1
|
Wang C, Quan Y, Jiang J, Yu H, Liu J, Tang W, Li X, Wang S, Huo D, Jiang GL, Yang Y, Ding Q. Protein Coronation-Induced Cancer Staging-Dependent Multilevel Cytotoxicity: An All-Humanized Study in Blood Vessel Organoids. ACS NANO 2025; 19:345-368. [PMID: 39743836 DOI: 10.1021/acsnano.4c07783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The protein corona effect refers to the phenomenon wherein nanomaterials in the bloodstream are coated by serum proteins, yet how protein coronated nanomaterials interact with blood vessels and its toxicity implications remain poorly understood. In this study, we investigated protein corona-related vessel toxicity by using an all-humanized assay integrating blood vessel organoids and patient-derived serum. Initially, we screened various nanomaterials to discern how parameters including size, morphology, hydrophobicity, surface charge, and chirality-dependent protein corona difference influence their uptake by vessel organoids. For nanomaterials showing substantial differences in vessel uptake, their protein corona was analyzed by using label-free mass spectra. Our findings revealed the involvement of cancer staging-related cytoskeleton components in mediating preferential uptake by cells, including endothelial and mural cells. Additionally, a transcriptome study was conducted to elucidate the influence of nanomaterials. We confirmed that protein coronated nanomaterials provoke remodeling at both transcriptional and translational levels, impacting pathways such as PI3K-Akt/Hippo/Wnt, and membraneless organelle integrity, respectively. Our study further demonstrated that the remodeling potential of patient-derived protein coronated nanomaterials can be harnessed to synergize with antiangiogenesis therapeutics to improve the outcomes. We anticipate that this study will provide guidance for the safe use of nanomedicine in the future.
Collapse
Affiliation(s)
- Chan Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yingyi Quan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jiang Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Han Yu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jia Liu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Wei Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Xinyue Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Shouju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, P. R. China
| | - Da Huo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, Nanjing Medical University, Nanjing 211169, P. R. China
| | - Guang-Liang Jiang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Qingqing Ding
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, P. R. China
| |
Collapse
|
2
|
Beckman JD, Zhang P, Nguyen J, Hebbel RP, Vercellotti GM, Belcher JD. Missing the mark(ers): circulating endothelial cells and endothelial-derived extracellular vesicles are elevated in sickle cell disease plasma. Front Immunol 2024; 15:1493904. [PMID: 39776915 PMCID: PMC11703723 DOI: 10.3389/fimmu.2024.1493904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Sickle cell disease (SCD) is a devastating hemolytic disease, marked by recurring bouts of painful vaso-occlusion, leading to tissue damage from ischemia/reperfusion pathophysiology. Central to this process are oxidative stress, endothelial cell activation, inflammation, and vascular dysfunction. The endothelium exhibits a pro-inflammatory, pro-coagulant, and enhanced permeability phenotype. We used flow cytometry to enumerate circulating endothelial cells (CECs, CD31+/CD45-/CD146+) in SCD and normal healthy control blood samples. Furthermore, we assessed CEC subtypes, including circulating endothelial progenitor cells (EPCs, CD31+/CD45-/CD146+/CD133+) and mature CECs (mCECs, CD31+/CD45-/CD146+/CD133-) with mCECs further subdivided into resting CECs (rCECs, VCAM-1-) and activated CECs (aCECs, VCAM-1+). As compared to healthy controls, total CECs and mCECs were elevated in SCD blood as compared to healthy control blood. Using the same markers along with size-based gating, we also used flow cytometry to enumerate endothelial-derived extracellular vesicles (EEVs) in plasma. We assessed EEV subtypes based on VCAM-1 expression, including activated EEVs (aEEVs, CD31+/CD45-/CD146+/CD133-/VCAM-1+) and resting EEVs (rEEVs, VCAM-1 negative), presumably derived from activated and resting endothelial cells, respectively. aEEVs were elevated in SCD patient plasma as compared to healthy controls. Importantly, in SCD patients, total EEVs and aEEVs were increased during self-reported pain crisis as compared to steady state. Plasma markers of endothelial cell activation including soluble E-selectin, P-selectin, VCAM-1, and ICAM-1 were elevated in SCD plasma. These data highlight strategies to detect SCD-related endothelial cell activation and demonstrate that endothelial cell activation markers may be useful to evaluate curative and non-curative therapies in SCD patients.
Collapse
Affiliation(s)
| | | | | | | | | | - John D. Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Yu L, Hu D, Luo Y, Lin W, Xu H, Xiao X, Xia Z, Dou Z, Zhao G, Yang L, Peng D, Zhang Q, Yu S. Transcriptional signatures of cortical structural changes in chronic insomnia disorder. Psychophysiology 2024; 61:e14671. [PMID: 39160694 DOI: 10.1111/psyp.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/30/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Chronic insomnia disorder (CID) is a multidimensional disease that may influence various levels of brain organization, spanning the macroscopic structural connectome to microscopic gene expression. However, the connection between genomic variations and morphological alterations in CID remains unclear. Here, we investigated brain structural changes in CID patients at the whole-brain level and whether these link to transcriptional characteristics. Brain structural data from 104 CID patients and 102 matched healthy controls (HC) were acquired to examine cortical structural alterations using morphometric similarity (MS) analysis. Partial least squares (PLS) regression and transcriptome data from the Allen Human Brain Atlas were used to extract genomes related to MS changes. Gene-category enrichment analysis (GCEA) was used to identify potential molecular mechanisms behind the observed structural changes. We found that CID patients exhibited MS reductions in the parietal and limbic regions, along with enhancements in the temporal and frontal regions compared to HCs (pFDR < .05). Subsequently, PLS and GCEA revealed that these MS alterations were spatially correlated with a set of genes, especially those significantly correlated with excitatory and inhibitory neurons and chronic neuroinflammation. This neuroimaging-transcriptomic study bridges the gap between cortical structural changes and the molecular mechanisms in CID patients, providing novel insight into the pathophysiology of insomnia and targeted treatments.
Collapse
Affiliation(s)
- Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daijie Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Traditional Chinese Medicine Rehabilitation, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Xu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Xiangwen Xiao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Xia
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dezhong Peng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhang
- Department of Anorectal Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Hu X, Zheng Y, Fang M, Liang Z, Wen C, Lin J, Lin Z, Chen S. Knockdown of the long noncoding RNA VSIG2-1:1 promotes the angiogenic ability of human pulmonary microvascular endothelial cells by activating the VEGF/PI3K/AKT pathway. Respir Res 2024; 25:412. [PMID: 39568008 PMCID: PMC11577886 DOI: 10.1186/s12931-024-03039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Abnormal pulmonary vascular development poses significant clinical challenges for infants with bronchopulmonary dysplasia (BPD). Although numerous factors have been suggested to control the development of pulmonary blood vessels, the mechanisms underlying the role of long noncoding RNAs (lncRNAs) in this process remain unclear. METHODS A lncRNA array was used to measure the differential expression of lncRNAs in premature infants with and without BPD. The expression of lncRNA-VSIG2-1:1 in patients with BPD and hyperoxia-induced human pulmonary microvascular endothelial cells (HPMECs) was assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Fluorescence in situ hybridization (FISH) assay was performed to detect the subcellular localization of lncRNA-VSIG2-1:1. Pulmonary microvascular endothelial cells were stably transfected with adenoviral vectors to silence or overexpress lncRNA-VSIG2-1:1. The effects of lncRNA-VSIG2-1:1 on the proliferation, migration, and tube formation abilities of HPMECs subjected to hyperoxia were examined by performing Cell Counting Kit-8 (CCK-8), cell migration, and tubule formation assays. RNA sequencing (RNA-seq) was performed to determine the correlation between lncRNA-VSIG2-1:1 and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT). The protein levels of vascular endothelial growth factor (VEGF), p-PI3K, PI3K, p-AKT, and AKT were determined using western blotting. RESULTS The expression of lncRNA-VSIG2-1:1 was upregulated in patients with BPD and hyperoxia-treated HPMECs. Inhibiting lncRNA-VSIG2-1:1 expression promoted the proliferation, migration, and tube-formation abilities of HPMECs, while significantly increasing VEGF, p-PI3K, and p-AKT levels. CONCLUSION Our findings reveal that the suppression of lncRNA-VSIG2-1:1 expression stimulates angiogenesis in vitro by inducing the initiation of the VEGF/PI3K/AKT signaling pathway. This observation may aid the development of novel therapeutic targets for treating BPD.
Collapse
Affiliation(s)
- Xiaoya Hu
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Yihui Zheng
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, 325000, Zhejiang Province, China
| | - Mingchu Fang
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, 325000, Zhejiang Province, China
| | - Zhongjie Liang
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Chao Wen
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Jing Lin
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zhenlang Lin
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, 325000, Zhejiang Province, China.
| | - Shangqin Chen
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
| |
Collapse
|
5
|
Hershenson R, Nardi-Agmon I, Leshem-Lev D, Kornowski R, Eisen A. The effect of empagliflozin on circulating endothelial progenitor cells in patients with diabetes and stable coronary artery disease. Cardiovasc Diabetol 2024; 23:386. [PMID: 39468546 PMCID: PMC11520434 DOI: 10.1186/s12933-024-02466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with premature atherosclerotic disease, coronary artery disease (CAD) and chronic heart failure (HF), leading to increased morbidity and mortality. Sodium-Glucose Co-transporter 2 Inhibitors (SGLT2i) exhibit cardioprotective benefits beyond glucose lowering, reducing the risk of major cardiovascular events (MACE) and HF hospitalizations in patients with DM and CAD. Endothelial progenitor cells (EPCs) are bone marrow-derived cells involved in vascular repair, mobilized in response to vascular injury. The number and function of circulating EPCs (cEPCs) are negatively affected by cardiovascular risk factors, including DM. This study aimed to examine the response of cEPCs to SGLT2i treatment in DM patients with stable CAD. METHODS A prospective single-center study included patients with DM and stable CAD who were started on an SGLT2i (empagliflozin). Peripheral blood samples were collected at baseline, 1 month, and 3 months to evaluate cEPC levels and function by flow cytometry, immunohistochemistry and MTT assays. RESULTS Eighteen patients were included in the study (median age 73, (IQR 69, 77) years, 67% male). After 1 month of treatment with empagliflozin, there was no significant change in cEPCs level or function. However, following 3 months of treatment, a significant increase was observed both in cell levels (CD34(+)/VEGFR-2(+): from 0.49% (IQR 0.32, 0.64) to 1.58% (IQR 0.93, 1.82), p = 0.0006; CD133(+)/VEGFR-2(+): from 0.38% (IQR 0.27, 0.6) to 0.82% (IQR 0.7, 1.95), p = 0.0001) and in cell function (from 0.25 CFUs (IQR 0, 0.5) at baseline, to 2 CFUs (IQR 1, 2) at 3 months, p = 0.0012). CONCLUSIONS Empagliflozin treatment in patients with DM and stable CAD increases cEPC levels and function, implying a cardioprotective mechanism. These findings highlight the potential of SGLT2i in treating cardiovascular diseases, warranting further research to explore these effects and their long-term implications.
Collapse
Affiliation(s)
- Roy Hershenson
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Inbar Nardi-Agmon
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Dorit Leshem-Lev
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Eisen
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Hassanpour M, Salybkov AA, Kobayashi S, Asahara T. Anti-inflammatory Prowess of endothelial progenitor cells in the realm of biology and medicine. NPJ Regen Med 2024; 9:27. [PMID: 39349482 PMCID: PMC11442670 DOI: 10.1038/s41536-024-00365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/23/2024] [Indexed: 10/02/2024] Open
Abstract
Endothelial inflammation plays a crucial role in vascular-related diseases, a leading cause of global mortality. Among various cellular players, endothelial progenitor cells (EPCs) emerge as non-differentiated endothelial cells circulating in the bloodstream. Recent evidence highlights the transformative role of EPCs in shifting from an inflammatory/immunosuppressive crisis to an anti-inflammatory/immunomodulatory response. Despite the importance of these functions, the regulatory mechanisms governing EPC activities and their physiological significance in vascular regenerative medicine remain elusive. Surprisingly, the current literature lacks a comprehensive review of EPCs' effects on inflammatory processes. This narrative review aims to fill this gap by exploring the cutting-edge role of EPCs against inflammation, from molecular intricacies to broader medical perspectives. By examining how EPCs modulate inflammatory responses, we aim to unravel their anti-inflammatory significance in vascular regenerative medicine, deepening insights into EPCs' molecular mechanisms and guiding future therapeutic strategies targeting vascular-related diseases.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Shonan Research, Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell therapy & Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Amankeldi A Salybkov
- Shonan Research, Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell therapy & Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Shuzo Kobayashi
- Shonan Research, Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Takayuki Asahara
- Shonan Research, Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan.
- Center for Cell therapy & Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan.
| |
Collapse
|
7
|
Ackermann M, Werlein C, Plucinski E, Leypold S, Kühnel MP, Verleden SE, Khalil HA, Länger F, Welte T, Mentzer SJ, Jonigk DD. The role of vasculature and angiogenesis in respiratory diseases. Angiogenesis 2024; 27:293-310. [PMID: 38580869 PMCID: PMC11303512 DOI: 10.1007/s10456-024-09910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/11/2024] [Indexed: 04/07/2024]
Abstract
In European countries, nearly 10% of all hospital admissions are related to respiratory diseases, mainly chronic life-threatening diseases such as COPD, pulmonary hypertension, IPF or lung cancer. The contribution of blood vessels and angiogenesis to lung regeneration, remodeling and disease progression has been increasingly appreciated. The vascular supply of the lung shows the peculiarity of dual perfusion of the pulmonary circulation (vasa publica), which maintains a functional blood-gas barrier, and the bronchial circulation (vasa privata), which reveals a profiled capacity for angiogenesis (namely intussusceptive and sprouting angiogenesis) and alveolar-vascular remodeling by the recruitment of endothelial precursor cells. The aim of this review is to outline the importance of vascular remodeling and angiogenesis in a variety of non-neoplastic and neoplastic acute and chronic respiratory diseases such as lung infection, COPD, lung fibrosis, pulmonary hypertension and lung cancer.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany.
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Witten, Germany.
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | | | - Edith Plucinski
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sophie Leypold
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Mark P Kühnel
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Antwerp, Belgium
| | - Hassan A Khalil
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Länger
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Steven J Mentzer
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Danny D Jonigk
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
8
|
Lee ES, Nguyen N, Young BE, Wee H, Wazny V, Lee KL, Tay KY, Goh LL, Chioh FW, Law MC, Lee IR, Ang LT, Loh KM, Chan MY, Fan BE, Dalan R, Lye DC, Renia L, Cheung C. Inflammatory risk contributes to post-COVID endothelial dysfunction through anti-ACKR1 autoantibody. Life Sci Alliance 2024; 7:e202402598. [PMID: 38740432 PMCID: PMC11091471 DOI: 10.26508/lsa.202402598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Subclinical vascular impairment can be exacerbated in individuals who experience sustained inflammation after COVID-19 infection. Our study explores the prevalence and impact of autoantibodies on vascular dysfunction in healthy COVID-19 survivors, an area that remains inadequately investigated. Focusing on autoantibodies against the atypical chemokine receptor 1 (ACKR1), COVID-19 survivors demonstrated significantly elevated anti-ACKR1 autoantibodies, correlating with systemic cytokines, circulating damaged endothelial cells, and endothelial dysfunction. An independent cohort linked these autoantibodies to increased vascular disease outcomes during a median 6.7-yr follow-up. We analyzed a single-cell transcriptome atlas of endothelial cells from diverse mouse tissues, identifying enriched Ackr1 expressions in venous regions of the brain and soleus muscle vasculatures, which holds intriguing implications for tissue-specific venous thromboembolism manifestations reported in COVID-19. Functionally, purified immunoglobulin G (IgG) extracted from patient plasma did not trigger cell apoptosis or increase barrier permeability in human vein endothelial cells. Instead, plasma IgG enhanced antibody-dependent cellular cytotoxicity mediated by patient PBMCs, a phenomenon alleviated by blocking peptide or liposome ACKR1 recombinant protein. The blocking peptide uncovered that purified IgG from COVID-19 survivors possessed potential epitopes in the N-terminal extracellular domain of ACKR1, which effectively averted antibody-dependent cellular cytotoxicity. Our findings offer insights into therapeutic development to mitigate autoantibody reactivity in blood vessels in chronic inflammation.
Collapse
Affiliation(s)
- Ee-Soo Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nhi Nguyen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Barnaby E Young
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Hannah Wee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Vanessa Wazny
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Khang Leng Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kai Yi Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Liuh Ling Goh
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Florence Wj Chioh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Michelle Cy Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - I Russel Lee
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Lay Teng Ang
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Mark Y Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Heart Centre, National University Health System, Singapore, Singapore
| | - Bingwen E Fan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Rinkoo Dalan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
| | - David C Lye
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Laurent Renia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
9
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
10
|
Kwon JY, Maeng YS. Human Cord Blood Endothelial Progenitor Cells and Pregnancy Complications (Preeclampsia, Gestational Diabetes Mellitus, and Fetal Growth Restriction). Int J Mol Sci 2024; 25:4444. [PMID: 38674031 PMCID: PMC11050478 DOI: 10.3390/ijms25084444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hemangioblasts give rise to endothelial progenitor cells (EPCs), which also express the cell surface markers CD133 and c-kit. They may differentiate into the outgrowth endothelial cells (OECs) that control neovascularization in the developing embryo. According to numerous studies, reduced levels of EPCs in circulation have been linked to human cardiovascular disorders. Furthermore, preeclampsia and senescence have been linked to levels of EPCs produced from cord blood. Uncertainties surround how preeclampsia affects the way EPCs function. It is reasonable to speculate that preeclampsia may have an impact on the function of fetal EPCs during the in utero period; however, the present literature suggests that maternal vasculopathies, including preeclampsia, damage fetal circulation. Additionally, the differentiation potential and general activity of EPCs may serve as an indicator of the health of the fetal vascular system as they promote neovascularization and repair during pregnancy. Thus, the purpose of this review is to compare-through the assessment of their quantity, differentiation potency, angiogenic activity, and senescence-the angiogenic function of fetal EPCs obtained from cord blood for normal and pregnancy problems (preeclampsia, gestational diabetes mellitus, and fetal growth restriction). This will shed light on the relationship between the angiogenic function of fetal EPCs and pregnancy complications, which could have an effect on the management of long-term health issues like metabolic and cardiovascular disorders in offspring with abnormal vasculature development.
Collapse
Affiliation(s)
- Ja-Young Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University Health System, Seoul 03722, Republic of Korea;
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University Health System, Seoul 03722, Republic of Korea;
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Whitworth CP, Polacheck WJ. Vascular organs-on-chip made with patient-derived endothelial cells: technologies to transform drug discovery and disease modeling. Expert Opin Drug Discov 2024; 19:339-351. [PMID: 38117223 PMCID: PMC10922379 DOI: 10.1080/17460441.2023.2294947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Vascular diseases impart a tremendous burden on healthcare systems in the United States and across the world. Efforts to improve therapeutic interventions are hindered by limitations of current experimental models. The integration of patient-derived cells with organ-on-chip (OoC) technology is a promising avenue for preclinical drug screening that improves upon traditional cell culture and animal models. AREAS COVERED The authors review induced pluripotent stem cells (iPSC) and blood outgrowth endothelial cells (BOEC) as two sources for patient-derived endothelial cells (EC). They summarize several studies that leverage patient-derived EC and OoC for precision disease modeling of the vasculature, with a focus on applications for drug discovery. They also highlight the utility of patient-derived EC in other translational endeavors, including ex vivo organogenesis and multi-organ-chip integration. EXPERT OPINION Precision disease modeling continues to mature in the academic space, but end-use by pharmaceutical companies is currently limited. To fully realize their transformative potential, OoC systems must balance their complexity with their ability to integrate with the highly standardized and high-throughput experimentation required for drug discovery and development.
Collapse
Affiliation(s)
- Chloe P Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
12
|
Cheung C. Editorial on "Vascular cell fate in health and disease". Semin Cell Dev Biol 2024; 155:1-2. [PMID: 37730443 DOI: 10.1016/j.semcdb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Affiliation(s)
- Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|