1
|
Bezbradica JS, Bryant CE. Inflammasomes as regulators of mechano-immunity. EMBO Rep 2024; 25:21-30. [PMID: 38177903 PMCID: PMC10897344 DOI: 10.1038/s44319-023-00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
Mechano-immunity, the intersection between cellular or tissue mechanics and immune cell function, is emerging as an important factor in many inflammatory diseases. Mechano-sensing defines how cells detect mechanical changes in their environment. Mechano-response defines how cells adapt to such changes, e.g. form synapses, signal or migrate. Inflammasomes are intracellular immune sensors that detect changes in tissue and cell homoeostasis during infection or injury. We and others recently found that mechano-sensing of tissue topology (swollen tissue), topography (presence and distribution of foreign solid implant) or biomechanics (stiffness), alters inflammasome activity. Once activated, inflammasomes induce the secretion of inflammatory cytokines, but also change cellular mechanical properties, which influence how cells move, change their shape, and interact with other cells. When overactive, inflammasomes lead to chronic inflammation. This clearly places inflammasomes as important players in mechano-immunity. Here, we discuss a model whereby inflammasomes integrate pathogen- and tissue-injury signals, with changes in tissue mechanics, to shape the downstream inflammatory responses and allow cell and tissue mechano-adaptation. We will review the emerging evidence that supports this model.
Collapse
Affiliation(s)
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
2
|
Liu H, Liu X, Luo S, Ma R, Ge W, Meng S, Gao Y. Lamin A/C mediates microglial activation by modulating cell proliferation and immune response. J Neurosci Res 2024; 102:e25263. [PMID: 38284866 DOI: 10.1002/jnr.25263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/01/2023] [Indexed: 01/30/2024]
Abstract
Lamin A/C is involved in macrophage activation and premature aging, also known as progeria. As the resident macrophage in brain, overactivation of microglia causes brain inflammation, promoting aging and brain disease. In this study, we investigated the role of Lamin A/C in microglial activation and its impact on progeria using Lmna-/- mice, primary microglia, Lmna knockout (Lmna-KO) and Lmna-knockdown (Lmna-KD) BV2 cell lines. We found that the microglial activation signatures, including cell proliferation, morphology changes, and proinflammatory cytokine secretion (IL-1β, IL-6, and TNF-α), were significantly suppressed in all Lamin A/C-deficient models when stimulated with LPS. TMT-based quantitative proteomic and bioinformatic analysis were further applied to explore the mechanism of Lamin A/C-regulated microglia activation from the proteome level. The results revealed that immune response and phagocytosis were impaired in Lmna-/- microglia. Stat1 was identified as the hub protein in the mechanism by which Lamin A/C regulates microglial activation. Additionally, DNA replication, chromatin organization, and mRNA processing were also altered by Lamin A/C, with Ki67 fulfilling the main hub function. Lamin A/C is a mechanosensitive protein and, the immune- and proliferation-related biological processes are also regulated by mechanotransduction. We speculate that Lamin A/C-mediated mechanotransduction is required for microglial activation. Our study proposes a novel mechanism for microglial activation mediated by Lamin A/C.
Collapse
Affiliation(s)
- Haotian Liu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xinnan Liu
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shiqi Luo
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Rayna Ma
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Ge
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shu Meng
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanpan Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Slysz J, Sinha A, DeBerge M, Singh S, Avgousti H, Lee I, Glinton K, Nagasaka R, Dalal P, Alexandria S, Wai CM, Tellez R, Vescovo M, Sunderraj A, Wang X, Schipma M, Sisk R, Gulati R, Vallejo J, Saigusa R, Lloyd-Jones DM, Lomasney J, Weinberg S, Ho K, Ley K, Giannarelli C, Thorp EB, Feinstein MJ. Single-cell profiling reveals inflammatory polarization of human carotid versus femoral plaque leukocytes. JCI Insight 2023; 8:e171359. [PMID: 37471165 PMCID: PMC10544225 DOI: 10.1172/jci.insight.171359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Femoral atherosclerotic plaques are less inflammatory than carotid plaques histologically, but limited cell-level data exist regarding comparative immune landscapes and polarization at these sites. We investigated intraplaque leukocyte phenotypes and transcriptional polarization in 49 patients undergoing femoral (n = 23) or carotid (n = 26) endarterectomy using single-cell RNA-Seq (scRNA-Seq; n = 13), flow cytometry (n = 24), and IHC (n = 12). Comparative scRNA-Seq of CD45+-selected leukocytes from femoral (n = 9; 35,265 cells) and carotid (n = 4; 30,655 cells) plaque revealed distinct transcriptional profiles. Inflammatory foam cell-like macrophages and monocytes comprised higher proportions of myeloid cells in carotid plaques, whereas noninflammatory foam cell-like macrophages and LYVE1-overexpressing macrophages comprised higher proportions of myeloid cells in femoral plaque (P < 0.001 for all). A significant comparative excess of CCR2+ macrophages in carotid versus plaque was observed by flow cytometry in a separate validation cohort. B cells were more prevalent and exhibited a comparatively antiinflammatory profile in femoral plaque, whereas cytotoxic CD8+ T cells were more prevalent in carotid plaque. In conclusion, human femoral plaques exhibit distinct macrophage phenotypic and transcriptional profiles as well as diminished CD8+ T cell populations compared with human carotid plaques.
Collapse
Affiliation(s)
| | - Arjun Sinha
- Division of Cardiology, Department of Medicine
| | | | | | | | - Inhyeok Lee
- Division of Cardiology, Department of Medicine
| | - Kristofor Glinton
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
| | | | | | - Shaina Alexandria
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| | - Ching Man Wai
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Ricardo Tellez
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
| | | | | | - Xinkun Wang
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Matthew Schipma
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Ryan Sisk
- Division of Cardiology, Department of Medicine
| | - Rishab Gulati
- La Jolla Institute of Immunology, La Jolla, California, USA
| | | | | | - Donald M. Lloyd-Jones
- Division of Cardiology, Department of Medicine
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| | | | | | - Karen Ho
- Division of Vascular Surgery, NUFSM, Chicago, Illinois, USA
| | - Klaus Ley
- Immunology Center of Georgia, Augusta, Georgia, USA
| | - Chiara Giannarelli
- Department of Medicine and
- Department of Pathology, New York University, New York, New York, USA
| | | | - Matthew J. Feinstein
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| |
Collapse
|
4
|
Witt H, Yan Z, Henann D, Franck C, Reichner J. Mechanosensitive traction force generation is regulated by the neutrophil activation state. Sci Rep 2023; 13:11098. [PMID: 37423937 DOI: 10.1038/s41598-023-37997-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2023] [Indexed: 07/11/2023] Open
Abstract
The generation of traction forces by neutrophils regulates many crucial effector functions responsible for host defense, such as attachment, spreading, migration, phagocytosis, and NETosis. The activation state of the cell is a strong determinant of the functional efficacy of the neutrophil; however, the effect of activation on traction force production has not yet been determined experimentally. Previously, the mapping of cellular-generated forces produced by human neutrophils via a Traction Force Microscopy (TFM) method has required a three-dimensional imaging modality to capture out-of-plane forces, such as confocal or multiphoton techniques. A method newly developed in our laboratories can capture out-of-plane forces using only a two-dimensional imaging modality. This novel technique-combined with a topology-based single particle tracking algorithm and finite element method calculations-can construct high spatial frequency three-dimensional traction fields, allowing for traction forces in-plane and out-of-plane to the substrate to now be differentially visualized and quantified with a standard epifluorescence microscope. Here we apply this technology to determine the effect of neutrophil activation on force generation. Sepsis is a systemic inflammatory response that causes dysregulated neutrophil activation in vivo. We found that neutrophils from septic patients produced greater total forces than neutrophils from healthy donors and that the majority of this dysregulation occurred in-plane to the substrate. Ex vivo activation of neutrophils from healthy donors showed differential consequences depending on activation stimuli with mechanosensitive force decreases observed in some cases. These findings demonstrate the feasibility of epifluorescence-based microscopy in mapping traction forces to ask biologically significant questions regarding neutrophil function.
Collapse
Affiliation(s)
- Hadley Witt
- Graduate Program in Pathobiology, Brown University, Providence, RI, 02912, USA.
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, 02903, USA.
| | - Zicheng Yan
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - David Henann
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jonathan Reichner
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, 02903, USA.
| |
Collapse
|
5
|
Hu J, Chen Q, Zhu H, Hou L, Liu W, Yang Q, Shen H, Chai G, Zhang B, Chen S, Cai Z, Wu C, Hong F, Li H, Chen S, Xiao N, Wang ZX, Zhang X, Wang B, Zhang L, Mo W. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer's disease. Neuron 2023; 111:15-29.e8. [PMID: 36368316 DOI: 10.1016/j.neuron.2022.10.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/15/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022]
Abstract
The pathology of Alzheimer's disease (AD) is featured with extracellular amyloid-β (Aβ) plaques, whose impact on the mechanical properties of the surrounding brain tissues is unclear. Microglia sense and integrate biochemical cues of the microenvironment. However, whether the microglial mechanosensing pathways influence AD pathogenesis is unknown. Here, we surveyed the elevated stiffness of Aβ-plaque-associated tissues and observed the selective upregulation of the mechanosensitive ion channel Piezo1 in Aβ-plaque-associated microglia. Piezo1 sensed the stiffness stimuli of Aβ fibrils and subsequently induced Ca2+ influx for microglial clustering, phagocytosis, and compacting of Aβ plaques. Microglia lacking Piezo1 led to the exacerbation of Aβ pathology and cognitive decline, whereas pharmacological activation of microglial Piezo1 ameliorated brain Aβ burden and cognitive impairment in 5 × FAD mice. Together, our results reveal that Piezo1, a mechanosensor of Aβ fibril stiffness in microglia, represents a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Jin Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongrui Zhu
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lichao Hou
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Qihua Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huidan Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China; Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guolin Chai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Boxin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Shaoxuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Zhiyu Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chongxin Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Fan Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongda Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Sifang Chen
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Naian Xiao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhan-Xiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Liang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Wei Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Leng S, Zhang X, Wang S, Qin J, Liu Q, Liu A, Sheng Z, Feng Q, Hu X, Peng J. Ion channel Piezo1 activation promotes aerobic glycolysis in macrophages. Front Immunol 2022; 13:976482. [PMID: 36119083 PMCID: PMC9479104 DOI: 10.3389/fimmu.2022.976482] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Altered microenvironmental stiffness is a hallmark of inflammation. It is sensed by the mechanically activated cation channel Piezo1 in macrophages to induce subsequent immune responses. However, the mechanism by which the mechanosensitive signals shape the metabolic status of macrophages and tune immune responses remains unclear. We revealed that Piezo1-deficient macrophages exhibit reduced aerobic glycolysis in resting or liposaccharide (LPS)-stimulated macrophages with impaired LPS-induced secretion of inflammatory cytokines in vitro. Additionally, pretreatment with the Piezo1 agonist, Yoda1, or cyclical hydrostatic pressure (CHP) upregulated glycolytic activity and enhanced LPS-induced secretion of inflammatory cytokines. Piezo1-deficient mice were less susceptible to dextran sulfate sodium (DSS)-induced colitis, whereas Yoda1 treatment aggravated colitis. Mechanistically, we found that Piezo1 activation promotes aerobic glycolysis through the Ca2+-induced CaMKII-HIF1α axis. Therefore, our study revealed that Piezo1-mediated mechanosensitive signals Piezo1 can enhance aerobic glycolysis and promote the LPS-induced immune response in macrophages.
Collapse
Affiliation(s)
- Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Qin
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anli Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Hu
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Jun Peng, ; Xiang Hu,
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
- *Correspondence: Jun Peng, ; Xiang Hu,
| |
Collapse
|
7
|
Wheatley BA, Rey-Suarez I, Hourwitz MJ, Kerr S, Shroff H, Fourkas JT, Upadhyaya A. Nanotopography modulates cytoskeletal organization and dynamics during T cell activation. Mol Biol Cell 2022; 33:ar88. [PMID: 35830602 PMCID: PMC9582624 DOI: 10.1091/mbc.e21-12-0601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exposure to MHC-antigen complexes on the surface of antigen-presenting cells (APCs) activates T cells, inducing the formation of the immune synapse (IS). Antigen detection at the APC surface is thus a critical step in the adaptive immune response. The physical properties of antigen-presenting surfaces encountered by T cells in vivo are believed to modulate T cell activation and proliferation. Although stiffness and ligand mobility influence IS formation, the effect of the complex topography of the APC surface on this process is not well understood. Here we investigate how nanotopography modulates cytoskeletal dynamics and signaling during the early stages of T cell activation using high-resolution fluorescence microscopy on nanofabricated surfaces with parallel nanoridges of different spacings. We find that although nanoridges reduce the maximum spread area as compared with cells on flat surfaces, the ridges enhance the accumulation of actin and the signaling kinase ZAP-70 at the IS. Actin polymerization is more dynamic in the presence of ridges, which influence the directionality of both actin flows and microtubule (MT) growth. Our results demonstrate that the topography of the activating surface exerts both global effects on T cell morphology and local changes in actin and MT dynamics, collectively influencing T cell signaling.
Collapse
Affiliation(s)
- Brittany A Wheatley
- Department of Integrative Structural and Computational Biology and.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Sarah Kerr
- Department of Physics, University of Colorado, Boulder, CO 80302
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.,Maryland Quantum Materials Center, University of Maryland, College Park, MD 20742
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742
| |
Collapse
|
8
|
Mercado-Perez A, Beyder A. Gut feelings: mechanosensing in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2022; 19:283-296. [PMID: 35022607 PMCID: PMC9059832 DOI: 10.1038/s41575-021-00561-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
The primary function of the gut is to procure nutrients. Synchronized mechanical activities underlie nearly all its endeavours. Coordination of mechanical activities depends on sensing of the mechanical forces, in a process called mechanosensation. The gut has a range of mechanosensory cells. They function either as specialized mechanoreceptors, which convert mechanical stimuli into coordinated physiological responses at the organ level, or as non-specialized mechanosensory cells that adjust their function based on the mechanical state of their environment. All major cell types in the gastrointestinal tract contain subpopulations that act as specialized mechanoreceptors: epithelia, smooth muscle, neurons, immune cells, and others. These cells are tuned to the physical properties of the surrounding tissue, so they can discriminate mechanical stimuli from the baseline mechanical state. The importance of gastrointestinal mechanosensation has long been recognized, but the latest discoveries of molecular identities of mechanosensors and technical advances that resolve the relevant circuitry have poised the field to make important intellectual leaps. This Review describes the mechanical factors relevant for normal function, as well as the molecules, cells and circuits involved in gastrointestinal mechanosensing. It concludes by outlining important unanswered questions in gastrointestinal mechanosensing.
Collapse
Affiliation(s)
- Arnaldo Mercado-Perez
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
- Medical Scientist Training Program (MSTP), Mayo Clinic, Rochester, MN, USA
| | - Arthur Beyder
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Hamza A, Amit J, Elizabeth L. E, Medha M. P, Michael D. C, Wendy F. L. Ion channel mediated mechanotransduction in immune cells. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100951. [PMID: 35645593 PMCID: PMC9131931 DOI: 10.1016/j.cossms.2021.100951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The immune system performs critical functions to defend against invading pathogens and maintain tissue homeostasis. Immune cells reside within or are recruited to a host of mechanically active tissues throughout the body and, as a result, are exposed to varying types and degrees of mechanical stimuli. Despite their abundance in such tissues, the role of mechanical stimuli in influencing immune cell function and the molecular mechanisms responsible for mechanics-mediated changes are still poorly understood. The recent emergence of mechanically-gated ion channels, particularly Piezo1, has provided an exciting avenue of research within the fields of mechanobiology and immunology. Numerous studies have identified roles for mechanically-gated ion channels in mechanotransduction within various different cell types, with a few recent studies in immune cells. These initial studies provide strong evidence that mechanically-gated ion channels play pivotal roles in regulating the immune system. In this review, we discuss characteristics of ion channel mediated force transduction, review the current techniques used to quantify and visualize ion channel activity in response to mechanical stimuli, and finally we provide an overview of recent studies examining the role of mechanically-gated ion channels in modulating immune cell function.
Collapse
Affiliation(s)
- Atcha Hamza
- Department of Biomedical Engineering, University of California Irvine, Irvine, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, USA
| | - Jairaman Amit
- Department of Physiology and Biophysics, University of California Irvine, Irvine, USA
| | - Evans Elizabeth L.
- Department of Physiology and Biophysics, University of California Irvine, Irvine, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, USA
| | - Pathak Medha M.
- Department of Biomedical Engineering, University of California Irvine, Irvine, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, USA
| | - Cahalan Michael D.
- Department of Physiology and Biophysics, University of California Irvine, Irvine, USA
| | - Liu Wendy F.
- Department of Biomedical Engineering, University of California Irvine, Irvine, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, USA
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, USA
| |
Collapse
|
10
|
Zhang SY, Zhou ZR, Qian RC. Recent Progress and Perspectives on Cell Surface Modification. Chem Asian J 2021; 16:3250-3258. [PMID: 34427996 DOI: 10.1002/asia.202100852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Indexed: 11/11/2022]
Abstract
The cell membrane is a biological interface consisting of phospholipid bilayer, saccharides and proteins that maintains a stable metabolic intracellular environment as well as regulating and controlling the exchange of substances inside and outside the cell. Cell membranes provide a highly complex biological surface carrying a variety of essential surfaces ligands and receptors for cells to receive various stimuli of external signals, thereby inducing corresponding cell responses regulating the life activities of the cell. These surface receptors can be manipulated via cell surface modification to regulate cellular functions and behaviors Thus, cell surface modification has attracted considerable attention due to its significance in cell fate control, cell engineering and cell therapy. In this minireview, we describe the recent developments and advances of cell surface modification, and summarize the main modification methods with corresponding functions and applications. Finally, the prospect for the future development of the modification of the living cell membrane is discussed.
Collapse
Affiliation(s)
- Shi-Yi Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
11
|
Paria D, Convertino A, Raj P, Glunde K, Chen Y, Barman I. Nanowire Assisted Mechanotyping of Cellular Metastatic Potential. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101638. [PMID: 34512229 PMCID: PMC8425187 DOI: 10.1002/adfm.202101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 06/13/2023]
Abstract
Nanotechnology has provided tools for next generation biomedical devices which rely on nanostructure interfaces with living cells. In vitro biomimetic structures have enabled observation of cell response to various mechanical and chemical cues, and there is a growing interest in isolating and harnessing the specific cues that three-dimensional microenvironments can provide without the requirement for such culture and the experimental drawbacks associated with it. Here we report a randomly oriented gold coated Si nanowire substrate with patterned hydrophobic-hydrophilic areas for differentiation of isogenic breast cancer cells of varying metastatic potential. When considering synthetic surfaces for the study of cell-nanotopography interfaces, randomly oriented nanowires more closely resemble the isotropic architecture of natural extracellular matrix as compared to currently more widely used vertical nanowire arrays. In the study reported here, we show that primary cancer cells preferably attach to the hydrophilic region of randomly oriented nanowire substrate while secondary cancer cells do not adhere. Using machine learning analysis of fluorescence images, cells were found to spread and elongate on the nanowire substrates as compared to a flat substrate, where they mostly remain round, when neither surface was coated with extracellular matrix (ECM) proteins. Such platforms can not only be used for developing bioassays but also as stepping stones for tissue printing technologies where cells can be selectively patterned at desired locations.
Collapse
Affiliation(s)
- Debadrita Paria
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Annalisa Convertino
- Institute for Microelectronics and Microsystems, National Research Council, Roma, Italia
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kristine Glunde
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Abdollahiyan P, Oroojalian F, Baradaran B, de la Guardia M, Mokhtarzadeh A. Advanced mechanotherapy: Biotensegrity for governing metastatic tumor cell fate via modulating the extracellular matrix. J Control Release 2021; 335:596-618. [PMID: 34097925 DOI: 10.1016/j.jconrel.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022]
Abstract
Mechano-transduction is the procedure of mechanical stimulus translation via cells, among substrate shear flow, topography, and stiffness into a biochemical answer. TAZ and YAP are transcriptional coactivators which are recognized as relay proteins that promote mechano-transduction within the Hippo pathway. With regard to healthy cells in homeostasis, mechano-transduction regularly restricts proliferation, and TAZ and YAP are totally inactive. During cancer development a YAP/TAZ - stimulating positive response loop is formed between the growing tumor and the stiffening ECM. As tumor developments, local stromal and cancerous cells take advantage of mechanotransduction to enhance proliferation, induce their migratory into remote tissues, and promote chemotherapeutic resistance. As a newly progresses paradigm, nanoparticle-conjunctions (such as magnetic nanoparticles, and graphene derivatives nanoparticles) hold significant promises for remote regulation of cells and their relevant events at molecular scale. Despite outstanding developments in employing nanoparticles for drug targeting studies, the role of nanoparticles on cellular behaviors (proliferation, migration, and differentiation) has still required more evaluations in the field of mechanotherapy. In this paper, the in-depth contribution of mechano-transduction is discussed during tumor progression, and how these consequences can be evaluated in vitro.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Chirivì M, Maiullari F, Milan M, Presutti D, Cordiglieri C, Crosti M, Sarnicola ML, Soluri A, Volpi M, Święszkowski W, Prati D, Rizzi M, Costantini M, Seliktar D, Parisi C, Bearzi C, Rizzi R. Tumor Extracellular Matrix Stiffness Promptly Modulates the Phenotype and Gene Expression of Infiltrating T Lymphocytes. Int J Mol Sci 2021; 22:5862. [PMID: 34070750 PMCID: PMC8198248 DOI: 10.3390/ijms22115862] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system is a fine modulator of the tumor biology supporting or inhibiting its progression, growth, invasion and conveys the pharmacological treatment effect. Tumors, on their side, have developed escaping mechanisms from the immune system action ranging from the direct secretion of biochemical signals to an indirect reaction, in which the cellular actors of the tumor microenvironment (TME) collaborate to mechanically condition the extracellular matrix (ECM) making it inhospitable to immune cells. TME is composed of several cell lines besides cancer cells, including tumor-associated macrophages, cancer-associated fibroblasts, CD4+ and CD8+ lymphocytes, and innate immunity cells. These populations interface with each other to prepare a conservative response, capable of evading the defense mechanisms implemented by the host's immune system. The presence or absence, in particular, of cytotoxic CD8+ cells in the vicinity of the main tumor mass, is able to predict, respectively, the success or failure of drug therapy. Among various mechanisms of immunescaping, in this study, we characterized the modulation of the phenotypic profile of CD4+ and CD8+ cells in resting and activated states, in response to the mechanical pressure exerted by a three-dimensional in vitro system, able to recapitulate the rheological and stiffness properties of the tumor ECM.
Collapse
Affiliation(s)
- Maila Chirivì
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Fabio Maiullari
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marika Milan
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.S.); (C.P.)
| | - Dario Presutti
- Institute of Physical Chemistry Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland; (D.P.); (M.C.)
| | - Chiara Cordiglieri
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
| | - Mariacristina Crosti
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
| | - Maria Lucia Sarnicola
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.S.); (C.P.)
- Unit of Molecular Neurosciences, University Campus Bio-Medico, 00128 Roma, Italy
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (M.V.); (W.Ś.)
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (M.V.); (W.Ś.)
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, IRCCS Granda Hospital Maggiore Policlinico Foundation, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Marta Rizzi
- Ufficio Programmazione e Grant Office, National Research Council of Italy (UPGO-CNR), Piazzale Aldo Moro 7, 00185 Rome, Italy;
| | - Marco Costantini
- Institute of Physical Chemistry Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland; (D.P.); (M.C.)
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion Institute, Haifa 32000, Israel;
| | - Chiara Parisi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.S.); (C.P.)
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
- Institute of Genetic and Biomedical Research, UOS of Milan, National Research Council (IRGB-CNR), Via Gaudenzio Fantoli 16/15, 20138 Milan, Italy
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Via Fratelli Cervi, 93, Segrate, 20090 Milan, Italy
| |
Collapse
|
14
|
Lei R, Akins EA, Wong KCY, Repina NA, Wolf KJ, Dempsey GE, Schaffer DV, Stahl A, Kumar S. Multiwell Combinatorial Hydrogel Array for High-Throughput Analysis of Cell-ECM Interactions. ACS Biomater Sci Eng 2021; 7:2453-2465. [PMID: 34028263 DOI: 10.1021/acsbiomaterials.1c00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biophysical cues in the extracellular matrix (ECM) regulate cell behavior in a complex, nonlinear, and interdependent manner. To quantify these important regulatory relationships and gain a comprehensive understanding of mechanotransduction, there is a need for high-throughput matrix platforms that enable parallel culture and analysis of cells in various matrix conditions. Here we describe a multiwell hyaluronic acid (HA) platform in which cells are cultured on combinatorial arrays of hydrogels spanning a range of elasticities and adhesivities. Our strategy utilizes orthogonal photopatterning of stiffness and adhesivity gradients, with the stiffness gradient implemented by a programmable light illumination system. The resulting platform allows individual treatment and analysis of each matrix environment while eliminating contributions of haptotaxis and durotaxis. In human mesenchymal stem cells, our platform recapitulates expected relationships between matrix stiffness, adhesivity, and cell mechanosensing. We further applied the platform to show that as integrin ligand density falls, cell adhesion and migration depend more strongly on CD44-mediated interactions with the HA backbone. We anticipate that our system could bear great value for mechanistic discovery and screening where matrix mechanics and adhesivity are expected to influence phenotype.
Collapse
Affiliation(s)
- Ruoxing Lei
- Department of Chemistry, Latimer Hall, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Erin A Akins
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States
| | - Kelly C Y Wong
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nicole A Repina
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States
| | - Kayla J Wolf
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States
| | - Garrett E Dempsey
- Department of Nutritional Sciences and Toxicology, Morgan Hall, University of California, Berkeley, California 94720, United States
| | - David V Schaffer
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, Gilman Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Andreas Stahl
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States.,Department of Nutritional Sciences and Toxicology, Morgan Hall, University of California, Berkeley, California 94720, United States
| | - Sanjay Kumar
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, Gilman Hall, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Bioengineering and Therapeutic Sciences, Byers Hall, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
15
|
Acharya BR. Can mechanical forces attune heterotypic cell-cell communications? J Biomech 2021; 121:110409. [PMID: 33845355 DOI: 10.1016/j.jbiomech.2021.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
Heterotypic cell lineages relentlessly exchange biomechanical signals among themselves in metazoan organs. Hence, cell-cell communications are pivotal for organ physiology and pathogenesis. Every cell lineage of an organ responds differently to a specific signal due to its unique receptibility and signal interpretation capacity. These distinct cellular responses generate a system-scale signaling network that helps in generating a specific organ phenotype. Although the reciprocal biochemical signal exchange between non-identical neighboring cells is known to be an essential factor for organ functioning, if, then how, mechanical cues incite these signals is not yet quite explored. Cells within organ tissues experience multiple mechanical forces, such as stretching, bending, compression, and shear stress. Forms and magnitudes of mechanical forces influence biochemical signaling in a cell-specific manner. Additionally, the biophysical state of acellular extracellular matrix (ECM) can transmit exclusive mechanical cues to specific cells of an organ. As it scaffolds heterotypic cells and tissues in close proximities, therefore, ECM can easily be contemplated as a mechanical conduit for signal exchange among them. However, force-stimulated signal transduction is not always physiological, aberrant force sensing by tissue-resident cells can transduce anomalous signals to each other, and potentially can promote pathological phenotypes. Herein, I attempt to put forward a perspective on how mechanical forces may influence signal transductions among heterotypic cell populations and how they feedback each other to achieve a transient or perpetual alteration in metazoan organs. A mechanistic insight of organ scale mechanotransduction can emanate the possibility of finding potential biomarkers and novel therapeutic strategies to deal with pathogenesis and organ regeneration.
Collapse
Affiliation(s)
- Bipul R Acharya
- Department of Cell Biology, School of Medicine, University of Virginia, USA.
| |
Collapse
|
16
|
Lee A, Septiadi D, Taladriz‐Blanco P, Almeida M, Haeni L, Spuch‐Calvar M, Abdussalam W, Rothen‐Rutishauser B, Petri‐Fink A. Particle Stiffness and Surface Topography Determine Macrophage-Mediated Removal of Surface Adsorbed Particles. Adv Healthc Mater 2021; 10:e2001667. [PMID: 33434386 PMCID: PMC11469114 DOI: 10.1002/adhm.202001667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/10/2020] [Indexed: 01/09/2023]
Abstract
Cellular surface recognition and behavior are driven by a host of physical and chemical features which have been exploited to influence particle-cell interactions. Mechanical and topographical cues define the physical milieu which plays an important role in defining a range of cellular activities such as material recognition, adhesion, and migration through cytoskeletal organization and signaling. In order to elucidate the effect of local mechanical and topographical features generated by the adsorption of particles to an underlying surface on primary human monocyte-derived macrophages (MDM), a series of poly(N-isopropylacrylamide) (pNIPAM) particles with differing rigidity are self-assembled to form a defined particle-decorated surface. Assembly of particle-decorated surfaces is facilitated by modification of the underlying glass to possess a positive charge through functionalization using 3-aminopropyltriethoxysilane (APTES) or coating with poly(L-lysine) (PLL). MDMs are noted to preferentially remove particles with higher degrees of crosslinking (stiffer) than those with lower degrees of crosslinking (softer). Alterations to the surface density of particles enabled a greater area of the particle-decorated surface to be cleared. Uniquely, the impact of particle adsorption is evinced to have a direct impact on topographical recognition of the surface, suggesting a novel approach for controllably affecting cell-surface recognition and response.
Collapse
Affiliation(s)
- Aaron Lee
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Dedy Septiadi
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | | | - Mauro Almeida
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Laetitia Haeni
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Miguel Spuch‐Calvar
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Wildan Abdussalam
- Department of High Energy DensityHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstraße 400Dresden01328Germany
| | | | - Alke Petri‐Fink
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
- Department of ChemistryUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| |
Collapse
|
17
|
Glazier R, Shinde P, Ogasawara H, Salaita K. Spectroscopic Analysis of a Library of DNA Tension Probes for Mapping Cellular Forces at Fluid Interfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2145-2164. [PMID: 33417432 DOI: 10.1021/acsami.0c09774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oligonucleotide-based probes offer the highest spatial resolution, force sensitivity, and molecular specificity for cellular tension sensing and have been developed to measure a variety of molecular forces mediated by individual receptors in T cells, platelets, fibroblasts, B-cells, and immortalized cancer cell lines. These fluorophore-oligonucleotide conjugate probes are designed with a stem-loop structure that engages cell receptors and reversibly unfolds due to mechanical strain. With the growth of recent work bridging molecular mechanobiology and biomaterials, there is a need for a detailed spectroscopic analysis of DNA tension probes that are used for cellular imaging. In this manuscript, we conducted an analysis of 19 DNA hairpin-based tension probe variants using molecular dynamics simulations, absorption spectroscopy, and fluorescence imaging (epifluorescence and fluorescence lifetime imaging microscopy). We find that tension probes are highly sensitive to their molecular design, including donor and acceptor proximity and pairing, DNA stem-loop structure, and conjugation chemistry. We demonstrate the impact of these design features using a supported lipid bilayer model of podosome-like adhesions. Finally, we discuss the requirements for tension imaging in various biophysical contexts and offer a series of experimental recommendations, thus providing a guide for the design and application of DNA hairpin-based molecular tension probes.
Collapse
Affiliation(s)
- Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Pushkar Shinde
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hiroaki Ogasawara
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
18
|
Lei R, Kumar S. Getting the big picture of cell-matrix interactions: High-throughput biomaterial platforms and systems-level measurements. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2020; 24:100871. [PMID: 33244294 PMCID: PMC7685248 DOI: 10.1016/j.cossms.2020.100871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Living cells interact with the extracellular matrix (ECM) in a complex and reciprocal manner. Much has been learned over the past few decades about cell-ECM interactions from targeted studies in which a specific matrix parameter (e.g. stiffness, adhesivity) has been varied across a few discrete values, or in which the level or activity of a protein is controlled in an isolated fashion. As the field moves forward, there is growing interest in addressing cell-matrix interactions from a systems perspective, which has spurred a new generation of matrix platforms capable of interrogating multiple ECM inputs in a combinatorial and parallelized fashion. Efforts are also actively underway to integrate specialized, synthetic ECM platforms with global measures of cell behaviors, including at the transcriptomic, proteomic and epigenomic levels. Here we review recent advances in both areas. We describe how new combinatorial ECM technologies are revealing unexpected crosstalk and nonlinearity in the relationship between cell phenotype and matrix properties. Similarly, efforts to integrate "omics" measurements with synthetic ECM platforms are illuminating how ECM properties can control cell biology in surprising and functionally important ways. We expect that advances in both areas will deepen the field's understanding of cell-ECM interactions and offer valuable insight into the design of biomaterials for specific biomedical applications.
Collapse
Affiliation(s)
- Ruoxing Lei
- Department of Chemistry, University of California, Berkeley, CA, 94720
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720
| |
Collapse
|
19
|
Chen Y, Wang J, Li X, Hu N, Voelcker NH, Xie X, Elnathan R. Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001668. [PMID: 32844502 PMCID: PMC7461044 DOI: 10.1002/adma.202001668] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/16/2020] [Indexed: 05/07/2023]
Abstract
Engineered nano-bio cellular interfaces driven by 1D vertical nanostructures (1D-VNS) are set to prompt radical progress in modulating cellular processes at the nanoscale. Here, tuneable cell-VNS interfacial interactions are probed and assessed, highlighting the use of 1D-VNS in immunomodulation, and intracellular delivery into immune cells-both crucial in fundamental and translational biomedical research. With programmable topography and adaptable surface functionalization, 1D-VNS provide unique biophysical and biochemical cues to orchestrate innate and adaptive immunity, both ex vivo and in vivo. The intimate nanoscale cell-VNS interface leads to membrane penetration and cellular deformation, facilitating efficient intracellular delivery of diverse bioactive cargoes into hard-to-transfect immune cells. The unsettled interfacial mechanisms reported to be involved in VNS-mediated intracellular delivery are discussed. By identifying up-to-date progress and fundamental challenges of current 1D-VNS technology in immune-cell manipulation, it is hoped that this report gives timely insights for further advances in developing 1D-VNS as a safe, universal, and highly scalable platform for cell engineering and enrichment in advanced cancer immunotherapy such as chimeric antigen receptor-T therapy.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- INM‐Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Roey Elnathan
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
| |
Collapse
|
20
|
Guak H, Krawczyk CM. Implications of cellular metabolism for immune cell migration. Immunology 2020; 161:200-208. [PMID: 32920838 DOI: 10.1111/imm.13260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cell migration is an essential, energetically demanding process in immunity. Immune cells navigate the body via chemokines and other immune mediators, which are altered under inflammatory conditions of injury or infection. Several factors determine the migratory abilities of different types of immune cells in diverse contexts, including the precise co-ordination of cytoskeletal remodelling, the expression of specific chemokine receptors and integrins, and environmental conditions. In this review, we present an overview of recent advances in our understanding of the relationship of each of these factors with cellular metabolism, with a focus on the spatial organization of glycolysis and mitochondria, reciprocal regulation of chemokine receptors and the influence of environmental changes.
Collapse
Affiliation(s)
- Hannah Guak
- Department of Physiology, McGill University, Montreal, QC, Canada.,Metabolic and Nutritional Programming Group, Van Andel Institute, Grand Rapids, MI, USA
| | - Connie M Krawczyk
- Metabolic and Nutritional Programming Group, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
21
|
Michalick L, Kuebler WM. TRPV4-A Missing Link Between Mechanosensation and Immunity. Front Immunol 2020; 11:413. [PMID: 32210976 PMCID: PMC7076180 DOI: 10.3389/fimmu.2020.00413] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential vanilloid-type 4 (TRPV4) cation channel is widely expressed in all tissues as well as in immune cells and its function as mechanosensitive Ca2+ channel seems to be conserved throughout all mammalian species. Of late, emerging evidence has implicated TRPV4 in the activation and differentiation of innate immune cells, especially in neutrophils, monocytes, and macrophages. As such, TRPV4 has been shown to mediate neutrophil adhesion and chemotaxis, as well as production of reactive oxygen species in response to pro-inflammatory stimuli. In macrophages, TRPV4 mediates formation of both reactive oxygen and nitrogen species, and regulates phagocytosis, thus facilitating bacterial clearance and resolution of infection. Importantly, TRPV4 may present a missing link between mechanical forces and immune responses. This connection has been exemplary highlighted by the demonstrated role of TRPV4 in macrophage activation and subsequent induction of lung injury following mechanical overventilation. Mechanosensation via TRPV4 is also expected to activate innate immune cells and establish a pro-inflammatory loop in fibrotic diseases with increased deposition of extracellular matrix (ECM) and substrate stiffness. Likewise, TRPV4 may be activated by cell migration through the endothelium or the extracellular matrix, or even by circulating immune cells squeezing through the narrow passages of the pulmonary or systemic capillary bed, a process that has recently been linked to neutrophil priming and depriming. Here, we provide an overview over the emerging role of TRPV4 in innate immune responses and highlight two distinct modes for the activation of TRPV4 by either mechanical forces ("mechanoTRPV4") or by pathogens ("immunoTRPV4").
Collapse
Affiliation(s)
- Laura Michalick
- Institute of Physiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
22
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Gruber EJ, Leifer CA. Molecular regulation of TLR signaling in health and disease: mechano-regulation of macrophages and TLR signaling. Innate Immun 2020; 26:15-25. [PMID: 31955624 PMCID: PMC6974875 DOI: 10.1177/1753425919838322] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022] Open
Abstract
Immune cells encounter tissues with vastly different biochemical and physical characteristics. Much of the research emphasis has focused on the role of cytokines and chemokines in regulating immune cell function, but the role of the physical microenvironment has received considerably less attention. The tissue mechanics, or stiffness, of healthy tissues varies dramatically from soft adipose tissue and brain to stiff cartilage and bone. Tissue mechanics also change due to fibrosis and with diseases such as atherosclerosis or cancer. The process by which cells sense and respond to their physical microenvironment is called mechanotransduction. Here we review mechanotransduction in immunologically important diseases and how physical characteristics of tissues regulate immune cell function, with a specific emphasis on mechanoregulation of macrophages and TLR signaling.
Collapse
Affiliation(s)
| | - Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell
University, Ithaca, NY, USA
| |
Collapse
|
24
|
Abstract
The immune response is orchestrated by a variety of immune cells. The function of each cell is determined by the collective signals from various immunoreceptors, whose expression and activity depend on the developmental stages of the cell and its environmental context. Recent studies have highlighted the presence of mechanical force on several immunoreceptor-ligand pairs and the important role of force in regulating their interaction and function. In this Perspective, we use the T cell antigen receptor as an example with which to review the current understanding of the mechanosensing properties of immunoreceptors. We discuss the types of forces that immunoreceptors may encounter and the effects of force on ligand bonding, conformational change and the triggering of immunoreceptors, as well as the effects of force on the downstream signal transduction, cell-fate decisions and effector function of immune cells.
Collapse
|
25
|
Pullen RH, Abel SM. Mechanical feedback enables catch bonds to selectively stabilize scanning microvilli at T-cell surfaces. Mol Biol Cell 2019; 30:2087-2095. [PMID: 31116687 PMCID: PMC6727777 DOI: 10.1091/mbc.e19-01-0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
T-cells use microvilli to search the surfaces of antigen-presenting cells for antigenic ligands. The active motion of scanning microvilli provides a force-generating mechanism that is intriguing in light of single-molecule experiments showing that applied forces increase the lifetimes of stimulatory receptor–ligand bonds (catch-bond behavior). In this work, we introduce a theoretical framework to explore the motion of a microvillar tip above an antigen-presenting surface when receptors on the tip stochastically bind to ligands on the surface and dissociate from them in a force-dependent manner. Forces on receptor-ligand bonds impact the motion of the microvillus, leading to feedback between binding and microvillar motion. We use computer simulations to show that the average microvillar velocity varies in a ligand-dependent manner; that catch bonds generate responses in which some microvilli almost completely stop, while others move with a broad distribution of velocities; and that the frequency of stopping depends on the concentration of stimulatory ligands. Typically, a small number of catch bonds initially immobilize the microvillus, after which additional bonds accumulate and increase the cumulative receptor-engagement time. Our results demonstrate that catch bonds can selectively slow and stabilize scanning microvilli, suggesting a physical mechanism that may contribute to antigen discrimination by T-cells.
Collapse
Affiliation(s)
- Robert H Pullen
- Department of Chemical and Biomolecular Engineering, National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
26
|
Wan Z, Shaheen S, Chau A, Zeng Y, Liu W. Imaging: Gear up for mechano-immunology. Cell Immunol 2019; 350:103926. [PMID: 31151736 DOI: 10.1016/j.cellimm.2019.103926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Immune cells including B and T lymphocytes have a remarkable ability to sense the physical perturbations through their surface expressed receptors. At the advent of modern imaging technologies paired with biophysical methods, we have gained the understanding of mechanical forces exerted by immune cells to perform their functions. This review will go over the imaging techniques already being used to study mechanical forces in immune cells. We will also discuss the dire need for new modern technologies for future work.
Collapse
Affiliation(s)
- Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Alicia Chau
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
27
|
Hammer JA, Wang JC, Saeed M, Pedrosa AT. Origin, Organization, Dynamics, and Function of Actin and Actomyosin Networks at the T Cell Immunological Synapse. Annu Rev Immunol 2019; 37:201-224. [PMID: 30576253 PMCID: PMC8343269 DOI: 10.1146/annurev-immunol-042718-041341] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The engagement of a T cell with an antigen-presenting cell (APC) or activating surface results in the formation within the T cell of several distinct actin and actomyosin networks. These networks reside largely within a narrow zone immediately under the T cell's plasma membrane at its site of contact with the APC or activating surface, i.e., at the immunological synapse. Here we review the origin, organization, dynamics, and function of these synapse-associated actin and actomyosin networks. Importantly, recent insights into the nature of these actin-based cytoskeletal structures were made possible in several cases by advances in light microscopy.
Collapse
Affiliation(s)
- John A Hammer
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jia C Wang
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Mezida Saeed
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Antonio T Pedrosa
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
28
|
Abstract
B cells are essential to the adaptive immune system for providing the humoral immunity against cohorts of pathogens. The presentation of antigen to the B cell receptor (BCR) leads to the initiation of B cell activation, which is a process sensitive to the stiffness features of the substrates presenting the antigens. Mechanosensing of the B cells, potentiated through BCR signaling and the adhesion molecules, efficiently regulates B cell activation, proliferation and subsequent antibody responses. Defects in sensing of the antigen-presenting substrates can lead to the activation of autoreactive B cells in autoimmune diseases. The use of high-resolution, high-speed live-cell imaging along with the sophisticated biophysical materials, has uncovered the mechanisms underlying the initiation of B cell activation within seconds of its engagement with the antigen presenting substrates. In this chapter, we reviewed studies that have contributed to uncover the molecular mechanisms of B cell mechanosensing during the initiation of B cell activation.
Collapse
Affiliation(s)
- Samina Shaheen
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Kabeer Haneef
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yingyue Zeng
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wang Jing
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wanli Liu
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China.
| |
Collapse
|
29
|
Chen Y, Ju L, Rushdi M, Ge C, Zhu C. Receptor-mediated cell mechanosensing. Mol Biol Cell 2017; 28:3134-3155. [PMID: 28954860 PMCID: PMC5687017 DOI: 10.1091/mbc.e17-04-0228] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mechanosensing depicts the ability of a cell to sense mechanical cues, which under some circumstances is mediated by the surface receptors. In this review, a four-step model is described for receptor-mediated mechanosensing. Platelet GPIb, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Lining Ju
- Charles Perkins Centre and Heart Research Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Muaz Rushdi
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Chenghao Ge
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 .,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|