1
|
Maaghloud FE, Elfoulani AA, Abdou A, Chafi M, El Hakmaoui A, Elmakssoudi A, Jamal Eddine J, Akssira M, Dakir M. Improvement of humic acid (HA) removal using a new inorganic-organic composite coagulant: α-costic acid as a modifier of polyaluminum chloride properties. ANAL SCI 2024; 40:29-36. [PMID: 37903984 DOI: 10.1007/s44211-023-00450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/05/2023] [Indexed: 11/01/2023]
Abstract
In this work, α-costic acid (αCA), a plant sesquiterpenoid from Dittrichia viscosa, was grafted into polyaluminum chloride (PAC), forming a new eco-sustainable composite coagulant PAC-αCA with improved functionality. The α-costic acid fraction grafted into the PAC and the distribution of aluminum forms in the composite coagulant were evaluated for their effectiveness in removing bentonite and humic acid from synthetic water. The interaction mechanism between PAC and α-CA was examined by the Al-Ferron time spectrophotometric method, density functional theory (DFT), and FTIR analysis. By monitoring the aluminum speciation in the composite coagulant PAC-αCA, it was discovered that the introduction of α-CA impacted the distribution of various aluminum forms, including mononuclear Ala, highly polymeric Alb, colloidal, and medium polymeric Alc. The theoretical analysis identified the Alb species as particularly sensitive to reacting with α-CA. Furthermore, coagulation performance tests demonstrated that increasing the percentage of α-CA and promoting the prevalence of Alb and Alc species over Ala species in PAC-αCA led to improved removal of turbidity and UV254. This study provides an attractive and practical option for water treatment plants to remove colloidal suspensions in raw water effectively.
Collapse
Affiliation(s)
- Fatima Ezzahra Maaghloud
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco.
| | - Anouar Abdellah Elfoulani
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
- Laboratory of Engineering, Processes and Environment, Higher School of Technology, University Hassan II, Eljadida Road, Km 7, B.P. 8012, Casablanca, Morocco
| | - Achraf Abdou
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Chafi
- Laboratory of Engineering, Processes and Environment, Higher School of Technology, University Hassan II, Eljadida Road, Km 7, B.P. 8012, Casablanca, Morocco
| | - Ahmed El Hakmaoui
- Laboratory of Physical Chemistry & Bioorganic Chemistry, Faculty of Sciences and Technologies Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abdelhakim Elmakssoudi
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Jamal Jamal Eddine
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Akssira
- Laboratory of Physical Chemistry & Bioorganic Chemistry, Faculty of Sciences and Technologies Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Dakir
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco.
| |
Collapse
|
2
|
Zeirani Nav T, Pümpel T, Bockreis A. Dissolved organic material changes during combined treatment of a mixture of landfill leachate and anaerobic digestate using deammonification and chemical coagulation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:38-53. [PMID: 38214985 PMCID: wst_2023_400 DOI: 10.2166/wst.2023.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The current study investigates the combined treatment of wastewater of anaerobic digestate and landfill leachate, using deammonification and coagulation/flocculation processes. The deammonification section studies the performance of a full-scale deammonification plant in nitrogen and chemical oxygen demand (COD) removal, monitored over 2 years. For further COD reduction from the deammonification effluent (DE) to meet the environmental regulatory standards, coagulation/flocculation using three different Al-based coagulants was used to treat the DE. Results revealed that the deammonification plant showed 80% average ammonium removal from the mixed feed over the study period. Additionally, 30% of the feed COD was removed in the deammonification plant. COD analysis after treatment using coagulants revealed that the polyaluminum chloride modified with Fe had the best performance in reducing COD to meet the environmental standards. Excitation-emission matrix-parallel factor analysis (EEM-PARAFAC) of the dissolved organic material (DOM) samples indicated that fluorescents were the compounds mostly affected by the coagulant types. DOM analysis using 2D correlation Fourier-transform infrared spectroscopy revealed that the applied coagulants showed minor differences in removing different functional groups, despite having different COD reduction performance. Wastewater elemental analysis indicated elevated metal concentrations in low pH conditions (<6) due to re-stabilization of the flocs using coagulants.
Collapse
Affiliation(s)
- Tayyeb Zeirani Nav
- Unit of Environmental Engineering, Department for Infrastructure, University of Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria E-mail:
| | - Thomas Pümpel
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Anke Bockreis
- Unit of Environmental Engineering, Department for Infrastructure, University of Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Sun Y, Wu Q, Li X, Sun W, Zhou J, Shah KJ. Preparation of composite coagulant for the removal of microplastics in water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10969. [PMID: 38148739 DOI: 10.1002/wer.10969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
In this work, a composite flocculant (polyferric titanium sulfate-polydimethyldiallylammonium chloride [PFTS-PDMDAAC]) with a rich spatial network structure was prepared for the treatment of simulated wastewater containing polystyrene (PS) micro-nanoparticles. Characterization results showed that the surface of the PFTS-PDMDAAC was a three-dimensional network polymer of chain molecules that exhibited good thermal stability and formed an amorphous polymer containing multiply hydroxyl-bridged titanium and iron. When n(OH- ) : n(Fe) = 1:2, n(PO4 3- ) : n(Fe) = 0.35, n(Ti) : n(Fe) = 1:8, n(DMDAAC) : n(Fe) = 5:100, and the polymerization temperature is 60°C, the prepared composite flocculant has the best effect. The effects of dosage, pH, and agitation intensity on the flocculation properties of PFTS-PDMDAAC were also studied. The optimal removal rates of PS-μm and haze by PFTS-PDMDAAC were 85.60% and 90.10%, respectively, at a stirring intensity of 200 rpm, a pH of 9.0, and a PFTS-PDMDAAC dosage of 20 mg/L. The flocs produced by the PFTS-PDMDAAC flocculation were large and compact in structure, and the flocculation mechanism was mainly based on adsorption bridging. Kaolin played a promoting role in the process of PS-μm removal by PFTS-PDMDAAC floc and accelerated the formation of large and dense flocs. This study provided a reference for the coagulation method to remove micro-nanopollutants in the actual water treatment process. PRACTITIONER POINTS: A composite flocculant with rich spatial network structure (PFTS-PDMDAAC) was prepared. PFTS-PDMDAAC can effectively remove micro-nano polystyrene (PS) in wastewater. The floc produced by PFTS-PDMDAAC is large and compact in structure. The flocculation mechanism of PFTS-PDMDAAC is mainly adsorption bridging.
Collapse
Affiliation(s)
- Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Qu Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Xiaoqi Li
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Wenquan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Jun Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Kinjal J Shah
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| |
Collapse
|
4
|
Ishak SA, Murshed MF, Zainol MRRMA, Kamal NHM. Enhancing floc size and strength with a hybrid polymer of zinc oxide, acrylamide, and tannin in textile wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:3057-3083. [PMID: 38154794 PMCID: wst_2023_404 DOI: 10.2166/wst.2023.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
This study involved synthesising new hybrid polymers called ZOPAT, made up of zinc oxide, acrylamide, and tannin, using a blended technique. The effectiveness of ZOPAT in treating textile wastewater was then tested by measuring floc growth rate, flocculation index, strength factor, and recovery factor under optimised conditions. The study also identified the zeta potential, morphology, elemental composition, and functional groups of the polymers. Response surface methodology determines the optimal pH and ZOPAT dose, resulting in 93% colour, 80% chemical oxygen demand (COD), 100% turbidity, and suspended solids (SS) removal at pH 9.22 and 737 mg/L ZOPAT. The study found that ZOPAT was more effective than commercial Polyaluminium chloride in reducing colour and COD, producing larger and stronger flocs, and requiring a shorter coagulation time of 17.5 min. ZOPAT was also easy to homogenise and operate due to its one-unit dosing system. The study attributes the success of ZOPAT to the presence of Zn, N, and K, which create electrostatic attraction with opposite charged particles, and the formation of dye-particle-dye with amide, hydroxyl, and carboxyl groups in ZOPAT, which remove colour, turbidity, COD, and SS. Overall, the study concludes that ZOPAT has significant potential for textile wastewater treatment.
Collapse
Affiliation(s)
- Siti Aisyah Ishak
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia E-mail:
| | - Mohamad Fared Murshed
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia
| | | | - Nurul Hana Mokhtar Kamal
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia
| |
Collapse
|
5
|
Nguyen VCN, Phan HVT, Nguyen VK, Vo DT, Tran TN, Dao MT, Hoang LTTT. A Comparison of a Conventional Chemical Coagulant and a Natural Coagulant Derived from Cassia fistula Seeds for the Removal of Heavy Metal Ions. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:324-331. [PMID: 37249609 DOI: 10.1007/s00244-023-01005-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Cassia fistula seed-derived coagulant has been reported to exhibit high coagulating-flocculating activity, environmental friendliness, and cost-effectiveness for the wastewater treatment, especially of textile wastewater. For heavy metal removal, however, research focusing on evaluating the feasibility of this material is still limited. Therefore, this study reports jar-test experiments in which the Zn2+ and Ni2+ removal efficiency of C. fistula coagulant was assessed. Moreover, a comparison of coagulation performance using a conventional chemical coagulant and the natural coagulant was performed. Characterization of the C. fistula seed-derived coagulant revealed the presence of important functional groups and fibrous networks with rough surfaces. A bench-scale study indicated that the coagulation performance of the two coagulants depends strongly on the initial concentration of metal ions, pH level, and coagulant dosage. The C. fistula seed-derived coagulant was found to possess higher removal efficiency than polyaluminum chloride. This natural coagulant removed over 80% of metal ions at the optimal conditions of pH 5.0, a metal ion concentration of 25 ppm, and a dosage of 0.8 and 1.6 g/L for Zn2+ and Ni2+, respectively. This study shows that C. fistula seed-derived coagulant is a potential alternative to chemical coagulants and could be developed to provide an environmentally friendly, economical, and efficient wastewater treatment.
Collapse
Affiliation(s)
| | - Hoang-Vinh-Truong Phan
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Duc-Thuong Vo
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot, Binh Duong, 820000, Vietnam
| | - Thanh-Nha Tran
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot, Binh Duong, 820000, Vietnam
| | - Minh-Trung Dao
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot, Binh Duong, 820000, Vietnam.
| | - Le-Thuy-Thuy-Trang Hoang
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot, Binh Duong, 820000, Vietnam.
| |
Collapse
|
6
|
Subash A, Naebe M, Wang X, Kandasubramanian B. Biopolymer - A sustainable and efficacious material system for effluent removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130168. [PMID: 36302289 DOI: 10.1016/j.jhazmat.2022.130168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Undesired discharge of various effluents directly into the aquatic ecosystem can adversely affect water quality, endangering aquatic and terrestrial flora and fauna. Therefore, the conceptual design and fabrication of a sustainable system for alleviating the harmful toxins that are discharged into the atmosphere and water bodies using a green sustainable approach is a fundamental standpoint. Adsorptive removal of toxins (∼99% removal efficacy) is one of the most attractive and facile approaches for cleaner technologies that remediate the environmental impacts and provide a safe operating space. Recently, the introduction of biopolymers for the adsorptive abstraction of toxins from water has received considerable attention due to their eclectic accessibility, biodegradability, biocompatibility, non-toxicity, and enhanced removal efficacy (∼ 80-90% for electrospun fibers). This review summarizes the recent literature on the biosorption of various toxins by biopolymers and the possible interaction between the adsorbent and adsorbate, providing an in-depth perspective of the adsorption mechanism. Most of the observed results are explained in terms of (1) biopolymers classification and application, (2) toxicity of various effluents, (3) biopolymers in wastewater treatment and their removal mechanism, and (4) regeneration, reuse, and biodegradation of the adsorbent biopolymer.
Collapse
Affiliation(s)
- Alsha Subash
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia; Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| |
Collapse
|
7
|
Shi C, Wang Q, Li D, Zeng B, Liu Q, Cui Y, Wang J, Wang X. Inorganic composite coagulant for wool scouring wastewater treatment: performance, kinetics and coagulation mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
8
|
Pandey RP, Kallem P, Hegab HM, Rasheed PA, Banat F, Hasan SW. Cross-linked laminar graphene oxide membranes for wastewater treatment and desalination: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115367. [PMID: 35636111 DOI: 10.1016/j.jenvman.2022.115367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) lamellar graphene oxide (GO) membranes are emerging as attractive materials for molecular separation in water treatment because of their single atomic thickness, excellent hydrophilicity, large specific surface areas, and controllable properties. To yet, commercialization of GO laminar membranes has been hindered by their propensity to swell in hydrated conditions. Thus, chemical crosslinking of GO sheets with the polymer matrix is used to improve GO membrane hydration stability. This review focuses on pertinent themes such as how chemical crosslinking improves the hydration stability, separation performance, and antifouling properties of GO membranes.
Collapse
Affiliation(s)
- Ravi P Pandey
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Parashuram Kallem
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, 678 557, Kerala, India
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Lu S, Ma Y, Zhao L. Production of ZnO-CoOx-CeO2 nanocomposites and their dye removal performance from wastewater by adsorption-photocatalysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Superhydrophobic starch-based adsorbent with honeycomb coral-like surface fabricated via facile immersion process for removing oil from water. Int J Biol Macromol 2022; 207:549-558. [PMID: 35292279 DOI: 10.1016/j.ijbiomac.2022.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 01/18/2023]
Abstract
The development of novel superhydrophobic adsorbents is highly demanded for tackling frequent oil spill accidents. Porous starch-based materials have been proven to possess good oil absorption performance, but their superhydrophobicity has not yet been reported, thus limiting their application in oil spill cleanup. Herein, a superhydrophobic starch-based adsorbent (MSC) was fabricated through the facile immersion process of starch cryogel (SC) into toluene solution of methyltrichlorosilane (MTS). Low-surface-energy and honeycomb coral-like micro/nanostructures, which contribute to high water contact angle (>151.0°) and low sliding angle (<15.0°), were provided simultaneously to SC by the hydrolysis-condensation reaction of MTS. MSC exhibited excellent water repellent, self-cleaning, and anti-fouling properties, as well as passable mechanical and chemical durability. The reasonable oil adsorption performance and selective wettability toward oil and water allowed this absorbent to be applied for heavy oil removal underwater and oil slick cleaning from the water surface. It is expected that the facile strategy provided by this work will accelerate the application of superhydrophobic starch-based materials in oil contamination removal and other industrial activities.
Collapse
|
11
|
Multi-Objective Function Optimization of Cemented Neutralization Slag Backfill Strength Based on RSM-BBD. MATERIALS 2022; 15:ma15041585. [PMID: 35208125 PMCID: PMC8875999 DOI: 10.3390/ma15041585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Tailings produced in the beneficiation of Carlin-type gold deposits are characterized by fine particle size and high mud content. When neutralized with wasted acid generated by pressurized pre-oxidation, the tailings turn to neutralized slag and perform as a novel backfill material. To understand the influential behavior of variable factors on the strength and its optimization of cemented neutralization slag backfill, RMS-BBD design test was carried out with 56–60% slurry mass fraction, 12.5–25% cement/(neutralization slag + waste rock) (i.e., C/(S+R)) and 30–40% waste rock content. A modified three-dimensional quadratic regression model was proposed to predict the strength of cemented neutralization slag backfill. The results showed that backfill strength predicted by the modified ternary quadratic regression model was in high coincidence with the data of backfill mixture tests. C/(S+R) was predominant in backfill strength with regard to every single influential factor throughout the curing age, and the mass fraction of slurry had a significant effect on the later strength. From the perspective of economic and engineering operation, a multi-objective function method was further introduced to optimize the backfill strength. The optimal mixture proportion of cemented neutralized slag backfill slurry was: 58.4% slurry mass fraction, 32.2% waste rock content, and 20.1% C/(S+R). The backfill strength of this mixture proportion on days 7, 28 and 56 was verified as 0.42, 0.64 and 0.85 MPa, respectively. RSM-BBD design and multi-objective function optimization proposed a reliable way to evaluate and optimize the strength of neutralized slag backfill with high mud content.
Collapse
|
12
|
Ihsanullah I, Bilal M, Jamal A. Recent Developments in the Removal of Dyes from Water by Starch-Based Adsorbents. CHEM REC 2022; 22:e202100312. [PMID: 35102677 DOI: 10.1002/tcr.202100312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Indexed: 12/24/2022]
Abstract
Starch-based adsorbents have demonstrated excellent potential for the removal of various noxious dyes from wastewater. This review critically evaluates the recent progress in applications of starch-based adsorbents for the removal of dyes from water. The synthesis methods of starch-based composites and their effects on physicochemical characteristics of produced adsorbents are discussed. The removal of various dyes by starch-based adsorbents are described in detail, with emphasis on the effect of key parameters, adsorption mechanism and their reusability potential. The key challenges related to the synthesis and applications of starch-based adsorbents in water purification are highlighted. Based on the research gaps, recommendations for future research are made. The evaluation of starch-based adsorbents would contribute to the development of sustainable water treatment options in near future.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd, University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Arshad Jamal
- Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
13
|
Liu Y, Xiang Y, Xu H, Li H. The reuse of nano-TiO2 under different concentration of CO32– using coagulation process and its photocatalytic ability in treatment of methyl orange. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Wang K, Liu H, Wang Y, Zhao D, Zhai J. Study on the Flocculation Performance of a Cationic Starch‐Based Flocculant on Humic Substances in Textile Dyeing Wastewater. STARCH-STARKE 2022. [DOI: 10.1002/star.202100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kexu Wang
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Hongfei Liu
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Yating Wang
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Dishun Zhao
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Jianhua Zhai
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| |
Collapse
|
15
|
Fabrication of an efficient ternary TiO2/Bi2WO6 nanocomposite supported on g-C3N4 with enhanced visible-light- photocatalytic activity: Modeling and systematic optimization procedure. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Starch engineered with Moringa oleifera seeds protein crosslinked Fe 3O 4: A synthesis and flocculation studies. Int J Biol Macromol 2021; 193:2006-2020. [PMID: 34752794 DOI: 10.1016/j.ijbiomac.2021.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022]
Abstract
This study aimed to utilize cationic protein extracted from the Moringa oleifera seed in the fabrication of cationic starch crosslinked with magnetic nanoparticles (MagCS). Important synthesis parameters include starch to cationic protein volume ratio, magnetic nanoparticles mass fraction, reaction and crosslinking time, reaction and crosslinking temperature and crosslinker concentration. At optimum synthesis conditions, MagCS yield a 38.55% amide content, 2.46 degree of substitution, 1.1 mmol/g charge density and 78.6% crosslinking, which are much higher compared to other starch derivatives. A series of characterization analyses such as Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, elemental analysis and vibrating sample magnetometer concluded that MagCS was embedded with amide group, has high crystallinity structure, is thermally stable and shows a promising magnetic characteristic. Based on the synthesis parameters and characterization studies, the synthesis mechanism of MagCS was also postulated. The flocculation performance of MagCS was successfully assessed for the treatment of palm oil mill effluent. At optimum dosage, initial pH and settling time of 1.0 g/L, 9.0 and 15 min, the MagCS flocculant was able to remove 90.48, 83.95 and 58.19% of turbidity, color and chemical oxygen demand, respectively. This study provides an alternative eco-friendly materials in the wastewater treatment application.
Collapse
|
17
|
Saracoglu P, Ozmen MM. Starch Based Nanogels: From Synthesis to Miscellaneous Applications. STARCH-STARKE 2021. [DOI: 10.1002/star.202100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pelin Saracoglu
- Department of Bioengineering Yildiz Technical University Istanbul 34220 Turkey
| | - Mehmet Murat Ozmen
- Department of Bioengineering Yildiz Technical University Istanbul 34220 Turkey
| |
Collapse
|
18
|
Pilot-Scale Study of Real Domestic Textile Wastewater Treatment Using Cassia fistula Seed-Derived Coagulant. J CHEM-NY 2021. [DOI: 10.1155/2021/7608856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plant-derived coagulants have exhibited a good potential in wastewater treatment due to their “green” characteristics, high coagulating-flocculating activity, cost-effectiveness, and biodegradability. Nevertheless, research studies have focused mainly on bench-scale experiments; pilot-scale and full-scale simulations are still limited. Herein, we firstly report a pilot-scale study of real domestic textile wastewater treatment using Cassia fistula coagulant. The material characterizations using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and dynamic light scattering (DLS) revealed that the natural gum extracted from C. fistula seed possessed a rough and irregular surface containing a high molecular weight galactomannan. The bench-scale investigation was initially conducted to determine the optimal pollutant concentration, initial pH, and coagulant dosage in the coagulation-flocculation process. The pilot-scale study revealed that C. fistula coagulant is an effective material for real textile wastewater treatment, showing percentage removal of 93.83% at a volume of 30 L and a coagulant dosage of 1.17 mg·L−1. Coagulation-flocculation using C. fistula seed gum could be an efficient primary wastewater treatment prior to membrane or biological methods to meet Vietnamese environmental standards. The main mechanisms of textile wastewater treatment involve adsorption/bridging interactions via hydrogen bonding and electrostatic attraction between negatively charged carboxylate groups of the coagulant and positively charged pollutants.
Collapse
|
19
|
Zhang T, Jin X, Owens G, Chen Z. Remediation of malachite green in wastewater by ZIF-8@Fe/Ni nanoparticles based on adsorption and reduction. J Colloid Interface Sci 2021; 594:398-408. [PMID: 33774396 DOI: 10.1016/j.jcis.2021.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 01/14/2023]
Abstract
Dye-contaminated wastewater resulting from rapid industrialization and urbanization is a global problem. In this study, a ZIF-8@Fe/Ni sample was synthesized for the removal of malachite green (MG), removing more than 99% of an initial MG concentration of 50 mg L-1 within 120 min with a 318 K adsorption capacity of 151.520 mg g-1. To understand the dye removal mechanism based on adsorption and reduction, ZIF-8@Fe/Ni was characterized by various techniques. XRD showed that the ZIF-8@Fe/Ni composite had a characteristic peak attributable to Fe/Ni around 44.8°, where the presence of Fe/Ni did not affect the structure of ZIF-8. SEM confirmed that ZIF-8@Fe/Ni was successfully prepared, while XRD and FTIR revealed that the structure of ZIF-8@Fe/Ni remained stable following the introduction of Fe/Ni. XPS showed that while Fe/Ni nanoparticles existed in ZIF-8-Fe/Ni, partial oxidation also occurred. GC-MS demonstrated the creation of two major MG degradation products, (4-aminophenyl) (phenyl) methanone and 4-aminophenol. While the overall adsorption process of MG to ZIF-8@Fe/Ni conformed to pseudo-second-order kinetics, degradation followed pseudo-first-order reduction kinetics. When applied to the remediation of wastewater, ZIF-8@Fe/Ni removed 92% of MG. Overall, this study demonstrated that ZIF-8@Fe/Ni could be a promising material for the treatment of wastewater.
Collapse
Affiliation(s)
- Tao Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| |
Collapse
|
20
|
Potential of Carica papaya Seed-Derived Bio-Coagulant to Remove Turbidity from Polluted Water Assessed through Experimental and Modeling-Based Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is important to develop renewable bio-coagulants to treat turbid water and efficient use of these bio-coagulants requires process optimization to achieve robustness. This study was conducted to optimize the coagulation process using bio-coagulant of deshelled Carica papaya seeds by employing response surface methodology (RSM). This bio-coagulant was extracted by a chemical-free solvent. The experiments were conducted using the Central Composite Design (CCD). Initially, the functional groups and protein content of the bio-coagulant were analyzed. The Fourier Transform Infrared Spectroscopy analysis showed that the bio-coagulant contained OH, C=O and C-O functional groups, which enabled the protein to become polyelectrolyte. The highest efficiency of the bio-coagulant was obtained at dosage of 196 mg/L, pH 4.0 and initial turbidity of 500 NTU. At the optimum conditions, the bio-coagulant achieved 88% turbidity removal with a corresponding 83% coagulation activity. These findings suggested that the deshelled Carica papaya seeds have potential as a promising bio-coagulant in treating the polluted water.
Collapse
|
21
|
Initialization, enhancement and mechanisms of aerobic granulation in wastewater treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Muniz GL, Silva TCFD, Borges AC. Assessment and optimization of the use of a novel natural coagulant (Guazuma ulmifolia) for dairy wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140864. [PMID: 32707414 DOI: 10.1016/j.scitotenv.2020.140864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
A feasible, novel, and natural coagulant extracted from G. ulmifolia stem bark was characterized and used in experiments of coagulation/dissolved air flotation (C/DAF) to treat synthetic dairy wastewater (SDW). The performance of G. ulmifolia to remove turbidity, chemical oxygen demand (COD), and UV254 was evaluated by using response surface methodology (Doehlert matrix). G. ulmifolia dosage and pH were evaluated and optimized in the C/DAF process and its characterization was performed by Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and also zeta potential. Results showed that G. ulmifolia stem bark is composed of large quantities of condensed tannins represented by the groups C=C-C and CO of pyran (flavonoid C-rings), which serve as bridges during coagulation. Moreover, the presence of porous cavities in surface of G. ulmifolia, shown by SEM, indicated capacity for adsorption. G. ulmifolia dosage and pH were significant (p ≤ 0.05) for pollutant removal from the SDW. Jar test results revealed that 95.8% of turbidity, 76.0% of COD, 81.2% of BOD, and 85.6% of UV254 were removed from SDW by using G. ulmifolia stem bark at a dose of 775.8 mg L-1 and pH 5.00. Finally, our results showed promising use of G. ulmifolia as a coagulating agent due to its novelty, efficiency, low-cost, and eco-friendly properties as an alternative for the treatment of dairy wastewaters.
Collapse
Affiliation(s)
- Gustavo Lopes Muniz
- College of Agricultural Engineering, Campinas State University, Ave. Cândido Rondon, 501, Cidade Universitária, Campinas 13.083-875, São Paulo, Brazil; Department of Agricultural Engineering, Federal University of Viçosa, Ave. P. H. Rolfs s/n, Viçosa 36.570-900, Minas Gerais, Brazil
| | | | - Alisson Carraro Borges
- Department of Agricultural Engineering, Federal University of Viçosa, Ave. P. H. Rolfs s/n, Viçosa 36.570-900, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Kaur A, Singh D, Sud D. A review on grafted, crosslinked and composites of biopolymer Xanthan gum for phasing out synthetic dyes and toxic metal ions from aqueous solutions. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02271-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Wang S, Li E, Li J, Du Z, Cheng F. Preparation and coagulation-flocculation performance of covalently bound organic hybrid coagulant with excellent stability. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Microwave assisted copolymerization of sodium alginate and dimethyl diallyl ammonium chloride as flocculant for dye removal. Int J Biol Macromol 2020; 156:585-590. [DOI: 10.1016/j.ijbiomac.2020.04.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
|
26
|
The Application of Modified Natural Polymers in Toxicant Dye Compounds Wastewater: A Review. WATER 2020. [DOI: 10.3390/w12072032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The utilization of various types of natural and modified polymers for removing toxicant dyes in wastewater generated by the dye industry is reviewed in this article. Dye wastewater contains large amounts of metals, surfactants, and organic matter, which have adverse effects on human health, potentially causing skin diseases and respiratory problems. The removal of dyes from wastewaters through chemical and physical processes has been addressed by many researchers. Currently, the use of natural and modified polymers for the removal of dyes from wastewater is becoming more common. Although modified polymers are preferred for the removal of dyes, due to their biodegradability and non-toxic nature, large amounts of polymers are required, resulting in higher costs. Surface-modified polymers are more effective for the removal of dyes from the wastewater. A survey of 80 recently published papers demonstrates that modified polymers have outstanding dye removal capabilities, and thus have a high applicability in industrial wastewater treatment.
Collapse
|
27
|
Huang X, Wan Y, Shi B, Shi J, Chen H, Liang H. Characterization and application of poly-ferric-titanium-silicate-sulfate in disperse and reactive dye wastewaters treatment. CHEMOSPHERE 2020; 249:126129. [PMID: 32062210 DOI: 10.1016/j.chemosphere.2020.126129] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/25/2019] [Accepted: 02/04/2020] [Indexed: 05/12/2023]
Abstract
A novel coagulant poly-ferric-titanium-silicate-sulfate (PFTS) was synthesized and employed to treat two typical kinds of dye wastewaters-disperse blue and reactive yellow. The results indicated that PFTS with a Si/Fe molar ratio of 0.02 exhibited superior coagulation performance, especially under alkaline condition. The residual turbidity after coagulation by PFTS was only half of that after coagulation by poly-ferric-titanium sulfate (T-PSF). The sludge volume index was also reduced by PFTS compared to T-PSF in reactive dye treatment. Through the structure and morphology investigation of PFTS, it was found that new bonds of Si-O-Fe, Si-O-Ti and Fe-OH (Si-OH) were formed, and multi-branched structures and expanded surface area were generated. Additionally, compared with T-PSF, the floc strength and the floc size were also enhanced by PFTS, which was attributed to the polymerization between polysilicic acid and Fe/Ti which formed multi-branched structures, and finally adsorption and bridging ability of the coagulant was improved. Furthermore, the floc formed in reactive yellow wastewater treatment was larger and looser than that formed in disperse blue wastewater, with poorer strength and recovery ability, which can also interpret the better coagulation efficiency in disperse dye water treatment. From the results of coagulant characterization, zeta potential and flocs properties, it can be inferred that charge neutralization by the positive charged hydrolysate of coagulant was identified as the critical effect in disperse dyes removal, while the sweep and adsorption of metal hydroxyl compound formed during the hydrolysis of coagulants were considered to play a key role in reactive dye removal.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Rd, Beijing, 100085, China.
| | - Yang Wan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Rd, Beijing, 100085, China; School of Textiles, Nantong University, Nantong, 226019, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Rd, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian Shi
- Analysis & Testing Center, Nantong University, Nantong, 226019, China.
| | - Huan Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Rd, Beijing, 100085, China.
| | - Huikai Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Rd, Beijing, 100085, China.
| |
Collapse
|
28
|
Cui H, Huang X, Yu Z, Chen P, Cao X. Application progress of enhanced coagulation in water treatment. RSC Adv 2020; 10:20231-20244. [PMID: 35520422 PMCID: PMC9059168 DOI: 10.1039/d0ra02979c] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/19/2020] [Indexed: 11/30/2022] Open
Abstract
Water industries worldwide consider coagulation/flocculation to be one of the major treatment methods for improving the overall efficiency and cost effectiveness of water and wastewater treatment. Enhancing the coagulation process is currently a popular research topic. In this review article, the latest developments in enhanced coagulation are summarized. In addition, the mechanisms of enhanced coagulation and the effect of process parameters on processing efficiency are discussed from the perspective of ballast-enhanced coagulation, preoxidation, ultrasound, and composite coagulants. Finally, improvements and new directions for enhanced coagulation are proposed.
Collapse
Affiliation(s)
- Hongmei Cui
- School of Civil Engineering and Architecture, Northeast Petroleum University China
- Key Laboratory of Disaster Prevention and Mitigation, Projective Engineering of Heilongjiang Province Daqing 163318 China
| | - Xing Huang
- School of Civil Engineering and Architecture, Northeast Petroleum University China
| | - Zhongchen Yu
- School of Civil Engineering and Architecture, Northeast Petroleum University China
- Key Laboratory of Disaster Prevention and Mitigation, Projective Engineering of Heilongjiang Province Daqing 163318 China
| | - Ping Chen
- School of Civil Engineering and Architecture, Northeast Petroleum University China
- Key Laboratory of Disaster Prevention and Mitigation, Projective Engineering of Heilongjiang Province Daqing 163318 China
| | - Xiaoling Cao
- School of Civil Engineering and Architecture, Northeast Petroleum University China
| |
Collapse
|
29
|
Benafqir M, Hsini A, Laabd M, Laktif T, Ait Addi A, Albourine A, El Alem N. Application of Density Functional Theory computation (DFT) and Process Capability Study for performance evaluation of Orthophosphate removal process using Polyaniline@Hematite-titaniferous sand composite (PANI@HTS) as a substrate. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116286] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Guo D, Xiao Y, Li T, Zhou Q, Shen L, Li R, Xu Y, Lin H. Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly. J Colloid Interface Sci 2020; 560:273-283. [DOI: 10.1016/j.jcis.2019.10.078] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/27/2022]
|
31
|
Wang F, Luo Y, Ran G, Li Q. Sequential coagulation and Fe 0-O 3/H 2O 2 process for removing recalcitrant organics from semi-aerobic aged refuse biofilter leachate: Treatment efficiency and degradation mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134371. [PMID: 31522039 DOI: 10.1016/j.scitotenv.2019.134371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Landfill leachate effluent obtained after semi-aerobic aged refuse biofilter (SAARB) treatment still contains various recalcitrant organics. In this study, a sequential coagulation and Fe0-O3/H2O2 process was developed for treating SAARB leachate. The effects in terms of degradation of recalcitrant organics and the related mechanisms due to the coagulation and Fe0-O3/H2O2 processes were systematically explored and discussed. The results indicated that polymerized ferric sulfate was the most efficient coagulant for treating SAARB leachate where the chemical oxygen demand (COD), UV254, and CN removal efficiencies were 59.60%, 63.22%, and 70.32%, respectively. In the Fe0-O3/H2O2 process under the optimized conditions comprising Fe0 dose = 0.6 g/L, O3 dose = 26.80 mg/min, H2O2 dose = 1.0 mL/L, and reaction time = 20 min, the COD, UV254, and CN removal efficiencies with the coagulated supernatant were 43.39%, 59.47%, and 93.20%, respectively, and the biodegradability (biochemical oxygen demand/COD) improved greatly from 0.06 to 0.34. Analysis of UV-Vis and 3D-EEM spectra indicated that coagulation-resistant substances in the SAARB leachate could be effectively degraded and destroyed by the Fe0-O3/H2O2 process. In the O3/H2O2 environment, Fe0 generated Fe2+ and iron oxides (Fe2O3, Fe3O4, and FeOOH) with homogeneous and heterogeneous catalytic roles against O3/H2O2 to produce reactive oxygen species. Furthermore, Fe(OH)2 and Fe(OH)3 colloids contributed to the removal of organics to some extent via adsorption and precipitation effects. In conclusion, the proposed sequential coagulation and Fe0-O3/H2O2 process is an efficient method for treating recalcitrant organics in SAARB leachates.
Collapse
Affiliation(s)
- Fan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Yuangfeng Luo
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Gang Ran
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China.
| |
Collapse
|
32
|
Chen Y, Liu X, Sun X, Zhang J, Mi Y, Li Q, Guo Z. Synthesis and Antioxidant Activity of Cationic 1,2,3-Triazole Functionalized Starch Derivatives. Polymers (Basel) 2020; 12:E112. [PMID: 31948022 PMCID: PMC7023368 DOI: 10.3390/polym12010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, starch was chemically modified to improve its antioxidant activity. Five novel cationic 1,2,3-triazole functionalized starch derivatives were synthesized by using "click" reaction and N-alkylation. A convenient method for pre-azidation of starch was developed. The structures of the derivatives were analyzed using FTIR and 1H NMR. The radicals scavenging abilities of the derivatives against hydroxyl radicals, DPPH radicals, and superoxide radicals were tested in vitro in order to evaluate their antioxidant activity. Results revealed that all the cationic starch derivatives (2a-2e), as well as the precursor starch derivatives (1a-1e), had significantly improved antioxidant activity compared to native starch. In particular, the scavenging ability of the derivatives against superoxide radicals was extremely strong. The improved antioxidant activity benefited from the enhanced solubility and the added positive charges. The biocompatibility of the cationic derivatives was confirmed by the low hemolytic rate (<2%). The obtained derivatives in this study have great potential as antioxidant materials that can be applied in the fields of food and biomedicine.
Collapse
Affiliation(s)
- Yuan Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China (X.L.)
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiguang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China (X.L.)
| | - Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Lin S, Li Q, Zhong Y, Li J, Zhao X, Wang M, Zhao G, Pan J, Zhu H. Cross-Linked Double Network Graphene Oxide/Polymer Composites for Efficient Coagulation-Flocculation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:1900051. [PMID: 31956426 PMCID: PMC6957014 DOI: 10.1002/gch2.201900051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Hybrid coagulant/flocculant consisting of nanomaterials have tremendous potential in solid-liquid separation and can be applied to the coagulation-flocculation-sedimentation process of water treatment. In this work, inspired by the mineralization in nature, a graphene oxide/polymer-based hybrid coagulant/flocculant that precipitates large-scale, multicomponent (e.g., dyes, heavy metal ions, and nanoparticles) and complex pollutants simultaneously at room temperature by forming double-network hydrogel through bioinspired Ca2+ crosslinking, is developed for the purification of wastewater. The coagulation-flocculation-sedimentation method developed here also provides a novel strategy for the preparation of macroscopic assemblies of multicomponents that can be applied to various application fields.
Collapse
Affiliation(s)
- Shuyuan Lin
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Qilong Li
- Fangda Carbon New Material Co., Ltd.Lanzhou730084GansuChina
| | - Yujia Zhong
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Jing Li
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Xuanliang Zhao
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Min Wang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Guoke Zhao
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Jialiang Pan
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Hongwei Zhu
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
34
|
Su Q, Wang Y, Zhao X, Wang H, Wang Z, Wang N, Zhang H. Functionalized nano-starch prepared by surface-initiated atom transfer radical polymerization and quaternization. Carbohydr Polym 2019; 229:115390. [PMID: 31826456 DOI: 10.1016/j.carbpol.2019.115390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Functionalized nano-starch particles, designed for the adsorption of heavy metals in wastewater, were prepared by a nano-processing, a halogenated grafting modification, a grafting copolymerization of surface-initiated atom transfer radical polymerization (SI-ATRP) and a quaternized modification of native corn starch. The influence of the synthesis process variables, such as the hydrolysis time, the concentration of monomer, the molar ratio of copper bromide (CuBr) to 2, 2'-bipyridine (bpy) and the graft copolymerization temperature on the properties of the products were studied. The morphology, molecular structure, crystalline structure of the functionalized nano-starch and its derivatives were characterized by Fourier transform-infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H-NMR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The functionalized nano-starch showed strong adsorption for chromate and could be used as an effective wastewater treatment agent. Its adsorption capability could be almost totally regenerated by an easy process.
Collapse
Affiliation(s)
- Qiong Su
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China
| | - Yanbin Wang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Xiangfei Zhao
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Hongling Wang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China
| | - Zhichao Wang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China
| | - Nianen Wang
- Taohuashan TV Station of Culture, Sports, Film and Television Bureau of Huining County of Gansu, BaiYin, 730700, PR China
| | - Hong Zhang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China
| |
Collapse
|
35
|
Wang H, Zhang Y, Gao D, Wang G, Ma Y, Wu Z, Pu H, Li Y, Guo Y, Wang B, Qi X, Yang J. Research on self-degradation of RGO/TiO2-P(AM-DAC) organic-inorganic composite flocculant prepared by surface initiated polymerization and its flocculation mechanism of oil sand tailings. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Xu Q, Peng J, Zhang W, Wang X, Lou T. Electrospun cellulose acetate/P(DMDAAC‐AM) nanofibrous membranes for dye adsorption. J Appl Polym Sci 2019. [DOI: 10.1002/app.48565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qing Xu
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Jing Peng
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Weixing Zhang
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Xuejun Wang
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Tao Lou
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| |
Collapse
|
37
|
Zhang W, Wang X, Xu Q, Peng J, Lou T. Synthesis of lignosulfonate‐acrylamide‐dimethyldiallylammonium chloride copolymer and its flocculation performance. J Appl Polym Sci 2019. [DOI: 10.1002/app.48560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Weixing Zhang
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Xuejun Wang
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Qing Xu
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Jing Peng
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Tao Lou
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| |
Collapse
|
38
|
Gu S, Lian F, Yan K, Zhang W. Application of polymeric ferric sulfate combined with cross-frequency magnetic field in the printing and dyeing wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1562-1570. [PMID: 31961818 DOI: 10.2166/wst.2019.401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymeric ferric sulfate (PFS) was pretreated with a self-made alternating frequency magnetic field for coagulation printing and dyeing (PD) wastewater treatment. The effects of PFS dosage, magnetization intensity, frequency, and time on the removal of chemical oxygen demand (COD), color and turbidity of PD wastewater were investigated. The results indicated that the magnetized PFS significantly improved the removal efficiency in wastewater treatment. When the initial COD, color and turbidity of printing and dyeing wastewater was 464 mg/L, 180 degrees, and 54.8 NTU respectively, the maximum removal rate of COD, color and turbidity was 87.9%, 80.1%, and 95.2% respectively, under the condition of cross frequency magnetic field magnetization PFS. Moreover, the PFS treatment combined with cross-frequency magnetic field could greatly reduce the pollution of iron ions released from iron-based coagulant during wastewater treatment. Characterization of magnetized PFS flocculant by fourier transform infrared spectroscopy, ultraviolet and visible spectrophotometry, and scanning electron microscopy suggested that magnetic crystal with larger size can be formed on the surface of PFS particles.
Collapse
Affiliation(s)
- Shiguo Gu
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China E-mail:
| | - Fei Lian
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China E-mail:
| | - Kejun Yan
- Yancheng Institute of Technology, Yancheng 224051, China
| | - Wei Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China E-mail:
| |
Collapse
|
39
|
Al-Qodah Z, Al-Qudah Y, Omar W. On the performance of electrocoagulation-assisted biological treatment processes: a review on the state of the art. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28689-28713. [PMID: 31414385 DOI: 10.1007/s11356-019-06053-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The combined treatment systems have become a potential alternative to treat highly polluted industrial wastewater to achieve high-quality treated effluents. The current review focuses on the treatment systems compromising electrocoagulation (EC) as a pretreatment step followed by a biological treatment step. The reasons for applying EC as a pretreatment process were mainly to (1) detoxify the wastewater by removing inhibitors of the biotreatment step or (2) to remove the major part of the COD or (3) the dissolved materials that could cause fouling to membrane bioreactors or (4) to increase the activity of the microorganisms. This combination represents a new and promising application characterized by higher performance and removal efficiency. The main published findings related to this application are presented and analyzed. Besides, the statistical models used to optimize the process variables and the kinetics of microorganism growth rate are discussed herein. Most of the previous investigations were conducted in a laboratory-scale level with biologically treated water as a feed to the EC process. Only a few works applied a hybrid system consisting of the biological step and the EC step. In all studies, improved performance and higher removal efficiencies of the combined process were achieved particularly when applying aluminum electrodes, providing more than 95% removal efficiency. Many researchers have reported that they had faced a significant problem in the operation of the electrocoagulation process associated with the reduction of electrodes' efficiency caused by deposits of the coagulation complex. This problem needs to be effectively resolved.
Collapse
Affiliation(s)
- Zakaria Al-Qodah
- Chemical Engineering Department, Faculty of Engineering Technology, Al-Balqa Applied University, Amman, 11134, Jordan.
| | - Yahiya Al-Qudah
- Chemistry Department, Faculty of Science, Al-Balqa Applied University, Salt, Jordan
| | - Waid Omar
- Chemical Engineering Department, Faculty of Engineering Technology, Al-Balqa Applied University, Amman, 11134, Jordan
| |
Collapse
|
40
|
Hou T, Du H, Yang Z, Tian Z, Shen S, Shi Y, Yang W, Zhang L. Flocculation of different types of combined contaminants of antibiotics and heavy metals by thermo-responsive flocculants with various architectures. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: Current status and potential challenges. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|