1
|
Konstantinou C, Farooq H, Biscontin G, Papanastasiou P. Effects of fluid composition in fluid injection experiments in porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104383. [PMID: 38870683 DOI: 10.1016/j.jconhyd.2024.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Experiments on fluid flow in porous media, using fluids loaded with solids of various grain sizes, have been conducted in a modified Hele-Shaw setup. This setup utilised weakly cemented porous media with specific hydraulic and mechanical properties. Fluid injection in coarse granular media with clean or low-concentration fine particles, results in infiltration only, with pressure close to the material tensile strength, while injection in finer granular material causes damage alongside infiltration, with the fluid pressure still close to the material tensile strength. When larger particle sizes or higher particle concentrations are used in the mixture, the fluid travels further within the porous medium, primarily influenced by the grain size of the granular medium. In the latter case, the Darcy flow equation with an effective permeability term can be employed to determine the pressure differential. For the largest particle sizes included in the fluid, the equation is still applicable, but the effective permeability requires adjustment for particle size within the fluid rather than the granular medium. This is crucial when the injection point is locally clogged. The experiments show that fracturing conditions are controlled by different mechanisms. Dimensional and statistical analysis was used to classify the injection pressures to regimes predicted by fracturing theory or by Darcy law with modified effective permeabilities. The findings show that both the material properties and fluid composition are important designing parameters.
Collapse
Affiliation(s)
- Charalampos Konstantinou
- Department of Civil and Environmental Engineering, University of Cyprus, Cyprus; Department of Engineering, University of Cambridge, UK.
| | - Hassan Farooq
- Department of Engineering, University of Cambridge, UK
| | | | - Panos Papanastasiou
- Department of Civil and Environmental Engineering, University of Cyprus, Cyprus
| |
Collapse
|
2
|
Yan F, Ye Z, Cao B, Wang F. Mechanical properties of reaction mediums in permeable reactive barriers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171868. [PMID: 38521278 DOI: 10.1016/j.scitotenv.2024.171868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
The mechanical properties of reaction media in permeable reactive barriers (PRB) is vital in geoenvironmental applications. Bentonite, activated carbon and zeolite, recognized for their excellent adsorption capabilities, are employed as the main reaction media in PRB for the treatment of contaminated underground water. The compaction test and the undrained and unconsolidated triaxial test were carried out to investigate the compression and shear strength of the activated carbon-zeolite mixture and activated carbon-bentonite mixture at various composition ratios. The impact of compaction degree on samples' shear strength was analyzed. The influence of different composition ratios on the mechanical properties and the permeability of each reaction medium were also evaluated. The results show that the mechanical performance of most activated carbon-zeolite (AZs) is not satisfactory compared to natural soil and activated carbon-bentonite mixtures. Activated carbon‑sodium bentonite (ANBs) and activated carbon‑calcium bentonite (ACBs) present similar compaction characteristics and shear properties. In ANBs and ACBs, the cohesion of mixes with a mass ratio of 1:2 (ANB2 and ACB2) was found lower than that of mixes with mass ratios of 1:1 (ANB1 and ACB1) and 1:3 (ANB3 and ACB3). And in most ANB and ACB mixes, 100 % compaction produced higher moisture content and higher friction angle, but lower cohesion, compared to 92 % compaction degree. And the shear strength behavior of ANBs is dominated by both bentonite and activated carbon. The permeability of ACB1, AZ3 and ACB1-sand are at 1.31 × 10-6 m/s, 1.37 × 10-6 m/s and 7.72 × 10-7 m/s, respectively. These results provide valuable insights into the selection and optimization of reaction media for PRBs in geoenvironmental engineering applications.
Collapse
Affiliation(s)
- Fangmin Yan
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 210096, China.
| | - Zijun Ye
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 210096, China.
| | - Benyi Cao
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Fei Wang
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 210096, China.
| |
Collapse
|
3
|
Zhang Y, Fu P, Ni W, Zhang S, Li S, Deng W, Hu W, Li J, Pei F, Du L, Wang Y. A review of solid wastes-based stabilizers for remediating heavy metals co-contaminated soil: Applications and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170667. [PMID: 38331289 DOI: 10.1016/j.scitotenv.2024.170667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The remediation of heavy metals/metalloids (HMs) co-contaminated soil by solid wastes-based stabilizers (SWBS) has received major concern recently. Based on the literature reported in the latest years (2010-2023), this review systematically summarizes the different types of solid wastes (e.g., steel slag, coal fly ash, red mud, and sewage sludge, etc.) employed to stabilize HMs contaminated soil, and presents results from laboratory and field experiments. Firstly, the suitable solid wastes for soil remediation are reviewed, and the pros and cons are presented. Thereafter, the technical feasibility and economic benefit are evaluated for field application. Moreover, evaluation methods for remediation of different types of HMs-contaminated soil and the effects of SWBS on soil properties are summarized. Finally, due to the large specific surface, porous structure, and high reactivity, the SWBS can effectively stabilize HMs via adsorption, complexation, co/precipitation, ion exchange, electrostatic interaction, redox, and hydration process. Importantly, the environmental implications and long-term effectiveness associated with the utilization of solid wastes are highlighted, which are challenges for practical implementation of soil stabilization using SWBS, because the aging of soil/solid wastes has not been thoroughly investigated. Future attention should focus on modifying the SWBS and establishing an integrated long-term stability evaluation method.
Collapse
Affiliation(s)
- Yuliang Zhang
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pingfeng Fu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China.
| | - Wen Ni
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
| | - Siqi Zhang
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
| | - Sheng Li
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Deng
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wentao Hu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
| | - Jia Li
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fuyun Pei
- CECEP Tech and Ecology & Environment Co., Ltd., Shenzhen 518017, China
| | - Linfeng Du
- CECEP Tech and Ecology & Environment Co., Ltd., Shenzhen 518017, China
| | - Yueling Wang
- CECEP Tech and Ecology & Environment Co., Ltd., Shenzhen 518017, China
| |
Collapse
|
4
|
Akansha J, Thakur S, Chaithanya MS, Gupta BS, Das S, Das B, Rajasekar N, Priya K. Technological and economic analysis of electrokinetic remediation of contaminated soil: A global perspective and its application in Indian scenario. Heliyon 2024; 10:e24293. [PMID: 38304840 PMCID: PMC10831613 DOI: 10.1016/j.heliyon.2024.e24293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Globally million hectares of land annually is getting contaminated by heavy metalloids like As, Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se, with current concentrations in soil above geo-baseline or regulatory standards. The heavy metals are highly toxic, mobile, and persistent and hence require immediate and effective mitigation. There are many available remediation techniques like surface capping, encapsulation, landfilling, soil flushing, soil washing, electrokinetic extraction, stabilization, solidification, vitrification, phytoremediation, and bioremediation which have been evolved to clean up heavy metal-contaminated sites. Nevertheless, all of the technologies have some applicability and limitations making the soil remediation initiative unsustainable. Among the available technologies, electrokinetic remediation (EKR) has been comparatively recognized to mitigate contaminated sites via both in-situ and ex-situ approaches due to its efficiency, suitability for use in low permeability soil, and requirement of low potential gradient. The work critically analyzes the EKR concerning techno, economic, and sustainability aspect for evaluating its application on various substrates and environmental conditions. The current soil contamination status in India is presented and the application of EKR for the heavy metal remediation from soil has been evaluated. The present work summaries a comprehensive and exhaustive review on EKR technology proving its effectiveness for a country like India where the huge amount of waste generated could not be treated due to lack of infrastructure, technology, and economic constraints.
Collapse
Affiliation(s)
- J. Akansha
- Department of Environment and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - Somil Thakur
- Department of Environment and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - M Sai Chaithanya
- Department of Environment and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - Bhaskar Sen Gupta
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh Campus, Edinburgh, EH14 4AS, Scotland, UK
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Bhaskar Das
- Department of Environment and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - N. Rajasekar
- Department of Energy and Power Electronics, School of Electrical Engineering, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - K. Priya
- Department of Energy and Power Electronics, School of Electrical Engineering, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
5
|
Qu G, Zhang Y, Duan Z, Li K, Xu C. Regulating the FeS x assembly pattern of sulfidated zero-valent iron: All-in-one interface modulation with activated carbon. WATER RESEARCH 2024; 248:120860. [PMID: 37984041 DOI: 10.1016/j.watres.2023.120860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/16/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
Specifically designing the heterogeneous interface in sulfidated zero-valent iron (S-ZVI) has been an effective, yet usually overlooked method to improve the decontamination ability. However, the mechanism behind FeSx assembly remains elusive and the lack of modulating strategies that can essentially tune the applicability of S-ZVI further imposes difficulties in creating better-performing S-ZVI with heterogeneous interface. In this study, by introducing powdered activated carbon (PAC) during S-ZVI preparation, S-ZVI/PAC microparticles were prepared to modulate the assembly pattern of FeSx for the applicability and reactivity of the material. S-ZVI/PAC showed robust performance in Cr(VI) sequestration, with 11.16 and 1.78 fold increase in Cr(VI) reactivity compared to ZVI and S-ZVI, respectively. This was attributed to the fact that the introduced PAC could acquire FeSx to enhance the electron transfer capacity matching its adsorption threshold, thus helping to accommodate the transfer of the reduction center to PAC in S-ZVI/PAC. In optimizing the FeSx allocation between ZVI and PAC, the chemical assembly of FeSx on S-ZVI was superior to physical adsorption. Critically, we found that isolated FeSx in the prepared solution was physically adsorbed by the PAC, allowing chemically assembled FeSx on the S-ZVI. This was achieved by controlling the addition sequence of Na2S and PAC, as it effectively controlled the release rate and content of Fe(II) in the preparation solution. S-ZVI/PAC was demonstrated to be extremely effective in simulated wastewater and electrokinetics-permeable reactive barrier (EK-PRB) treatments. Introducing PAC enriches the diversity of sulfidation mechanisms and may realize the universality of the S-ZVI/PAC application scenarios. This study provides a new interface optimization strategy for S-ZVI targeted design towards environmental applications.
Collapse
Affiliation(s)
- Guanjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhongkai Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ke Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Zhang Y, Zang L, Zhao Y, Wei Q, Han J. Removal of Pb from Contaminated Kaolin by Pulsed Electrochemical Treatment Coupled with a Permeable Reactive Barrier: Tuning Removal Efficiency and Energy Consumption. TOXICS 2023; 11:961. [PMID: 38133362 PMCID: PMC10747039 DOI: 10.3390/toxics11120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Lead contamination in soil has emerged as a significant environmental concern. Recently, pulse electrochemical treatment (PECT) has garnered substantial attention as an effective method for mitigating lead ions in low-permeability soils. However, the impact of varying pulse time gradients, ranging from seconds to hours, under the same pulse duty cycle on lead removal efficiency (LRE) and energy consumption in PECT has not been thoroughly investigated. In this study, a novel, modified PECT method is proposed, which couples PECT with a permeable reaction barrier (PRB) and adds acetic acid to the catholyte. A comprehensive analysis of LRE and energy consumption is conducted by transforming pulse time. The results show that the LREs achieved in these experiments were as follows: PCb-3 s (89.5%), PCb-1 m (91%), PCb-30 m (92.9%), and PCb-6 h (91.9%). Importantly, these experiments resulted in significant reductions in energy consumption, with decreases of 68.5%, 64.9%, 51.8%, and 47.4% compared to constant voltage treatments, respectively. It was observed that LRE improved with an increase in both pulse duration and voltage gradient, albeit with a corresponding rise in energy consumption. The results also revealed that corn straw biochar as a PRB could enhance LRE by 6.1% while adsorbing migrating lead ions. Taken together, the present data highlights the potential of modified PECT technology for remediation of lead-contaminated soil, which provides an optimal approach to achieve high LRE while minimizing energy consumption.
Collapse
Affiliation(s)
| | - Libin Zang
- College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China; (Y.Z.); (J.H.)
| | | | | | | |
Collapse
|
7
|
Wei J, Shi P, Cui G, Li X, Xu M, Xu D, Xie Y. Analysis of soil pollution characteristics and influencing factors based on ten electroplating enterprises. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122562. [PMID: 37717896 DOI: 10.1016/j.envpol.2023.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The electroplating industry encompasses various processes and plating types that contribute to environmental pollution, which has led to growing public concern. To investigate related soil pollution in China, the study selected 10 sites with diverse industrial characteristics distributed across China and collected 1052 soil samples to determine the presence of industrial priority pollutants (PP) based on production process and pollutant toxicity. The factors influencing site pollution as well as proposed pollution prevention and control approaches were then evaluated. The results indicate the presence of significant pollution in the electroplating industry, with ten constituents surpassing the risk screening values (RSV). The identified PP consist of Cr(VI), zinc (Zn), nickel (Ni), total chromium (Cr), and petroleum hydrocarbons (C10-C40). PP contamination was primarily observed in production areas, liquid storage facilities, and solid zones. The vertical distribution of metal pollutants decreased with soil depth, whereas the reverse was true for petroleum hydrocarbons (C10-C40). Increase in site production time was strongly correlated with soil pollution, but strengthening anti-seepage measures in key areas can effectively reduce the soil exceedance standard ratio. This study serves as a foundation for conceptualizing site repair technology in the electroplating industry and offers a reference and methodology for pollution and source control in this and related sectors.
Collapse
Affiliation(s)
- Jinjin Wei
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Peili Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Guannan Cui
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Xin Li
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Minke Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Dongyao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Yunfeng Xie
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| |
Collapse
|
8
|
Zheng F, Zhai Y, Yue W, Teng Y. Coupling flow and electric fields to simulate migration and remediation of uranium in groundwater remediated by electroosmosis and a permeable reactive bio-barrier. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118947. [PMID: 37699289 DOI: 10.1016/j.jenvman.2023.118947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Combined remediation technologies are increasingly being considered to uranium contaminated groundwater, such as the joint utilize of permeable reactive bio-barrier (Bio-PRB) and electrokinetic remediation (EKR). While the assessment of uranium plume evolution in the combined remediation system (CRS) have often been impeded by insufficient understanding of multi-physical field superposition. Therefore, advanced knowledge in multi-physical field coupling in groundwater flow will be crucial to the practical application of these techniques. A two-dimensional multi-physical field coupling model was constructed for predicting the uranium degradation in CRS. The study demonstrates that the coupling model is able to predict the uranium plume evolution and rapidly evaluate the performance of CRS components. The results show that field electric direction and flow field strength are the key factors that affect the retardation and remediation performance of CRS. The reverse electric field direction significantly affected the contact reaction time of uranium in the system. The uranium residence time in the reverse electric field was 3.8 d, which was significantly greater than the original electric field (2.0 d). Depending on the voltage, the reverse electric field direction was 16%-36% more efficient than the original direction. The strength of the flow field was about two orders of magnitude higher than that of the electric field, so the groundwater flow rate dominated remediation efficiency. Reducing the flow rate by 1/2 could improve the performance of the system by approximately 66%. In addition, the coupling model can be utilized to design standard CRS for real site of uranium contaminated groundwater. To meet the optimal performance, the direction of the electric field should be set opposite to the flow field. This work has successfully used a coupling model to predict uranium contaminant-plume evolution in CRS and estimate the performance of each component.
Collapse
Affiliation(s)
- Fuxin Zheng
- Engineering Research Center for Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuanzheng Zhai
- Engineering Research Center for Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Weifeng Yue
- Engineering Research Center for Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanguo Teng
- Engineering Research Center for Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
9
|
Li K, Yao H. Revitalizing our earth: unleashing the power of green energy in soil remediation for a sustainable future. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109007-109020. [PMID: 37759047 DOI: 10.1007/s11356-023-29672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
This study investigates the feasibility of using renewable energy sources in soil remediation to advance green recovery in a way that is both sustainable and kind to the environment. The report stresses the need to reduce the adverse effects of soil pollution in China and foster economic recovery. This study aims to determine how green energy may be most effectively used in soil remediation operations. Using renewable energy sources to power remediation procedures and phytoremediation is presented in this research as two ways to achieve green recovery in soil remediation. The analysis in this work employs the unit root, auto-regressive distributive lag (ARDL), and vector error correction model (VECM) methods. Based on our research, we know that using renewable energy sources like solar, wind, and geothermal power may significantly lessen the environmental impact of soil remediation while simultaneously advancing the cause of sustainability. Phytoremediation is a low-cost, environmentally friendly option that utilizes plants to degrade and remove soil pollutants. The study's findings also stressed the need to consider various remediation strategies' advantages and disadvantages. The study's findings also exposed the potential advantages and disadvantages of phytoremediation, as was the method's viability for use in extensive soil remediation initiatives. The report concludes by emphasizing the need to assess soil remediation and green recovery's more enormous social and environmental implications. We can build a more sustainable future, encourage economic recovery, and combat environmental degradation using renewable energy sources and cutting-edge remediation techniques. The article suggests doing more studies to learn more about the pros and downsides of combining soil remediation and green recovery initiatives.
Collapse
Affiliation(s)
- Kangyan Li
- ESD China Ltd., Shanghai, 200000, China.
| | - Hada Yao
- Guizhou Nonferrous Geological Engineering Reconnaissance Company, GuiYang, 550000, China
| |
Collapse
|
10
|
Rani N, Singh P, Kumar S, Kumar P, Bhankar V, Kamra N, Kumar K. Recent advancement in nanomaterials for the detection and removal of uranium: A review. ENVIRONMENTAL RESEARCH 2023; 234:116536. [PMID: 37399984 DOI: 10.1016/j.envres.2023.116536] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Uranyl ions U(VI), are the common by-product of nuclear power plants and anthropogenic activities like mining, excess utilization of fertilizers, oil industries, etc. Its intake into the body causes serious health concerns such as liver toxicity, brain damage, DNA damage and reproductive issues. Therefore, there is urgent need to develop the detection and remediation strategies. Nanomaterials (NMs), due to their unique physiochemical properties including very high specific area, tiny sizes, quantum effects, high chemical reactivity and selectivity have become emerging materials for the detection and remediation of these radioactive wastes. Therefore, the current study aims to provide a holistic view and investigation of these new emerging NMs that are effective for the detection and removal of Uranium including metal nanoparticles, carbon-based NMs, nanosized metal oxides, metal sulfides, metal-organic frameworks, cellulose NMs, metal carbides/nitrides, and carbon dots (CDs). Along with this, the production status, and its contamination data in food, water, and soil samples all across the world are also complied in this work.
Collapse
Affiliation(s)
- Neeru Rani
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Permender Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, Faridabad, 126006, Haryana, India.
| | - Parmod Kumar
- Department of Physics, J. C. Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Vinita Bhankar
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Nisha Kamra
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Krishan Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India.
| |
Collapse
|
11
|
Adeola AO, Iwuozor KO, Akpomie KG, Adegoke KA, Oyedotun KO, Ighalo JO, Amaku JF, Olisah C, Conradie J. Advances in the management of radioactive wastes and radionuclide contamination in environmental compartments: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2663-2689. [PMID: 36097208 DOI: 10.1007/s10653-022-01378-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Several anthropogenic activities produce radioactive materials into the environment. According to reports, exposure to high concentrations of radioactive elements such as potassium (40K), uranium (238U and 235U), and thorium (232Th) poses serious health concerns. The scarcity of reviews addressing the occurrence/sources, distribution, and remedial solutions of radioactive contamination in the ecosystems has fueled data collection for this bibliometric survey. In rivers and potable water, reports show that several parts of Europe and Asia have recorded radionuclide concentrations much higher than the permissible level of 1 Bq/L. According to various investigations, activity concentrations of gamma-emitting radioactive elements discovered in soils are higher than the global average crustal values, especially around mining activities. Adsorption technique is the most prevalent remedial method for decontaminating radiochemically polluted sites. However, there is a need to investigate integrated approaches/combination techniques. Although complete radionuclide decontamination utilizing the various technologies is feasible, future research should focus on cost-effectiveness, waste minimization, sustainability, and rapid radionuclide decontamination. Radioactive materials can be harnessed as fuel for nuclear power generation to meet worldwide energy demand. However, proper infrastructure must be put in place to prevent catastrophic disasters.
Collapse
Affiliation(s)
- A O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria.
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - K O Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, Nigeria
| | - K G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - K A Adegoke
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - K O Oyedotun
- Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria, 0028, South Africa
| | - J O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria
| | - J F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - C Olisah
- Department of Botany, Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Port Elizabeth, South Africa
| | - J Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa
| |
Collapse
|
12
|
Zhao Z, Li Y, Zhou Y, Hou Y, Sun Z, Wang W, Gou J, Cheng X. Activation of sulfite by micron-scale iron-carbon composite for metronidazole degradation: Theoretical and experimental studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130873. [PMID: 36731316 DOI: 10.1016/j.jhazmat.2023.130873] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In recent years, sulfite (S(Ⅳ)), as an alternative to persulfates, has played a crucial role in eliminating antibiotics in wastewater, so there is an urgent need to develop a cheap, environmentally friendly, and effective catalyst. Zero-valent iron (ZVI) has great potential for activated S(Ⅳ) removal of organic pollutants, but its reactivity in water is reduced due to passivation. In this study, a micron-scale iron-carbon composite(mZVI@C-800) prepared via high-temperature calcination was coupled with S(Ⅳ) to degrade metronidazole (MNZ). Under the optimized reaction conditions of mZVI@C-800 dosage of 0.2 g/L and S(Ⅳ) concentration of 0.1 g/L, the MNZ removal rate was up to 81.5 % in acidic and neutral environments. The surface chemical properties of the catalysts were characterized by different analytical techniques, and the corresponding catalytic mechanism was analyzed based on these analytical results. As a result, Fe2+ is the main active site, and ·OH and SO4·- were the dominant active species. The increase in efficiency was attributed to the introduction of carbon to enhance the corrosion of mZVI further releasing more Fe2+. Additionally proposed were the potential response mechanism, the degradation path, and the toxicity change rule. These results demonstrate that the catalytic breakdown of antibiotics in wastewater treatment can be accelerated by the use of the outstanding catalytic material mZVI@C-800.
Collapse
Affiliation(s)
- Zixuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yunhe Li
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuerong Zhou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yilong Hou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhengyi Sun
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wenhao Wang
- Civil Engineering Department, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, PR China
| | - Jianfeng Gou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Chemistry and Environmental Science, Yili Normal University, Yining 835000, PR China.
| |
Collapse
|
13
|
Abou-Shady A, Ali ME, Ismail S, Abd-Elmottaleb O, Kotp YH, Osman MA, Hegab RH, Habib AA, Saudi AM, Eissa D, Yaseen R, Ibrahim GA, Yossif TM, El-Araby H, Selim EMM, Tag-Elden MA, Elwa AES, El-Harairy A. Comprehensive review of progress made in soil electrokinetic research during 1993–2020, Part I: process design modifications with brief summaries of main output. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
14
|
Yang L, Jin X, Lin Q, Owens G, Chen Z. Enhanced adsorption and reduction of Pb(II) and Zn(II) from mining wastewater by carbon@nano-zero-valent iron (C@nZVI) derived from biosynthesis. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Witt K, Studziński W, Bożejewicz D. Possibility of New Active Substrates (ASs) to Be Used to Prevent the Migration of Heavy Metals to the Soil and Water Environments. Molecules 2022; 28:94. [PMID: 36615290 PMCID: PMC9822496 DOI: 10.3390/molecules28010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
This paper aims to propose an alternative to the known permeable reactive barriers (PRBs). PRB is one of the methods, which is a reactive barrier placed below the ground, to clean up contaminated groundwater. New polymer active substrates (ASs) were used to prevent soil contamination by toxic heavy metals. The active substrates consisted of a mixture of poly(vinyl chloride), Aliquat 336, and bis(2-ethylhexyl)adipate, which was applied to the skeleton material (fiberglass or textile). Aliquat 336 was used as a binding agent for metal ions (Cr(VI), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II)). In contrast with the PRBs, the ASs (from AS-1 to AS-5) were obtained in a simple way using the pouring method. The obtained ASs could be recycled and reused. The active substrates were used for the binding of various metal ions from aqueous solutions and the examined soil. It was found that the active substrate AS-1 decreased the concentrations of nickel, cadmium, and lead by more than 50% and that of chromium by more than 90% in the aqueous solution. High sorption efficiency for chromium and zinc metals (81% and 66%) with the use of AS-2 was also found, owing to which the migration of metals from soil to water can be limited. In the soil environment, active substrate AS-5 with the addition of a plasticizer showed the greatest effectiveness. This solution resulted in a reduction in each tested metal ion of at least 50%, and reductions in cadmium, lead, and copper of over 70%.
Collapse
Affiliation(s)
| | - Waldemar Studziński
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, PL 85326 Bydgoszcz, Poland
| | | |
Collapse
|
16
|
Fu H, Wang S, Zhang H, Dai Z, He G, Li G, Ding D. Remediation of uranium-contaminated acidic red soil by rice husk biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77839-77850. [PMID: 35688975 DOI: 10.1007/s11356-022-20704-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Uranium (U) in the U-contaminated acidic red soil exhibits high mobility. In the present study, rice husk was used to produce biochar to remediate U-contaminated red soil under acid precipitation. Firstly, batch adsorption experiments showed that the dissolution of alkaline substance in biochar could buffer the pH value of acidic solution. The equilibrium pH value had a crucial influence on biochar adsorption capacity of U, and the neutral equilibrium pH value was favorable for adsorption. Then, the incubation experiments of red soil with biochar were performed, and the Synthetic Precipitation Leaching Procedure (SPLP) extraction of amended red soil showed that the short-term leachability of U was decreased from 26.53% in control group (without biochar) to 1.40% in 10% biochar-amended red soil. Subsequently, the sequential extraction showed that the fraction of U was mainly transformed from exchangeable and Fe/Mn oxide fraction to carbonate fraction after biochar amendment, and the total amount of exchangeable U and carbonate fraction U in soil was increased slightly. Finally, simulated acid rain leaching experiments showed that the capability of amended red soil to resist acid rain acidification was enhanced. And the long-term leachability of U in amended red soil was decreased from 26.37% in control group to 3.18% in the 10% biochar-amended red soil under the simulated acid rain leaching conditions. In conclusion, biochar has passivation effect on U in U-contaminated red soil, which can reduce the long-term and short-term mobility of U in acidic environments. This study provided an experimental basis for the application of biochar in remediation and improvement of U-contaminated acidic red soil.
Collapse
Affiliation(s)
- Haiying Fu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuai Wang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Zhongran Dai
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Guicheng He
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Guangyue Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China.
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
17
|
Chen L, Wang J, Beiyuan J, Guo X, Wu H, Fang L. Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151556. [PMID: 34752878 DOI: 10.1016/j.scitotenv.2021.151556] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Soil pollution by potentially toxic trace elements (PTEs) near uranium (U) mines arouses a growing interest worldwide. However, nearly all studies have focused on a single site or only a few sites, which may not fully represent the soil pollution status at the global scale. In this study, data of U, Cd, Cr, Pb, Cu, Zn, As, Mn, and Ni contents in U mine-associated soils were collected and screened from published articles (2006-2021). Assessments of pollution levels, distributions, ecological, and human health risks of the nine PTEs were analysed. The results revealed that the average contents of the U, Cd, Cr, Pb, Cu, Zn, As, Mn, and Ni were 39.88-, 55.33-, 0.88-, 3.81-, 3.12-, 3.07-, 9.26-, 1.83-, and 1.17-fold greater than those in the upper continental crust, respectively. The pollution assessment showed that most of the studied soils were heavily polluted by U and Cd. Among them, the U mine-associated soils in France, Portugal, and Bulgaria exhibited significantly higher pollution levels of U and Cd when compared to other regions. The average potential ecological risk value for all PTEs was 3358.83, which indicated the presence of remarkably high risks. Among the PTEs, Cd and U contributed more to the potential ecological risk than the other elements. The health risk assessment showed that oral ingestion was the main exposure route for soil PTEs; and the hazard index (HI) values for children were higher than those for adult males and females. For adult males and females, all hazard index values for the noncarcinogenic risks were below the safe level of 1.00. For children, none of the HI values exceeded the safe level, with the exception of U (HI = 3.56) and As (HI = 1.83), but Cu presented unacceptable carcinogenic risks. This study provides a comprehensive analysis that demonstrates the urgent necessity for treating PTE pollution in U mine-associated soils worldwide.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Jingzhe Wang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hao Wu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan 420100, China
| | - Linchuan Fang
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| |
Collapse
|
18
|
Liang W, Wang G, Peng C, Tan J, Wan J, Sun P, Li Q, Ji X, Zhang Q, Wu Y, Zhang W. Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127993. [PMID: 34920223 DOI: 10.1016/j.jhazmat.2021.127993] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution in soil and water has presented a new challenge for the environmental remediation technology. Nano zero valent iron (nZVI) has excellent adsorbent properties for heavy metals, and thus, exhibits great potential in environmental remediation. Used as supporting materials for nZVI, carbon-based materials, such as activated carbon (AC), biochar (BC), carbon nanotubes (CNTs), and graphene (GNs) with aromatic rings formed by carbon atoms as the skeleton, have a large specific surface area and porous structure. This paper provides a comprehensive review on the advancement of carbon-based nano zero valent iron (C-nZVI) particles for heavy metal remediation in soil and water. First, different types of carbon-based materials and their combination with nZVI, as well as the synthesis methods and common characterization techniques of C-nZVI, are reviewed. Second, the mechanisms for the interactions between contaminants and C-nZVI, including adsorption, reduction, and oxidation reactions are detailed. Third, the environmental factors affecting the remediation efficiency, such as pH, coexisting constituents, oxygen, contact time, and temperature, are highlighted. Finally, perspectives on the challenges for utilization of C-nZVI in the actual contaminated soil and water and on the long-term efficacy and safety evaluation of C-nZVI have been proposed for further development.
Collapse
Affiliation(s)
- Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaowen Ji
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
19
|
Wang L, Fang F, Liu J, Beiyuan J, Cao J, Liu S, Ouyang Q, Huang Y, Wang J, Liu Y, Song G, Chen D. U(VI) adsorption by green and facilely modified Ficus microcarpa aerial roots: Behavior and mechanism investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151166. [PMID: 34699818 DOI: 10.1016/j.scitotenv.2021.151166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U)-containing wastewater poses serious pressure to human health and environmental safety. The treatment of U-bearing wastewater using green and facilely fabricated materials is considered a promising alternative. Herein, the raw and modified aerial roots of Ficus microcarpa (RARF and MARF, respectively) were prepared and applied to the treatment of synthesized U-containing wastewater. The results showed that the adsorption process was spontaneous and chemically controlled, which was in good accordance with the pseudo-second-order kinetic and the Redlich-Peterson isotherm adsorption model. The adsorption mechanisms were proposed to be the complexation between U(VI) and oxygen/phosphorus-containing functional groups on MARF.
Collapse
Affiliation(s)
- Lulu Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fa Fang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Jielong Cao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Siyu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qien Ouyang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yeliang Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| |
Collapse
|
20
|
Efficient removal of uranium from aqueous solution in a modified three-dimensional electrokinetic system. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Futalan CM, Wan MW. Fixed-Bed Adsorption of Lead from Aqueous Solution Using Chitosan-Coated Bentonite. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2597. [PMID: 35270289 PMCID: PMC8910106 DOI: 10.3390/ijerph19052597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023]
Abstract
In this study, fixed-bed adsorption of Pb(II) from an aqueous solution using chitosan-coated bentonite (CCB) was investigated. Characterization of CCB was performed using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The effects of varying bed height (1.3 to 4.3 cm), flow rate (0.20 to 0.60 mL/min), and initial concentration (500 to 1500 mg/L) on the length of mass transfer zone (Zm) and adsorption capacity at breakthrough (qb) and exhaustion (qe) were examined. Low flow rate and high bed height were determined to cause a longer time to reach breakthrough and exhaustion. Meanwhile, the fixed-bed system was observed to quickly attain breakthrough and exhaustion under high initial concentrations. Kinetic column models such as the Thomas, Yoon-Nelson, and Clark models were used to predict the breakthrough curves. High R2 values (0.9758 ≤ R2 ≤ 0.8087) were attained for the Thomas model, which indicates that there is good agreement between experimental data and linear plots generated by the Thomas model. Moreover, the Thomas model is best in describing the breakthrough curves of Pb(II) removal under a fixed-bed system.
Collapse
Affiliation(s)
- Cybelle Morales Futalan
- Department of Community and Environmental Resource Planning, University of the Philippines, Los Banos 4031, Philippines;
| | - Meng-Wei Wan
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| |
Collapse
|
22
|
Liao J, Ding L, Zhang Y, Zhu W. Efficient removal of uranium from wastewater using pig manure biochar: Understanding adsorption and binding mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127190. [PMID: 34844340 DOI: 10.1016/j.jhazmat.2021.127190] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
In this work, three kinds of biochars (PMBC-H2O, PMBC-PP and PMBC-HP) with excellent adsorption performance were obtained by carbonizing pig manure pre-treated with different agents. These biochars had the ordered mesoporous structures and possessed abundant active functional groups on their surface. The adsorption behaviors of the biochars towards UVI under various conditions were evaluated by batch experiment. The results showed that KMnO4 and H2O2 could enormously improve the adsorption performance of PMBC to UVI. After KMnO4 and H2O2 pretreatment, the maximum adsorption capacities of PMBC-PP (979.3 mg/g) and PMBC-HP (661.7 mg/g) were about 2.6 and 1.8 times higher than that of PMBC-H2O (369.9 mg/g), respectively, which was much higher than previously reported biochar-based materials. Obviously, KMnO4 pretreatment leaded to a higher enhancement than that of H2O2. The removal mechanism of UVI on PMBC-PP was discussed in-depth. The interaction between UVI species and PMBC-PP was mainly ascribed to the abundant active sites on the surface of PMBC-PP. In a word, conversion of pig manure pre-treated with KMnO4 into biochar not only demonstrates that PMBC-PP has great potential in the treatment of actual uranium-containing wastewater, but also provides a method for the rational utilization of pig manure to reduce the pollution.
Collapse
Affiliation(s)
- Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China; Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Ling Ding
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China; Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
23
|
Haris M, Hamid Y, Wang L, Wang M, Yashir N, Su F, Saleem A, Guo J, Li Y. Cd diminution through microbial mediated degraded lignocellulose maize straw: Batch adsorption and bioavailability trails. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114042. [PMID: 34872180 DOI: 10.1016/j.jenvman.2021.114042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulose degraded maize straw (LMS) was prepared with the interaction of soil-indigenous microorganisms and further deployed to attenuate the Cd contamination in polluted soil. The Lignocellulose degrading ratio was determined and results revealed the significant degradation of cellulose, hemicellulose and lignin by 33.03, 26.7 and 15.97% respectively as compared to pristine maize straw (PS). Moreover, LMS was also categorized through FE-SEM, FTIR, BET analysis, elemental analysis and XPS technique and the analytical results indicated that lignocellulose structure in maize straw was successfully degraded and was involved in metal-ion complexation. Batch sorption trials revealed that Cd2+ sorption onto LMS was explained well by Langmuir isotherm and pseudo-second-order kinetic model. The LMS showed maximum adsorption capacities (9.84 mg g-1) for Cd2+ as compared to PS (3.30 mg g-1). Moreover, the soil incubation trials (60 days) depicted the availability of Cd decreased by 11.03 and 34.7% with PS and LMS application respectively. The addition of LMS significantly decreased the exchangeable fractions of Cd and ensued an increase in organic matter and Fe-Mn oxides bound fractions. This work clarified the LMS as a promising amendment for effective remediation of Cd-contaminated matrices.
Collapse
Affiliation(s)
- Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Lei Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Min Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Nauman Yashir
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Fang Su
- School of Economics and Management, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - JunKang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
24
|
Li Y, Shao M, Huang M, Sang W, Zheng S, Jiang N, Gao Y. Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier. CHEMOSPHERE 2022; 286:131470. [PMID: 34311401 DOI: 10.1016/j.chemosphere.2021.131470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 05/22/2023]
Abstract
Heavy metals in the soil are major global environmental problems. Waste cotton was used to synthesize a novel β-CD/hydrothermal biochar (KCB), which is a low-cost and environment-friendly adsorbent for heavy metal soil remediation. KCB were used as reactive materials of electrokinetic-permeable reactive barrier (EK-PRB) to explore the removal characteristics of heavy metals. FTIR and XPS analysis revealed that KCB contained large numbers of surface functional groups. Adsorption of KCB for Pb2+ and Cd2+ reached 50.44 mg g-1 and 33.77 mg g-1, respectively. Metal ions in contaminated soil were removed by reactive barrier through electromigration, electrodialysis and electrophoresis, the removal efficiency of Pb2+ and Cd2+ in soil reached 92.87% and 86.19%. This finding proves that KCB/EK-PRB can be used as a cheap and green process to effectively remediate soils contaminated with heavy metals.
Collapse
Affiliation(s)
- Yulin Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Mengyu Shao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, China; Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Shanghai, 201620, China.
| | - Wenjing Sang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Nan Jiang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yanan Gao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| |
Collapse
|
25
|
Li X, Qin Y, Jia Y, Wang R, Ye Z, Zhou M. Persulfate activation by novel iron–carbon composites for organic contaminant removal: Performance, mechanism, and DFT calculations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Li X, Jia Y, Qin Y, Zhou M, Sun J. Iron-carbon microelectrolysis for wastewater remediation: Preparation, performance and interaction mechanisms. CHEMOSPHERE 2021; 278:130483. [PMID: 34126692 DOI: 10.1016/j.chemosphere.2021.130483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Rapid industrialization and urbanization have produced a lot of hazardous substances in water and wastewater, which has turned into a crucial issue to the environment and the public health. Recently, iron carbon microelectrolysis (IC-ME) has attracted extensive attention in environmental remediation due to its low costs and excellent performance. Nevertheless, there is still a lack of a more systematic review on IC-ME preparation methods, their performance, and the interaction mechanisms of IC-ME in the remediation of wastewater. Herein, this work summarizes the synthetic methods, application of IC-ME materials, and the mechanism of pollutant removal by IC-ME. A variety approaches have been applied to prepare IC-ME materials, and the preparation methods and conditions have a certain influence on the properties of IC-ME materials, thus affecting the performance of pollutant removal. The mechanisms of IC-ME for contaminants removal are very complex, including adsorption, coprecipitation, reduction, surface complexation, and oxidation. Moreover, research vacant fields and problems that existed in the application of IC-ME are proposed. At last, the problems to be addressed to adapt IC to future applications are introduced. This paper reviews and prospects IC-ME wastewater remediation technology, which provides a reference for further scientific research and engineering applications.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| | - Yan Jia
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Yang Qin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environ. Technol. for Complex Trans-Media Pollution, Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Jianhui Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
27
|
Immobilization of uranium soil with nHAP and composite. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04443-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Beaded segments like bi-metallic nano-zero-valent iron-titanium for the fast and efficient adsorption and reduction of U(VI) in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Hua Y, Li D, Gu T, Wang W, Li R, Yang J, Zhang WX. Enrichment of Uranium from Aqueous Solutions with Nanoscale Zero-valent Iron: Surface Chemistry and Application Prospect. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Removal of benzo[a]pyrene from soil in a novel permeable electroactive well system: Optimal integration of filtration, adsorption and bioelectrochemical degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|