1
|
Kundu S, Gairola S, Verma S, Mugale MN, Sahu BD. Chronic kidney disease activates the HDAC6-inflammatory axis in the heart and contributes to myocardial remodeling in mice: inhibition of HDAC6 alleviates chronic kidney disease-induced myocardial remodeling. Basic Res Cardiol 2024; 119:831-852. [PMID: 38771318 DOI: 10.1007/s00395-024-01056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Chronic kidney disease (CKD) adversely affects the heart. The underlying mechanism and the interplay between the kidney and the heart are still obscure. We examined the cardiac effect using the unilateral ureteral obstruction (UUO)-induced CKD pre-clinical model in mice. Echocardiography, histopathology of the heart, myocardial mRNA expression of ANP and BNP, the extent of fibrotic (TGF-β, α-SMA, and collagen I) and epigenetic (histone deacetylases, namely HDAC3, HDAC4, and HDAC6) proteins, and myocardial inflammatory response were assessed. Six weeks of post-UUO surgery, we observed a compromised left-ventricular wall thickness and signs of cardiac hypertrophy, accumulation of fibrosis associated, and inflammatory proteins in the heart. In addition, we observed a perturbation of epigenetic proteins, especially HDAC3, HDAC4, and HDAC6, in the heart. Pharmacological inhibition of HDAC6 using ricolinostat (RIC) lessened cardiac damage and improved left-ventricular wall thickness. The RIC treatment substantially restored the serum cardiac injury markers, namely creatine kinase-MB and lactate dehydrogenase (LDH) activities, ANP and BNP mRNA expression, and heart histological changes. The extent of myocardial fibrotic proteins, phospho-NF-κB (p65), and pro-inflammatory cytokines (TNF-α, IL-18, and IL-1β) were significantly decreased in the RIC treatment group. Further findings revealed the CKD-induced infiltration of CD3, CD8a, CD11c, and F4/80 positive inflammatory cells in the heart. Treatment with RIC substantially reduced the myocardial infiltration of these inflammatory cells. From these findings, we believe that CKD-induced myocardial HDAC6 perturbation has a deteriorative effect on the heart, and inhibition of HDAC6 can be a promising approach to alleviate CKD-induced myocardial remodeling.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, 781101, India
| | - Shobhit Gairola
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, 781101, India
| | - Smriti Verma
- Department of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Madhav Nilakanth Mugale
- Department of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, 781101, India.
| |
Collapse
|
2
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Zheng L, Chen W, Yao K, Xie Y, Liao C, Zhou T. Clinical and preclinical studies of mesenchymal stem cells to alleviate peritoneal fibrosis. Stem Cell Res Ther 2024; 15:237. [PMID: 39080683 PMCID: PMC11290310 DOI: 10.1186/s13287-024-03849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Peritoneal dialysis is an important part of end-stage kidney disease replacement therapy. However, prolonged peritoneal dialysis can result in peritoneal fibrosis and ultrafiltration failure, forcing patients to withdraw from peritoneal dialysis treatment. Therefore, there is an urgent need for some effective measures to alleviate the occurrence and progression of peritoneal fibrosis. Mesenchymal stem cells play a crucial role in immunomodulation and antifibrosis. Numerous studies have investigated the fact that mesenchymal stem cells can ameliorate peritoneal fibrosis mainly through the paracrine pathway. It has been discovered that mesenchymal stem cells participate in the improvement of peritoneal fibrosis involving the following signaling pathways: TGF-β/Smad signaling pathway, AKT/FOXO signaling pathway, Wnt/β-catenin signaling pathway, TLR/NF-κB signaling pathway. Additionally, in vitro experiments, mesenchymal stem cells have been shown to decrease mesothelial cell death and promote proliferation. In animal models, mesenchymal stem cells can enhance peritoneal function by reducing inflammation, neovascularization, and peritoneal thickness. Mesenchymal stem cell therapy has been demonstrated in clinical trials to improve peritoneal function and reduce peritoneal fibrosis, thus improving the life quality of peritoneal dialysis patients.
Collapse
Affiliation(s)
- Lingqian Zheng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Wenmin Chen
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Kaijin Yao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Yina Xie
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Chunling Liao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China.
| |
Collapse
|
4
|
Su H, Zou R, Su J, Chen X, Yang H, An N, Yang C, Tang J, Liu H, Yao C. Sterile inflammation of peritoneal membrane caused by peritoneal dialysis: focus on the communication between immune cells and peritoneal stroma. Front Immunol 2024; 15:1387292. [PMID: 38779674 PMCID: PMC11109381 DOI: 10.3389/fimmu.2024.1387292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Peritoneal dialysis is a widely used method for treating kidney failure. However, over time, the peritoneal structure and function can deteriorate, leading to the failure of this therapy. This deterioration is primarily caused by infectious and sterile inflammation. Sterile inflammation, which is inflammation without infection, is particularly concerning as it can be subtle and often goes unnoticed. The onset of sterile inflammation involves various pathological processes. Peritoneal cells detect signals that promote inflammation and release substances that attract immune cells from the bloodstream. These immune cells contribute to the initiation and escalation of the inflammatory response. The existing literature extensively covers the involvement of different cell types in the sterile inflammation, including mesothelial cells, fibroblasts, endothelial cells, and adipocytes, as well as immune cells such as macrophages, lymphocytes, and mast cells. These cells work together to promote the occurrence and progression of sterile inflammation, although the exact mechanisms are not fully understood. This review aims to provide a comprehensive overview of the signals from both stromal cells and components of immune system, as well as the reciprocal interactions between cellular components, during the initiation of sterile inflammation. By understanding the cellular and molecular mechanisms underlying sterile inflammation, we may potentially develop therapeutic interventions to counteract peritoneal membrane damage and restore normal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cuiwei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Mrug M, Mrug E, Rosenblum F, Chen J, Cui X, Agarwal A, Zarjou A. Distinct developmental reprogramming footprint of macrophages during acute kidney injury across species. Am J Physiol Renal Physiol 2024; 326:F635-F641. [PMID: 38357719 PMCID: PMC11208015 DOI: 10.1152/ajprenal.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Acute kidney injury (AKI) is a common finding in hospitalized patients, particularly those who are critically ill. The development of AKI is associated with several adverse outcomes including mortality, morbidity, progression to chronic kidney disease, and an increase in healthcare expenditure. Despite the well-established negative impact of AKI and rigorous efforts to better define, identify, and implement targeted therapies, the overall approach to the treatment of AKI continues to principally encompass supportive measures. This enduring challenge is primarily due to the heterogeneous nature of insults that activate many independent and overlapping molecular pathways. Consequently, it is evident that the identification of common mechanisms that mediate the pathogenesis of AKI, independent of etiology and engaged pathophysiological pathways, is of paramount importance and could lead to the identification of novel therapeutic targets. To better distinguish the commonly modulated mechanisms of AKI, we explored the transcriptional characteristics of human kidney biopsies from patients with acute tubular necrosis (ATN), and acute interstitial nephritis (AIN) using a NanoString inflammation panel. Subsequently, we used publicly available single-cell transcriptional resources to better interpret the generated transcriptional findings. Our findings identify robust acute kidney injury (AKI-induced) developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species. These results would expand the current understanding of the pathophysiology of AKI and potentially offer novel targets for additional studies to enhance the translational transition of AKI research.NEW & NOTEWORTHY Our findings identify robust acute kidney injury (AKI)-induced developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species.
Collapse
Affiliation(s)
- Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, United States
| | - Elias Mrug
- Math-Science Department, Alabama School of Fine Arts, Birmingham, Alabama, United States
| | - Frida Rosenblum
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jiandong Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
- Department of Veterans Affairs, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
6
|
Maryam B, Smith ME, Miller SJ, Natarajan H, Zimmerman KA. Macrophage Ontogeny, Phenotype, and Function in Ischemia Reperfusion-Induced Injury and Repair. KIDNEY360 2024; 5:459-470. [PMID: 38297436 PMCID: PMC11000738 DOI: 10.34067/kid.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
AKI is characterized by a sudden, and usually reversible, decline in kidney function. In mice, ischemia-reperfusion injury (IRI) is commonly used to model the pathophysiologic features of clinical AKI. Macrophages are a unifying feature of IRI as they regulate both the initial injury response as well as the long-term outcome following resolution of injury. Initially, macrophages in the kidney take on a proinflammatory phenotype characterized by the production of inflammatory cytokines, such as CCL2 (monocyte chemoattractant protein 1), IL-6, IL-1 β , and TNF- α . Release of these proinflammatory cytokines leads to tissue damage. After resolution of the initial injury, macrophages take on a reparative role, aiding in tissue repair and restoration of kidney function. By contrast, failure to resolve the initial injury results in prolonged inflammatory macrophage accumulation and increased kidney damage, fibrosis, and the eventual development of CKD. Despite the extensive amount of literature that has ascribed these functions to M1/M2 macrophages, a recent paradigm shift in the macrophage field now defines macrophages on the basis of their ontological origin, namely monocyte-derived and tissue-resident macrophages. In this review, we focus on macrophage phenotype and function during IRI-induced injury, repair, and transition to CKD using both the classic (M1/M2) and novel (ontological origin) definition of kidney macrophages.
Collapse
Affiliation(s)
- Bibi Maryam
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Morgan E. Smith
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Miller
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hariharasudan Natarajan
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
7
|
Teległów A, Skowron B, Romanovski V. Laboratory Analysis of the Renal Function Changes Under Long-Term Exposure to Extremely Low Ambient Temperatures: Case Report. Ther Hypothermia Temp Manag 2024; 14:59-65. [PMID: 38394138 PMCID: PMC10924189 DOI: 10.1089/ther.2023.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
The study subject was a healthy, 47-year-old man, a low temperature Guinness World Record holder. He spent 50 days alone in Rovaniemi, Lapland, and functioned in the ambient temperature ranging from +2°C to -37°C. He did not use sources of heat, he did not eat warm meals or drink hot water, and did not dry his clothes. He slept in an igloo, on an ice cover of 20-30 cm. He spent 10 hours a day in a sleeping bag and for the remaining time he walked, skied, or rode a bicycle, and practiced swimming. The aim of the study was a laboratory assessment of renal capacity in a man exposed to long-term extremely low ambient temperatures. The study was approved by the Ethical Committee at the Regional Medical Chamber in Krakow, Poland (approval No.: 194/KBL/OIL/2019). Twice during the observation, urine and blood were collected and analyzed: before and after the prolonged exposure to extremely low ambient temperatures. Changes were seen in many blood and urine parameters, but in urine, they were more significant. In urine, decreased values of sodium (by 53.9%), potassium (by 22.6%), creatinine (by 65.5%), urea (by 61.3%), uric acid (by 58.4%), and protein (by 50%) were observed. Neutrophil gelatinase-associated lipocalin (NGAL) increased by 34%. Absence of calcium oxalate excretion was reported relative to the value before the exposure to cold. In blood, increased values of interleukin-6 (by 60%) and β-2-microglobulin (by 26.9%) were observed. Erythropoietin decreased by 22.4%. No changes were noted in estimated glomerular filtration rate. The study subject lost 10 kg in weight. On the basis of the results obtained during the observation, it can be determined that the probable cause of changes in the laboratory results of the subject was the diet used, and not a dysfunction of the excretory system. The body weight loss and activation of compensating mechanisms focused on saving vitally important diet components, caused by the insufficient diet, exclude the theory of a negative effect of exposure to extremely low temperatures on renal filtration function.
Collapse
Affiliation(s)
- Aneta Teległów
- Department of Health Promotion, Institute of Basic Sciences, University of Physical Education in Krakow, Krakow, Poland
| | | | - Valerjan Romanovski
- Non-Governmental Organization and Associaton Oswajamy Zywioly, Kielce, Poland
| |
Collapse
|
8
|
Song L, Zhang W, Tang SY, Luo SM, Xiong PY, Liu JY, Hu HC, Chen YQ, Jia B, Yan QH, Tang SQ, Huang W. Natural products in traditional Chinese medicine: molecular mechanisms and therapeutic targets of renal fibrosis and state-of-the-art drug delivery systems. Biomed Pharmacother 2024; 170:116039. [PMID: 38157643 DOI: 10.1016/j.biopha.2023.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Yun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Si-Min Luo
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Pei-Yu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Yu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Heng-Chang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying-Qi Chen
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian-Hua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Song-Qi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
10
|
Xipell M, Lledó GM, Egan AC, Tamirou F, Del Castillo CS, Rovira J, Gómez-Puerta JA, García-Herrera A, Cervera R, Kronbichler A, Jayne DRW, Anders HJ, Houssiau F, Espinosa G, Quintana LF. From systemic lupus erythematosus to lupus nephritis: The evolving road to targeted therapies. Autoimmun Rev 2023; 22:103404. [PMID: 37543287 DOI: 10.1016/j.autrev.2023.103404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Systemic lupus erythematosus is a chronic autoimmune disease characterized by loss of tolerance against nuclear and cytoplasmic self-antigens, induction of immunity and tissue inflammation. Lupus nephritis (LN), the most important predictor of morbidity in SLE, develops in almost 30% of SLE patients at disease onset and in up to 50-60% within the first 10 years. Firstly, in this review, we put the pathogenic mechanisms of the disease into a conceptual frame, giving emphasis to the role of the innate immune system in this loss of self-tolerance and the induction of the adaptive immune response. In this aspect, many mechanisms have been described such as dysregulation and acceleration of cell-death pathways, an aberrant clearance and overload of immunogenic acid-nucleic-containing debris and IC, and the involvement of antigen-presenting cells and other innate immune cells in the induction of this adaptive immune response. This result in a clonal expansion of autoreactive lymphocytes with generation of effector T-cells, memory B-cells and plasma cells that produce autoantibodies that will cause kidney damage. Secondly, we review the immunological pathways of damage in the kidney parenchyma, initiated by autoantibody binding and immune complex deposition, and followed by complement-mediated microvascular injury, activation of kidney stromal cells and the recruitment of leukocytes. Finally, we summarize the rationale for the treatment of LN, from conventional to new targeted therapies, focusing on their systemic immunologic effects and the minimization of podocytary damage.
Collapse
Affiliation(s)
- Marc Xipell
- Department of Nephrology and Renal Transplantation, Clinic Barcelona, Spain; Reference Center for Complex Glomerular Diseases of the Spanish Health System (CSUR), Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gema M Lledó
- Department of Autoimmune Diseases, Clínic Barcelona, Spain; Reference Center for Systemic Autoimmune Diseases of the Spanish Health System (CSUR), Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Allyson C Egan
- Vasculitis and Lupus Service, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, United Kingdom
| | - Farah Tamirou
- Rheumatology Department, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium; Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium
| | | | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José A Gómez-Puerta
- Department of Rheumatology, Clínic Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | - Adriana García-Herrera
- Department of Pathology, Clínic Barcelona, Spain; Reference Center for Complex Glomerular Diseases of the Spanish Health System (CSUR), Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ricard Cervera
- Department of Autoimmune Diseases, Clínic Barcelona, Spain
| | - Andreas Kronbichler
- Vasculitis and Lupus Service, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - David R W Jayne
- Vasculitis and Lupus Service, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Frédéric Houssiau
- Vasculitis and Lupus Service, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, United Kingdom
| | - Gerard Espinosa
- Department of Autoimmune Diseases, Clínic Barcelona, Spain; Reference Center for Systemic Autoimmune Diseases of the Spanish Health System (CSUR), Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| | - Luis F Quintana
- Department of Nephrology and Renal Transplantation, Clinic Barcelona, Spain; Reference Center for Complex Glomerular Diseases of the Spanish Health System (CSUR), Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
11
|
Tutan D, Erdoğan Kaya A, Eser B. The relationship between neutrophil lymphocyte ratio, platelet lymphocyte ratio, and depression in dialysis patients. Medicine (Baltimore) 2023; 102:e35197. [PMID: 37713848 PMCID: PMC10508398 DOI: 10.1097/md.0000000000035197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Chronic kidney disease is a worldwide public health issue with rising incidence, morbidity/mortality, and cost. Depression and chronic renal disease often coexist, and psychological illnesses are associated with poor results. Early identification of depression reduces morbidity and death. Neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) are reported as practical biomarkers of inflammation and immune system activation. In this study, we aimed to determine the association of NLR and PLR with depression in dialysis patients. This study included 71 adults over 18 without known hematologic or oncologic disease, drug use, or chronic inflammatory diseases. Comorbid chronic diseases, laboratory data, and Beck depression inventory scores were prospectively recorded. A comparison of 2 groups according to the existence of depression was made, and a binomial logistic regression test was used to determine the association between the variables and the presence of depression after adjusting for confounding factors. A receiver operating curve analysis was used to differentiate groups with and without severe depression. Seventy-one patients met the study criteria, with 46 hemodialysis and 25 peritoneal dialysis patients. The majority had hypertension and diabetes mellitus, with 47.89% having minimal-minor depression and 52.11% having moderate-major depression. The 2 groups were similar regarding chronic diseases, with no significant differences in serum creatinine levels, glucose, lipid profiles, or electrolytes. However, when the NLR of the 2 groups was compared, the median was higher in patients with moderate or major depression. Multivariate analysis showed no significant differences between the groups in PLR, triglyceride to glucose ratio, and C-reactive peptide to albumin ratio. The best NLR cutoff value was 3.26, with 48.6% sensitivity, 88.2% specificity, 81.8% positive predictive value, 61.2% negative predictive value, and 67.6% test accuracy. Depression is one of the most common psychiatric conditions in dialysis patients and is linked to increased morbidity, mortality, treatment failure, expense, and hospitalization. NLR helped predict moderate-to-major depression in dialysis patients, even after controlling for confounding factors in multivariate analysis. This study indicated that an NLR successfully identified depressive groups, and patients with an NLR value >3.26 were 6.1 times more likely to have moderate or major depression.
Collapse
Affiliation(s)
- Duygu Tutan
- Erol Olçok Training and Research Hospital, Department of Internal Medicine, Çorum, Turkey
| | - Ayşe Erdoğan Kaya
- Erol Olçok Training and Research Hospital, Department of Psychiatry, Çorum, Turkey
| | - Bariş Eser
- Hitit University Faculty of Medicine, Department of Nephrology, Çorum, Turkey
| |
Collapse
|
12
|
Tatsumoto N, Saito S, Rifkin IR, Bonegio RG, Leal DN, Sen GC, Arditi M, Yamashita M. EGF-Receptor-Dependent TLR7 Signaling in Macrophages Promotes Glomerular Injury in Crescentic Glomerulonephritis. J Transl Med 2023; 103:100190. [PMID: 37268107 PMCID: PMC10527264 DOI: 10.1016/j.labinv.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Glomerulonephritis (GN) is a group of inflammatory diseases and an important cause of morbidity and mortality worldwide. The initiation of the inflammatory process is quite different for each type of GN; however, each GN is characterized commonly and variably by acute inflammation with neutrophils and macrophages and crescent formation, leading to glomerular death. Toll-like receptor (TLR) 7 is a sensor for self-RNA and implicated in the pathogenesis of human and murine GN. Here, we show that TLR7 exacerbates glomerular injury in nephrotoxic serum nephritis (NTN), a murine model of severe crescentic GN. TLR7-/- mice were resistant to NTN, although TLR7-/- mice manifested comparable immune-complex deposition to wild-type mice without significant defects in humoral immunity, suggesting that endogenous TLR7 ligands accelerate glomerular injury. TLR7 was expressed exclusively in macrophages in glomeruli in GN but not in glomerular resident cells or neutrophils. Furthermore, we discovered that epidermal growth factor receptor (EGFR), a receptor-type tyrosine kinase, is essential for TLR7 signaling in macrophages. Mechanistically, EGFR physically interacted with TLR7 upon TLR7 stimulation, and EGFR inhibitor completely blocked the phosphorylation of TLR7 tyrosine residue(s). EGFR inhibitor attenuated glomerular damage in wild-type mice, and no additional glomerular protective effects by EGFR inhibitor were observed in TLR7-/- mice. Finally, mice lacking EGFR in macrophages were resistant to NTN. This study clearly demonstrated that EGFR-dependent TLR7 signaling in macrophages is essential for glomerular injury in crescentic GN.
Collapse
Affiliation(s)
- Narihito Tatsumoto
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Suguru Saito
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ian R Rifkin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Renal Section, Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts
| | - Ramon G Bonegio
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Renal Section, Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts
| | - Daniel N Leal
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ganes C Sen
- Department of Inflammation & Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California; Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
13
|
Buijsers B, Maciej-Hulme M, Jacobs M, Bebber MBV, de Graaf M, Salmenov R, Parr N, Rabelink TJ, Nijenhuis T, van der Vlag J. Glycosaminoglycans and fucoidan have a protective effect on experimental glomerulonephritis. Front Mol Biosci 2023; 10:1223972. [PMID: 37475889 PMCID: PMC10354240 DOI: 10.3389/fmolb.2023.1223972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Background: The glomerular endothelial glycocalyx is degraded during inflammation. The glycocalyx plays a pivotal role in endothelial function and is involved in many processes including binding of chemokines and cytokines, leukocyte trafficking, and preventing proteinuria. HS-based therapeutics are a promising novel class of anti-inflammatory drugs to restore a compromised endothelial glycocalyx under inflammatory conditions. Recently, we demonstrated that treatment with HS extracted from unstimulated glomerular endothelial glycocalyx (unstimulated HSglx) reduced albuminuria during anti-GBM induced glomerulonephritis. Since endothelial HS domains are distinct in unstimulated versus inflammatory conditions, we hypothesized that 1) unstimulated HSglx, 2) LPS-stimulated HSglx, 3) the HS-mimetic fucoidan and 4) the glycosaminoglycan preparation sulodexide, which is a mixture of low molecular weight heparin and dermatan sulfate, might have different beneficial effects in experimental glomerulonephritis. Methods: The effect of unstimulated HSglx, LPS HSglx, Laminaria japonica fucoidan, or sulodexide on experimental glomerulonephritis was tested in LPS-induced glomerulonephritis in mice. Analyses included urinary albumin creatinine measurement, cytokine expression in plasma and renal cortex, and renal influx of immune cells determined by flow cytometry and immunofluorescence staining. Furthermore, the observed in vivo effects were evaluated in cultured glomerular endothelial cells and peripheral blood mononuclear cells by measuring cytokine and ICAM-1 expression levels. The ability of the compounds to inhibit heparanase activity was assessed in a heparanase activity assay. Results: Treatment of mice with LPS HSglx or sulodexide near-significantly attenuated LPS-induced proteinuria. All treatments reduced plasma MCP-1 levels, whereas only fucoidan reduced IL-6 and IL-10 plasma levels. Moreover, all treatments reversed cortical ICAM-1 mRNA expression and both fucoidan and sulodexide reversed cortical IL-6 and nephrin mRNA expression. Sulodexide decreased renal influx of CD45+ immune cells whereas renal influx of macrophages and granulocytes remained unaltered for all treatments. Although all compounds inhibited HPSE activity, fucoidan and sulodexide were the most potent inhibitors. Notably, fucoidan and sulodexide decreased LPS-induced mRNA expression of ICAM-1 and IL-6 by cultured glomerular endothelial cells. Conclusion: Our data show a potentially protective effect of glycosaminoglycans and fucoidan in experimental glomerulonephritis. Future research should be aimed at the further identification of defined HS structures that have therapeutic potential in the treatment of glomerular diseases.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marissa Maciej-Hulme
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maaike Jacobs
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marinka Bakker-van Bebber
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark de Graaf
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rustem Salmenov
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Naomi Parr
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ton J. Rabelink
- Division of Nephrology, Department of Internal Medicine, The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
14
|
Guo Y, Cen K, Hong K, Mai Y, Jiang M. Construction of a neural network diagnostic model for renal fibrosis and investigation of immune infiltration characteristics. Front Immunol 2023; 14:1183088. [PMID: 37359552 PMCID: PMC10288286 DOI: 10.3389/fimmu.2023.1183088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Background Recently, the incidence rate of renal fibrosis has been increasing worldwide, greatly increasing the burden on society. However, the diagnostic and therapeutic tools available for the disease are insufficient, necessitating the screening of potential biomarkers to predict renal fibrosis. Methods Using the Gene Expression Omnibus (GEO) database, we obtained two gene array datasets (GSE76882 and GSE22459) from patients with renal fibrosis and healthy individuals. We identified differentially expressed genes (DEGs) between renal fibrosis and normal tissues and analyzed possible diagnostic biomarkers using machine learning. The diagnostic effect of the candidate markers was evaluated using receiver operating characteristic (ROC) curves and verified their expression using Reverse transcription quantitative polymerase chain reaction (RT-qPCR). The CIBERSORT algorithm was used to determine the proportions of 22 types of immune cells in patients with renal fibrosis, and the correlation between biomarker expression and the proportion of immune cells was studied. Finally, we developed an artificial neural network model of renal fibrosis. Results Four candidate genes namely DOCK2, SLC1A3, SOX9 and TARP were identified as biomarkers of renal fibrosis, with the area under the ROC curve (AUC) values higher than 0.75. Next, we verified the expression of these genes by RT-qPCR. Subsequently, we revealed the potential disorder of immune cells in the renal fibrosis group through CIBERSORT analysis and found that immune cells were highly correlated with the expression of candidate markers. Conclusion DOCK2, SLC1A3, SOX9, and TARP were identified as potential diagnostic genes for renal fibrosis, and the most relevant immune cells were identified. Our findings provide potential biomarkers for the diagnosis of renal fibrosis.
Collapse
Affiliation(s)
- Yangyang Guo
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Urology Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Kenan Cen
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kai Hong
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yifeng Mai
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Minghui Jiang
- Department of Urology Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
15
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
McDaniels JM, Shetty AC, Kuscu C, Kuscu C, Bardhi E, Rousselle T, Drachenberg C, Talwar M, Eason JD, Muthukumar T, Maluf DG, Mas VR. Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis. Kidney Int 2023; 103:1077-1092. [PMID: 36863444 PMCID: PMC10200746 DOI: 10.1016/j.kint.2023.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 03/04/2023]
Abstract
Chronic allograft dysfunction (CAD), characterized histologically by interstitial fibrosis and tubular atrophy, is the major cause of kidney allograft loss. Here, using single nuclei RNA sequencing and transcriptome analysis, we identified the origin, functional heterogeneity, and regulation of fibrosis-forming cells in kidney allografts with CAD. A robust technique was used to isolate individual nuclei from kidney allograft biopsies and successfully profiled 23,980 nuclei from five kidney transplant recipients with CAD and 17,913 nuclei from three patients with normal allograft function. Our analysis revealed two distinct states of fibrosis in CAD; low and high extracellular matrix (ECM) with distinct kidney cell subclusters, immune cell types, and transcriptional profiles. Imaging mass cytometry analysis confirmed increased ECM deposition at the protein level. Proximal tubular cells transitioned to an injured mixed tubular (MT1) phenotype comprised of activated fibroblasts and myofibroblast markers, generated provisional ECM which recruited inflammatory cells, and served as the main driver of fibrosis. MT1 cells in the high ECM state achieved replicative repair evidenced by dedifferentiation and nephrogenic transcriptional signatures. MT1 in the low ECM state showed decreased apoptosis, decreased cycling tubular cells, and severe metabolic dysfunction, limiting the potential for repair. Activated B, T and plasma cells were increased in the high ECM state, while macrophage subtypes were increased in the low ECM state. Intercellular communication between kidney parenchymal cells and donor-derived macrophages, detected several years post-transplantation, played a key role in injury propagation. Thus, our study identified novel molecular targets for interventions aimed to ameliorate or prevent allograft fibrogenesis in kidney transplant recipients.
Collapse
Affiliation(s)
- Jennifer M McDaniels
- Division of Surgical Sciences, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Elissa Bardhi
- Division of Surgical Sciences, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas Rousselle
- Division of Surgical Sciences, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cinthia Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Manish Talwar
- Transplant Research Institute, James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James D Eason
- Transplant Research Institute, James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Daniel G Maluf
- Division of Surgical Sciences, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; Program in Transplantation, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Valeria R Mas
- Division of Surgical Sciences, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
17
|
Ashraf UM, Atari E, Alasmari F, Waghulde H, Kumar V, Sari Y, Najjar SM, Jose PA, Kumarasamy S. Intrarenal Dopaminergic System Is Dysregulated in SS- Resp18mutant Rats. Biomedicines 2023; 11:111. [PMID: 36672619 PMCID: PMC9855394 DOI: 10.3390/biomedicines11010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The genetic and molecular basis of developing high blood pressure and renal disease are not well known. Resp18mutant Dahl salt-sensitive (SS-Resp18mutant) rats fed a 2% NaCl diet for six weeks have high blood pressure, increased renal fibrosis, and decreased mean survival time. Impairment of the dopaminergic system also leads to hypertension that involves renal and non-renal mechanisms. Deletion of any of the five dopamine receptors may lead to salt-sensitive hypertension. Therefore, we investigated the interaction between Resp18 and renal dopamine in SS-Resp18mutant and Dahl salt-sensitive (SS) rats. We found that SS-Resp18mutant rats had vascular dysfunction, as evidenced by a decrease in vasorelaxation in response to sodium nitroprusside. The pressure-natriuresis curve in SS-Resp18mutant rats was shifted down and to the right of SS rats. SS-Resp18mutant rats had decreased glomerular filtration rate and dopamine receptor subtypes, D1R and D5R. Renal dopamine levels were decreased, but urinary dopamine levels were increased, which may be the consequence of increased renal dopamine production, followed by secretion into the tubular lumen. The increased renal dopamine production in SS-Resp18mutant rats in vivo was substantiated by the increased dopamine production in renal proximal tubule cells treated with L-DOPA. Overall, our study provides evidence that targeted disruption of the Resp18 locus in the SS rat dysregulates the renal dopaminergic system.
Collapse
Affiliation(s)
- Usman M. Ashraf
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ealla Atari
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy & Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Harshal Waghulde
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Vikash Kumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy & Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Pedro A. Jose
- Department of Medicine, Division of Kidney Diseases & Hypertension, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Sivarajan Kumarasamy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
18
|
Nishad R, Mukhi D, Kethavath S, Raviraj S, Paturi ASV, Motrapu M, Kurukuti S, Pasupulati AK. Podocyte derived TNF-α mediates monocyte differentiation and contributes to glomerular injury. FASEB J 2022; 36:e22622. [PMID: 36421039 DOI: 10.1096/fj.202200923r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022]
Abstract
Diabetes shortens the life expectancy by more than a decade, and the excess mortality in diabetes is correlated with the incidence of kidney disease. Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Macrophage accumulation predicts the severity of kidney injury in human biopsies and experimental models of DKD. However, the mechanism underlying macrophage recruitment in diabetes glomeruli is unclear. Elevated plasma growth hormone (GH) levels in type I diabetes and acromegalic individuals impaired glomerular biology. In this study, we examined whether GH-stimulated podocytes contribute to macrophage accumulation. RNA-seq analysis revealed elevated TNF-α signaling in GH-treated human podocytes. Conditioned media from GH-treated podocytes (GH-CM) induced differentiation of monocytes to macrophages. On the other hand, neutralization of GH-CM with the TNF-α antibody diminished GH-CM's action on monocytes. The treatment of mice with GH resulted in increased macrophage recruitment, podocyte injury, and proteinuria. Furthermore, we noticed the activation of TNF-α signaling, macrophage accumulation, and fibrosis in DKD patients' kidney biopsies. Our findings suggest that podocytes could secrete TNF-α and contribute to macrophage migration, resulting in DKD-related renal inflammation. Inhibition of either GH action or TNF-α expression in podocytes could be a novel therapeutic approach for DKD treatment.
Collapse
Affiliation(s)
- Rajkishor Nishad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Dhanunjay Mukhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Srinivas Kethavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sumathi Raviraj
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Atreya S V Paturi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Manga Motrapu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
19
|
Park M, Oh HJ, Han J, Hong SH, Park W, Song H. Liposome-mediated small RNA delivery to convert the macrophage polarity: A novel therapeutic approach to treat inflammatory uterine disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:663-676. [PMID: 36569217 PMCID: PMC9758500 DOI: 10.1016/j.omtn.2022.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Macrophages are present in all tissues for maintaining tissue homeostasis, and macrophage polarization plays a vital role in alleviating inflammation. Therefore, specific delivery of polarization modulators to macrophages in situ is critical for treating inflammatory diseases. We demonstrate that a size-controlled miRNA-encapsulated macrophage-targeting liposomes (miR/MT-Lip) specifically targets macrophages to promote M1-to-M2 polarization conversion, alleviating inflammation without cytotoxicity. miR/MT-Lip, approximately 1.2 μm, showed excellent internalization through phagocytosis and/or macropinocytosis in macrophages. miR-10a/MT-Lip, but not scramble miR-Fluorescein amidite (FAM)/MT-Lip as control, effectively converted the polarization of lipopolysaccharide (LPS)-induced M1 macrophages to M2 in vitro. When miR-10a/MT-Lip was intravenously delivered to mice insulted with LPS for inflammation, the proportion of M2 macrophages was significantly increased without disturbing the population of other immune cells. Furthermore, scramble miR-FAM/MT-Lip was mainly detected in macrophages, but not other immune cells. When our miR/MT-Lip was administered to mice with Asherman's syndrome that suffer from infertility because of sterile uterine inflammation, macrophage-specific targeting of miR-10a/MT-Lip facilitated M1-to-M2 conversion for angiogenesis in the impaired uterus, resulting in restoration of healthy uterine conditions. The results indicate that our MT-Lip encapsulating small RNAs has excellent potential to treat various inflammatory disorders by fine-tuning macrophage polarization in vivo without any side effects.
Collapse
Affiliation(s)
- Mira Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Hyeon-Ji Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jieun Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Corresponding author Wooram Park, PhD, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea.
| | - Haengseok Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi 13488, Republic of Korea,Corresponding author Haengseok Song, PhD, Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi 13488, Republic of Korea.
| |
Collapse
|
20
|
Frąk W, Kućmierz J, Szlagor M, Młynarska E, Rysz J, Franczyk B. New Insights into Molecular Mechanisms of Chronic Kidney Disease. Biomedicines 2022; 10:2846. [PMID: 36359366 PMCID: PMC9687691 DOI: 10.3390/biomedicines10112846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem with a developing incidence and prevalence. As a consequence of the growing number of patients diagnosed with renal dysfunction leading to the development of CKD, it is particularly important to explain the mechanisms of its underlying causes. In our paper, we discuss the molecular mechanisms of the development and progression of CKD, focusing on oxidative stress, the role of the immune system, neutrophil gelatinase-associated lipocalin, and matrix metalloproteinases. Moreover, growing evidence shows the importance of the role of the gut-kidney axis in the maintenance of normal homeostasis and of the dysregulation of this axis in CKD. Further, we discuss the therapeutic potential and highlight the future research directions for the therapeutic targeting of CKD. However, additional investigation is crucial to improve our knowledge of CKD progression and, more importantly, accelerate basic research to improve our understanding of the mechanism of pathophysiology.
Collapse
Affiliation(s)
- Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Kućmierz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Szlagor
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
21
|
Saito S, Tatsumoto N, Cao DY, Nosaka N, Nishi H, Leal DN, Bernstein E, Shimada K, Arditi M, Bernstein KE, Yamashita M. Overexpressed angiotensin-converting enzyme in neutrophils suppresses glomerular damage in crescentic glomerulonephritis. Am J Physiol Renal Physiol 2022; 323:F411-F424. [PMID: 35979968 PMCID: PMC9484997 DOI: 10.1152/ajprenal.00067.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/22/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022] Open
Abstract
While angiotensin-converting enzyme (ACE) regulates blood pressure by producing angiotensin II as part of the renin-angiotensin system, we recently reported that elevated ACE in neutrophils promotes an effective immune response and increases resistance to infection. Here, we investigate if such neutrophils protect against renal injury in immune complex (IC)-mediated crescentic glomerulonephritis (GN) through complement. Nephrotoxic serum nephritis (NTN) was induced in wild-type and NeuACE mice that overexpress ACE in neutrophils. Glomerular injury of NTN in NeuACE mice was attenuated with much less proteinuria, milder histological injury, and reduced IC deposits, but presented with more glomerular neutrophils in the early stage of the disease. There were no significant defects in T and B cell functions in NeuACE mice. NeuACE neutrophils exhibited enhanced IC uptake with elevated surface expression of FcγRII/III and complement receptor CR1/2. IC uptake in neutrophils was enhanced by NeuACE serum containing elevated complement C3b. Given no significant complement activation by ACE, this suggests that neutrophil ACE indirectly preactivates C3 and that the C3b-CR1/2 axis and elevated FcγRII/III play a central role in IC elimination by neutrophils, resulting in reduced glomerular injury. The present study identified a novel renoprotective role of ACE in glomerulonephritis; elevated neutrophilic ACE promotes elimination of locally formed ICs in glomeruli via C3b-CR1/2 and FcγRII/III, ameliorating glomerular injury.NEW & NOTEWORTHY We studied immune complex (IC)-mediated crescentic glomerulonephritis in NeuACE mice that overexpress ACE only in neutrophils. Such mice show no significant defects in humoral immunity but strongly resist nephrotoxic serum nephritis (less proteinuria, milder histological damage, reduced IC deposits, and more glomerular neutrophils). NeuACE neutrophils enhanced IC uptake via increased surface expression of CR1/2 and FcgRII/III, as well as elevated serum complement C3b. These results suggest neutrophil ACE as a novel approach to reducing glomerulonephritis.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Narihito Tatsumoto
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nobuyuki Nosaka
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Daniel N Leal
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ellen Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenichi Shimada
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
22
|
Kim H, Nam BY, Park J, Song S, Kim WK, Lee K, Nam TW, Park JT, Yoo TH, Kang SW, Ko G, Han SH. Lactobacillus acidophilus KBL409 reduces kidney fibrosis via immune modulatory effects in mice with chronic kidney disease. Mol Nutr Food Res 2022; 66:e2101105. [PMID: 36059191 DOI: 10.1002/mnfr.202101105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/10/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Intestinal dysbiosis has been reported to play an important role in the pathogenesis of various diseases, including chronic kidney disease (CKD). Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury in an animal model of CKD. METHODS AND RESULTS An animal model of CKD was established by feeding C57BL/6 mice a diet containing 0.2% adenine. These model mice were administered Lactobacillus acidophilus KBL409 daily for 4 weeks. Features of adenine-induce CKD (Ade-CKD) mice, such as prominent kidney fibrosis and higher levels of serum creatinine and albuminuria were improved by administration of KBL409. Ade-CKD mice also exhibited a disrupted intestinal barrier and elevated levels of TNF-α, IL-6, and 8-hydroxy-2'-deoxyguanosine. These changes were attenuated by KBL409. Administration of KBL409 significantly reduced macrophage infiltration and promoted a switch to the M2 macrophage phenotype and increasing regulatory T cells. Notably, the NLRP3 inflammasome pathway was activated in the kidneys of Ade-CKD and decreased by KBL409. In primary kidney tubular epithelial cells treated with p-cresyl sulfate, short-chain fatty acids significantly increased M2 macrophage polarization factors and decreased profibrotic markers. CONCLUSIONS These results demonstrate that supplementation with the probiotic KBL409 has beneficial immunomodulating effects and protects against kidney injury. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea.,Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Jimin Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | | | - Woon-Ki Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | | | | | - Jung Tak Park
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Tae-Hyun Yoo
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Shin-Wook Kang
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - GwangPyo Ko
- KoBiolabs, Inc., Seoul, Korea.,Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Seung Hyeok Han
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| |
Collapse
|
23
|
Wang Y, Yu F, Li A, He Z, Qu C, He C, Ma X, Zhan H. The progress and prospect of natural components in rhubarb (Rheum ribes L.) in the treatment of renal fibrosis. Front Pharmacol 2022; 13:919967. [PMID: 36105187 PMCID: PMC9465315 DOI: 10.3389/fphar.2022.919967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Renal fibrosis is a key pathological change that occurs in the progression of almost all chronic kidney diseases . CKD has the characteristics of high morbidity and mortality. Its prevalence is increasing each year on a global scale, which seriously affects people’s health and quality of life. Natural products have been used for new drug development and disease treatment for many years. The abundant natural products in R. ribes L. can intervene in the process of renal fibrosis in different ways and have considerable therapeutic prospects. Purpose: The etiology and pathology of renal fibrosis were analyzed, and the different ways in which the natural components of R. ribes L. can intervene and provide curative effects on the process of renal fibrosis were summarized. Methods: Electronic databases, such as PubMed, Life Science, MEDLINE, and Web of Science, were searched using the keywords ‘R. ribes L.’, ‘kidney fibrosis’, ‘emodin’ and ‘rhein’, and the various ways in which the natural ingredients protect against renal fibrosis were collected and sorted out. Results: We analyzed several factors that play a leading role in the pathogenesis of renal fibrosis, such as the mechanism of the TGF-β/Smad and Wnt/β-catenin signaling pathways. Additionally, we reviewed the progress of the treatment of renal fibrosis with natural components in R. ribes L. and the intervention mechanism of the crucial therapeutic targets. Conclusion: The natural components of R. ribes L. have a wide range of intervention effects on renal fibrosis targets, which provides new ideas for the development of new anti-kidney fibrosis drugs.
Collapse
Affiliation(s)
- Yangyang Wang
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangwei Yu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ao Li
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zijia He
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyan Qu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiying He
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Huakui Zhan,
| | - Huakui Zhan
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine-Sichuan Provincial Hospital of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Huakui Zhan,
| |
Collapse
|
24
|
Hao X, Luan J, Jiao C, Ma C, Feng Z, Zhu L, Zhang Y, Fu J, Lai E, Zhang B, Wang Y, Kopp JB, Pi J, Zhou H. LNA-anti-miR-150 alleviates renal interstitial fibrosis by reducing pro-inflammatory M1/M2 macrophage polarization. Front Immunol 2022; 13:913007. [PMID: 35990680 PMCID: PMC9389080 DOI: 10.3389/fimmu.2022.913007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathological feature contributing to chronic injury and maladaptive repair following acute kidney injury. Currently, there is no effective therapy for RIF. We have reported that locked nuclear acid (LNA)-anti-miR-150 antagonizes pro-fibrotic pathways in human renal tubular cells by regulating the suppressor of cytokine signal 1 (SOCS1)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. In the present study, we aimed to clarify whether LNA-anti-miR-150 attenuates folic acid-induced RIF mice by regulating this pathway and by reducing pro-inflammatory M1/M2 macrophage polarization. We found that renal miR-150 was upregulated in folic acid-induced RIF mice at day 30 after injection. LNA-anti-miR-150 alleviated the degree of RIF, as shown by periodic acid–Schiff and Masson staining and by the expression of pro-fibrotic proteins, including alpha-smooth muscle actin and fibronectin. In RIF mice, SOCS1 was downregulated, and p-JAK1 and p-STAT1 were upregulated. LNA-anti-miR-150 reversed the changes in renal SOCS1, p-JAK1, and p-STAT1 expression. In addition, renal infiltration of total macrophages, pro-inflammatory M1 and M2 macrophages as well as their secreted cytokines were increased in RIF mice compared to control mice. Importantly, in folic acid-induced RIF mice, LNA-anti-miR-150 attenuated the renal infiltration of total macrophages and pro-inflammatory subsets, including M1 macrophages expressing CD11c and M2 macrophages expressing CD206. We conclude that the anti-renal fibrotic role of LNA-anti-miR-150 in folic acid-induced RIF mice may be mediated by reducing pro-inflammatory M1 and M2 macrophage polarization via the SOCS1/JAK1/STAT1 pathway.
Collapse
Affiliation(s)
- Xiangnan Hao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Congcong Jiao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cong Ma
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Feng
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingzi Zhu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Enyin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK/NIH, Bethesda, MD, United States
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Hua Zhou,
| |
Collapse
|
25
|
Mei S, Li L, Zhou X, Xue C, Livingston MJ, Wei Q, Dai B, Mao Z, Mei C, Dong Z. Susceptibility of renal fibrosis in diabetes: Role of hypoxia inducible factor-1. FASEB J 2022; 36:e22477. [PMID: 35881071 PMCID: PMC9386694 DOI: 10.1096/fj.202200845r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Diabetes may prevent kidney repair and sensitize the kidney to fibrosis or scar formation. To test this possibility, we examined renal fibrosis induced by unilateral ureteral obstruction (UUO) in diabetic mouse models. Indeed, UUO induced significantly more renal fibrosis in both Akita and STZ-induced diabetic mice than in nondiabetic mice. The diabetic mice also had more apoptosis and interstitial macrophage infiltration during UUO. In vitro, hypoxia induced higher expression of the fibrosis marker protein fibronectin in high glucose-conditioned renal tubular cells than in normal glucose cells. Mechanistically, hypoxia induced significantly more hypoxia-inducible factor-1 α (HIF-1 α) in high glucose cells than in normal glucose cells. Inhibition of HIF-1 attenuated the expression of fibronectin induced by hypoxia in high-glucose cells. Consistently, UUO induced significantly higher HIF-1α expression along with fibrosis in diabetic mice kidneys than in nondiabetic kidneys. The increased expression of fibrosis induced by UUO in diabetic mice was diminished in proximal tubule-HIF-1α-knockout mice. Together, these results indicate that diabetes sensitizes kidney tissues and cells to fibrogenesis probably by enhancing HIF-1 activation.
Collapse
Affiliation(s)
- Shuqin Mei
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Lin Li
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Xue
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Bing Dai
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhiguo Mao
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Changlin Mei
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|
26
|
Sphingosine 1-Phosphate Receptor 5 (S1P5) Knockout Ameliorates Adenine-Induced Nephropathy. Int J Mol Sci 2022; 23:ijms23073952. [PMID: 35409312 PMCID: PMC8999641 DOI: 10.3390/ijms23073952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
S1P and its receptors have been reported to play important roles in the development of renal fibrosis. Although S1P5 has barely been investigated so far, there are indications that it can influence inflammatory and fibrotic processes. Here, we report the role of S1P5 in renal inflammation and fibrosis. Male S1P5 knockout mice and wild-type mice on a C57BL/6J background were fed with an adenine-rich diet for 7 days or 14 days to induce tubulointerstitial fibrosis. The kidneys of untreated mice served as respective controls. Kidney damage, fibrosis, and inflammation in kidney tissues were analyzed by real-time PCR, Western blot, and histological staining. Renal function was assessed by plasma creatinine ELISA. The S1P5 knockout mice had better renal function and showed less kidney damage, less proinflammatory cytokine release, and less fibrosis after 7 days and 14 days of an adenine-rich diet compared to wild-type mice. S1P5 knockout ameliorates tubular damage and tubulointerstitial fibrosis in a model of adenine-induced nephropathy in mice. Thus, targeting S1P5 might be a promising goal for the pharmacological treatment of kidney diseases.
Collapse
|
27
|
Mawhin MA, Bright RG, Fourre JD, Vloumidi EI, Tomlinson J, Sardini A, Pusey CD, Woollard KJ. Chronic kidney disease mediates cardiac dysfunction associated with increased resident cardiac macrophages. BMC Nephrol 2022; 23:47. [PMID: 35090403 PMCID: PMC8796634 DOI: 10.1186/s12882-021-02593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The leading cause of death in end-stage kidney disease is related to cardiovascular disease. Macrophages are known to be involved in both chronic kidney disease (CKD) and heart failure, however their role in the development of cardiorenal syndrome is less clear. We thus sought to investigate the role of macrophages in uremic cardiac disease. METHODS We assessed cardiac response in two experimental models of CKD and tested macrophage and chemokine implication in monocytopenic CCR2-/- and anti-CXCL10 treated mice. We quantified CXCL10 in human CKD plasma and tested the response of human iPSC-derived cardiomyocytes and primary cardiac fibroblasts to serum from CKD donors. RESULTS We found that reduced kidney function resulted in the expansion of cardiac macrophages, in particular through local proliferation of resident populations. Influx of circulating monocytes contributed to this increase. We identified CXCL10 as a crucial factor for cardiac macrophage expansion in uremic disease. In humans, we found increased plasma CXCL10 concentrations in advanced CKD, and identified the production of CXCL10 in cardiomyocytes and cardiac fibroblasts. CONCLUSIONS This study provides new insight into the role of the innate immune system in uremic cardiomyopathy.
Collapse
Affiliation(s)
- M A Mawhin
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK.
| | - R G Bright
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - J D Fourre
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - E I Vloumidi
- MRC Laboratory of Molecular Biology, Imperial College London, London, UK
| | - J Tomlinson
- Renal Directorate, Imperial College Healthcare NHS Trust, London, UK
| | - A Sardini
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - C D Pusey
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - K J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
28
|
Huang J, Liu X, Hou Y, Liu Y, Liao K, Xie N, Deng K. Macrophage polarisation in caesarean scar diverticulum. J Clin Pathol 2022; 76:379-383. [PMID: 34980638 DOI: 10.1136/jclinpath-2021-207926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 11/04/2022]
Abstract
AIMS To determine immunohistochemical features and correlations between M1/M2 polarisation status with disease severity of post-caesarean scar diverticulum (CSD). METHODS Histological and immunohistological stainings were performed and inflammatory (CD16, CD163 and tumour necrosis factor-α (TNF-α)), fibrosis (α-smooth muscle actin (α-SMA)) and angiogenic (CD31) markers were examined in uterine tissues collected from patients with uterine scar diverticula (CSD) (n=37) and caesarean section (CS) (n=3). RESULTS CSD tissues have higher expression of α-SMA, TNF-α, CD16 and CD31 and lower expression of CD163 than CS tissue (p<0.05). Compared with adjacent tissues, thick-walled blood vessels, glands and fibrotic sites have higher expression of α-SMA, TNF-α and CD16. Statistical correlation was observed between the expression of CD16 and TNF-α (R=0.693, p<0.001), α-SMA (R=0.404, p<0.05) and CD31 (R=0.253, p<0.05) in CSD tissues, especially with the ratio of CD16/CD163 (R=0.590, p<0.01). A more significant difference was observed between the expression of CD16/CD163 and α-SMA (R=0.556, p<0.001), TNF-α (R=0.633, p<0.0001) and CD31 (R=0.336, p<0.05). CONCLUSIONS In this study, TNF-α, α-SMA, CD16 and CD31 proteins were overexpressed in all CSD cases, and CD16/CD163 was positively correlated with tissue inflammation, fibrosis and neovascularisation. Abnormal mononuclear macrophage infiltration may be involved in the origin and progression of CSD.
Collapse
Affiliation(s)
- Jinfa Huang
- Department of Gynecology, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Xiaochun Liu
- Department of Gynecology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Yi Hou
- Department of Bioinformatics, Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Yixuan Liu
- Department of Gynecology, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Kedan Liao
- Department of Gynecology, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Ning Xie
- Department of Gynecology, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Kaixian Deng
- Department of Gynecology, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| |
Collapse
|
29
|
Franco ML, Beyerstedt S, Rangel ÉB. Klotho and Mesenchymal Stem Cells: A Review on Cell and Gene Therapy for Chronic Kidney Disease and Acute Kidney Disease. Pharmaceutics 2021; 14:pharmaceutics14010011. [PMID: 35056905 PMCID: PMC8778857 DOI: 10.3390/pharmaceutics14010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) and acute kidney injury (AKI) are public health problems, and their prevalence rates have increased with the aging of the population. They are associated with the presence of comorbidities, in particular diabetes mellitus and hypertension, resulting in a high financial burden for the health system. Studies have indicated Klotho as a promising therapeutic approach for these conditions. Klotho reduces inflammation, oxidative stress and fibrosis and counter-regulates the renin-angiotensin-aldosterone system. In CKD and AKI, Klotho expression is downregulated from early stages and correlates with disease progression. Therefore, the restoration of its levels, through exogenous or endogenous pathways, has renoprotective effects. An important strategy for administering Klotho is through mesenchymal stem cells (MSCs). In summary, this review comprises in vitro and in vivo studies on the therapeutic potential of Klotho for the treatment of CKD and AKI through the administration of MSCs.
Collapse
Affiliation(s)
- Marcella Liciani Franco
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Stephany Beyerstedt
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Érika Bevilaqua Rangel
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
- Nephrology Division, Federal University of São Paulo, Sao Paulo 04038-901, Brazil
- Correspondence: ; Tel.: +55-11-2151-2148
| |
Collapse
|
30
|
He D, Li Q, Du G, Meng G, Sun J, Chen S. An Integration of Network Pharmacology and Experimental Verification to Investigate the Mechanism of Guizhi to Treat Nephrotic Syndrome. Front Pharmacol 2021; 12:755421. [PMID: 34925015 PMCID: PMC8675883 DOI: 10.3389/fphar.2021.755421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/11/2021] [Indexed: 01/20/2023] Open
Abstract
Background: Guizhi has the pharmacological activity of anti-inflammatory. However, the effect mechanism of Guizhi against nephrotic syndrome (NS) remains unclear. A network pharmacological approach with experimental verification in vitro and in vivo was performed to investigate the potential mechanisms of Guizhi to treat NS. Methods: Active compounds and potential targets of Guizhi, as well as the related targets of NS were obtained from the public databases. The intersecting targets of Guizhi and NS were obtained through Venny 2.1.0. The key targets and signaling pathways were determined by protein-protein interaction (PPI), genes ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis. And the overall network was constructed with Cytoscape. Molecular docking verification was carried out by AutoDock Vina. Finally, in vitro and in vivo experiments were performed to verify the mechanism of Guizhi to treat NS. Results: 63 intersecting targets were obtained, and the top five key targets mainly involed in NF- Kappa B and MAPK signaling pathway. In the overall network, cinnamaldehyde (CA) was the top one active compound with the highest degree value. The molecular docking showed that the top five key targets were of good binding activity with the active components of Guizhi. To in vitro experiment, CA, the main active component of Guizhi, inhibited the secretion of IL-1β, IL-6, TNF-α in LPS challenged RAW264.7 cells, and down regulated the protein expression of p-NF-κB p65 and p-p38 MAPK in LPS challenged RAW264.7 cells. In vitro experiment showed that, 24 urinary protein and renal function were increased in ADR group. To western blot, CA down regulated the protein expression of p-p38 MAPK in rats of adriamycin-induced nephropathy. Conclusion: CA might be the main active component of Guizhi to treat NS, and the underlying mechanism might mainly be achieved by inhibiting MAPK signaling pathway.
Collapse
Affiliation(s)
- Dan He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangli Du
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guofeng Meng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jijia Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoli Chen
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Conte E. Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol Ther 2021; 234:108031. [PMID: 34774879 DOI: 10.1016/j.pharmthera.2021.108031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Over almost 140 years since their identification, the knowledge about macrophages has unbelievably evolved. The 'big eaters' from being thought of as simple phagocytic cells have been recognized as master regulators in immunity, homeostasis, healing/repair and organ development. Long considered to originate exclusively from bone marrow-derived circulating monocytes, macrophages have been also demonstrated to be the first immune cells colonizing tissues in the developing embryo and persisting in adult life by self-renewal, as long-lived tissue resident macrophages. Therefore, heterogeneous populations of macrophages with different ontogeny and functions co-exist in tissues. Macrophages act as sentinels of homeostasis and are intrinsically programmed to lead the wound healing and repair processes that occur after injury. However, in certain pathological circumstances macrophages get dysfunctional, and impaired or aberrant macrophage activities become key features of diseases. For instance, in both fibrosis and cancer, that have been defined 'wounds that do not heal', dysfunctional monocyte-derived macrophages overall play a key detrimental role. On the other hand, due to their plasticity these cells can be 're-educated' and exert anti-fibrotic and anti-cancer functions. Therefore macrophages represent an important therapeutic target in both fibrosis and cancer diseases. The current review will illustrate new insights into the role of monocytes/macrophages in these devastating diseases and summarize new therapeutic strategies and applications of macrophage-targeted drug development in their clinical setting.
Collapse
|
32
|
Bijarchian F, Taghiyar L, Azhdari Z, Baghaban Eslaminejad M. M2c Macrophages enhance phalange regeneration of amputated mice digits in an organ co-culture system. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1602-1612. [PMID: 35317116 PMCID: PMC8917845 DOI: 10.22038/ijbms.2021.57887.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Objectives Delayed anti-inflammatory responses and scar-formation are the main causes for inability of injured body parts such as phalanges to regrow in mammals. Salamanders can regenerate fully scar-free body structures, followed by the appearance of anti-inflammatory responses at the injured site immediately after amputation. This study aimed to evaluate the local regenerative effects of direct amplified anti-inflammatory signals on regeneration of amputated mice digit tips using M2c-macrophages in a co-cultured organ system for the first time. Materials and Methods We used the amputated digits from the paws of 18.5E day old C57BL/6J mice. Monocytes were obtained from peripheral blood and co-cultured with amputated digits, which subsequently enhanced the M2c macrophage phenotype induced by IL-10. We also examined the regenerative effects of IL-10 and transcription growth factor-beta 1 (TGF-β1). Results The regrowth of new tissue occurred 10 days post-amputation in all groups. This regrowth was related to enhanced Msh homeobox-1 (Msx1), Msh homeobox-2 (Msx2), and bone morphogenic protein-4 (Bmp4) genes. Increased expression of fibroblast growth factor-8 (Fgf-8) also increased the proliferation rate. Histological analyses indicated that epidermal-closure occurred at 3-dpa in all groups. We observed full digit tip regeneration in the co-cultured group. Particularly, there was new tissue regrowth observed with 40 µg/ml of IL-10 and 120 µg/ml of TGF-β. In contrast, the control group had no remarkable digit elongation. Conclusion We propose that a direct amplified anti-inflammatory response at the digit injury site can regenerate epithelial and mesenchymal tissues, and might be useful for limb regeneration without scar formation in adult mammals.
Collapse
Affiliation(s)
- Fatemeh Bijarchian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Zahra Azhdari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran,Corresponding author: Mohamadreza Baghaban Eslaminejad. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Street, Tehran, Iran. Tel: +98-21-23562524; Fax: +98-21-23562507;
| |
Collapse
|
33
|
Vakili M, Fahimi D, Esfahani ST, Sharifzadeh M, Moghtaderi M. Comparative Analysis between Urinary Calprotectin and Serum Creatinine for Early Detection of Intrinsic Acute Kidney Injury. Indian J Nephrol 2021; 31:353-357. [PMID: 34584350 PMCID: PMC8443099 DOI: 10.4103/ijn.ijn_83_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background Acute kidney injury (AKI) is a common and important clinical condition that may lead to chronic kidney disease if it is not diagnosed and treated in its early stages. Urinary calprotectin is a valuable recognized biomarker that can be used to differentiate prerenal and intrinsic AKI. However, till date only a few reports on urine calprotectin measurement in early diagnosis of intrinsic AKI are available. In this study, we compared the sensitivity and specificity of urinary calprotectin with those of serum creatinine in detecting early intrinsic AKI. Methods Over 6 months period (April to October 2018), 81 of 408 patients admitted to the pediatric intensive care unit met the criteria of this cross-sectional study. Their serum creatinine and urinary calprotectin were measured on the first and third day of admission using Jaffe and Elisa radioimmunoassay methods, respectively. The AKI was defined according to the pRIFLE criteria. Results Of the total 81 patients, 67 had the criteria of intrinsic AKI. Of these 62% were female and 38% were male. The mean age of the patients was 22 months. According to data analysis, the area under the curve of ROC of urinary calprotectin on day-1 to detect renal failure is 0.93 with the best cutoff point obtained at 530 ng/mL. The sensitivity, specificity, positive, and negative predictive values of urinary calprotectin levels in diagnosing AKI at this cutoff point are 92.5%, 92.8%, 98.4, and 72.2%, respectively. Besides, urinary calprotectin changes occur much earlier than the rising of serum creatinine. Conclusion Urinary level of calprotectin is a very sensitive biomarker for early diagnosis of intrinsic AKI in children and it can be used in intensive care units or anywhere critically ill children admitted to detect intrinsic AKI. Besides, this study shows that urine calprotectin may be a more sensitive and specific biomarker than serum creatinine in the early phases of intrinsic AKI.
Collapse
Affiliation(s)
- Marjan Vakili
- Pediatric Nephrologist, Department of Pediatric Nephrology, Imam Ali Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Daryoush Fahimi
- Associated Professor of Pediatric Nephrology, Pediatric Chronic Kidney Diseases Research Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
| | - Seyed-Taher Esfahani
- Professor of Pediatric Nephrology, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
| | - Meysam Sharifzadeh
- Fellowship of NICU, Children Medical Center Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Mastaneh Moghtaderi
- Associated Professor of Pediatric Nephrology, Pediatric Chronic Kidney Disease Research Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
34
|
PP2Acα promotes macrophage accumulation and activation to exacerbate tubular cell death and kidney fibrosis through activating Rap1 and TNFα production. Cell Death Differ 2021; 28:2728-2744. [PMID: 33934104 PMCID: PMC8408198 DOI: 10.1038/s41418-021-00780-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 02/01/2023] Open
Abstract
Macrophage accumulation and activation play an essential role in kidney fibrosis; however, the underlying mechanisms remain to be explored. By analyzing the kidney tissues from patients and animal models with kidney fibrosis, we found a large induction of PP2Acα in macrophages. We then generated a mouse model with inducible macrophage ablation of PP2Acα. The knockouts developed less renal fibrosis, macrophage accumulation, or tubular cell death after unilateral ureter obstruction or ischemic reperfusion injury compared to control littermates. In cultured macrophages, PP2Acα deficiency resulted in decreased cell motility by inhibiting Rap1 activity. Moreover, co-culture of PP2Acα-/- macrophages with tubular cells resulted in less tubular cell death attributed to downregulated Stat6-mediated tumor necrosis factor α (TNFα) production in macrophages. Together, this study demonstrates that PP2Acα promotes macrophage accumulation and activation, hence accelerates tubular cell death and kidney fibrosis through regulating Rap1 activation and TNFα production.
Collapse
|
35
|
Garcia GE, Lu YJ, Truong LD, Roncal-Jiménez CA, Miyazaki M, Miyazaki-Anzai S, Cara-Fuentes G, Andres-Hernando A, Lanaspa M, Johnson RJ, Leamon CP. A Novel Treatment for Glomerular Disease: Targeting the Activated Macrophage Folate Receptor with a Trojan Horse Therapy in Rats. Cells 2021; 10:2113. [PMID: 34440885 PMCID: PMC8393837 DOI: 10.3390/cells10082113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Since activated macrophages express a functional folate receptor β (FRβ), targeting this macrophage population with folate-linked drugs could increase selectivity to treat inflammatory diseases. Using a macrophage-mediated anti-glomerular basement membrane (anti-GBM) glomerulonephritis (GN) in WKY rats, we investigated the effect of a novel folic acid-aminopterin (AMT) conjugate (EC2319) designed to intracellularly deliver AMT via the FR. We found that treatment with EC2319 significantly attenuated kidney injury and preserved renal function. Kidney protection with EC2319 was blocked by a folate competitor, indicating that its mechanism of action was specifically FRβ-mediated. Notably, treatment with methotrexate (MTX), another folic acid antagonist related to AMT, did not protect from kidney damage. EC2319 reduced glomerular and interstitial macrophage infiltration and decreased M1 macrophage recruitment but not M2 macrophages. The expression of CCL2 and the pro-fibrotic cytokine TGF-β were also reduced in nephritic glomeruli with EC2319 treatment. In EC2319-treated rats, there was a significant decrease in the deposition of collagens. In nephritic kidneys, FRβ was expressed on periglomerular macrophages and macrophages present in the crescents, but its expression was not observed in normal kidneys. These data indicate that selectively targeting the activated macrophage population could represent a novel means for treating anti-GBM GN and other acute crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Gabriela E. Garcia
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Yingjuan J. Lu
- Endocyte, Inc., Novartis Institutes for Biomedical Research, West Lafayette, IN 47906, USA; (Y.J.L.); (C.P.L.)
| | - Luan D. Truong
- Department of Pathology, The Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Carlos A. Roncal-Jiménez
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Makoto Miyazaki
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Shinobu Miyazaki-Anzai
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Gabriel Cara-Fuentes
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Ana Andres-Hernando
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Miguel Lanaspa
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Richard J. Johnson
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Christopher P. Leamon
- Endocyte, Inc., Novartis Institutes for Biomedical Research, West Lafayette, IN 47906, USA; (Y.J.L.); (C.P.L.)
| |
Collapse
|
36
|
The m 6A methyltransferase METTL3 modifies PGC-1α mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes. J Biol Chem 2021; 297:101058. [PMID: 34375639 PMCID: PMC8406003 DOI: 10.1016/j.jbc.2021.101058] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/08/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial biogenesis and energy metabolism are essential for regulating the inflammatory state of monocytes. This state is partially controlled by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a coactivator that regulates mitochondrial biogenesis and energy metabolism. Disruption of these processes can also contribute to the initiation of chronic inflammatory diseases, such as pulmonary fibrosis, atherosclerosis, and rheumatoid arthritis. Methyltransferase-like 3 (METTL3)-dependent N6-methyladenosine (m6A) methylation has recently been shown to regulate a variety of inflammatory processes. However, the role of m6A mRNA methylation in affecting mitochondrial metabolism in monocytes under inflammation is unclear, nor is there an established relationship between m6A methylation and PGC-1α. In this study, we identified a novel mechanism by which METTL3 acts during oxidized low-density lipoprotein (oxLDL)-induced monocyte inflammation, where METTL3 and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) cooperatively modify PGC-1α mRNA, mediating its degradation, decreasing PGC-1α protein levels, and thereby enhancing the inflammatory response. METTL3 coordinated with YTHDF2 to suppress the expression of PGC-1α, as well as that of cytochrome c (CYCS) and NADH:ubiquinone oxidoreductase subunit C2 (NDUFC2) and reduced ATP production and oxygen consumption rate (OCR). This subsequently increased the accumulation of cellular and mitochondrial reactive oxygen species (ROS) and the levels of proinflammatory cytokines in inflammatory monocytes. These data may provide new insights into the role of METTL3-dependent m6A modification of PGC-1α mRNA in the monocyte inflammation response. These data also contribute to a more comprehensive understanding of the pathogenesis of monocyte-macrophage inflammation-associated diseases, such as pulmonary fibrosis, atherosclerosis, and rheumatoid arthritis.
Collapse
|
37
|
Karanfil M, Gayretli Yayla K. The association of aortic elasticity properties with novel inflammatory marker CRP /albumin ratio. Clin Exp Hypertens 2021; 43:780-787. [PMID: 34340611 DOI: 10.1080/10641963.2021.1960368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Hypertension (HT) is the most important preventable cause of cardiovascular disease and mortality. Aortic elasticity parameters are affected in HT, and inflammation plays a central role in the development of HT. C-reactive protein (CRP) to albumin ratio (CAR) is a novel inflammatory marker. We aimed to evaluate the association of aortic elasticity properties with CAR. METHODS A total of newly diagnosed untreated 101 hypertensive patients and 98 control participants were included to study. Clinical, demographic parameters, and blood sample parameters were recorded. Aortic strain, aortic stiffness index (ASI), and aortic distensibility (AoD) as aortic elasticity parameters were obtained from transthoracic echocardiography. RESULTS CRP, CAR, ASI were significantly higher in hypertensive patients. (6.32 ± 2.48 vs 8.41 ± 3.35, p:<0.001; 0.158 ± 0.065 vs. 0.204 ± 0.083, p: <0.001; 6.73 ± 1.00 vs. 10.93 ± 1.81, p: <0.001, respectively) Aortic strain and AoD levels were significantly lower in hypertensive patients. (6.75 ± 2.17 vs 7.98 ± 2.27; p: <0.001 vs. 3.05 ± 0.97 vs 5.16 ± 1.01; p: <0.001, respectively). CONCLUSION CAR a novel inflammatory marker, which can be obtained from blood samples without additional time and cost, can be useful to predict aortic elasticity properties of hypertensive patients in daily clinical practice.
Collapse
Affiliation(s)
| | - Kadriye Gayretli Yayla
- Department of Cardiology, Dr. Abdurrahman Yurtaslan Ankara Oncology Research Ang Training Hospital, Ankara, Turkey
| |
Collapse
|
38
|
Abstract
Significance: Kidney diseases remain a worldwide public health problem resulting in millions of deaths each year; they are characterized by progressive destruction of renal function by sustained inflammation. Pyroptosis is a lytic type of programmed cell death involved in inflammation, as well as a key fibrotic mechanism that is critical in the development of kidney pathology. Pyroptosis is induced by the cleavage of Gasdermins by various caspases and is executed by the insertion of the N-terminal fragment of cleaved Gasdermins into the plasma membrane, creating oligomeric pores and allowing the release of diverse proinflammatory products into the extracellular space. Inflammasomes are multiprotein complexes leading to the activation of caspase-1, which will cleave Gasdermin D, releasing several proinflammatory cytokines; this results in the initiation and amplification of the inflammatory response. Recent Advances: The efficacy of Gasdermin D cleavage is reduced by a change in the redox balance. Recently, several studies have shown that the attenuation of reactive oxygen species (ROS) production induced by antioxidant pathways results in a reduction of renal pyroptosis. In this review, we discuss the role of pyroptosis in the pathogenesis of chronic kidney disease (CKD) and acute kidney disease; summarize the clinical outcomes and different molecular mechanisms leading to Gasdermin activation; and examine studies about the capacity of antioxidants, particularly Nrf2 activators, to ameliorate Gasdermin activity. Future Directions: We illustrate the potential influence of the deregulation of redox balance on inflammasome activity and pyroptosis as a novel therapeutic approach for the treatment of kidney diseases. Antioxid. Redox Signal. 35, 40-60.
Collapse
Affiliation(s)
- Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
39
|
Wu Y, Yang B. Erythropoietin Receptor/β Common Receptor: A Shining Light on Acute Kidney Injury Induced by Ischemia-Reperfusion. Front Immunol 2021; 12:697796. [PMID: 34276689 PMCID: PMC8278521 DOI: 10.3389/fimmu.2021.697796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Acute kidney injury (AKI) is a health problem worldwide, but there is a lack of early diagnostic biomarkers and target-specific treatments. Ischemia-reperfusion (IR), a major cause of AKI, not only induces kidney injury, but also stimulates the self-defense system including innate immune responses to limit injury. One of these responses is the production of erythropoietin (EPO) by adjacent normal tissue, which is simultaneously triggered, but behind the action of its receptors, either by the homodimer EPO receptor (EPOR)2 mainly involved in erythropoiesis or the heterodimer EPOR/β common receptor (EPOR/βcR) which has a broad range of biological protections. EPOR/βcR is expressed in several cell types including tubular epithelial cells at low levels or absent in normal kidneys, but is swiftly upregulated by hypoxia and inflammation and also translocated to cellular membrane post IR. EPOR/βcR mediates anti-apoptosis, anti-inflammation, pro-regeneration, and remodeling via the PI3K/Akt, STAT3, and MAPK signaling pathways in AKI. However, the precise roles of EPOR/βcR in the pathogenesis and progression of AKI have not been well defined, and its potential as an earlier biomarker for AKI diagnosis and monitoring repair or chronic progression requires further investigation. Here, we review biological functions and mechanistic signaling pathways of EPOR/βcR in AKI, and discuss its potential clinical applications as a biomarker for effective diagnosis and predicting prognosis, as well as directing cell target drug delivery.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, China.,Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Bin Yang
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
40
|
Scuron MD, Fay BL, Connell AJ, Oliver J, Smith PA. The PI3Kδ inhibitor parsaclisib ameliorates pathology and reduces autoantibody formation in preclinical models of systemic lupus erythematosus and Sjӧgren's syndrome. Int Immunopharmacol 2021; 98:107904. [PMID: 34214886 DOI: 10.1016/j.intimp.2021.107904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022]
Abstract
Dysregulation of phosphoinositide 3-kinase δ (PI3Kδ) signaling pathway has been implicated in the pathogenesis of inflammatory and autoimmune diseases. Parsaclisib (INCB050465) represents a potent and selective PI3Kδ inhibitor, which is being clinically investigated for treatment of autoimmune hemolytic anemia and hematological malignancies. We characterized the potential of parsaclisib to ameliorate autoimmune mechanisms implicated in the pathophysiology of systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). Spontaneous mouse models of SLE and SS were utilized to elucidate the efficacy of orally administered parsaclisib on autoreactive B-cell-mediated antibody-driven disease. Parsaclisib significantly reduced disease symptoms and pathology in three distinct mouse models of SLE. Parsaclisib effectively preserved renal function as measured by glomerular filtration rate, abrogated histopathological evidence of nephritis, modulated discrete immune cell subsets, and decreased anti-dsDNA antibody level. Furthermore, parsaclisib demonstrated efficacy in two spontaneous mouse models of SS. Oral parsaclisib treatment ameliorated the severity of salivary gland inflammation and reduced circulating levels of autoantibodies. Parsaclisib mediated improvement of salivary gland inflammation coincided with reduced B-cell activating cytokine (BAFF) in saliva. Transcriptomic analysis of kidney and salivary gland tissues revealed a downregulation in inflammatory gene expression consistent with PI3Kδ pathway inhibition. Parsaclisib reduced autoreactive B-cells and autoantibody levels, and significantly improved nephritis and salivary gland inflammation. These data provide the scientific rationale for PI3Kδ inhibition as a therapeutic strategy for treatment of B-cell-mediated antibody-driven autoimmune diseases.
Collapse
Affiliation(s)
- Monika D Scuron
- Incyte Research Institute, Inflammation and Autoimmunity Department, 1801 Augustine Cut Off, Wilmington, Del. 19803, USA.
| | - Brittany L Fay
- Incyte Research Institute, Inflammation and Autoimmunity Department, 1801 Augustine Cut Off, Wilmington, Del. 19803, USA
| | - Andrew J Connell
- Incyte Research Institute, Inflammation and Autoimmunity Department, 1801 Augustine Cut Off, Wilmington, Del. 19803, USA
| | - Julian Oliver
- Incyte Research Institute, Inflammation and Autoimmunity Department, 1801 Augustine Cut Off, Wilmington, Del. 19803, USA
| | - Paul A Smith
- Incyte Research Institute, Inflammation and Autoimmunity Department, 1801 Augustine Cut Off, Wilmington, Del. 19803, USA
| |
Collapse
|
41
|
Yang CY, Chang PY, Chen JY, Wu BS, Yang AH, Lee OKS. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem Cell Res Ther 2021; 12:193. [PMID: 33741073 PMCID: PMC7977319 DOI: 10.1186/s13287-021-02270-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Life-long peritoneal dialysis (PD) as a renal replacement therapy is limited by peritoneal fibrosis. Previous studies showed immunomodulatory and antifibrotic effects of adipose-derived mesenchymal stem cells (ADSCs) on peritoneal fibrosis. However, the role of the peritoneal macrophage in this process remains uninvestigated. Methods We examined the therapeutic effects of ADSC and bone marrow-derived mesenchymal stem cells (BM-MSC) in the rat model of dialysis-induced peritoneal fibrosis using methylglyoxal. In addition, treatment of macrophages with the conditioned medium of ADSC and BM-MSC was performed individually to identify the beneficial component of the stem cell secretome. Results In the in vivo experiments, we found dialysis-induced rat peritoneal fibrosis was attenuated by both ADSC and BM-MSC. Interestingly, ADSC possessed a more prominent therapeutic effect than BM-MSC in ameliorating peritoneal membrane thickening while also upregulating epithelial cell markers in rat peritoneal tissues. The therapeutic effects of ADSC were positively associated with M2 macrophage polarization. In the in vitro experiments, we confirmed that interleukin-6 (IL-6) secreted by MSCs upon transforming growth factor-β1 stimulation promotes M2 macrophage polarization. Conclusions In dialysis-induced peritoneal fibrosis, MSCs are situated in an inflammatory environment of TGF-β1 and secrete IL-6 to polarize macrophages into the M2 phenotype. Our findings reveal a previously unidentified role of tissue macrophage in this antifibrotic process. ADSC has the advantage of abundance and accessibility, making the application values extremely promising. Graphical abstract In dialysis-induced peritoneal fibrosis, peritoneal mesothelial cells secrete transforming growth factor-β1 (TGF-β1) when exposed to methylglyoxal (MGO)-containing peritoneal dialysate. When situated in TGF-β1, the inflammatory environment induces mesenchymal stem cells to secrete interleukin-6 (IL-6), IL-6 polarizes macrophages into the M2 phenotype. The dominant peritoneal tissue M2 macrophages, marked by upregulated Arg-1 expression, account for the attenuation of MGO-induced dedifferentiation of peritoneal mesothelial cells to maintain epithelial integrity.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02270-4.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu, 30010, Taiwan.
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Jun-Yi Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Bo-Sheng Wu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Pathology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Orthopedics, China Medical University Hospital, Taichung, 40447, Taiwan
| |
Collapse
|
42
|
Rossi M, Korpak K, Doerfler A, Zouaoui Boudjeltia K. Deciphering the Role of Heme Oxygenase-1 (HO-1) Expressing Macrophages in Renal Ischemia-Reperfusion Injury. Biomedicines 2021; 9:biomedicines9030306. [PMID: 33809696 PMCID: PMC8002311 DOI: 10.3390/biomedicines9030306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), which contributes to the development of chronic kidney disease (CKD). Renal IRI combines major events, including a strong inflammatory immune response leading to extensive cell injuries, necrosis and late interstitial fibrosis. Macrophages act as key players in IRI-induced AKI by polarizing into proinflammatory M1 and anti-inflammatory M2 phenotypes. Compelling evidence exists that the stress-responsive enzyme, heme oxygenase-1 (HO-1), mediates protection against renal IRI and modulates macrophage polarization by enhancing a M2 subset. Hereafter, we review the dual effect of macrophages in the pathogenesis of IRI-induced AKI and discuss the critical role of HO-1 expressing macrophages.
Collapse
Affiliation(s)
- Maxime Rossi
- Department of Urology, CHU de Charleroi, Université libre de Bruxelles (ULB), 6000 Charleroi, Belgium;
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Correspondence: (M.R.); (K.Z.B.)
| | - Kéziah Korpak
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Department of Geriatric Medicine, CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium
| | - Arnaud Doerfler
- Department of Urology, CHU de Charleroi, Université libre de Bruxelles (ULB), 6000 Charleroi, Belgium;
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Correspondence: (M.R.); (K.Z.B.)
| |
Collapse
|
43
|
Glomerular Macrophages in Human Auto- and Allo-Immune Nephritis. Cells 2021; 10:cells10030603. [PMID: 33803230 PMCID: PMC7998925 DOI: 10.3390/cells10030603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/10/2023] Open
Abstract
Macrophages are involved in tissue homeostasis. They participate in inflammatory episodes and are involved in tissue repair. Macrophages are characterized by a phenotypic heterogeneity and a profound cell plasticity. In the kidney, and more particularly within glomeruli, macrophages are thought to play a maintenance role that is potentially critical for preserving a normal glomerular structure. Literature on the glomerular macrophage role in human crescentic glomerulonephritis and renal transplantation rejection with glomerulitis, is sparse. Evidence from preclinical models indicates that macrophages profoundly modulate disease progression, both in terms of number-where depletion has resulted in a reduced glomerular lesion-and sub-phenotype-M1 being more profoundly detrimental than M2. This evidence is corroborated by better outcomes in patients with a lower number of glomerular macrophages. However, due to the very limited biopsy sample size, the type and role of macrophage subpopulations involved in human proliferative lesions is more difficult to precisely define and synthesize. Therefore, specific biomarkers of macrophage activation may enhance our ability to assess their role, potentially enabling improved monitoring of drug activity and ultimately allowing the development of novel therapeutic strategies to target these elusive cellular players.
Collapse
|
44
|
Mata R, Yao Y, Cao W, Ding J, Zhou T, Zhai Z, Gao C. The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. RESEARCH 2021; 2021:4189516. [PMID: 33623917 PMCID: PMC7879376 DOI: 10.34133/2021/4189516] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Tissue regeneration is an active multiplex process involving the dynamic inflammatory microenvironment. Under a normal physiological framework, inflammation is necessary for the systematic immunity including tissue repair and regeneration as well as returning to homeostasis. Inflammatory cellular response and metabolic mechanisms play key roles in the well-orchestrated tissue regeneration. If this response is dysregulated, it becomes chronic, which in turn causes progressive fibrosis, improper repair, and autoimmune disorders, ultimately leading to organ failure and death. Therefore, understanding of the complex inflammatory multiple player responses and their cellular metabolisms facilitates the latest insights and brings novel therapeutic methods for early diseases and modern health challenges. This review discusses the recent advances in molecular interactions of immune cells, controlled shift of pro- to anti-inflammation, reparative inflammatory metabolisms in tissue regeneration, controlling of an unfavorable microenvironment, dysregulated inflammatory diseases, and emerging therapeutic strategies including the use of biomaterials, which expand therapeutic views and briefly denote important gaps that are still prevailing.
Collapse
Affiliation(s)
- Rani Mata
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
45
|
Wang J, Wang L, Gao Y, Zhang Z, Huang X, Han T, Liu B, Zhang Y, Li Y, Zhang L. Synergistic Therapy of Celecoxib-Loaded Magnetism-Responsive Hydrogel for Tendon Tissue Injuries. Front Bioeng Biotechnol 2020; 8:592068. [PMID: 33330423 PMCID: PMC7729092 DOI: 10.3389/fbioe.2020.592068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Tendon tissue injury is very common and always associated with pain, tissue swelling and even malformation if not treated on time. Traditional therapeutic strategies, such as cryotherapy, electrical therapy, ultrasound therapy and anti-inflammatory drug, are still unsatisfying. In this work, a synergistic therapy, based on the combination of celecoxib drug and pulsed electromagnetic field (PEMF) regimens, was developed for the treatment of tendon injury. This celecoxib-loaded magnetism-responsive hydrogel dressing (gelatin/Fe3O4/celecoxib) showed good biocompatibility and coordinated drug release behavior under the PEMF, which could effectively reduce the inflammatory reaction of macrophage cells with the incremental proportion of M2 macrophages at the injury site. CatWalk gait analysis further verified this synergistic effect of combination therapy for achieving the outstanding recovery of the injured tendon tissue. Thus, this magnetism-responsive hydrogel may represent a promising alternative strategy in clinics for promoting tendon healing.
Collapse
Affiliation(s)
- Jingxin Wang
- Department of Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Likang Wang
- Department of Rehabilitation Medicine, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yueming Gao
- Department of Rehabilitation Medicine, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhao Zhang
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Xiaofeng Huang
- Department of Endocrinology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Tong Han
- Department of Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Biyuan Liu
- Department of Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yujie Zhang
- Department of Epidemiology, School of Public Health Southern Medical University, Guangzhou, China
| | - Yilan Li
- Department of Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lining Zhang
- Department of Rehabilitation Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Abstract
Interstitial inflammation is an important feature of cystic kidney disease. Renal macrophages are the most well-studied inflammatory cell in the kidney, and their involvement in cyst formation has been reported in different animal models and patients with cystic kidney disease. Originally, it was believed that renal macrophages were maintained from a constant supply of bone marrow-derived circulating monocytes, and could be recruited to the kidney in response to local inflammation. However, this idea has been challenged using fate-mapping methods, by showing that at least two distinct developmental origins of macrophages are present in the adult mouse kidney. The first type, infiltrating macrophages, are recruited from circulating monocytes and gradually develop macrophage properties on entering the kidney. The second, resident macrophages, predominantly originate from embryonic precursors, colonize the kidney during its development, and proliferate in situ to maintain their population throughout adulthood. Infiltrating and resident macrophages work together to maintain homeostasis and properly respond to pathologic conditions, such as AKI, cystic kidney disease, or infection. This review will briefly summarize current knowledge of resident macrophages in cystic kidney disease.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
47
|
Luo J, Weaver MS, Fitzgibbons TP, Aouadi M, Czech MP, Allen MD. Immunotherapy for Infarcts: In Vivo Postinfarction Macrophage Modulation Using Intramyocardial Microparticle Delivery of Map4k4 Small Interfering RNA. Biores Open Access 2020; 9:258-268. [PMID: 33376632 PMCID: PMC7757732 DOI: 10.1089/biores.2020.0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
The myeloid cells infiltrating the heart early after acute myocardial infarction elaborate a secretome that largely orchestrates subsequent ventricular wall repair. Regulating this innate immune response could be a means to improve infarct healing. To pilot this concept, we utilized (β1,3-d-) glucan-encapsulated small interfering RNA (siRNA)-containing particles (GeRPs), targeting mononuclear phagocytes, delivered to mice as a one-time intramyocardial injection immediately after acute infarction. Findings demonstrated that cardiac macrophages phagocytosed GeRPs in vivo and had little systemic dissemination, thus providing a means to deliver local therapeutics. Acute infarcts were then injected in vivo with phosphate-buffered saline (PBS; vehicle) or GeRPs loaded with siRNA to Map4k4, and excised hearts were examined at 3 and 7 days by quantitative polymerase chain reaction, flow cytometry, and histology. Compared with infarcted PBS-treated hearts, hearts with intrainfarct injections of siRNA-loaded GeRPs exhibited 69–89% reductions in transcripts for Map4k4 (mitogen-activated protein kinase kinase kinase kinase 4), interleukin (IL)-1β, and tumor necrosis factor α at 3 days. Expression of other factors relevant to matrix remodeling—monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinases, hyaluronan synthases, matricellular proteins, and profibrotic factors transforming growth factor beta (TGF-β), and connective tissue growth factor (CTGF)—were also decreased. Most effects peaked at 3 days, but, in some instances (Map4k4, IL-1β, TGF-β, CTGF, versican, and periostin), suppression persisted to 7 days. Thus, direct intramyocardial GeRP injection could serve as a novel and clinically translatable platform for in vivo RNA delivery to intracardiac macrophages for local and selective immunomodulation of the infarct microenvironment.
Collapse
Affiliation(s)
- Jun Luo
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Matthew S Weaver
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Timothy P Fitzgibbons
- Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Myriam Aouadi
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Margaret D Allen
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA.,Division of Cardiothoracic Surgery, Department of Surgery, University of Washington, Seattle, Washington, USA
| |
Collapse
|
48
|
Hiesinger K, Kramer JS, Beyer S, Eckes T, Brunst S, Flauaus C, Wittmann SK, Weizel L, Kaiser A, Kretschmer SBM, George S, Angioni C, Heering J, Geisslinger G, Schubert-Zsilavecz M, Schmidtko A, Pogoryelov D, Pfeilschifter J, Hofmann B, Steinhilber D, Schwalm S, Proschak E. Design, Synthesis, and Structure–Activity Relationship Studies of Dual Inhibitors of Soluble Epoxide Hydrolase and 5-Lipoxygenase. J Med Chem 2020; 63:11498-11521. [DOI: 10.1021/acs.jmedchem.0c00561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Jan S. Kramer
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Sandra Beyer
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Timon Eckes
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Cathrin Flauaus
- Institute of Pharmacology and Clinical Pharmacy, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt a.M., Germany
| | - Sandra K. Wittmann
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Simon B. M. Kretschmer
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Jan Heering
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt a.M., Germany
| | - Denys Pogoryelov
- Institute of Biochemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt a.M., Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Stephanie Schwalm
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| |
Collapse
|
49
|
De Miguel C, Kraus AC, Saludes MA, Konkalmatt P, Ruiz Domínguez A, Asico LD, Latham PS, Offen D, Jose PA, Cuevas S. ND-13, a DJ-1-Derived Peptide, Attenuates the Renal Expression of Fibrotic and Inflammatory Markers Associated with Unilateral Ureter Obstruction. Int J Mol Sci 2020; 21:ijms21197048. [PMID: 32987947 PMCID: PMC7582723 DOI: 10.3390/ijms21197048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
DJ-1 is a redox-sensitive chaperone with reported antioxidant and anti-inflammatory properties in the kidney. The 20 amino acid (aa) peptide ND-13 consists of 13 highly conserved aas from the DJ-1 sequence and a TAT-derived 7 aa sequence that helps in cell penetration. This study aimed to determine if ND-13 treatment prevents the renal damage and inflammation associated with unilateral ureter obstruction (UUO). Male C57Bl/6 and DJ-1-/- mice underwent UUO and were treated with ND-13 or vehicle for 14 days. ND-13 attenuated the renal expression of fibrotic markers TGF-β and collagen1a1 (Col1a1) and inflammatory markers TNF-α and IL-6 in C57Bl/6 mice. DJ-1-/- mice treated with ND-13 presented similar decreased expression of TNF-α, IL-6 and TGF-β. However, in contrast to C57Bl/6 mice, ND-13 failed to prevent renal fibrosis or to ameliorate the expression of Col1a1 in this genotype. Further, UUO led to elevated urinary levels of the proximal tubular injury marker neutrophil gelatinase-associated lipocalin (NGAL) in DJ-1-/- mice, which were blunted by ND-13. Our results suggest that ND-13 protects against UUO-induced renal injury, inflammation and fibrosis. These are all crucial mechanisms in the pathogenesis of kidney injury. Thus, ND-13 may be a new therapeutic approach to prevent renal diseases.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL 35233, USA;
- Correspondence: (C.D.M.); (S.C.); Tel.: +1-(205)-934-2430 (C.D.M.); +34-(868)-885-038 (S.C.)
| | - Abigayle C. Kraus
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL 35233, USA;
| | - Mitchell A. Saludes
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Prasad Konkalmatt
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Almudena Ruiz Domínguez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, 30120 Murcia, Spain;
| | - Laureano D. Asico
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Patricia S. Latham
- Pathology and Internal Medicine The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA;
| | - Daniel Offen
- Neuroscience Laboratory, The Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Pedro A. Jose
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, 30120 Murcia, Spain;
- Correspondence: (C.D.M.); (S.C.); Tel.: +1-(205)-934-2430 (C.D.M.); +34-(868)-885-038 (S.C.)
| |
Collapse
|
50
|
Two identified subsets of CD8 T cells in obstructed kidneys play different roles in inflammation and fibrosis. Aging (Albany NY) 2020; 12:17528-17540. [PMID: 32921633 PMCID: PMC7521502 DOI: 10.18632/aging.103764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023]
Abstract
Inflammation plays a crucial role in initiating renal fibrosis after injury. The infiltration of inflammatory cells, such as CD4+ T cells and macrophages, contributes to renal fibrosis following ureteric obstruction. However, the function of CD8+ T cells in obstructed kidneys remains unclear. Although CD8+ T cell depletion intensifies renal fibrosis by decreasing IFN-γ and increasing IL-4 in the kidneys, the change and role of CD8 T cell populations following environmental changes during renal fibrosis are largely unknown. Here, we identified two CD8 T cell subsets in mouse obstructed kidneys with unilateral ureteric obstruction and revealed their different functions in building an inflammatory or profibrotic environment. Following renal fibrosis, the phenotypes of infiltrated CD8 T cells were mainly Tc1 (CD44+CD25-CD62L-) at the early inflammation stage and then changed to Tc2 (CD44+CD25highCD62Llow). Tc1 and Tc2 secreted IFN-γ, contributing to the decrease in the Th2-induced over-polarization of M2 macrophages and fibrosis. Moreover, Tc2 secreted pro- and anti-inflammation factors and decreased the inflammatory responses of other cells to control inflammation and fibrosis. This work and our previous study showed that CD8 T cells could balance out inflammation by controlling its level in renal fibrosis.
Collapse
|