited chondrocytes apoptosis, and improved osteoarthritis phenotype. In addition, MT promoted mitochondrial biogenesis in chondrocytes by activating PGC-1α signaling. All above results suggest that BMSCs-derived mitochondria transplantation ameliorates knee osteoarthritis by improving chondrocytes mitochondrial dysfunction and promoting mitochondrial biogenesis.
Collapse
|
44
|
Che Z, Ye Z, Zhang X, Lin B, Yang W, Liang Y, Zeng J. Mesenchymal stem/stromal cells in the pathogenesis and regenerative therapy of inflammatory bowel diseases. Front Immunol 2022; 13:952071. [PMID: 35990688 PMCID: PMC9386516 DOI: 10.3389/fimmu.2022.952071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) represent a group of chronic inflammatory disorders of the gastrointestinal (GI) tract including ulcerative colitis (UC), Crohn’s disease (CD), and unclassified IBDs. The pathogenesis of IBDs is related to genetic susceptibility, environmental factors, and dysbiosis that can lead to the dysfunction of immune responses and dysregulated homeostasis of local mucosal tissues characterized by severe inflammatory responses and tissue damage in GI tract. To date, extensive studies have indicated that IBDs cannot be completely cured and easy to relapse, thus prompting researchers to find novel and more effective therapeutics for this disease. Due to their potent multipotent differentiation and immunomodulatory capabilities, mesenchymal stem/stromal cells (MSCs) not only play an important role in regulating immune and tissue homeostasis but also display potent therapeutic effects on various inflammatory diseases, including IBDs, in both preclinical and clinical studies. In this review, we present a comprehensive overview on the pathological mechanisms, the currently available therapeutics, particularly, the potential application of MSCs-based regenerative therapy for IBDs.
Collapse
Affiliation(s)
- Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yanfang Liang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| |
Collapse
|
45
|
Zhang Y, Zhong Y, Liu W, Zheng F, Zhao Y, Zou L, Liu X. PFKFB3-mediated glycometabolism reprogramming modulates endothelial differentiation and angiogenic capacity of placenta-derived mesenchymal stem cells. Stem Cell Res Ther 2022; 13:391. [PMID: 35918720 PMCID: PMC9344722 DOI: 10.1186/s13287-022-03089-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have a great potential ability for endothelial differentiation, contributing to an effective means of therapeutic angiogenesis. Placenta-derived mesenchymal stem cells (PMSCs) have gradually attracted attention, while the endothelial differentiation has not been fully evaluated in PMSCs. Metabolism homeostasis plays an important role in stem cell differentiation, but less is known about the glycometabolic reprogramming during the PMSCs endothelial differentiation. Hence, it is critical to investigate the potential role of glycometabolism reprogramming in mediating PMSCs endothelial differentiation. METHODS Dil-Ac-LDL uptake assay, flow cytometry, and immunofluorescence were all to verify the endothelial differentiation in PMSCs. Seahorse XF Extracellular Flux Analyzers, Mito-tracker red staining, Mitochondrial membrane potential (MMP), lactate secretion assay, and transcriptome approach were to assess the variation of mitochondrial respiration and glycolysis during the PMSCs endothelial differentiation. Glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) was considered a potential modulator for endothelial differentiation in PMSCs by small interfering RNA. Furthermore, transwell, in vitro Matrigel tube formation, and in vivo Matrigel plug assays were performed to evaluate the effect of PFKFB3-induced glycolysis on angiogenic capacities in this process. RESULTS PMSCs possessed the superior potential of endothelial differentiation, in which the glycometabolic preference for glycolysis was confirmed. Moreover, PFKFB3-induced glycometabolism reprogramming could modulate the endothelial differentiation and angiogenic abilities of PMSCs. CONCLUSIONS Our results revealed that PFKFB3-mediated glycolysis is important for endothelial differentiation and angiogenesis in PMSCs. Our understanding of cellular glycometabolism and its regulatory effects on endothelial differentiation may propose and improve PMSCs as a putative strategy for clinical therapeutic angiogenesis.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yanqi Zhong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Fanghui Zheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
46
|
Nickel S, Christ M, Schmidt S, Kosacka J, Kühne H, Roderfeld M, Longerich T, Tietze L, Bosse I, Hsu MJ, Stock P, Roeb E, Christ B. Human Mesenchymal Stromal Cells Resolve Lipid Load in High Fat Diet-Induced Non-Alcoholic Steatohepatitis in Mice by Mitochondria Donation. Cells 2022; 11:cells11111829. [PMID: 35681524 PMCID: PMC9180625 DOI: 10.3390/cells11111829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Mesenchymal stromal cells (MSC) increasingly emerge as an option to ameliorate non-alcoholic steatohepatitis (NASH), a serious disease, which untreated may progress to liver cirrhosis and cancer. Before clinical translation, the mode of action of MSC needs to be established. Here, we established NASH in an immune-deficient mouse model by feeding a high fat diet. Human bone-marrow-derived MSC were delivered to the liver via intrasplenic transplantation. As verified by biochemical and image analyses, human mesenchymal stromal cells improved high-fat-diet-induced NASH in the mouse liver by decreasing hepatic lipid content and inflammation, as well as by restoring tissue homeostasis. MSC-mediated changes in gene expression indicated the switch from lipid storage to lipid utilization. It was obvious that host mouse hepatocytes harbored human mitochondria. Thus, it is feasible that resolution of NASH in mouse livers involved the donation of human mitochondria to the mouse hepatocytes. Therefore, human MSC might provide oxidative capacity for lipid breakdown followed by restoration of metabolic and tissue homeostasis.
Collapse
Affiliation(s)
- Sandra Nickel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
- Division of General, Visceral and Vascular Surgery, University Hospital Jena, 07747 Jena, Germany
| | - Madlen Christ
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Sandra Schmidt
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Joanna Kosacka
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Hagen Kühne
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University, 35392 Giessen, Germany; (M.R.); (E.R.)
| | - Thomas Longerich
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Lysann Tietze
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Ina Bosse
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Mei-Ju Hsu
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Peggy Stock
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Elke Roeb
- Department of Gastroenterology, Justus-Liebig-University, 35392 Giessen, Germany; (M.R.); (E.R.)
| | - Bruno Christ
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
- Correspondence: ; Tel.: +49-(0)341-9713552
| |
Collapse
|
47
|
Zhan B, Shen J. Mitochondria and their potential role in acute lung injury (Review). Exp Ther Med 2022; 24:479. [PMID: 35761815 PMCID: PMC9214601 DOI: 10.3892/etm.2022.11406] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Biao Zhan
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Jie Shen
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
48
|
Lv J, Yang S, Lv M, Lv J, Sui Y, Guo S. Protective roles of mesenchymal stem cells on skin photoaging: A narrative review. Tissue Cell 2022; 76:101746. [PMID: 35182986 DOI: 10.1016/j.tice.2022.101746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Skin is a natural barrier of human body and a visual indicator of aging process. Exposure to ultraviolet (UV) radiation in the sunlight may injure the skin tissues and cause local damage. Besides, it is reported that repetitive or long-term exposure to UV radiation may reduce the collagen production, change the normal skin structure and cause premature skin aging. This is termed "photoaging". The classical symptoms of photoaging include increased roughness, wrinkle formation, mottled pigmentation or even precancerous changes. Mesenchymal stem cells (MSCs) are a kind of cells with the ability of self-renewal and multidirectional differentiation into many types of cells, like adipocytes, osteoblasts and chondrocytes. Researchers have explored diverse pharmacological actions of MSCs because of their migratory activity, paracrine actions and immunoregulation effects. In recent years, the huge potential of MSCs in preventing skin from photoaging has gained wide attention. MSCs exert their beneficial effects on skin photoaging via antioxidant effect, anti-apoptotic/anti-inflammatory effect, reduction of matrix metalloproteinases (MMPs) and activation of dermal fibroblasts proliferation. MSCs and MSC related products have demonstrated huge potential in the treatment of skin photoaging. This narrative review concisely sums up the recent research developments on the roles of MSCs in protection against photoaging and highlights the enormous potential of MSCs in skin photoaging treatment.
Collapse
Affiliation(s)
- Jiacheng Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiarui Lv
- Department of Physiology, School of Life Science, China Medical University, Shenyang, China
| | - Yanan Sui
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
49
|
Anti-Osteoporotic Effect of Viscozyme-Assisted Polysaccharide Extracts from Portulaca oleracea L. on H2O2-Treated MC3T3-E1 Cells and Zebrafish. SEPARATIONS 2022. [DOI: 10.3390/separations9050128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study aims to screen and characterize the protective effect of polysaccharides from Portulaca oleracea L. (POP) against H2O2-stimulated osteoblast apoptosis in vivo and in vitro. The enzymes viscozyme, celluclast, α-amylase, and β-glucanase were used to extract POPs. Among all enzyme-assisted POPs, the first participating fraction of viscozyme extract POP (VPOP1) exhibited the highest antioxidant activity. Hoechst 33342 and acridine orange/ethidium bromide staining and flow cytometry of MC3T3 cells revealed that VPOP1 inhibited apoptosis in a dose-dependent manner. Moreover, VPOP1 increased the expression levels of heme oxygenase-1 (HO-1) and NADPH quinine oxidoreductase 1 (NQO1) and decreased the expression levels of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) in H2O2-induced cells compared with their controls. The results of an in vivo experiment show that VPOP1 significantly reduced reactive oxygen species generation and lipid peroxidation in zebrafish at 72 h post-fertilization and promoted bone growth at 9 days post-fertilization. Furthermore, VPOP1 was identified via 1-phenyl-3-methyl-5-pyrazolone derivatization as an acidic heteropolysaccharide comprising mannose and possessing a molecular weight of approximately 7.6 kDa. Collectively, VPOP1 was selected as a potential anti-osteoporotic functional food because of its protective activity against H2O2-induced damage in vitro and in vivo.
Collapse
|
50
|
circPTP4A2-miR-330-5p-PDK2 Signaling Facilitates In Vivo Survival of HuMSCs on SF-SIS Scaffolds and Improves the Repair of Damaged Endometrium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2818433. [PMID: 35571241 PMCID: PMC9106474 DOI: 10.1155/2022/2818433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
Abstract
Background Human umbilical cord mesenchymal stem cells- (HuMSCs-) based therapy has shown promising results in the treatment of intrauterine adhesions (IUA). In this study, we aimed to construct a HuMSCs-seeded silk fibroin small-intestinal submucosa (SF-SIS) scaffold and evaluate its ability to repair the damaged endometrium in an IUA mouse model. Methods To identify the functional effect of HuMSCs-SF-SIS scaffolds on the repair of damaged endometrium, a mouse IUA model was established. Uterine morphology and fibrosis were evaluated by hematoxylin-eosin staining and Masson staining. CircRNA sequencing, real-time PCR, and RNA fluorescence in situ hybridization were used to screen and verify the potential circRNAs involved in the repair of damaged endometrium by HuMSCs. Real-time integrated cellular measurement of oxygen consumption rate was performed using the Seahorse XF24 Extracellular Flux Analyzer. The potential downstream miRNAs and proteins of circRNAs were analyzed by dual-luciferase reporter assay and western blot. Results HuMSCs-SF-SIS not only increased the number of glands but also reduced the ulcer area in the IUA model. circPTP4A2 was elevated in the HuMSCs seeded on the SF-SIS scaffolds and was targeted by miR-330-5p-PDK2. It also stabilized the mitochondrial metabolism of HuMSCs. Moreover, miR-330-5p was found to inhibit PDK2 expression through the 3′ UTR target region. A rescue experiment further showed that circPTP4A2-miR-330-5p-PDK2 signaling was critical to HuMSCs-SF-SIS in decreasing the fibrosis area and increasing the number of glands in the IUA model. Conclusion We demonstrated that circPTP4A2 was elevated in HuMSCs-seeded on SF-SIS scaffolds and stabilized the mitochondrial metabolism through miR-330-5p-PDK2 signaling, which contributes to endometrial repair progression. These findings demonstrate that HuMSCs-seeded SF-SIS scaffolds have potential for the treatment of IUA.
Collapse
|