1
|
Ma Y, Hu Y, Ruan Y, Jiang X, Zhao M, Wang Y, Ke Y, Shi M, Lu G. Astragaloside IV relieves passive heymann nephritis and podocyte injury by suppressing the TRAF6/NF-κb axis. Ren Fail 2024; 46:2371992. [PMID: 39082739 PMCID: PMC11293271 DOI: 10.1080/0886022x.2024.2371992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 08/03/2024] Open
Abstract
The pathogenesis of membranous nephropathy (MN) involves podocyte injury that is attributed to inflammatory responses induced by local immune deposits. Astragaloside IV (AS-IV) is known for its robust anti-inflammatory properties. Here, we investigated the effects of AS-IV on passive Heymann nephritis (PHN) rats and TNF-α-induced podocytes to determine the underlying molecular mechanisms of MN. Serum biochemical parameters, 24-h urine protein excretion and renal histopathology were evaluated in PHN and control rats. The expression of tumor necrosis factor receptor associated factor 6 (TRAF6), the phosphorylation of nuclear factor kappa B (p-NF-κB), the expression of associated proinflammatory cytokines (TNF-α, IL-6 and IL-1β) and the ubiquitination of TRAF6 were measured in PHN rats and TNF-α-induced podocytes. We detected a marked increase in mRNA expression of TNF-α, IL-6 and IL-1β and in the protein abundance of p-NF-κB and TRAF6 within the renal tissues of PHN rats and TNF-α-induced podocytes. Conversely, there was a reduction in the K48-linked ubiquitination of TRAF6. Additionally, AS-IV was effective in ameliorating serum creatinine, proteinuria, and renal histopathology in PHN rats. This effect was concomitant with the suppression of NF-κB pathway activation and decreased expression of TNF-α, IL-6, IL-1β and TRAF6. AS-IV decreased TRAF6 levels by promoting K48-linked ubiquitin conjugation to TRAF6, which triggered ubiquitin-mediated degradation. In summary, AS-IV averted renal impairment in PHN rats and TNF-α-induced podocytes, likely by modulating the inflammatory response through the TRAF6/NF-κB axis. Targeting TRAF6 holds therapeutic promise for managing MN.
Collapse
Affiliation(s)
- Yuhua Ma
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Yuwen Hu
- Center for inspection, Jiangsu Medical Products Administration, Nanjing, China
| | - Yilin Ruan
- Department of Nephrology, Shanghai Ruijin Hosptial, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaocheng Jiang
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxin Wang
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Yanrong Ke
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Manman Shi
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Stea ED, D'Ettorre G, Mitrotti A, Gesualdo L. The complement system in the pathogenesis and progression of kidney diseases: What doesn't kill you makes you older. Eur J Intern Med 2024; 124:22-31. [PMID: 38461065 DOI: 10.1016/j.ejim.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/11/2024]
Abstract
The Complement System is an evolutionarily conserved component of immunity that plays a key role in host defense against infections and tissue homeostasis. However, the dysfunction of the Complement System can result in tissue damage and inflammation, thereby contributing to the development and progression of various renal diseases, ranging from atypical Hemolytic Uremic Syndrome to glomerulonephritis. Therapeutic interventions targeting the complement system have demonstrated promising results in both preclinical and clinical studies. Currently, several complement inhibitors are being developed for the treatment of complement-mediated renal diseases. This review aims to summarize the most recent insights into complement activation and therapeutic inhibition in renal diseases. Furthermore, it offers potential directions for the future rational use of complement inhibitor drugs in the context of renal diseases.
Collapse
Affiliation(s)
- Emma Diletta Stea
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | | | - Adele Mitrotti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
3
|
Kistler AD, Salant DJ. Complement activation and effector pathways in membranous nephropathy. Kidney Int 2024; 105:473-483. [PMID: 38142037 DOI: 10.1016/j.kint.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 12/25/2023]
Abstract
Complement activation has long been recognized as a central feature of membranous nephropathy (MN). Evidence for its role has been derived from the detection of complement products in biopsy tissue and urine from patients with MN and from mechanistic studies primarily based on the passive Heymann nephritis model. Only recently, more detailed insights into the exact mechanisms of complement activation and effector pathways have been gained from patient data, animal models, and in vitro models based on specific target antigens relevant to the human disease. These data are of clinical relevance, as they parallel the recent development of numerous specific complement therapeutics for clinical use. Despite efficient B-cell depletion, many patients with MN achieve only partial remission of proteinuria, which may be explained by the persistence of subepithelial immune complexes and ongoing complement-mediated podocyte injury. Targeting complement, therefore, represents an attractive adjunct treatment for MN, but it will need to be tailored to the specific complement pathways relevant to MN. This review summarizes the different lines of evidence for a central role of complement in MN and for the relevance of distinct complement activation and effector pathways, with a focus on recent developments.
Collapse
Affiliation(s)
- Andreas D Kistler
- Department of Medicine, Cantonal Hospital Frauenfeld, Spital Thurgau AG, Frauenfeld, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - David J Salant
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Nell D, Wolf R, Podgorny PM, Kuschnereit T, Kuschnereit R, Dabers T, Stracke S, Schmidt T. Complement Activation in Nephrotic Glomerular Diseases. Biomedicines 2024; 12:455. [PMID: 38398059 PMCID: PMC10886869 DOI: 10.3390/biomedicines12020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The nephrotic syndrome holds significant clinical importance and is characterized by a substantial protein loss in the urine. Damage to the glomerular basement membrane or podocytes frequently underlies renal protein loss. There is an increasing belief in the involvement of the complement system, a part of the innate immune system, in these conditions. Understanding the interactions between the complement system and glomerular structures continually evolves, challenging the traditional view of the blood-urine barrier as a passive filter. Clinical studies suggest that a precise inhibition of the complement system at various points may soon become feasible. However, a thorough understanding of current knowledge is imperative for planning future therapies in nephrotic glomerular diseases such as membranous glomerulopathy, membranoproliferative glomerulonephritis, lupus nephritis, focal segmental glomerulosclerosis, and minimal change disease. This review provides an overview of the complement system, its interactions with glomerular structures, and insights into specific glomerular diseases exhibiting a nephrotic course. Additionally, we explore new diagnostic tools and future therapeutic approaches.
Collapse
|
5
|
Wang H, Liu H, Cheng H, Xue X, Ge Y, Wang X, Yuan J. Klotho Stabilizes the Podocyte Actin Cytoskeleton in Idiopathic Membranous Nephropathy through Regulating the TRPC6/CatL Pathway. Am J Nephrol 2024; 55:345-360. [PMID: 38330925 PMCID: PMC11152006 DOI: 10.1159/000537732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION The aim of this study was to explore the renoprotective effects of Klotho on podocyte injury mediated by complement activation and autoantibodies in idiopathic membranous nephropathy (IMN). METHODS Rat passive Heymann nephritis (PHN) was induced as an IMN model. Urine protein levels, serum biochemistry, kidney histology, and podocyte marker levels were assessed. In vitro, sublytic podocyte injury was induced by C5b-9. The expression of Klotho, transient receptor potential channel 6 (TRPC6), and cathepsin L (CatL); its substrate synaptopodin; and the intracellular Ca2+ concentration were detected via immunofluorescence. RhoA/ROCK pathway activity was measured by an activity quantitative detection kit, and the protein expression of phosphorylated-LIMK1 (p-LIMK1) and p-cofilin in podocytes was detected via Western blotting. Klotho knockdown and overexpression were performed to evaluate its role in regulating the TRPC6/CatL pathway. RESULTS PHN rats exhibited proteinuria, podocyte foot process effacement, decreased Klotho and Synaptopodin levels, and increased TRPC6 and CatL expression. The RhoA/ROCK pathway was activated by the increased phosphorylation of LIMK1 and cofilin. Similar changes were observed in C5b-9-injured podocytes. Klotho knockdown exacerbated podocyte injury, while Klotho overexpression partially ameliorated podocyte injury. CONCLUSION Klotho may protect against podocyte injury in IMN patients by inhibiting the TRPC6/CatL pathway. Klotho is a potential target for reducing proteinuria in IMN patients.
Collapse
Affiliation(s)
- Hongyun Wang
- Hubei University of Chinese Medicine, Wuhan, China
| | - Hongyan Liu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Cheng
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xue Xue
- Hubei University of Chinese Medicine, Wuhan, China
| | - Yamei Ge
- Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoqin Wang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Jun Yuan
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Li Y, Fang Y, Liu J. Downregulation of TRPC6 regulates ERK1/2 to prevent sublytic C5b‑9 complement complex‑induced podocyte injury through activating autophagy. Exp Ther Med 2023; 26:576. [PMID: 38023364 PMCID: PMC10652242 DOI: 10.3892/etm.2023.12275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) is a common glomerular disease, in which 50-60% of patients can progress to end-stage renal disease within 10-20 years, seriously endangering human health. Podocyte injury is the direct cause of IMN. Sublytic C5b-9 complement complex induces damage in podocytes' structure and function. In sublytic C5b-9 treated podocytes, the expression of canonical transient receptor potential 6 (TRPC6) is increased. However, the specific mechanism of TRPC6 in sublytic C5b-9 treated podocytes is unclear. The present study aimed to reveal the effect and mechanism of TRPC6 on sublytic C5b-9-induced podocytes. Normal human serum was stimulated using zymosan to form C5b-9. A lactate dehydrogenase release assay was used to examine C5b-9 cytotoxicity in podocytes. The RNA and protein expression levels were analyzed using reverse transcription-quantitative PCR, western blotting and immunofluorescent assay, respectively. Cell Counting Kit-8 assay and flow cytometry were carried out to test the viability and apoptosis of podocytes, respectively. Transmission electron microscopy was used to observe autophagic vacuole. F-actin was tested through phalloidin staining. Sublytic C5b-9 was deposited and TRPC6 expression was boosted in podocytes stimulated through zymosan activation serum. Knockdown of TRPC6 raised the viability and reduced the apoptosis rate of sublytic C5b-9-induced podocytes. Meanwhile, transfection of small-interfering (si)TRPC6 facilitated autophagy progression and enhanced the activation of cathepsin B/L in sublytic C5b-9-induced podocytes. The phosphorylation level of ERK1/2 was receded in siTRPC6 and sublytic C5b-9 co-treated podocytes. Moreover, the addition of the ERK1/2 activator partially reversed the effect of TRPC6 inhibition on sublytic C5b-9-induced podocytes. TRPC6 knockdown reduced the damage of sublytic C5b-9 to podocytes by weakening the ERK1/2 phosphorylation level to activate autophagy. These results indicated that targeting TRPC6 reduced the injury of sublytic C5b-9 on podocytes.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, Shandong 262550, P.R. China
| | - Youfu Fang
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, Shandong 262550, P.R. China
| | - Jing Liu
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, Shandong 262550, P.R. China
| |
Collapse
|
7
|
Bruno V, Mühlig AK, Oh J, Licht C. New insights into the immune functions of podocytes: the role of complement. Mol Cell Pediatr 2023; 10:3. [PMID: 37059832 PMCID: PMC10104987 DOI: 10.1186/s40348-023-00157-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
Podocytes are differentiated epithelial cells which play an essential role to ensure a normal function of the glomerular filtration barrier (GFB). In addition to their adhesive properties in maintaining the integrity of the filtration barrier, they have other functions, such as synthesis of components of the glomerular basement membrane (GBM), production of vascular endothelial growth factor (VEGF), release of inflammatory proteins, and expression of complement components. They also participate in the glomerular crosstalk through multiple signalling pathways, including endothelin-1, VEGF, transforming growth factor β (TGFβ), bone morphogenetic protein 7 (BMP-7), latent transforming growth factor β-binding protein 1 (LTBP1), and extracellular vesicles.Growing literature suggests that podocytes share many properties of innate and adaptive immunity, supporting a multifunctional role ensuring a healthy glomerulus. As consequence, the "immune podocyte" dysfunction is thought to be involved in the pathogenesis of several glomerular diseases, referred to as "podocytopathies." Multiple factors like mechanical, oxidative, and/or immunologic stressors can induce cell injury. The complement system, as part of both innate and adaptive immunity, can also define podocyte damage by several mechanisms, such as reactive oxygen species (ROS) generation, cytokine production, and endoplasmic reticulum stress, ultimately affecting the integrity of the cytoskeleton, with subsequent podocyte detachment from the GBM and onset of proteinuria.Interestingly, podocytes are found to be both source and target of complement-mediated injury. Podocytes express complement proteins which contribute to local complement activation. At the same time, they rely on several protective mechanisms to escape this damage. Podocytes express complement factor H (CFH), one of the main regulators of the complement cascade, as well as membrane-bound complement regulators like CD46 or membrane cofactor protein (MCP), CD55 or decay-accelerating factor (DAF), and CD59 or defensin. Further mechanisms, like autophagy or actin-based endocytosis, are also involved to ensure podocyte homeostasis and protection against injury.This review will provide an overview of the immune functions of podocytes and their response to immune-mediated injury, focusing on the pathogenic link between complement and podocyte damage.
Collapse
Affiliation(s)
- Valentina Bruno
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne Katrin Mühlig
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Nephrology, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jun Oh
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Nephrology, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
8
|
Dong J, Zheng F, Liu F, He J, Li S, Pu W, Xu H, Luo Z, Liu S, Yin L, Tang D, Dai Y. Global-feature of autoimmune glomerulonephritis using proteomic analysis of laser capture microdissected glomeruli. Front Immunol 2023; 14:1131164. [PMID: 37033921 PMCID: PMC10077062 DOI: 10.3389/fimmu.2023.1131164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/13/2023] [Indexed: 04/11/2023] Open
Abstract
Background IgA nephropathy (IgAN), (LN), membranous nephropathy (MN), and minimal change nephropathy (MCN) are all belonged to autoimmune glomerulonephritis. This study aimed to identify the specific proteomic characteristics of the four GNs diseases in order to provide frameworks for developing the appropriate drug for patients diagnosed with GNs disease. Methods Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was utilized to investigate proteomic features of glomerular tissues obtained by laser capture microdissection (LCM). 8 normal control cases, 11 IgAN cases, 19 LN cases, 5 MN cases, and 3 MCN cases in this study were selected for bioinformatics analyses. Results The shared overlapping proteins among the top 100 DEPs of each GNs type were mostly downregulated, in which only FLII was significantly downregulated in the four GNs diseases. A2M was significantly upregulated in MN, IgAN, and LN subgroups. The pathway of complement and coagulation cascades was notably activated with NES value ranging 2.77 to 3.39 among MCN, MN, IgAN, and LN diseases, but the pattern of protein expression level were significantly different. In LN patients, the increased activity of complement and coagulation cascades was contributed by the high expression of multiple complements (C1QB, C3, C4A, C4B, C6, C8B, C8G, C9). Meanwhile, both C1QC and C4B were remarkably upregulated in MN patients. On the contrary, complement-regulating proteins (CD59) was substantially decreased in MCN and IgAN subgroup. Conclusions The integrative proteomics analysis of the four GNs diseases provide insights into unique characteristics of GNs diseases and further serve as frameworks for precision medicine diagnosis and provide novel targets for drug development.
Collapse
Affiliation(s)
- Jingjing Dong
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fengping Zheng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Fanna Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jingquan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Shanshan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Wenjun Pu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Huixuan Xu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Zhifeng Luo
- Guangxi Key Laboratory of Metabolic Disease Research, The 924th Hospital of the Chinese People’s Liberation Army Joint Logistic Support Force, Guilin, Guangxi, China
| | - Shizhen Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- *Correspondence: Lianghong Yin, ; Donge Tang, ; Yong Dai,
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Lianghong Yin, ; Donge Tang, ; Yong Dai,
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
- Guangxi Key Laboratory of Metabolic Disease Research, The 924th Hospital of the Chinese People’s Liberation Army Joint Logistic Support Force, Guilin, Guangxi, China
- *Correspondence: Lianghong Yin, ; Donge Tang, ; Yong Dai,
| |
Collapse
|
9
|
Li J, Zhang J, Wang X, Zheng X, Gao H, Jiang S, Li W. Lectin Complement Pathway Activation is Associated with Massive Proteinuria in PLA2R-Positive Membranous Nephropathy: A Retrospective Study. Int J Gen Med 2023; 16:1879-1889. [PMID: 37213477 PMCID: PMC10195059 DOI: 10.2147/ijgm.s407073] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Complement activation is highly involved in membranous nephropathy. Identifying the mechanism of the complement activation pathway carries crucial therapeutic implications yet remains controversial. This study explored lectin complement pathway activation in PLA2R-associated membranous nephropathy (MN). Methods One hundred and seventy-six patients with biopsy-proven PLA2R-associated MN were enrolled in the retrospective study and divided into the remission group (24-hour urine protein <0.75g and serum albumin >35 g/L) and the nephrotic syndrome group. The clinical manifestation and C3, C4d, C1q, MBL, and B factor in renal biopsy tissues and C3, C4, and immunoglobulins in serum were evaluated. Results Deposition of glomerular C3, C4d, and mannose-binding lectin (MBL) was significantly higher in the activated state than in the remission state in PLA2R-associated MN. MBL deposition was the risk factor for no remission. During follow-up, the persistent non-remission patients have significantly lower serum C3 levels. Conclusion Activation of the lectin complement pathway in PLA2R-associated MN may contribute to proteinuria progression and disease activity.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Nephrology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People’s Republic of China
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Jiao Zhang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Xu Wang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Xumin Zheng
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Hongmei Gao
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Shimin Jiang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Wenge Li
- Department of Nephrology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People’s Republic of China
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Correspondence: Wenge Li, Department of Nephrology, China-Japan Friendship Hospital, No. 2, Yinghua Dong Street, Chaoyang District, Beijing, 100029, People’s Republic of China, Email
| |
Collapse
|
10
|
Zhang HJ, Ding PP, Zhang XS, Wang XC, Sun DW, Bu QA, Li XQ. MAC mediates mammary duct epithelial cell injury in plasma cell mastitis and granulomatous mastitis. Int Immunopharmacol 2022; 113:109303. [DOI: 10.1016/j.intimp.2022.109303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
11
|
VEGFA promotes the occurrence of PLA2R-associated idiopathic membranous nephropathy by angiogenesis via the PI3K/AKT signalling pathway. BMC Nephrol 2022; 23:313. [PMID: 36114523 PMCID: PMC9482157 DOI: 10.1186/s12882-022-02936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background The M-type phospholipase A2 receptor (PLA2R)-associated idiopathic membranous nephropathy (IMN) is a common immune-related disease in adults. Vascular endothelial growth factor A (VEGFA) is the key mediator of angiogenesis, which leads to numerous kidney diseases. However, the role of VEGFA in IMN is poorly understood. Methods In the present study, we downloaded the microarray data GSE115857 from Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) were identified with R software. The cytoHubba plug-in were used to identify hub genes from the protein–protein interaction network. Gene set enrichment analysis (GSEA) was used to identify signalling pathway in IMN. CCK8 was performed to assess the cell viability in human vascular endothelial cells (HVECs). Then, passive Heymann nephritis (PHN) was induced in rats by a single tail vein injection of anti-Fx1A antiserum. Animals treated with VEGFA inhibitor bevacizumab (BV), with saline as a positive control. Proteinuria was evaluated by biochemical measurements. Immunohistochemistry and immunofluorescence was used to evaluate relative proteins expression. Electron microscopy was performed to observe the thickness of the glomerular basement membrane (GBM). Results We revealed 3 hub genes, including one up-regulated gene VEGFA and two down-regulated genes JUN and FOS, which are closely related to the development of PLA2R-associated IMN. Pathway enrichment analysis found that the biological process induced by VEGFA is associated with PI3K/Akt signalling. GSEA showed that the signalling pathway of DEGs in GSE115857 was focused on angiogenesis, in which VEGFA acts as a core gene. We confirmed the high expression of VEGFA, PI3K, and AKT in IMN renal biopsy samples with immunohistochemistry. In HVECs, we found that BV suppresses cell viability in a time and dose dependent manner. In vivo, we found low dose of BV attenuates proteinuria via inhibiting VEGFA/PI3K/AKT signalling. Meanwhile, low dose of BV alleviates the thickening of the GBM. Conclusion VEGFA/PI3K/AKT signalling may play significant roles in the pathogenesis of IMN, which may provide new targets for the treatment of IMN. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02936-y.
Collapse
|
12
|
Kamyshova ES, Semeryuk TA, Bobkova IN. Modern view on the complement system role in membranous nephropathy. TERAPEVT ARKH 2022; 94:772-776. [DOI: 10.26442/00403660.2022.06.201563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Membranous nephropathy (MN), an immune-mediated glomerular disease, is the most common cause of adult nephrotic syndrome. In MN, proteinuria is developed by podocyte damage due to the complement system activation in response to the subepithelial deposition of immune complexes containing various auto- and exogenous antigens. Membrane-attacking complex (MAC) is the terminal product of any complement pathways activation (classical, lectin or alternative) and plays the leading role in the complement-mediated podocytic damage. Thus far, the main pathway of complement activation leading to the formation of MAC in MN has not been established. The review highlights current evidence of various complement pathways activation in the development of MN, as well as recently established new molecular mechanisms of complement-mediated podocyte damage.
Collapse
|
13
|
Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules 2022; 12:biom12030403. [DOI: 10.3390/biom12030403] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Podocytopathies are kidney diseases that are driven by podocyte injury with proteinuria and proteinuria-related symptoms as the main clinical presentations. Albeit podocytopathies are the major contributors to end-stage kidney disease, the underlying molecular mechanisms of podocyte injury remain to be elucidated. Mitochondrial oxidative stress is associated with kidney diseases, and increasing evidence suggests that oxidative stress plays a vital role in the pathogenesis of podocytopathies. Accumulating evidence has placed mitochondrial oxidative stress in the focus of cell death research. Excessive generated reactive oxygen species over antioxidant defense under pathological conditions lead to oxidative damage to cellular components and regulate cell death in the podocyte. Conversely, exogenous antioxidants can protect podocyte from cell death. This review provides an overview of the role of mitochondrial oxidative stress in podocytopathies and discusses its role in the cell death of the podocyte, aiming to identify the novel targets to improve the treatment of patients with podocytopathies.
Collapse
|
14
|
Lv D, Jiang S, Zhang M, Zhu X, Yang F, Wang H, Li S, Liu F, Zeng C, Qin W, Li L, Liu Z. Treatment of Membranous Nephropathy by Disulfiram through Inhibition of Podocyte Pyroptosis. KIDNEY DISEASES 2022; 8:308-318. [PMID: 36157258 PMCID: PMC9386405 DOI: 10.1159/000524164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022]
Abstract
Introduction Membranous nephropathy (MN) is a common chronic kidney disease in adults and a major challenge of clinical practice for its treatment. Despite major advances, since the discovery of the phospholipase A2 receptor as the major autoantigen of podocytes in MN, the mechanisms leading to glomerular damage remain elusive. Pyroptosis, a newly discovered type of programed necrotic cell death mainly mediated by gasdermin, was found to be responsible for podocyte injury in MN in our recent work. Objectives The aim of this study was to explore the therapeutic effect of an FDA-approved drug, disulfiram (DSF), in the treatment of MN by inhibiting pyroptosis. Methods and Results DSF significantly alleviated C3a/C5a-induced podocyte injury in vitro and renal lesions in passive Heymann nephritis (PHN) rats, as reflected by the decreased percentage of propidium iodide staining podocytes, decreased lactate dehydrogenase release from cultured podocytes and improvement in 24-h urine protein, serum albumin, serum creatinine, abnormal alterations of podocyte injury markers Desmin and WT-1 and podocyte foot process fusion in PHN rats. The protective effect of DSF on podocyte injury in vitro and in vivo can be ascribed to its inhibition of the activation and membrane translocation of the pyroptosis executor gasdermin D (GSDMD) in podocytes. DSF also inhibited the increase and activation of the pyroptosis signaling pathway NLRP3-ASC-Caspase-1/IL-18/GSDMD in C3a/C5a-treated podocytes and renal tissue of PHN rats. Conclusion DSF is a potential drug for MN treatment, and its clinical application needs to be further investigated.
Collapse
Affiliation(s)
- Daoyuan Lv
- Department of Nephrology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Fan Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Hui Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Shen Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Feng Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Limin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- *Limin Li,
| | - Zhihong Liu
- Department of Nephrology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
- **Zhihong Liu,
| |
Collapse
|
15
|
Huang Z, Huang B, Wei Q, Su X, Li X, Qin S, Huang W. The Protective Effects of Benzbromarone Against Propofol-Induced Inflammation and Injury in Human Brain Microvascular Endothelial Cells (HBMVECs). Neurotox Res 2021; 39:1449-1458. [PMID: 34216363 DOI: 10.1007/s12640-021-00387-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
It has been widely reported that severe neurotoxicity can be induced by the application of propofol, which is closely related to the disruption of the blood-brain barrier (BBB) induced by inflammation and injury in the human brain microvascular endothelial cells (HBMVECs). Benzbromarone is a classic anti-gout agent that has been recently reported to exert anti-inflammatory and anti-oxidative stress effects. In the present study, we aim to investigate the protective property of Benzbromarone against propofol-induced injury on HBMVECs and the underlying mechanism. CCK8 assay was used to detect the cell viability of treated HBMVECs. Oxidative stress in HBMVECs was evaluated by measuring the levels of MDA and mitochondrial ROS. ELISA and qRT-PCR assay were used to determine the production of IL-1β, IL-8, MCP-1, ICAM-1, and VCAM-1 by treated HBMVECs. Calcein-AM staining was utilized to evaluate the attachment of U937 monocytes to HBMVECs. The expression level of Egr-1 was determined by qRT-PCR and Western blot assay. Firstly, the decreased cell viability of HBMVECs induced by propofol was significantly elevated by treatment with Benzbromarone. The increased levels of MDA and mitochondrial ROS induced by propofol were dramatically suppressed by Benzbromarone. Secondly, the excessive production of inflammatory factors (IL-1β, IL-8, and MCP-1) and adhesion molecules (ICAM-1 and VCAM-1) triggered by propofol was pronouncedly inhibited by Benzbromarone. Benzbromarone ameliorated propofol-induced attachment of U937 monocytes to HBMVECs. Lastly, Benzbromarone downregulated propofol-induced expression of the transcriptional factor Egr-1 in HBMVECs. Benzbromarone protected against propofol-induced inflammation and injury through suppressing Egr-1 in human brain vascular endothelial cells.
Collapse
Affiliation(s)
- Zehan Huang
- Department of Anesthesiology, Affiliated Hospital of Youjiang Medical University, Baise City, Guangxi, 533000, China
| | - Bo Huang
- Department of Anesthesiology, People's Hospital of Tiandong, Baise City, Guangxi, 533000, China
| | - Qiaosong Wei
- Department of Anesthesiology, People's Hospital of Baise, Baise City, Guangxi, 533000, China
| | - Xiaomei Su
- Department of Anesthesiology, People's Hospital of Baise, Baise City, Guangxi, 533000, China
| | - Xisong Li
- Department of Anesthesiology, People's Hospital of Baise, Baise City, Guangxi, 533000, China
| | - Siping Qin
- Department of Anesthesiology, People's Hospital of Baise, Baise City, Guangxi, 533000, China
| | - Wei Huang
- Department of Anesthesiology, People's Hospital of Baise, Baise City, Guangxi, 533000, China.
| |
Collapse
|
16
|
Dong Z, Dai H, Gao Y, Feng Z, Liu W, Liu F, Zhang Z, Ma F, Xie X, Zhu Z, Liu W, Liu B. Inhibition of the Wnt/β-catenin signaling pathway reduces autophagy levels in complement treated podocytes. Exp Ther Med 2021; 22:737. [PMID: 34055054 PMCID: PMC8138266 DOI: 10.3892/etm.2021.10169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/25/2021] [Indexed: 01/12/2023] Open
Abstract
In idiopathic membranous nephropathy, the complement membrane attack complex, more commonly referred to as complement 5b-9 (C5b-9), induces glomerular epithelial cell injury and proteinuria. C5b-9 can also activate numerous mechanisms that restrict or facilitate injury. Recent studies suggest that autophagy and the canonical Wnt signaling pathway serve an important role in repairing podocyte injury. However, the effect of C5b-9 on these pathways and the relationship between them remains unclear. The aim of the present study was to show the effect of C5b-9 on the Wnt/β-catenin signaling pathway and autophagy in podocytes in vitro. Levels of relevant indicators were detected by immunofluorescence staining and capillary western immunoassay. C5b-9 serum significantly activated the Wnt/β-catenin signaling pathway and promoted autophagy. Treatment with Dickkopf-related protein 1 (DKK1), a Wnt/β-catenin pathway blocker, protected podocytes from injury and significantly inhibited autophagy. The results indicated that inhibition of the Wnt/β-catenin pathway physiologically activated autophagy. The results indicated that C5b-9 resulted in a decrease in Akt in podocytes. However, the podocytes preincubated with DKK1 and then attacked by C5b-9 showed an increase in Akt levels. This may explain the observation that blocking the Wnt/β-catenin signaling pathway attenuated C5b-9 podocyte damage, while inhibiting autophagy. The results of the present study also suggest that regulation of these two pathways may serve as a novel method for the treatment of idiopathic membranous nephropathy.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China.,Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Dongcheng, Beijing 100010, P.R. China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Shunyi, Beijing 101300, P.R. China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Dongcheng, Beijing 100010, P.R. China.,Capital Medical University, Fengtai, Beijing 100069, P.R. China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital, Pinggu Hospital, Pinggu, Beijing 101200, P.R. China
| | - Wenbin Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Dongcheng, Beijing 100010, P.R. China.,Capital Medical University, Fengtai, Beijing 100069, P.R. China
| | - Fei Liu
- Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China.,Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Dongcheng, Beijing 100010, P.R. China
| | - Zihan Zhang
- Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China.,Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Dongcheng, Beijing 100010, P.R. China
| | - Fang Ma
- China Academy of Traditional Chinese Medicine, Guanganmen Hospital, Xicheng, Beijing 100053, P.R. China
| | - Xinran Xie
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Dongcheng, Beijing 100010, P.R. China
| | - Zebing Zhu
- Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Beijing University of Chinese Medicine Affiliated to Dongzhimen Hospital, Dongchen, Beijing 100700, P.R. China
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Beijing University of Chinese Medicine Affiliated to Dongzhimen Hospital, Dongchen, Beijing 100700, P.R. China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Dongcheng, Beijing 100010, P.R. China
| |
Collapse
|
17
|
Diao B, Wang C, Wang R, Feng Z, Zhang J, Yang H, Tan Y, Wang H, Wang C, Liu L, Liu Y, Liu Y, Wang G, Yuan Z, Hou X, Ren L, Wu Y, Chen Y. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat Commun 2021; 12:2506. [PMID: 33947851 DOI: 10.1101/2020.03.04.20031120] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/23/2021] [Indexed: 05/20/2023] Open
Abstract
It is unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can directly infect human kidney, thus leading to acute kidney injury (AKI). Here, we perform a retrospective analysis of clinical parameters from 85 patients with laboratory-confirmed coronavirus disease 2019 (COVID-19); moreover, kidney histopathology from six additional COVID-19 patients with post-mortem examinations was performed. We find that 27% (23/85) of patients exhibited AKI. The elderly patients and cases with comorbidities (hypertension and heart failure) are more prone to develop AKI. Haematoxylin & eosin staining shows that the kidneys from COVID-19 autopsies have moderate to severe tubular damage. In situ hybridization assays illustrate that viral RNA accumulates in tubules. Immunohistochemistry shows nucleocapsid and spike protein deposits in the tubules, and immunofluorescence double staining shows that both antigens are restricted to the angiotensin converting enzyme-II-positive tubules. SARS-CoV-2 infection triggers the expression of hypoxic damage-associated molecules, including DP2 and prostaglandin D synthase in infected tubules. Moreover, it enhances CD68+ macrophages infiltration into the tubulointerstitium, and complement C5b-9 deposition on tubules is also observed. These results suggest that SARS-CoV-2 directly infects human kidney to mediate tubular pathogenesis and AKI.
Collapse
Affiliation(s)
- Bo Diao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei Province, P. R. China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei Province, P. R. China
| | - Chenhui Wang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
| | - Rongshuai Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
| | - Ji Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
| | - Han Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
| | - Yingjun Tan
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei Province, P. R. China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Changsong Wang
- Department of Pathology, 989th Hospital of PLA, Luoyang, Henan Province, P. R. China
| | - Liang Liu
- Hubei Chongxin Judicial Expertise Center, Wuhan, Hubei Province, P. R. China
| | - Ying Liu
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei Province, P. R. China
| | - Yueping Liu
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei Province, P. R. China
| | - Gang Wang
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei Province, P. R. China
| | - Zilin Yuan
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei Province, P. R. China
| | - Xiaotao Hou
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guangdong Province, P. R. China
| | - Liang Ren
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China.
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China.
| |
Collapse
|
18
|
Haddad G, Lorenzen JM, Ma H, de Haan N, Seeger H, Zaghrini C, Brandt S, Kölling M, Wegmann U, Kiss B, Pál G, Gál P, Wüthrich RP, Wuhrer M, Beck LH, Salant DJ, Lambeau G, Kistler AD. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J Clin Invest 2021; 131:140453. [PMID: 33351779 DOI: 10.1172/jci140453] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Primary membranous nephropathy (pMN) is a leading cause of nephrotic syndrome in adults. In most cases, this autoimmune kidney disease is associated with autoantibodies against the M-type phospholipase A2 receptor (PLA2R1) expressed on kidney podocytes, but the mechanisms leading to glomerular damage remain elusive. Here, we developed a cell culture model using human podocytes and found that anti-PLA2R1-positive pMN patient sera or isolated IgG4, but not IgG4-depleted sera, induced proteolysis of the 2 essential podocyte proteins synaptopodin and NEPH1 in the presence of complement, resulting in perturbations of the podocyte cytoskeleton. Specific blockade of the lectin pathway prevented degradation of synaptopodin and NEPH1. Anti-PLA2R1 IgG4 directly bound mannose-binding lectin in a glycosylation-dependent manner. In a cohort of pMN patients, we identified increased levels of galactose-deficient IgG4, which correlated with anti-PLA2R1 titers and podocyte damage induced by patient sera. Assembly of the terminal C5b-9 complement complex and activation of the complement receptors C3aR1 or C5aR1 were required to induce proteolysis of synaptopodin and NEPH1 by 2 distinct proteolytic pathways mediated by cysteine and aspartic proteinases, respectively. Together, these results demonstrated a mechanism by which aberrantly glycosylated IgG4 activated the lectin pathway and induced podocyte injury in primary membranous nephropathy.
Collapse
Affiliation(s)
- George Haddad
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Johan M Lorenzen
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Hong Ma
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Netherlands
| | - Harald Seeger
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Christelle Zaghrini
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Simone Brandt
- Institute of Pathology, University Hospital of Zurich, Switzerland
| | - Malte Kölling
- Institute of Physiology, University of Zurich, Switzerland
| | - Urs Wegmann
- Institute of Physiology, University of Zurich, Switzerland
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rudolf P Wüthrich
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Netherlands
| | - Laurence H Beck
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David J Salant
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Andreas D Kistler
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland.,Department of Medicine, Cantonal Hospital Frauenfeld, Switzerland
| |
Collapse
|
19
|
Koopman JJE, van Essen MF, Rennke HG, de Vries APJ, van Kooten C. Deposition of the Membrane Attack Complex in Healthy and Diseased Human Kidneys. Front Immunol 2021; 11:599974. [PMID: 33643288 PMCID: PMC7906018 DOI: 10.3389/fimmu.2020.599974] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
The membrane attack complex-also known as C5b-9-is the end-product of the classical, lectin, and alternative complement pathways. It is thought to play an important role in the pathogenesis of various kidney diseases by causing cellular injury and tissue inflammation, resulting in sclerosis and fibrosis. These deleterious effects are, consequently, targeted in the development of novel therapies that inhibit the formation of C5b-9, such as eculizumab. To clarify how C5b-9 contributes to kidney disease and to predict which patients benefit from such therapy, knowledge on deposition of C5b-9 in the kidney is essential. Because immunohistochemical staining of C5b-9 has not been routinely conducted and never been compared across studies, we provide a review of studies on deposition of C5b-9 in healthy and diseased human kidneys. We describe techniques to stain deposits and compare the occurrence of deposits in healthy kidneys and in a wide spectrum of kidney diseases, including hypertensive nephropathy, diabetic nephropathy, membranous nephropathy, IgA nephropathy, lupus nephritis, C3 glomerulopathy, and thrombotic microangiopathies such as the atypical hemolytic uremic syndrome, vasculitis, interstitial nephritis, acute tubular necrosis, kidney tumors, and rejection of kidney transplants. We summarize how these deposits are related with other histological lesions and clinical characteristics. We evaluate the prognostic relevance of these deposits in the light of possible treatment with complement inhibitors.
Collapse
Affiliation(s)
- Jacob J E Koopman
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mieke F van Essen
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Helmut G Rennke
- Division of Renal Pathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Aiko P J de Vries
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Cees van Kooten
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Dong Z, Liu Z, Dai H, Liu W, Feng Z, Zhao Q, Gao Y, Liu F, Zhang N, Dong X, Zhou X, Du J, Huang G, Tian X, Liu B. The Potential Role of Regulatory B Cells in Idiopathic Membranous Nephropathy. J Immunol Res 2020; 2020:7638365. [PMID: 33426094 PMCID: PMC7772048 DOI: 10.1155/2020/7638365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory B cells (Breg) are widely regarded as immunomodulatory cells which play an immunosuppressive role. Breg inhibits pathological autoimmune response by secreting interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and adenosine and through other ways to prevent T cells and other immune cells from expanding. Recent studies have shown that different inflammatory environments induce different types of Breg cells, and these different Breg cells have different functions. For example, Br1 cells can secrete IgG4 to block autoantigens. Idiopathic membranous nephropathy (IMN) is an autoimmune disease in which the humoral immune response is dominant and the cellular immune response is impaired. However, only a handful of studies have been done on the role of Bregs in this regard. In this review, we provide a brief overview of the types and functions of Breg found in human body, as well as the abnormal pathological and immunological phenomena in IMN, and propose the hypothesis that Breg is activated in IMN patients and the proportion of Br1 can be increased. Our review aims at highlighting the correlation between Breg and IMN and proposes potential mechanisms, which can provide a new direction for the discovery of the pathogenesis of IMN, thus providing a new strategy for the prevention and early treatment of IMN.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhiyuan Liu
- Shandong First Medical University, No. 619 Changcheng Road, Tai'an City, Shandong 271016, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Station East 5, Shunyi District, Beijing 101300, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, No. 6, Pingxiang Road, Pinggu District, Beijing 101200, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Fei Liu
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Xuan Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Xiaoshan Zhou
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Jieli Du
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Guangrui Huang
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| |
Collapse
|
21
|
Reinhard L, Stahl RAK, Hoxha E. Is primary membranous nephropathy a complement mediated disease? Mol Immunol 2020; 128:195-204. [PMID: 33142137 DOI: 10.1016/j.molimm.2020.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/04/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022]
Abstract
Membranous nephropathy (MN) is an immune complex mediated disease. Although limited to the kidney, in up to 20% of patients MN is associated with other autoimmune, infectious or malignant diseases. The initial pathogenetic event in what is still considered "primary" MN is the binding of circulating autoantibodies to proteins (autoantigens) expressed in glomerular podocytes. This antibody binding leads to the formation of immune complexes in the glomerular basement membrane. There is clinical and experimental evidence that these immune deposits lead to the activation of the complement system. Experimental studies in the MN model of Heymann's nephritis show that the terminal membrane attack complex (MAC) of the complement system induces a disturbance of the glomerular filtration barrier and leads to proteinuria, the clinical hallmark of MN. After the discovery of the phospholipase A2 receptor 1 and thrombospondin type 1 domain containing protein 7A as endogenous antigens, it is assumed that IgG4 antibodies directed against these proteins induce MN in over 85% of patients with primary MN. As a result, the role of complement in the pathogenesis of MN needs to be defined in light of these developments. In this review we describe the current knowledge on the function of the complement system in primary MN and discuss the open questions, which have to be solved for a better understanding of the potential role of complement in the pathophysiology of primary MN.
Collapse
Affiliation(s)
- Linda Reinhard
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rolf A K Stahl
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
22
|
Gagliardi I, Patella G, Michael A, Serra R, Provenzano M, Andreucci M. COVID-19 and the Kidney: From Epidemiology to Clinical Practice. J Clin Med 2020; 9:E2506. [PMID: 32759645 PMCID: PMC7464116 DOI: 10.3390/jcm9082506] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023] Open
Abstract
The new respiratory infectious disease coronavirus disease 2019 (COVID-19) that originated in Wuhan, China, in December 2019 and caused by a new strain of zoonotic coronavirus, named severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), to date has killed over 630,000 people and infected over 15,000,000 worldwide. Most of the deceased patients had pre-existing comorbidities; over 20% had chronic kidney disease (CKD). Furthermore, although SARS-CoV-2 infection is characterized mainly by diffuse alveolar damage and acute respiratory failure, acute kidney injury (AKI) has developed in a high percentage of cases. As AKI has been shown to be associated with worse prognosis, we believe that the impact of SARS-CoV-2 on the kidney should be investigated. This review sets out to describe the main renal aspects of SARS-CoV-2 infection and the role of the virus in the development and progression of kidney damage. In this article, attention is focused on the epidemiology, etiology and pathophysiological mechanisms of kidney damage, histopathology, clinical features in nephropathic patients (CKD, hemodialysis, peritoneal dialysis, AKI, transplantation) and prevention and containment strategies. Although there remains much more to be learned with regards to this disease, nonetheless it is our hope that this review will aid in the understanding and management of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ida Gagliardi
- Renal Unit, Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (I.G.); (G.P.); (A.M.); (M.P.)
| | - Gemma Patella
- Renal Unit, Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (I.G.); (G.P.); (A.M.); (M.P.)
| | - Ashour Michael
- Renal Unit, Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (I.G.); (G.P.); (A.M.); (M.P.)
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Provenzano
- Renal Unit, Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (I.G.); (G.P.); (A.M.); (M.P.)
| | - Michele Andreucci
- Renal Unit, Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (I.G.); (G.P.); (A.M.); (M.P.)
| |
Collapse
|
23
|
Jalalah SM. Podocytes Intracytoplasmic Dense Inclusions: Are They Associated with Subepithelial Dense Deposits? An Ultrastructural Study. J Microsc Ultrastruct 2020; 8:121-125. [PMID: 33282687 PMCID: PMC7703013 DOI: 10.4103/jmau.jmau_66_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/24/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction: Podocytes play a crucial role in health and disease. They participate in clearing the filtration barrier by removing accumulated proteins. It is proposed that podocytes have the ability to remove immune complexes and internalize them in the cytoplasm. Aims: The purpose of this study is to review certain immune complex glomerulonephritis (GN) types and illustrate ultrastructural details of podocytes intracytoplasmic dense inclusions (ICDIs) if present. Materials and Methods: A retrospective ultrastructural study of podocytes was conducted to detect cytoplasmic inclusions. The study cases (n = 148) include GN types with subepithelial dense deposits such as membranous GN, postinfectious GN (PIGN), and lupus nephritis. Results: Podocytes ICDIs are detected ultrastructurally in 48 of 148 cases, mostly with PIGN; their morphology resembles the subepithelial dense deposits of the corresponding case. Conclusions: Podocytes ICDIs represent internalized immune complexes from the adjacent subepithelial dense deposits, suggesting a clearance method of the glomerular basement membrane by podocytes.
Collapse
Affiliation(s)
- Sawsan Mohammad Jalalah
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Zilberman-Itskovich S, Abu-Hamad R, Stark M, Efrati S. Effect of anti-C5 antibody on recuperation from ischemia/reperfusion-induced acute kidney injury. Ren Fail 2020; 41:967-975. [PMID: 31662004 PMCID: PMC6830203 DOI: 10.1080/0886022x.2019.1677248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: The complement system is activated in acute kidney injury (AKI). Anti-C5 antibody targets the common terminal portion of the complement cascade that generate the terminal complex C5b-9 and has a renal-protective effect in paroxysmal nocturnal hemoglobinuria. However, the anti-C5 antibody’s role in ischemia/reperfusion (I/R)-induced AKI has not been fully investigated. We therefore evaluated its effect on the pathophysiological cascade of I/R-induced AKI. Methods: Sprague–Dawley rats underwent unilateral right kidney nephrectomies with simultaneous clamping of the contralateral hilum for 60 min (ischemia), followed by reperfusion. In addition to a placebo, two treatment groups received either high or low doses of anti-C5 monoclonal antibody. After 48 h, the rats were euthanized, blood was drawn to evaluate systemic inflammation and to estimate glomerular filtration rate (GFR). The remaining kidney was removed for pathological evaluation and intra-renal complement activation. Results: I/R induced significant intra-renal complement activation and systemic inflammation compared with unilateral nephrectomy group. The anti-C5 antibody ameliorated the intra-renal complement activation (intra-renal C3 and C6), reduced systemic inflammation (C-reactive protein, and systemic C3), decreased intra-renal acute tubular necrosis damage and improved GFR (seen by the sensitive marker, serum cystatin C; 1.63 mg/L (I/R + placebo), 1.36 mg/L (I/R + low dose) and 1.21 mg/L (I/R + high dose), p = .08 and .03 compared with I/R + placebo). Conclusion: In I/R-induced AKI, the monoclonal anti-C5 complement factor ameliorates intra renal complement activation, decreases local and systemic inflammation and may improve GFR.
Collapse
Affiliation(s)
- Shani Zilberman-Itskovich
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ramzia Abu-Hamad
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Moshe Stark
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Shai Efrati
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
25
|
Caravaca-Fontán F, Lucientes L, Cavero T, Praga M. Update on C3 Glomerulopathy: A Complement-Mediated Disease. Nephron Clin Pract 2020; 144:272-280. [PMID: 32369815 DOI: 10.1159/000507254] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/14/2020] [Indexed: 11/19/2022] Open
Abstract
C3 glomerulopathy (C3G) is a clinicopathologic entity secondary to dysregulation of the alternative complement pathway in plasma and the glomerular microenvironment. The current consensus definition of C3G relies on immunofluorescence staining criteria. However, due to its high clinical variability, these criteria may not be accurate enough in some clinical scenarios. Thus, a new pathogenic classification based on a cluster analysis of clinical, histologic, and genetic data has recently been proposed, which could also help identify patients at higher risk of progression. Several pathogenic abnormalities in complement genes have been described, and the role of autoantibodies in the disease is increasingly recognized, but still the genotype-phenotype correlations in C3G are poorly understood. C3G may be diagnosed in both children and adults. The spectrum of clinical manifestations is wide, although one of the most common clinical presentations is proteinuria with relatively preserved kidney function. In order to standardize the evaluation of kidney biopsies from these patients, a histopathologic index was recently proposed, including both parameters of activity and chronicity. However, this index has not yet been validated in independent cohorts. Currently, no targeted therapies are available in clinical settings for the treatment of C3G, although several new molecules are under investigation. Treatment with corticosteroids plus mycophenolate mofetil has been shown to be associated with improved renal outcomes, as compared to other immunosuppressive regimens. Yet, the main determinants of treatment response with this regimen and the influence of the underlying pathogenic drivers have not been extensively studied. The therapeutic response to eculizumab, an anti-C5 monoclonal antibody, has been shown to be highly heterogeneous. Thus, its current clinical indication in C3G is restricted to rapidly progressive forms of the disease. To summarize, in recent years, several important advances have taken place in the understanding of C3G, but still further studies are warranted to elucidate the best therapeutic strategies that could improve prognosis of this entity.
Collapse
Affiliation(s)
- Fernando Caravaca-Fontán
- Instituto de Investigación Hospital 12 de octubre (i+12), Madrid, Spain, .,Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain,
| | - Laura Lucientes
- Instituto de Investigación Hospital 12 de octubre (i+12), Madrid, Spain.,Department of Immunology, Universidad Complutense de Madrid, Madrid, Spain
| | - Teresa Cavero
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Manuel Praga
- Instituto de Investigación Hospital 12 de octubre (i+12), Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Woychyshyn B, Papillon J, Guillemette J, Navarro-Betancourt JR, Cybulsky AV. Genetic ablation of SLK exacerbates glomerular injury in adriamycin nephrosis in mice. Am J Physiol Renal Physiol 2020; 318:F1377-F1390. [PMID: 32308020 DOI: 10.1152/ajprenal.00028.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ste20-like kinase SLK is critical for embryonic development and may play an important role in wound healing, muscle homeostasis, cell migration, and tumor growth. Mice with podocyte-specific deletion of SLK show albuminuria and damage to podocytes as they age. The present study addressed the role of SLK in glomerular injury. We induced adriamycin nephrosis in 3- to 4-mo-old control and podocyte SLK knockout (KO) mice. Compared with control, SLK deletion exacerbated albuminuria and loss of podocytes, synaptopodin, and podocalyxin. Glomeruli of adriamycin-treated SLK KO mice showed diffuse increases in the matrix and sclerosis as well as collapse of the actin cytoskeleton. SLK can phosphorylate ezrin. The complex of phospho-ezrin, Na+/H+ exchanger regulatory factor 2, and podocalyxin in the apical domain of the podocyte is a key determinant of normal podocyte architecture. Deletion of SLK reduced glomerular ezrin and ezrin phosphorylation in adriamycin nephrosis. Also, deletion of SLK reduced the colocalization of ezrin and podocalyxin in the glomerulus. Cultured glomerular epithelial cells with KO of SLK showed reduced ezrin phosphorylation and podocalyxin expression as well as reduced F-actin. Thus, SLK deletion leads to podocyte injury as mice age and exacerbates injury in adriamycin nephrosis. The mechanism may at least in part involve ezrin phosphorylation as well as disruption of the cytoskeleton and podocyte apical membrane structure.
Collapse
Affiliation(s)
- Boyan Woychyshyn
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Julie Guillemette
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - José R Navarro-Betancourt
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Andrey V Cybulsky
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Ronco P, Debiec H. Molecular Pathogenesis of Membranous Nephropathy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:287-313. [PMID: 31622560 DOI: 10.1146/annurev-pathol-020117-043811] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membranous nephropathy is a noninflammatory autoimmune disease of the kidney glomerulus, characterized by the formation of immune deposits, complement-mediated proteinuria, and risk of renal failure. Considerable advances in understanding the molecular pathogenesis have occurred with the identification of several antigens [neutral endopeptidase, phospholipase A2 receptor (PLA2R), thrombospondin domain-containing 7A (THSD7A)] in cases arising from the neonatal period to adulthood and the characterization of antibody-binding domains (that is, epitopes). Immunization against PLA2R occurs in 70% to 80% of adult cases. The development of highly specific and sensitive assays of circulating antibodies has induced a paradigm shift in diagnosis and treatment monitoring. In addition, several interacting loci in HLA-DQ, HLA-DR, and PLA2R1, as well as classical human leukocyte antigen (HLA)-D alleles have been identified as being risk factors, depending on a patient's ethnicity. Additionally, mechanisms of antibody pathogenicity and pathways of complement activation are now better understood. Further research is mandatory for designing new therapeutic strategies, including the identifying triggering events, the molecular bases of remission and progression, and the T cell epitopes involved.
Collapse
Affiliation(s)
- Pierre Ronco
- Rare and Common Kidney Diseases: From Molecular Mechanisms to Personalized Medicine Unit, INSERM UMRS 1155, Sorbonne Université, 75020 Paris, France;
| | - Hanna Debiec
- Rare and Common Kidney Diseases: From Molecular Mechanisms to Personalized Medicine Unit, INSERM UMRS 1155, Sorbonne Université, 75020 Paris, France;
| |
Collapse
|
28
|
Abstract
Finding new therapeutic targets of glomerulosclerosis treatment is an ongoing quest. Due to a living environment of various stresses and pathological stimuli, podocytes are prone to injuries; moreover, as a cell without proliferative potential, loss of podocytes is vital in the pathogenesis of glomerulosclerosis. Thus, sufficient understanding of factors and underlying mechanisms of podocyte injury facilitates the advancement of treating and prevention of glomerulosclerosis. The clinical symptom of podocyte injury is proteinuria, sometimes with loss of kidney functions progressing to glomerulosclerosis. Injury-induced changes in podocyte physiology and function are actually not a simple passive process, but a complex interaction of proteins that comprise the anatomical structure of podocytes at molecular levels. This chapter lists several aspects of podocyte injuries along with potential mechanisms, including glucose and lipid metabolism disorder, hypertension, RAS activation, micro-inflammation, immune disorder, and other factors. These aspects are not technically separated items, but intertwined with each other in the pathogenesis of podocyte injuries.
Collapse
|
29
|
Fishelson Z, Kirschfink M. Complement C5b-9 and Cancer: Mechanisms of Cell Damage, Cancer Counteractions, and Approaches for Intervention. Front Immunol 2019; 10:752. [PMID: 31024572 PMCID: PMC6467965 DOI: 10.3389/fimmu.2019.00752] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023] Open
Abstract
The interactions of cancer cells with components of the complement system are highly complex, leading to an outcome that is either favorable or detrimental to cancer cells. Currently, we perceive only the "tip of the iceberg" of these interactions. In this review, we focus on the complement terminal C5b-9 complex, known also as the complement membrane attack complex (MAC) and discuss the complexity of its interaction with cancer cells, starting with a discussion of its proposed mode of action in mediating cell death, and continuing with a portrayal of the strategies of evasion exhibited by cancer cells, and closing with a proposal of treatment approaches targeted at evasion strategies. Upon intense complement activation and membrane insertion of sufficient C5b-9 complexes, the afflicted cells undergo regulated necrotic cell death with characteristic damage to intracellular organelles, including mitochondria, and perforation of the plasma membrane. Several pro-lytic factors have been proposed, including elevated intracellular calcium ion concentrations and activated JNK, Bid, RIPK1, RIPK3, and MLKL; however, further research is required to fully characterize the effective cell death signals activated by the C5b-9 complexes. Cancer cells over-express a multitude of protective measures which either block complement activation, thus reducing the number of membrane-inserted C5b-9 complexes, or facilitate the elimination of C5b-9 from the cell surface. Concomitantly, cancer cells activate several protective pathways that counteract the death signals. Blockage of complement activation is mediated by the complement membrane regulatory proteins CD46, CD55, and CD59 and by soluble complement regulators, by proteases that cleave complement proteins and by protein kinases, like CK2, which phosphorylate complement proteins. C5b-9 elimination and inhibition of cell death signals are mediated by caveolin and dynamin, by Hsp70 and Hsp90, by the mitochondrial stress protein mortalin, and by the protein kinases PKC and ERK. It is conceivable that various cancers and cancers at different stages of development will utilize distinct patterns of these and other MAC resistance strategies. In order to enhance the impact of antibody-based therapy on cancer, novel precise reagents that block the most effective protective strategies will have to be designed and applied as adjuvants to the therapeutic antibodies.
Collapse
Affiliation(s)
- Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
30
|
Khan AM, Korzeniowska B, Gorshkov V, Tahir M, Schrøder H, Skytte L, Rasmussen KL, Khandige S, Møller-Jensen J, Kjeldsen F. Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model. Nanotoxicology 2019; 13:221-239. [DOI: 10.1080/17435390.2018.1540728] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Asif Manzoor Khan
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Barbara Korzeniowska
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Henrik Schrøder
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Lilian Skytte
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kaare Lund Rasmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Surabhi Khandige
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
31
|
Athie MCP, Vieira AS, Teixeira JM, dos Santos GG, Dias EV, Tambeli CH, Sartori CR, Parada CA. Transcriptome analysis of dorsal root ganglia's diabetic neuropathy reveals mechanisms involved in pain and regeneration. Life Sci 2018; 205:54-62. [DOI: 10.1016/j.lfs.2018.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/26/2018] [Accepted: 05/06/2018] [Indexed: 11/15/2022]
|
32
|
Membranous Nephropathy and Anti-Podocytes Antibodies: Implications for the Diagnostic Workup and Disease Management. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6281054. [PMID: 29511687 PMCID: PMC5817285 DOI: 10.1155/2018/6281054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/31/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
The discovery of circulating antibodies specific for native podocyte antigens has transformed the diagnostic workup and greatly improved management of idiopathic membranous nephropathy (iMN). In addition, their identification has clearly characterized iMN as a largely autoimmune disorder. Anti-PLA2R1 antibodies are detected in approximately 70% to 80% and anti-THSD7A antibodies in only 2% of adult patients with iMN. The presence of anti-THSD7A antibodies is associated with increased risk of malignancy. The assessment of PLA2R1 and THSD7A antigen expression in glomerular immune deposits has a better sensitivity than measurement of the corresponding autoantibodies. Therefore, in the presence of circulating anti-podocytes autoantibodies and/or enhanced expression of PLA2R1 and THSD7A antigens MN should be considered as primary MN (pMN). Anti-PLA2R1 or anti-THSD7A autoantibodies have been proposed as biomarkers of autoimmune disease activity and their blood levels should be regularly monitored in pMN to evaluate disease activity and predict outcomes. We propose a revised clinical workup flow for patients with MN that recommends assessment of kidney biopsy for PLA2R1 and THSD7A antigen expression, screening for circulating anti-podocytes antibodies, and assessment for secondary causes, especially cancer, in patients with THSD7A antibodies. Persistence of anti-podocyte antibodies for 6 months or their increase in association with nephrotic proteinuria should lead to the introduction of immunosuppressive therapies. Recent data have reported the efficacy and safety of new specific therapies targeting B cells (anti-CD20 antibodies, inhibitors of proteasome) in pMN which should lead to an update of currently outdated treatment guidelines.
Collapse
|
33
|
Cybulsky AV, Papillon J, Guillemette J, Belkina N, Patino-Lopez G, Torban E. Ste20-like kinase, SLK, a novel mediator of podocyte integrity. Am J Physiol Renal Physiol 2017; 315:F186-F198. [PMID: 29187370 DOI: 10.1152/ajprenal.00238.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SLK is essential for embryonic development and may play a key role in wound healing, tumor growth, and metastasis. Expression and activation of SLK are increased in kidney development and during recovery from ischemic acute kidney injury. Overexpression of SLK in glomerular epithelial cells/podocytes in vivo induces injury and proteinuria. Conversely, reduced SLK expression leads to abnormalities in cell adhesion, spreading, and motility. Tight regulation of SLK expression thus may be critical for normal renal structure and function. We produced podocyte-specific SLK-knockout mice to address the functional role of SLK in podocytes. Mice with podocyte-specific deletion of SLK showed reduced glomerular SLK expression and activity compared with control. Podocyte-specific deletion of SLK resulted in albuminuria at 4-5 mo of age in male mice and 8-9 mo in female mice, which persisted for up to 13 mo. At 11-12 mo, knockout mice showed ultrastructural changes, including focal foot process effacement and microvillous transformation of podocyte plasma membranes. Mean foot process width was approximately twofold greater in knockout mice compared with control. Podocyte number was reduced by 35% in knockout mice compared with control, and expression of nephrin, synaptopodin, and podocalyxin was reduced in knockout mice by 20-30%. In summary, podocyte-specific deletion of SLK leads to albuminuria, loss of podocytes, and morphological evidence of podocyte injury. Thus, SLK is essential to the maintenance of podocyte integrity as mice age.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Natalya Belkina
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Genaro Patino-Lopez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
34
|
Wang Y, He YX, Diao TT, Wei SY, Qi WR, Wang CC, Song SM, Bi M, Li CM, Zhang CX, Hou YP, Wei QJ, Li B. Urine anti-PLA2R antibody is a novel biomarker of idiopathic membranous nephropathy. Oncotarget 2017; 9:67-74. [PMID: 29416596 PMCID: PMC5787499 DOI: 10.18632/oncotarget.19859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Since urine samples more directly reflect kidney alterations and damage than blood samples, we investigated whether urine anti-PLA2R antibody (uPLA2R-Ab) could be utilized similarly to serum anti-PLA2R antibody (sPLA2R-Ab) as a noninvasive biomarker of idiopathic membranous nephropathy (IMN). In this study, we performed a qualitative analysis using an indirect immunofluorescence test (IIFT) and measured uPLA2R-Ab and sPLA2R-Ab concentrations using an enzyme-linked immunosorbent assay (ELISA) in 28 patients with biopsy-proven IMN and 12 patients with secondary membranous nephropathy (SMN). Overall, 64.3% (n=18) of patients with IMN had IIFT-positive sPLA2R-Ab, 67.9% (n=19) of patients with IMN had IIFT-positive uPLA2R-Ab, and none of the SMN patients had IIFT-positive sPLA2R-Ab or uPLA2R-Ab. The titers of the anti-PLA2R antibody from the IMN patients in the urine (10.72±22.24 RU/μmol, presented as uPLA2R-Ab/urine creatinine) and serum (107.36±140.93 RU/ml) were higher than those from the SMN patients (0.51±0.46 RU/μmol, 0.008±0.029 RU/ml, respectively, p<0.05). Statistical analyses indicated that there were positive correlations between uPLA2R-Ab and gPLA2R, sPLA2R-Ab or urinary protein and negative correlations between uPLA2R-Ab and serum albumin in patients with IMN. In conclusion, uPLA2R-Ab is a novel biomarker of IMN. sPLA2R-Ab combined with uPLA2R-Ab might be more helpful for diagnosis and activity in PLA2R associated MN.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yi-Xin He
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Tian-Tian Diao
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Shi-Yao Wei
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wen-Rui Qi
- Science and Technology Department, Financial Mathematics Major, Beijing Normal University, Hong Kong Baptist University United International College, Zhuhai, People's Republic of China
| | - Cen-Cen Wang
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Shu-Min Song
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Min Bi
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Chun-Mei Li
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Cai-Xia Zhang
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yan-Pei Hou
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Qiu-Ju Wei
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Bing Li
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
35
|
Abstract
In patients with membranous nephropathy, alkylating agents (cyclophosphamide or chlorambucil) alone or in combination with steroids achieve remission of nephrotic syndrome more effectively than conservative treatment or steroids alone, but can cause myelotoxicity, infections, and cancer. Calcineurin inhibitors can improve proteinuria, but are nephrotoxic. Most patients relapse after treatment withdrawal and can become treatment dependent, which increases the risk of nephrotoxicity. The discovery of nephritogenic autoantibodies against podocyte M-type phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain- containing protein 7A (THSD7A) antigens provides a clear pathophysiological rationale for interventions that specifically target B-cell lineages to prevent antibody production and subepithelial deposition. The anti-CD20 monoclonal antibody rituximab is safe and achieves remission of proteinuria in approximately two-thirds of patients with membranous nephropathy. In those with PLA2R-related disease, remission can be predicted by anti-PLA2R antibody depletion and relapse by antibody re-emergence into the circulation. Thus, integrated evaluation of serology and proteinuria could guide identification of affected patients and treatment with individually tailored protocols. Nonspecific and toxic immunosuppressive regimens will fall out of use. B-cell modulation by rituximab and second-generation anti-CD20 antibodies (or plasma cell-targeted therapy in anti-CD20 resistant forms of disease) will lead to a novel therapeutic paradigm for patients with membranous nephropathy.
Collapse
|
36
|
Recent progress in the understanding of complement activation and its role in tumor growth and anti-tumor therapy. Biomed Pharmacother 2017; 91:446-456. [DOI: 10.1016/j.biopha.2017.04.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
|
37
|
Abstract
Membranous nephropathy (MN) is a unique glomerular lesion that is the most common cause of idiopathic nephrotic syndrome in nondiabetic white adults. About 80% of cases are renal limited (primary MN, PMN) and 20% are associated with other systemic diseases or exposures (secondary MN). This review focuses only on PMN. Most cases of PMN have circulating IgG4 autoantibody to the podocyte membrane antigen PLA2R (70%), biopsy evidence PLA2R staining indicating recent immunologic disease activity despite negative serum antibody levels (15%), or serum anti-THSD7A (3%-5%). The remaining 10% without demonstrable anti-PLA2R/THSd7A antibody or antigen likely have PMN probably secondary to a different, still unidentified, anti-podocyte antibody. Considerable clinical and experimental data now suggests these antibodies are pathogenic. Clinically, 80% of patients with PMN present with nephrotic syndrome and 20% with non-nephrotic proteinuria. Untreated, about one third undergo spontaneous remission, especially those with absent or low anti-PLA2R levels, one-third progress to ESRD over 10 years, and the remainder develop nonprogressive CKD. Proteinuria can persist for months after circulating anti-PLA2R/THSD7A antibody is no longer detectable (immunologic remission). All patients with PMN should be treated with supportive care from the time of diagnosis to minimize protein excretion. Patients with elevated anti-PLA2R/THSD7A levels and proteinuria >3.5 g/d at diagnosis, and those who fail to reduce proteinuria to <3.5 g after 6 months of supportive care or have complications of nephrotic syndrome, should be considered for immunosuppressive therapy. Accepted regimens include steroids/cyclophosphamide, calcineurin inhibitors, and B cell depletion. With proper management, only 10% or less will develop ESRD over the subsequent 10 years.
Collapse
Affiliation(s)
- William G Couser
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
38
|
Yang J, Zhang BL. [Advances in clinical research on C1q nephropathy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016. [PMID: 27817791 DOI: 10.7499/j.issn.1008-8830.2016.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
C1q nephropathy is a rare type of glomerulonephritis manifested as the deposition of C1q in the glomerular mesangium during immunofluorescent staining. Systemic lupus erythematosus and type I membranoproliferative glomerulonephropathy need to be excluded in the diagnosis of C1q nephropathy. C1q nephropathy has various manifestations under a light microscope, mainly including minimal change disease, focal segmental glomerulosclerosis, and proliferative glomerulonephritis. This disease is mainly manifested as persistent proteinuria or nephrotic syndrome and occurs more frequently in boys. Currently, glucocorticoids are mainly used for the treatment of this disease. Patients with C1q nephropathy show a good response to immunosuppressant treatment, but have a high rate of glucocorticoid resistance. Therefore, in this case, methylprednisolone pulse therapy or a combination with immunosuppressant treatment helps to achieve a good prognosis.
Collapse
Affiliation(s)
- Juan Yang
- Department of Nephrology, Tianjin Children's Hospital, Tianjin 300074, China.
| | | |
Collapse
|
39
|
Sareen-Khanna K, Papillon J, Wing SS, Cybulsky AV. Role of the deubiquitinating enzyme ubiquitin-specific protease-14 in proteostasis in renal cells. Am J Physiol Renal Physiol 2016; 311:F1035-F1046. [DOI: 10.1152/ajprenal.00252.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/07/2016] [Indexed: 01/02/2023] Open
Abstract
Kidney cell injury may be associated with protein misfolding and induction of endoplasmic reticulum (ER) stress. Examples include complement-induced glomerular epithelial cell (GEC)/podocyte injury in membranous nephropathy and ischemia-reperfusion injury. Renal cell injury can also result from mutations in integral proteins, which lead to their misfolding and accumulation. Certain nephrin missense mutants misfold, accumulate in the ER, and induce ER stress. We examined if enhancement of ubiquitin-proteasome system function may facilitate proteostasis and confer protection against injury. Ubiquitin-specific protease 14 (Usp14) is reported to retard proteasomal protein degradation. Thus inhibition of Usp14 may enhance degradation of misfolded proteins and attenuate cell injury. In GEC, the reporter proteins GFPu (a “misfolded” protein) and CD3δ (an ER-associated degradation substrate) undergo time-dependent proteasomal degradation. Complement did not affect degradation of CD3δ-yellow fluorescent protein (YFP), but accelerated degradation of GFPu, and the Usp14-directed inhibitor IU1 further accelerated this degradation. Conversely, overexpression of Usp14 reduced degradation of GFPu and CD3δ-YFP. In 293T cells, IU1 did not enhance degradation of disease-associated nephrin missense mutants I171N and S724C, whereas overexpression of Usp14 reduced degradation. IU1 was cytoprotective after injury induced by the ER stressor tunicamycin and in vitro ischemia-reperfusion, but did not affect complement-induced cytotoxicity. In conclusion, Usp14 controls proteasomal degradation of some misfolded proteins. In addition, a Usp14-directed inhibitor reduces cytotoxicity in the context of global protein misfolding during certain types of renal cell injury.
Collapse
Affiliation(s)
- Kapil Sareen-Khanna
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Simon S. Wing
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Fu X, Ju J, Lin Z, Xiao W, Li X, Zhuang B, Zhang T, Ma X, Li X, Ma C, Su W, Wang Y, Qin X, Liang S. Target deletion of complement component 9 attenuates antibody-mediated hemolysis and lipopolysaccharide (LPS)-induced acute shock in mice. Sci Rep 2016; 6:30239. [PMID: 27444648 PMCID: PMC4957234 DOI: 10.1038/srep30239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/01/2016] [Indexed: 12/28/2022] Open
Abstract
Terminal complement membrane attack complex (MAC) formation is induced initially by
C5b, followed by the sequential condensation of the C6, C7, C8. Polymerization of C9
to the C5b-8 complex forms the C5b-9 (or MAC). The C5b-9 forms lytic or non lytic
pores in the cell membrane destroys membrane integrity. The biological
functionalities of MAC has been previously investigated by using either the mice
deficient in C5 and C6, or MAC’s regulator CD59. However, there is no
available C9 deficient mice (mC9−/−)
for directly dissecting the role of C5b-9 in the pathogenesis of human diseases.
Further, since C5b-7 and C5b-8 complexes form non lytic pore, it may also plays
biological functionality. To better understand the role of terminal complement
cascades, here we report a successful generation of
mC9−/−. We demonstrated that lack
of C9 attenuates anti-erythrocyte antibody-mediated hemolysis or LPS-induced acute
shock. Further, the rescuing effect on the acute shock correlates with the less
release of IL-1β in
mC9−/−, which is associated with
suppression of MAC-mediated inflammasome activation in
mC9−/−. Taken together, these
results not only confirm the critical role of C5b-9 in complement-mediated hemolysis
and but also highlight the critical role of C5b-9 in inflammasome activation.
Collapse
Affiliation(s)
- Xiaoyan Fu
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Jiyu Ju
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Zhijuan Lin
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Weiling Xiao
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xiaofang Li
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Baoxiang Zhuang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Tingting Zhang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xiaojun Ma
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xiangyu Li
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Chao Ma
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Weiliang Su
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Yuqi Wang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xuebin Qin
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA19140, USA
| | - Shujuan Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| |
Collapse
|
41
|
Elimam H, Papillon J, Kaufman DR, Guillemette J, Aoudjit L, Gross RW, Takano T, Cybulsky AV. Genetic Ablation of Calcium-independent Phospholipase A2γ Induces Glomerular Injury in Mice. J Biol Chem 2016; 291:14468-82. [PMID: 27226532 DOI: 10.1074/jbc.m115.696781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 12/15/2022] Open
Abstract
Glomerular visceral epithelial cells (podocytes) play a critical role in the maintenance of glomerular permselectivity. Podocyte injury, manifesting as proteinuria, is the cause of many glomerular diseases. We reported previously that calcium-independent phospholipase A2γ (iPLA2γ) is cytoprotective against complement-mediated glomerular epithelial cell injury. Studies in iPLA2γ KO mice have demonstrated an important role for iPLA2γ in mitochondrial lipid turnover, membrane structure, and metabolism. The aim of the present study was to employ iPLA2γ KO mice to better understand the role of iPLA2γ in normal glomerular and podocyte function as well as in glomerular injury. We show that deletion of iPLA2γ did not cause detectable albuminuria; however, it resulted in mitochondrial structural abnormalities and enhanced autophagy in podocytes as well as loss of podocytes in aging KO mice. Moreover, after induction of anti-glomerular basement membrane nephritis in young mice, iPLA2γ KO mice exhibited significantly increased levels of albuminuria, podocyte injury, and loss of podocytes compared with wild type. Thus, iPLA2γ has a protective functional role in the normal glomerulus and in glomerulonephritis. Understanding the role of iPLA2γ in glomerular pathophysiology provides opportunities for the development of novel therapeutic approaches to glomerular injury and proteinuria.
Collapse
Affiliation(s)
- Hanan Elimam
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Joan Papillon
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Daniel R Kaufman
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Julie Guillemette
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Lamine Aoudjit
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Richard W Gross
- the Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Tomoko Takano
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Andrey V Cybulsky
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| |
Collapse
|
42
|
Abstract
Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
43
|
Antiphospholipase A2 Receptor Autoantibodies: A Step Forward in the Management of Primary Membranous Nephropathy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:249740. [PMID: 26576418 PMCID: PMC4630372 DOI: 10.1155/2015/249740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/19/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023]
Abstract
Since the identification of PLA2R (M-type phospholipase A2 receptor) as the first human antigenic target in primary membranous nephropathy (MN), perpetual progress has been made in understanding the pathogenesis of this disease. Accumulating clinical data support a pathogenic role for the anti-PLA2R antibodies (PLA2R ABs), but confirmation in an animal model is still lacking. However, PLA2R ABs were related to disease activity and outcome, as well as to response therapy. Accordingly, PLA2R ABs assay seems to be promising tool not only to diagnose MN but also to predict the course of the disease and could open the way to personalize therapy. Nevertheless, validation of a universal assay with high precision and definition of cut-off levels, followed by larger studies with a prolonged follow-up period, are needed to confirm these prospects.
Collapse
|
44
|
Salvadori M, Rosso G, Bertoni E. Complement involvement in kidney diseases: From physiopathology to therapeutical targeting. World J Nephrol 2015; 4:169-184. [PMID: 25949931 PMCID: PMC4419127 DOI: 10.5527/wjn.v4.i2.169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/04/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
Complement cascade is involved in several renal diseases and in renal transplantation. The different components of the complement cascade might represent an optimal target for innovative therapies. In the first section of the paper the authors review the physiopathology of complement involvement in renal diseases and transplantation. In some cases this led to a reclassification of renal diseases moving from a histopathological to a physiopathological classification. The principal issues afforded are: renal diseases with complement over activation, renal diseases with complement dysregulation, progression of renal diseases and renal transplantation. In the second section the authors discuss the several complement components that could represent a therapeutic target. Even if only the anti C5 monoclonal antibody is on the market, many targets as C1, C3, C5a and C5aR are the object of national or international trials. In addition, many molecules proved to be effective in vitro or in preclinical trials and are waiting to move to human trials in the future.
Collapse
|
45
|
Morgan BP. The membrane attack complex as an inflammatory trigger. Immunobiology 2015; 221:747-51. [PMID: 25956457 DOI: 10.1016/j.imbio.2015.04.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
The final common pathway of all routes of complement activation involves the non-enzymatic assembly of a complex comprising newly formed C5b with the plasma proteins C6, C7, C8 and C9. When assembly occurs on a target cell membrane the forming complex inserts into and through the bilayer to create a pore, the membrane attack complex (MAC). On some targets, pore formation causes rapid lytic destruction; however, most nucleated cell targets resist lysis through a combination of ion pumps, membrane regulators and active recovery processes. Cells survive but not without consequence. The MAC pore causes ion fluxes and directly or indirectly impacts several important signalling pathways that in turn activate a diverse series of events in the cell, many of which are highly pro-inflammatory. Although this non-lytic, pro-inflammatory role of MAC has been recognised for thirty years, no consensus signalling pathway has emerged. Recent work, summarised here, has implicated specific signalling routes and, in some cells, inflammasome involvement, opening the door to novel approaches to therapy in complement-driven pathologies.
Collapse
Affiliation(s)
- B Paul Morgan
- School of Medicine, Cardiff University, Heath Park, Cardiff CF144XN, UK.
| |
Collapse
|
46
|
Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA, Mullins RF. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 2015; 45:1-29. [PMID: 25486088 PMCID: PMC4339497 DOI: 10.1016/j.preteyeres.2014.11.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 12/24/2022]
Abstract
Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies.
Collapse
Affiliation(s)
- S Scott Whitmore
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Elliott H Sohn
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Kathleen R Chirco
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Arlene V Drack
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Edwin M Stone
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Budd A Tucker
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Robert F Mullins
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| |
Collapse
|
47
|
Hepojoki J, Vaheri A, Strandin T. The fundamental role of endothelial cells in hantavirus pathogenesis. Front Microbiol 2014; 5:727. [PMID: 25566236 PMCID: PMC4273638 DOI: 10.3389/fmicb.2014.00727] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/03/2014] [Indexed: 01/17/2023] Open
Abstract
Hantavirus, a genus of rodent- and insectivore-borne viruses in the family Bunyaviridae, is a group of emerging zoonotic pathogens. Hantaviruses cause hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome in man, often with severe consequences. Vascular leakage is evident in severe hantavirus infections, and increased permeability contributes to the pathogenesis. This review summarizes the current knowledge on hantavirus interactions with hematopoietic and endothelial cells, and their effects on the increased vascular permeability.
Collapse
Affiliation(s)
- Jussi Hepojoki
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| |
Collapse
|
48
|
Dong Z, Gong K, Huang D, Zhu W, Sun W, Zhang Y, Xin P, Shen Y, Wu P, Li J, Lu Z, Zhang X, Wei M. Myocardial infarction accelerates glomerular injury and microalbuminuria in diabetic rats via local hemodynamics and immunity. Int J Cardiol 2014; 179:397-408. [PMID: 25464495 DOI: 10.1016/j.ijcard.2014.11.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Clinically, approximately one-third of patients with chronic heart failure (CHF) exhibit some degree of renal dysfunction. This renal dysfunction is referred to as cardiorenal syndrome (CRS) and plays an important role in the poor prognosis of CHF. Mounting evidence suggests that diabetes is the most common underlying risk factor for CRS. However, the underlying pathophysiological mechanisms are poorly understood. METHODS We performed the following comparisons in two separate protocols: 1) surgically induced myocardial infarction rats (MI, n=10), sham operation rats (Ctr, n=10) and MI rats treated with Fasudil, a Rho-kinase inhibitor (MI+Fas, n=9); and 2) STZ-induced type 1 diabetic rats (DB, n=10), DB+MI rats (n=10) and DB+MI rats treated with Fasudil (DB+MI+Fas, n=9). Renal hemodynamics and vasoconstrictor reactivity were evaluated using the DMT myograph system. Renal immunity was evaluated by flow cytometry, electron microscopy, immunofluorescence, etc. RESULTS Twelve weeks after the operation, compared with DB or MI rats, DB+MI rats exhibited the following characteristics: 1) significantly increased glomerular enlargement, fibrosis, glomerulosclerosis, podocyte injury and microalbuminuria; 2) significantly increased vasoconstrictor reactivity of the renal interlobular arteries and renal venous pressure; 3) significantly increased infiltration of CD₃+ and CD₄+ T cells and decreased Treg/Th17 ratios; and 4) significantly increased glomerular deposition of IgG and C₄. In contrast, rats with MI only showed mildly accelerated glomerular remodeling and microalbuminuria, with little change in renal hemodynamics and immunity. Fasudil treatment significantly improved the renal lesions in DB+MI rats but not MI rats. CONCLUSIONS Post-MI cardiac dysfunction significantly accelerated glomerular remodeling, podocyte injury and microalbuminuria in STZ-induced diabetic rats. These changes were accompanied by altered local hemodynamics and immunity.
Collapse
Affiliation(s)
- Zhifeng Dong
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Kaizheng Gong
- Department of Cardiology, The Second Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Dong Huang
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Wei Zhu
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Wanfeng Sun
- Affiliated Yancheng Hospital of Medical School, Southeast University, Yancheng 224001, China
| | - Ying Zhang
- Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Xin
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Yuan Shen
- Affiliated Yancheng Hospital of Medical School, Southeast University, Yancheng 224001, China
| | - Penglong Wu
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Jingbo Li
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Xiaoming Zhang
- Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Meng Wei
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
49
|
Nezvitsky L, Tremblay ML, Takano T, Papillon J, Cybulsky AV. Complement-mediated glomerular injury is reduced by inhibition of protein-tyrosine phosphatase 1B. Am J Physiol Renal Physiol 2014; 307:F634-47. [DOI: 10.1152/ajprenal.00191.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The unfolded protein response and endoplasmic reticulum-associated degradation (ERAD) contribute to injury in renal glomerular diseases, including those mediated by complement C5b-9. In the present study, we address the role of protein-tyrosine phosphatase 1B (PTP1B) in complement-mediated glomerular injury and ERAD. In glomerular epithelial cells (GECs)/podocytes and PTP1B-deficient mouse embryonic fibroblasts exposed to complement, inhibition/deletion of PTP1B reduced ERAD, as monitored by the ERAD reporter CD3δ. Overexpression of PTP1B produced an effect similar to PTP1B deficiency on ERAD in complement-treated GECs. Complement-mediated cytotoxicity was reduced after PTP1B overexpression and tended to be reduced after PTP1B inhibition. PTP1B enhanced the induction of certain ERAD components via the inositol-requiring-1α branch of the unfolded protein response. PTP1B knockout mice with anti-glomerular basement membrane glomerulonephritis had decreased proteinuria and showed less podocyte loss and endoplasmic reticulum dysfunction compared with wild-type littermates. These results imply that endogenous levels of PTP1B are tightly regulated and that both overexpression and inhibition can affect ERAD. The cytoprotective effects of PTP1B deletion in cultured cells and in anti-glomerular basement membrane nephritis suggest that PTP1B may potentially be a therapeutic target in complement-mediated diseases.
Collapse
Affiliation(s)
- Lisa Nezvitsky
- Department of Medicine and Biochemistry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Michel L. Tremblay
- Department of Medicine and Biochemistry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Tomoko Takano
- Department of Medicine and Biochemistry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine and Biochemistry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Andrey V. Cybulsky
- Department of Medicine and Biochemistry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Abstract
As recently as 2002, most cases of primary membranous nephropathy (MN), a relatively common cause of nephrotic syndrome in adults, were considered idiopathic. We now recognize that MN is an organ-specific autoimmune disease in which circulating autoantibodies bind to an intrinsic antigen on glomerular podocytes and form deposits of immune complexes in situ in the glomerular capillary walls. Here we define the clinical and pathological features of MN and describe the experimental models that enabled the discovery of the major target antigen, the M-type phospholipase A2 receptor 1 (PLA2R). We review the pathophysiology of experimental MN and compare and contrast it with the human disease. We discuss the diagnostic value of serological testing for anti-PLA2R and tissue staining for the redistributed antigen, and their utility for differentiating between primary and secondary MN, and between recurrent MN after kidney transplant and de novo MN. We end with consideration of how knowledge of the antigen might direct future therapeutic strategies.
Collapse
|