1
|
Wu H, Shi Z, Sun B, Zheng B, Shah KJ, Lin S. Defluoridation by positive single-pulse current electrocoagulation from photovoltaic wastewater: Energy consumption assessment and mechanism analysis. CHEMOSPHERE 2024; 363:142773. [PMID: 38972457 DOI: 10.1016/j.chemosphere.2024.142773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
The presence of fluoride ions (F-) in photovoltaic (PV) wastewater significantly affects the integrity of the ecological environment. In contrast to direct current electrocoagulation (DC-EC), positive single-pulse electrocoagulation (PSPC-EC) shows a significant reduction in both the formation of passivation films on electrodes and the consumption of electrical energy. Under the experimental conditions of an Al-Al-Al-Al electrode combination, an electrode spacing of 1.0 cm, a NaCl concentration of 0.05 mol L-1, an initial pH of 5.6, an initial F- concentration of 5 mg L-1, a current density of 5 A m-2, a pulse frequency of 500 Hz, and a 40 % duty cycle, the achieved equilibrium F- removal efficiencies were 84.0 % for DC-EC and 88.0 % for PSPC-EC, respectively, accompanied by power consumption of 0.0198 kWh·mg-1 and 0.0073 kWh·mg-1. The flocs produced in the PSPC-EC process were characterized using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy and it is revealed that the F- removal mechanisms in the PSPC-EC process include co-precipitation, hydrogen bond complexation, and ion exchange. When the actual PV wastewater was finally subjected to treatment under the optimal PSPC-EC conditions, the F- concentration in the wastewater was reduced from 4.6 mg L-1 to 1.4 mg L-1. This paper provides both a theoretical framework and a technological basis for the application of PSPC-EC in the advanced treatment of PV wastewater.
Collapse
Affiliation(s)
- Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Zhiru Shi
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Bingyuan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Bin Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Kinjal J Shah
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Shaohua Lin
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
2
|
Yu B, Xie C, Lu C, Chen Z, Tian J, Hu C. In situ cleaning of foulants by gas scouring on the membrane-electrode in an electro-membrane bioreactor. BIORESOURCE TECHNOLOGY 2024; 403:130860. [PMID: 38763205 DOI: 10.1016/j.biortech.2024.130860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Low-maintenance membrane cleaning is essential for the stable operation of membrane bioreactors. This work proposes an in-situ electrical-cleaning method using an electro-MBR. When the applied bias was transiently increased, the membrane flux recovered rapidly because of the scouring effect from gas evolution reactions. The exfoliation of the cake layer induced by gas scouring played a major role in mitigating membrane fouling, recovering the transmembrane pressure (TMP) by 88.6 % under optimal conditions. Membrane modules did not require replacement during the operation period due to the efficacy of electrical cleaning, with the TMP varying between 37.5 % and 62.5 % of the ultimate pressure requiring change of the membrane modules. Despite the increase in power consumption of 0.66 Wh·m-3 due to the additional applied bias, there was no need for chemical additives or manual maintenance. Therefore, the electrical cleaning method enhanced the service life and reduced the maintenance costs of the electro-MBR.
Collapse
Affiliation(s)
- Boyang Yu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chengcheng Xie
- CSD New Concept Environmental Development Yixing Co., Ltd, Yixing 214000, China
| | - Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Abdollahi J, Alavi Moghaddam MR, Habibzadeh S. The role of the current waveform in mitigating passivation and enhancing electrocoagulation performance: A critical review. CHEMOSPHERE 2023; 312:137212. [PMID: 36395897 DOI: 10.1016/j.chemosphere.2022.137212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Electrocoagulation (EC) can be an efficient alternative to existing water and wastewater treatment methods due to its eco-friendly nature, low footprint, and facile operation. However, the electrodes applied in the EC process suffer from passivation or fouling, an issue resulting from the buildup of poorly conducting materials on the electrode surface. Indeed, such passivation gives rise to various operational problems and restricts the practical implementation of EC on a large scale. Therefore, it has been suggested that using pulsed direct current (PDC), alternating pulse current (APC), and sinusoidal alternating current (AC) waveforms in EC as alternatives to conventional direct current (DC) can help mitigate passivation and alleviate its associated detrimental effects. This paper presents a critical review of the impact of the current waveform on the EC process towards the capabilities of the PDC, APC, and AC waveforms in de-passivation and performance enhancement while comparing them to the conventional DC. Additionally, current waveform parameters influencing the surface passivation of electrodes and process efficiency are elaborately discussed. Meanwhile, the performance of the EC process is evaluated under different current waveforms based on pollutant removal efficiency, energy consumption, electrode usage, sludge production, and operating cost. The proper current waveforms for treating various water and wastewater matrices are also explained. Finally, concluding remarks and outlooks for future research are provided.
Collapse
Affiliation(s)
- Javad Abdollahi
- Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | | | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| |
Collapse
|
4
|
An BH, Xu DM, Geng R, Cheng Y, Qian RB, Tang XC, Fan ZQ, Chen HB. The pretreatment effects of various target pollutant in real coal gasification gray water by coupling pulse electrocoagulation with chemical precipitation methods. CHEMOSPHERE 2023; 311:136898. [PMID: 36257394 DOI: 10.1016/j.chemosphere.2022.136898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
To prevent the scale formation in the equipments and pipelines after pre-treated coal gasification gray water (CGGW) entering the reuse system and reduce the influence of various pollutants in the effluent on subsequent biochemical treatment, this study presented a coupled use of pulse electrocoagulation (PEC) and chemical precipitation (CP) coupling method for the pretreatment of coal gasification gray water (CGGW). In addition, the operation parameters of PEC and the reaction conditions of PEC-CP were optimized based on iron plate as electrode and total hardness, turbidity and sludge yield as assessment indicators. Due to the formation of multi-hydroxyl iron by several minutes of pulse current, and the addition of pH regulator and coagulant aid, the efficient removal of various ions, hardness and turbidity was significantly reduced via various mechanism such as redox, precipitation, adsorption and coagulation reaction. The result indicated that under the optimal operation conditions, the total hardness, turbidity, and Fen+ of PEC-CP effluents were 275.0 mg/L, 3.0 NTU and 5.6 mg/L, respectively and sludge amount was 0.88 kg/m3. The removal rates of Si, B, Mn, Ba, COD, NPOC and NH4+-N by PEC-CP reached 80.0%, 75.4%, 97.0%, 99.8%, 35.0%, 33.6% and 23.8%, respectively. The present results suggested that the CGGW pretreatment effluents could be not only reused directly, but also greatly alleviate the scaling problem of water pipeline and coal gasification production facilities.
Collapse
Affiliation(s)
- Bai-Hong An
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Da-Mao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Yan Cheng
- Ningbo Shentong Environmental Technology Co., LTD, Ningbo, 315105, China
| | - Rui-Bo Qian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Xian-Chun Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Zhi-Qiang Fan
- Shanghai Survey and Design Research Institute Co., LTD, Shanghai, 200434, China
| | - Hong-Bin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Othmani A, Kadier A, Singh R, Igwegbe CA, Bouzid M, Aquatar MO, Khanday WA, Bote ME, Damiri F, Gökkuş Ö, Sher F. A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment. ENVIRONMENTAL RESEARCH 2022; 215:114294. [PMID: 36113573 DOI: 10.1016/j.envres.2022.114294] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/13/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The rapidly expanding global energy demand is forcing a release of regulated pollutants into water that is threatening human health. Among various wastewater remediating processes, electrocoagulation (EC) has scored a monumental success over conventional processes because it combines coagulation, sedimentation, floatation and electrochemical oxidation processes that can effectively decimate numerous stubborn pollutants. The EC processes have gained some attention through various academic and industrial publications, however critical evaluation of EC processes, choices of EC processes for various pollutants, process parameters, mechanisms, commercial EC technologies and performance enhancement via other degradation processes (DPs) integration have not been comprehensively covered to date. Therefore, the major objective of this paper is to provide a comprehensive review of 20 years of literature covering EC fundamentals, key process factors for a reactor design, process implementation, current challenges and performance enhancement by coupling EC with pivotal pollutant DPs including, electro/photo-Fenton (E/P-F), photocatalysis, sono-chemical treatment, ozonation, indirect electrochemical/advanced oxidation (AO), and biosorption that have substantially reduced metals, pathogens, toxic compound BOD, COD, colors in wastewater. The results suggest that the optimum treatment time, current density, pulse frequency, shaking speed and spaced electrode improve the pollutants removal efficiency. An elegant process design can prevent electrode passivation which is a critical limitation of EC technology. EC coupling (up or downstream) with other DPs has resulted in the removal of organic pollutants and heavy metals with a 20% improved efficiency by EC-EF, removal of 85.5% suspended solid, 76.2% turbidity, 88.9% BOD, 79.7% COD and 93% color by EC-electroflotation, 100% decolorization by EC-electrochemical-AO, reduction of 78% COD, 81% BOD, 97% color by EC-ozonation and removal of 94% ammonia, 94% BOD, 95% turbidity, >98% phosphorus by aerated EC and peroxicoagulation. The major wastewater purification achievements, future potential and challenges are described to model the future EC integrated systems.
Collapse
Affiliation(s)
- Amina Othmani
- Department of Chemistry, Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5019, Monastir, Tunisia
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Raghuveer Singh
- Research Division, James R. Randall Research Center, Archer Daniels Midland (ADM) Company, Decatur, IL, 62521, USA
| | | | - Mohamed Bouzid
- Quantum and Statistical Physics Laboratory, Faculty of Sciences of Monastir, University of Monastir, Environment Boulevard, 5019, Monastir, Tunisia
| | - Md Osim Aquatar
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Jawaharlal Nehru Marg, Nagpur, 440020, India; Academy of Scientific & Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
| | - Waheed Ahmad Khanday
- Department of Chemistry, Government Degree College Anantnag, Jammu & Kashmir, 192101, India
| | - Million Ebba Bote
- Department of Water Supply and Environmental Engineering, Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, PoBox - 378, Ethiopia
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca, 20000, Morocco
| | - Ömür Gökkuş
- Department of Environmental Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
6
|
Mustafa FH, Attia HAA, Yahya R, Elshaarawy RF, Hassan N. Cellulose microfibrils-embedded sulfonated polyethersulfone for efficient Zn2+ ions removal from aqueous effluents. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Andreatta D, Shonza NS, Muniz EP, Bacelos MS, Dalmaschio CJ, Porto PSDS. Tangential effluent inlet in a cylindrical electrocoagulation reactor containing curved electrodes, and its use in crude oil in water treatment. ENVIRONMENTAL TECHNOLOGY 2022; 43:3559-3569. [PMID: 33913794 DOI: 10.1080/09593330.2021.1924866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
A continuous electrocoagulation reactor, with curved electrodes, polarity switch, and cylindrical geometry, was used for emulsified crude oil in water separation. Apparatus novelty consists of an inlet arranged to promote a circular flow regime. The effects of flow rate (2 and 6 mL.s-1), electrical current (2 and 4 A), and distance between electrodes (1.5 and 2.5 cm) were investigated using a full factorial design and statistical analysis. Using 6 mL.s-1 flow rate, 2 A electric current and 2.5 cm electrode distance; 86% oil removal was obtained at a pH < 9.0. For this configuration, the system will process 21.6 L of oily emulsion while consuming 6.92 Wh. Oil removal increased with flow rate, a novel characteristic created by the unusual geometry of the system.
Collapse
Affiliation(s)
- Domênico Andreatta
- Programa de Pós-graduação em Energia, Universidade Federal do Espírito Santo, Rodovia Governador Mario Covas, São Mateus, ES, Brasil
| | - Nasibu Samson Shonza
- Programa de Pós-graduação em Energia, Universidade Federal do Espírito Santo, Rodovia Governador Mario Covas, São Mateus, ES, Brasil
| | - Eduardo Perini Muniz
- Programa de Pós-graduação em Energia, Universidade Federal do Espírito Santo, Rodovia Governador Mario Covas, São Mateus, ES, Brasil
- Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, Rodovia Governador Mario Covas, São Mateus, ES, Brasil
| | - Marcelo Silveira Bacelos
- Programa de Pós-graduação em Energia, Universidade Federal do Espírito Santo, Rodovia Governador Mario Covas, São Mateus, ES, Brasil
- Departamento de Engenharias e Tecnologia, Universidade Federal do Espírito Santo, Rodovia Governador Mario Covas, São Mateus, ES, Brasil
| | | | - Paulo Sérgio da Silva Porto
- Programa de Pós-graduação em Energia, Universidade Federal do Espírito Santo, Rodovia Governador Mario Covas, São Mateus, ES, Brasil
- Departamento de Engenharias e Tecnologia, Universidade Federal do Espírito Santo, Rodovia Governador Mario Covas, São Mateus, ES, Brasil
| |
Collapse
|
8
|
Othman Z, Mackey HR, Mahmoud KA. A critical overview of MXenes adsorption behavior toward heavy metals. CHEMOSPHERE 2022; 295:133849. [PMID: 35124080 DOI: 10.1016/j.chemosphere.2022.133849] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
In recent years, tremendous interest has been generated in MXenes as a fast-growing and diversified family of two-dimensional (2D) materials with a wide range of potential uses. MXenes exhibit many unique structural and physicochemical properties that make them particularly attractive as adsorbents for removing heavy metals from aqueous media, including a large surface area, abundant surface terminations, electron-richness, and hydrophilic nature. In light of the adsorption capabilities of MXenes at the ever-increasing rate of expansion, this review investigates the recent computational predictions for the adsorption capabilities of MXenes and the effect of synthesis of different MXene on their remediation behavior toward heavy metals. The influence of MXene engineering strategies such as alkalization, acidification, and incorporation into organic and inorganic hosts on their surface properties and adsorption capacity is compared to provide critical insights for designing effective MXene adsorbents. Additionally, the review discusses MXenes' adsorption mechanisms, the effect of coexisting ions on MXenes' selectivity, the regeneration of exhausted MXenes, and provides an overview of MXenes' stability and biocompatibility to demonstrate their potentiality for wastewater remediation. Finally, the review identifies current flaws and offers recommendations for further research.
Collapse
Affiliation(s)
- Zakarya Othman
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar; Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hamish R Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
9
|
Enhancing the Performance of the Electrocoagulation−Filtration System Treating Mariculture Tailwaters by Using Alternating Pulse Current: Effects of Current Density and Current Conversion Period. WATER 2022. [DOI: 10.3390/w14081181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Electrocoagulation (EC) is an environmentally friendly and effective water treatment technique. It has been recently applied in combination with a filtration process. This study investigated the effects of an alternating pulse current (APC) on the electrodes, treatment efficiency, and energy consumption of an EC−filtration system during the treatment of mariculture tailwaters, from the aspects of current density and current conversion period (CCP), to generate ideas for improving the performance of the system. Results showed that using direct current (DC) would aggravate the electrode passivation, resulting in many white insoluble substances covering the surface of the electrodes. Moreover, the electrode passivation was more intense at a higher current density and longer system operation time (SOT). Significantly, the electrode weight increased by 1546.67 ± 54.50 mg when the system was operated for 90 min under DC at a current density of 45 A/m2. Unlike DC, APC significantly alleviated electrode passivation, enhanced the treatment efficiency, and reduced energy consumption. A shorter CCP produced better results. When the CCP was 1 min, current density was 45 A/m2, and SOT was 10 min, the removal efficiency of the EC−filtration system for total suspended solids (TSS), chemical oxygen demand (CODMn), and total nitrogen (TN) was 53.55 ± 1.66%, 47.76 ± 0.18%, and 15.55 ± 0.31%, respectively, and the energy consumption was 11.88 × 10−3 kWh/m3.
Collapse
|
10
|
Zhang H, Bian J, Yang C, Hu Z, Liu F, Zhang C. Removal of tetracycline from livestock wastewater by positive single pulse current electrocoagulation: Mechanism, toxicity assessment and cost evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151955. [PMID: 34843788 DOI: 10.1016/j.scitotenv.2021.151955] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of veterinary antibiotics has led to the significant problem of contamination of livestock wastewater with significant amount of antibiotics. Electrocoagulation (EC) has become a prominent research topic because of the technique's ability to remove antibiotics from livestock wastewater. However, an urgent solution is needed to reduce the high operating costs associated with the process. Therefore, in this study, we developed a positive single pulse current (PSPC)-EC system to remove tetracycline (TC) from synthetic and actual livestock wastewater. Influential factors were investigated, and the optimal PSPC-EC operating parameters were identified as follows: duty ratio = 60%, pH = 4, electrode spacing = 1 cm, current intensity = 0.2 A, and conductivity = 2 mS cm-1. The mechanism of PSPC-EC was characterised using techniques including scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The TC decomposition pathway was proposed based on the generation of its intermediate products. A toxicity estimation software tool (TEST) model was used to evaluate the toxicity of TC and its main degradation products, and most of its intermediates were found to be less toxic than TC. The contribution ratios of floc adsorption and electrochemical oxidation for removing TC were 74.17% and 21.48%, respectively. The highest TC removal rate reached 95% with an operating cost of 0.011 USD/m3. Finally, under the optimum conditions identified, actual livestock wastewater was treated by PSPC-EC. Compared with conventional EC and coagulation treatment techniques that consume electricity and produce pollution, the results indicate that the PSPC-EC technique with changing current operation mode is a more cost-effective and attractive option for removing TC from livestock wastewater.
Collapse
Affiliation(s)
- Han Zhang
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun 130021, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Jianmin Bian
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun 130021, China
| | - Chaoge Yang
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, 2519 Jiefang Road, Changchun, Jilin 130021, China
| | - Zichen Hu
- College of Chemistry, Jilin University, Changchun 130015, China
| | - Fangyuan Liu
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, 2519 Jiefang Road, Changchun, Jilin 130021, China.
| | - Chunpeng Zhang
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, 2519 Jiefang Road, Changchun, Jilin 130021, China.
| |
Collapse
|
11
|
Zhang J, Li J, Ma C, Yi L, Gu T, Wang J. High-efficiency and energy-saving alternating pulse current electrocoagulation to remove polyvinyl alcohol in wastewater. RSC Adv 2021; 11:40085-40099. [PMID: 35494124 PMCID: PMC9044541 DOI: 10.1039/d1ra08093h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
Conventional direct current electrocoagulation (DC-EC) has disadvantages such as easy passivation of electrodes, high energy consumption, and large sludge production, which limit its use in polyvinyl alcohol (PVA) wastewater. Therefore, alternating pulse current electrocoagulation (APC-EC) has been developed to overcome these problems. In this study, the influencing factors and energy consumption of PVA treatment by APC-EC and DC-EC were explored, and the best operating conditions of APC-EC were obtained via the response surface method (RSM). The best process conditions for APC-EC were determined to be the electrode type of Fe/Fe, current density of 1.0 mA cm−2, initial pH of 7, electrode distance of 2.0 cm, supporting electrolyte of 0.08 mol L−1 NaCl, initial PVA concentration of 150 mg L−1, duty cycle of 30%, and frequency of 500 Hz. In addition, the floc properties of APC-EC and DC-EC were compared to explore the basic mechanism for the removal of PVA. Adsorption and co-precipitation with hydroxide iron complexes are the main methods for removing PVA from wastewater in the APC-EC process. Compared with DC-EC, the application of APC-EC can reduce electrode passivation and production of sludge and operating costs, and improve electrode stability and PVA removal efficiency. This study provides a new strategy and method for the PVA removal from wastewater by APC-EC with low cost and high efficiency, showing broad prospect for the applications of the APC-EC in removing PVA. Compared with DC-EC, the application of APC-EC can reduce electrode passivation and production of sludge and operating costs, and improve electrode stability and PVA removal efficiency.![]()
Collapse
Affiliation(s)
- Jiepei Zhang
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| | - Junfeng Li
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| | - Chengxiao Ma
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| | - Lijuan Yi
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University Xinjiang 832003 PR China
| | - Tiantian Gu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University Xinjiang 832003 PR China
| | - Jiankang Wang
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| |
Collapse
|
12
|
Payami Shabestar M, Alavi Moghaddam MR, Karamati-Niaragh E. Evaluation of energy and electrode consumption of Acid Red 18 removal using electrocoagulation process through RSM: alternating and direct current. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67214-67223. [PMID: 34247355 DOI: 10.1007/s11356-021-15345-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
This study aims to evaluate energy and electrode consumption for Acid Red 18 (AR18) removal and the operating costs employing alternating current (AC) and direct current (DC) in an electrocoagulation (EC) system. As the novelty of this study, the effects of AC/DC mode and electrode type were scrutinized through a series of designed experiments in a batch EC reactor to remove a globally used Azo dye from wastewater. In this regard, by designing the experiments with response surface methodology (RSM), four series of 30 experiments were separately conducted employing DC and AC for iron (Fe) and aluminum (Al) electrodes. In each series, quadratic models were achieved for the removal efficiency and operating costs; by confirming the accuracy of the models, two responses were simultaneously optimized accordingly. As a result, the AR18 removal efficiency with Al electrodes had no significant difference using AC and DC (on average 0.2% difference); however, for Fe electrode, the EC performance in DC was more significant than AC (on average 13.8% difference). Also, the operating costs of Fe electrode were more economical in comparison with the Al; on average, the operating costs in the case of applying DC for Fe and Al were achieved 14.6 and 39.8 (US$/kg dye removed), respectively; whereas, for AC, this amount was calculated 9.3 and 36.0 (US$/kg dye removed) for Fe and Al, respectively.
Collapse
Affiliation(s)
- Mahsa Payami Shabestar
- Civil and Environmental Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, 15875-4413, Iran
| | - Mohammad Reza Alavi Moghaddam
- Civil and Environmental Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, 15875-4413, Iran.
| | - Elnaz Karamati-Niaragh
- Civil and Environmental Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, 15875-4413, Iran
| |
Collapse
|
13
|
Hu J, Chen J, Liu F, An S, Shi Y, Luan Z, Xiao J, Zhang B. Enhancing oil removal from wastewater by combining inclined plate settler and electrocoagulation. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1993258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jianlong Hu
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, P. R. China
| | - Jiaqing Chen
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, P. R. China
| | - Fan Liu
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, P. R. China
| | - Shenfa An
- Petroleum Engineering Technology Research Institute of Shengli Oilfield Branch, SINOPEC Group, Dongying, P. R. China
| | - Yi Shi
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, P. R. China
| | - Zhiyong Luan
- Petroleum Engineering Technology Research Institute of Shengli Oilfield Branch, SINOPEC Group, Dongying, P. R. China
| | - Jianhong Xiao
- Petroleum Engineering Technology Research Institute of Shengli Oilfield Branch, SINOPEC Group, Dongying, P. R. China
| | - Baosheng Zhang
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, P. R. China
| |
Collapse
|
14
|
Lu J, Zhang P, Li J. Electrocoagulation technology for water purification: An update review on reactor design and some newly concerned pollutants removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113259. [PMID: 34256295 DOI: 10.1016/j.jenvman.2021.113259] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Water shortage and quality deterioration are plaguing people all over the world. Providing sustainable and affordable treatment solutions to these problems is a need of the hour. Electrocoagulation (EC) technology is a burgeoning alternative for effective water treatment, which offers the virtues such as compact equipment, easy operation, and low sludge production. Compared to other water purification technologies, EC shows excellent removal efficacy for a wide range of contaminants in water and has great potential for addressing limitations of conventional water purification technologies. This review summarizes the latest development of principle, characteristics, and reactor design of EC. The design of key parameters including reactor shape, power supply type, current density, as well as electrode configuration is further elaborated. In particular, typical water treatment systems powered by renewable energy (solar photovoltaic and wind turbine systems) are proposed. Further, this review provides an overview on expanded application of EC in the removal of some newly concerned pollutants in recent years, including arsenite, perfluorinated compounds, pharmaceuticals, oil, bacteria, and viruses. The removal efficiency and mechanisms of these pollutants are also discussed. Finally, future research trend and focus are further recommended. This review can bridge the large knowledge gap for the EC application that is beneficial for environmental researchers and engineers.
Collapse
Affiliation(s)
- Jianbo Lu
- School of Civil Engineering, Yantai University, Yantai, Shandong, 264005, China.
| | - Peng Zhang
- School of Civil Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Jie Li
- School of Economics and Management, Yantai University, Yantai, Shandong, 264005, China
| |
Collapse
|
15
|
Xu T, Zheng X, Zhou Y, Zhu C, Hu B, Lei X, Zhang X, Yu G. Study on the treatment of Cu 2+-organic compound wastewater by electro-Fenton coupled pulsed AC coagulation. CHEMOSPHERE 2021; 280:130679. [PMID: 34162078 DOI: 10.1016/j.chemosphere.2021.130679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Electro-Fenton (EF) coupled with Pulsed alternating current coagulation (PACC) is an effective technology for the treatment of Cu2+-organic wastewater. In this study, the removal efficiency (Re), electrical energy consumption (EEC) and removal mechanism of Cu2+-organic were analyzed and the optimal operation parameters were determined. SEM, EDS, XRD and FTIR were used to characterize the morphology, elemental composition, crystal structure, function groups of sludge produced in the EF-PACC. UV, ESR and GC-MS were employed to determine concentration of organic matter, existence of OH, middle products of decomposed organic matter in EF-PACC, respectively. The results show that under the optimal conditions of initial pH = 2.5, current density (j) = 2 A/m2, initial c(Cu2+) = 50 mg/L, c(chemical oxygen demand, COD) = 500 mg/L, c[H2O2] = 10 mL/L, frequency (f) = 1 Hz, t = 20 min, the Re(Cu2+) can reach 99.59%. Re(COD) is 90.21%, EEC 1.695 × 10-1 kWh/m3, and the amount of produced sludge (Ws) is 0.9283 kg/m3. Compared with single EF and PACC processes, the order of treatment efficiency is EF-PACC > EF > PACC. EF-PACC technique was a highly effective method in the treatment of Cu2+-organic compound wastewater. The EF-PACC coupled process includes that electrolyzed Fe3+ produces electrocoagulation and OH produces degradation of organic compounds. The combined action of the two effects can effectively remove Cu2+-organic from wastewater.
Collapse
Affiliation(s)
- Tao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiaotong Zheng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chunyou Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bonian Hu
- Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, 421008, China.
| | - Xiping Lei
- Hunan Zihong Ecology Technology Co., Ltd, Changsha, 410000, China
| | - Xueyuan Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
16
|
Oliveira JT, de Sousa MC, Martins IA, de Sena LMG, Nogueira TR, Vidal CB, Neto EFA, Romero FB, Campos OS, do Nascimento RF. Electrocoagulation/oxidation/flotation by direct pulsed current applied to the removal of antibiotics from Brazilian WWTP effluents. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Sun Y, Lan J, Du Y, Li Z, Liao X, Du D, Ye H, Zhang TC, Chen S. Efficient removal of heavy metals by synergistic actions of microorganisms and waste molasses. BIORESOURCE TECHNOLOGY 2020; 302:122797. [PMID: 31981810 DOI: 10.1016/j.biortech.2020.122797] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
In this study, two bacteria strains (Enterobacter sp. SL and Acinetobacter sp. SL-1) and waste molasses (carbon source) were used to remove Zn(II), Cd(II), Cr(VI), and Cr(Total) in the liquid solution (87 mg·L). The results showed the removal efficiencies of Cr(Total) and Cr(VI) could reach over 98.00% after reaction, and the removal efficiencies of Zn(II) and Cd(II) were all about 90.00% by the synergistic actions of microorganisms and waste molasses. In this process, waste molasses provides nutrients for microorganisms and has the characteristics and capability of Cr, Zn, and Cd. Microorganisms mainly use biological adsorption (36.95% and 45.69%) and metabolism (24.37% and 17.05% by producing humic-acid and fulvic-acid like substances) to remove Zn(II) and Cd(II), while waste molasses could to remove Cr(Total) (81.24%) and Cr(VI) (75.90%). This study has potential application value for the treatment of wastewater containing high concentrations of heavy metals.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Jirong Lan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Yaguang Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Zhuang Li
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Xi Liao
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Dongyun Du
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Hengpeng Ye
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Shaohua Chen
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| |
Collapse
|
18
|
Xu L, Wu D, Liu W, Xu X, Cao G. Comparative performance of green rusts generated in Fe 0-electrocoagulation for Cd 2+ removal from high salinity wastewater: Mechanisms and optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:495-503. [PMID: 30825782 DOI: 10.1016/j.jenvman.2019.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/08/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
The treatment of wastewater containing high concentration of inorganic salts has always been one of the focuses of environmental researchers. In this work, the effect of Cl- and SO42- on the removal of Cd2+ from wastewater using Fe0-electrocoagulation (Fe0-EC) were investigated by evaluating the transformation of Fe mineral. The experimental results indicated that the removal of Cd2+ from wastewater was depended on the property of Fe minerals. The generation of sulfate green rust (GRSO4) produced in the presence of SO42- showed stronger adsorption than the chloride green rust (GRCl) for Cd2+, and GRSO4 was obtained even in the mixture Cl- and SO42- solutions, because Fe(II)-Fe(III) GRs (layered double hydroxides, LDHs) showed stronger affinity for divalent SO42- than monovalent Cl-. High concentration of inorganic anions in wastewater resulted in the negative charged Fe flocs. High concentration of Cl- promoted the oxidation of Fe(II) to Fe(III) by chlorine-containing oxidants, and increased the proportion of Fe(III)/Fe(II) in Fe flocs, secondary Fe mineral magnetite (Fe3O4) was formed because of the increase of pH. Therefore, the presence of GRSO4 intermediate increased the Cd2+ removal by adsorption (coagulation and coprecipitation), and then the generated GRSO4 were gradually transformed into lepidocrocite (γ-FeOOH) by oxygen from air. Finally, the parameter optimization were conducted by adjusting the ratio of Cl- and SO42- (RC:S), current density (j), initial pH (pHi), initial Cd2+ concentration (C0), and temperature (T0). The removal efficiency of Cd2+ reached 99.5% after 10 min Fe0-EC under the optimal parameters: RC:S = 25:50 mmoL/mmol, j = 6 mA/cm2, pHi = 7-9, and T0 = 40 °C.
Collapse
Affiliation(s)
- Longqian Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China
| | - Wei Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Xiaojun Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China.
| | - Guangzhu Cao
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, 650500, Kunming, PR China
| |
Collapse
|
19
|
Xu L, Cao G, Xu X, He C, Wang Y, Huang Q, Yang M. Sulfite assisted rotating disc electrocoagulation on cadmium removal: Parameter optimization and response surface methodology. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
20
|
Gatsios E, Hahladakis JN, Gidarakos E. Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 218:129-138. [PMID: 25721979 DOI: 10.1016/j.jenvman.2018.04.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 05/10/2023]
Abstract
In the present work, the efficiency evaluation of electrocoagulation (EC) in removing toxic metals from a real industrial wastewater, collected from Aspropyrgos, Athens, Greece was investigated. Manganese (Mn), copper (Cu) and zinc (Zn) at respective concentrations of 5 mg/L, 5 mg/L and 10 mg/L were present in the wastewater (pH=6), originated from the wastes produced by EBO-PYRKAL munitions industry and Hellenic Petroleum Elefsis Refineries. The effect of operational parameters such as electrode combination and distance, applied current, initial pH and initial metal concentration, was studied. The results indicated that Cu and Zn were totally removed in all experiments, while Mn exhibited equally high removal percentages (approximately 90%). Decreasing the initial pH and increasing the distance between electrodes, resulted in a negative effect on the efficiency and energy consumption of the process. On the other hand, increasing the applied current, favored metal removal but resulted in a power consumption increase. Different initial concentrations did not affect metal removal efficiency. The optimal results, regarding both cost and EC efficiency, were obtained with a combination of iron electrodes, at 2 cm distance, at initial current of 0.1 A and pH=6. After 90 min of treatment, maximum removal percentages obtained were 89% for Mn, 100% for Cu and 100% for Zn, at an energy consumption of 2.55 kWh/m(3).
Collapse
Affiliation(s)
- Evangelos Gatsios
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100, Greece.
| | - John N Hahladakis
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100, Greece.
| | - Evangelos Gidarakos
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100, Greece.
| |
Collapse
|