1
|
Razzaq U, Nguyen TB, Saleem MU, Le VR, Chen CW, Bui XT, Dong CD. Recent progress in electro-Fenton technology for the remediation of pharmaceutical compounds in aqueous environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174253. [PMID: 38936713 DOI: 10.1016/j.scitotenv.2024.174253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.
Collapse
Affiliation(s)
- Uzma Razzaq
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Muhammad Usman Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; Department of Environmental Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Van-Re Le
- Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
2
|
Wakejo WK, Meshesha BT, Kang JW, Dessalegn EE, Demesa AG. Integrated electrochemical-adsorption for simultaneous removal of pharmaceuticals from water: Process optimization and synergistic insights. CHEMOSPHERE 2024; 365:143402. [PMID: 39321882 DOI: 10.1016/j.chemosphere.2024.143402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/19/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Water contamination with pharmaceuticals has become an evident environmental challenge. Treatment processes such as electrochemical oxidation (EO) and adsorption have limitations in the simultaneous removal of pharmaceuticals from water. Therefore, this study examined the potential of coupled process (EO followed by adsorption) in binary pharmaceuticals (acetaminophen (ACM) + ciprofloxacin (CIP)) removal from water, with an emphasis on coupled process optimization. Consequently, optimized coupled process conditions including current density (22 mA/cm2), pH (5.5), EO time (40 min), adsorbent dose (0.1 g/L) and adsorption time (60 min) were obtained. Under optimal conditions, removal efficiencies of 94.6% (ACM)+92% (CIP), 94.07% (ACM)+91.15% (CIP), and > 99.8% (ACM + CIP) were recorded for 20 mg/L (ACM + CIP) removal in EO, adsorption and EO + adsorption, respectively. Further, the coupled process was employed in multiple pharmaceuticals (20 mg/L of ACM + CIP + ATN (atenolol) + AMX (amoxicillin)) removal from water and removal of > 97.56% (ACM + CIP + ATN + AMX) was achieved. Removal efficiencies of ACM (83.35%) + CIP (73.1%) + ATN (68.52%) + AMX (63.05%) and ACM (80.37%) + CIP (66.5%) + ATN (73.07%) + AMX (60.5%) were obtained in EO and adsorption, respectively. The noted lower removal efficiencies in EO and adsorption are associated with the diverse nature of the pharmaceuticals, limited adsorbent active sites, and the shared utilization of reactive oxygen species (ROS) among the pharmaceuticals in EO. The total organic carbon (TOC) removal of 40.24%, and 99% and chemical oxygen demand (COD) removal of 72.45%, and 99.6% were obtained under optimal conditions of EO, and coupled process, respectively. These findings indicate that the pharmaceuticals are only partially mineralized in EO and the subsequent adsorption effectively eliminated the remaining target pharmaceuticals, and degradation by-products from water. Additionally, integrating EO with adsorption reduced the electrical energy consumption of the EO process from 31.6 kWh/m³ to 6 kWh/m³ under optimal conditions. Overall, coupling EO with adsorption offers the utmost advantages when removing multiple pharmaceuticals from complex water matrices.
Collapse
Affiliation(s)
- Wondimu K Wakejo
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland; Africa Center of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia; Department of Chemical Engineering, Wachemo University, P.O. Box 667, Hossana, Ethiopia.
| | - Beteley T Meshesha
- Africa Center of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia; School of Chemical and Bioengineering, Addis Ababa Institute of Technology, Addis Ababa, Ethiopia
| | - Joon W Kang
- Division of the Department of Environment and Energy, Yonsei University, South Korea
| | - Eden E Dessalegn
- Africa Center of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Abayneh G Demesa
- Department of Separation Science, LUT University, FI-53850, Lappeenranta, Finland
| |
Collapse
|
3
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas M, Pérez-Cadenas AF, Carrasco-Marín F. Antibiotic Degradation via Fenton Process Assisted by a 3-Electron Oxygen Reduction Reaction Pathway Catalyzed by Bio-Carbon-Manganese Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1112. [PMID: 38998717 PMCID: PMC11243440 DOI: 10.3390/nano14131112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Bio-carbon-manganese composites obtained from olive mill wastewater were successfully prepared using manganese acetate as the manganese source and olive wastewater as the carbon precursor. The samples were characterized chemically and texturally by N2 and CO2 adsorption at 77 K and 273 K, respectively, by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. Electrochemical characterization was carried out by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The samples were evaluated in the electro-Fenton degradation of tetracycline in a typical three-electrode system under natural conditions of pH and temperature (6.5 and 25 °C). The results show that the catalysts have a high catalytic power capable of degrading tetracycline (about 70%) by a three-electron oxygen reduction pathway in which hydroxyl radicals are generated in situ, thus eliminating the need for two catalysts (ORR and Fenton).
Collapse
Affiliation(s)
- Edgar Fajardo-Puerto
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Abdelhakim Elmouwahidi
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Esther Bailón-García
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - María Pérez-Cadenas
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
- Dpto. Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Av. de Esparta s/n, Las Rozas de Madrid, 28232 Madrid, Spain
| | - Agustín F Pérez-Cadenas
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Francisco Carrasco-Marín
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| |
Collapse
|
4
|
Hosseini MS, Abbasi A, Masteri-Farahani M. Photo-Fenton degradation of tetracycline antibiotic over MIL-101(Cr)/FeOOH nanocomposite as stable and efficient visible light responsive photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111582-111595. [PMID: 37816965 DOI: 10.1007/s11356-023-29812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Designing an inexpensive, easily synthesized, stable and efficient photocatalyst is a major challenge in photocatalysis area, especially when photo-reaction is performed in aquatic medium to degrade organic pollutants. To this aim, nano-sized MIL-101(Cr) (MIL = Materials Institute Lavoisier), as chemically tolerant metal-organic framework (MOF), was simply prepared via HF-free hydrothermal synthesis procedure. In order to decorate amorphous FeOOH quantum dots (QDs) on the surface of this MOF, various amounts of FeOOH QDs (i.e., 5, 10, 15 and 20 wt%) were synthesized in the presence of MIL-101(Cr) to prepare MIL-101(Cr)/FeOOH(x%) nanocomposites. Decoration of such iron oxide quantum dots on the surface of MIL-101(Cr) and investigation of its activity in photo-Fenton degradation of tetracycline (TC) antibiotic is reported here for the first time. Among the synthesized nanocomposites, MIL-101(Cr)/FeOOH(15%) demonstrated superior photo-Fenton activity in degradation of TC (80%) at short reaction time under optimum reaction condition using the energy-efficient white LED lamps as visible light source. It was observed that the synergy between any component of this photo-Fenton system such as nanocomposite, hydrogen peroxide and visible light is the main reason for enhancement of TC removal over time. Also, neither MIL-101(Cr) nor FeOOH QDs exhibited poor degradation efficiency, which implies the positive role of the coupling of these materials. Furthermore, the stability and recoverability of MIL-101(Cr)/FeOOH(15%) nanocomposite was investigated in four photo-Fenton cycles, which no significant decrease in TC degradation performance was observed.
Collapse
Affiliation(s)
- Mahdiyeh -Sadat Hosseini
- School of Chemistry, College of Science, University of Tehran, P.O. Box, Tehran, 14155-6455, Iran
| | - Alireza Abbasi
- School of Chemistry, College of Science, University of Tehran, P.O. Box, Tehran, 14155-6455, Iran.
| | - Majid Masteri-Farahani
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
- Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran
| |
Collapse
|
5
|
Kumar V, Verma P. A critical review on environmental risk and toxic hazards of refractory pollutants discharged in chlorolignin waste of pulp and paper mills and their remediation approaches for environmental safety. ENVIRONMENTAL RESEARCH 2023; 236:116728. [PMID: 37495063 DOI: 10.1016/j.envres.2023.116728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Agro-based pulp and paper mills (PPMs) inevitably produce numerous refractory pollutants in their wastewater, including chlorolignin, chlorophenols, chlorocatechols, chloroguaiacol, cyanide, furan, dioxins, and other organic compounds, as well as various heavy metals, such as nickel (Ni), zinc (Zn), chromium (Cr), iron (Fe), lead (Pb), arsenic (As), etc. These pollutants pose significant threats to aquatic and terrestrial life due to their cytogenotoxicity, mutagenicity, impact on sexual organs, hormonal interference, endocrine disruption, and allergenic response. Consequently, it is crucial to reclaim pulp paper mill wastewater (PPMW) with high loads of refractory pollutants through effective and environmentally sustainable practices to minimize the presence of these chemicals and ensure environmental safety. However, there is currently no comprehensive published review providing up-to-date knowledge on the fate of refractory pollutants from PPMW in soil and aquatic environments, along with valuable insights into the associated health hazards and remediation methods. This critical review aims to shed light on the potential adverse effects of refractory pollutants from PPMW on natural ecosystems and living organisms. It explores existing effective treatment technologies for remediating these pollutants from wastewater, highlighting the advantages and disadvantages of each approach, all in pursuit of environmental safety. Special emphasis is placed on emerging technologies used to decontaminate wastewater discharged from PPMs, ensuring the preservation of the environment. Additionally, this review addresses the major challenges and proposes future research directions for the proper disposal of PPMW. It serves as a comprehensive source of knowledge on the environmental toxicity and risks associated with refractory pollutants in PPMW, making it a valuable reference for policymakers and researchers when selecting appropriate technologies for remediation. The scientific community, concerned with mitigating the widespread risks posed by refractory pollutants from PPMs, is expected to take a keen interest in this review.
Collapse
Affiliation(s)
- Vineet Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
6
|
do Nascimento BF, de Araújo CMB, Del Carmen Pinto Osorio D, Silva LFO, Dotto GL, Cavalcanti JVFL, da Motta Sobrinho MA. Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85344-85358. [PMID: 37382818 DOI: 10.1007/s11356-023-28242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
The work proposes the application of a nanocomposite formed by graphene oxide and magnetite to remove chloroquine, propranolol, and metformin from water. Tests related to adsorption kinetics, equilibrium isotherms and adsorbent reuse were studied, and optimization parameters related to the initial pH of the solution and the adsorbent dosage were defined. For all pharmaceuticals, adsorption tests indicated that removal efficiency was independent of initial pH at adsorbent dosages of 0.4 g L-1 for chloroquine, 1.2 g L-1 for propranolol, and 1.6 g L-1 for metformin. Adsorption equilibrium was reached within the first few minutes, and the pseudo-second-order model represented the experimental data well. While the equilibrium data fit the Sips isotherm model at 298 K, the predicted maximum adsorption capacities for chloroquine, propranolol, and metformin were 44.01, 16.82, and 12.23 mg g-1, respectively. The magnetic nanocomposite can be reused for three consecutive cycles of adsorption-desorption for all pharmaceuticals, being a promising alternative for the removal of different classes of pharmaceuticals in water.
Collapse
Affiliation(s)
- Bruna Figueiredo do Nascimento
- Department of Chemical Engineering, Federal University of Pernambuco, Av. Prof. Arthur de Sá, S/N, Recife-PE, 50.740-521, Brazil.
| | - Caroline Maria Bezerra de Araújo
- Department of Chemical Engineering, Faculty of Engineering of the University of Porto, s/n, R. Dr. Roberto Frias, 4200-465, Porto, Portugal
| | | | | | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | | | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco, Av. Prof. Arthur de Sá, S/N, Recife-PE, 50.740-521, Brazil
| |
Collapse
|
7
|
Yakamercan E, Bhatt P, Aygun A, Adesope AW, Simsek H. Comprehensive understanding of electrochemical treatment systems combined with biological processes for wastewater remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121680. [PMID: 37149253 DOI: 10.1016/j.envpol.2023.121680] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
The presence of toxic pollutants in wastewater discharge can affect the environment negatively due to presence of the organic and inorganic contaminants. The application of the electrochemical process in wastewater treatment is promising, specifically in treating these harmful pollutants from the aquatic environment. This review focused on recent applications of the electrochemical process for the remediation of such harmful pollutants from aquatic environments. Furthermore, the process conditions that affect the electrochemical process performance are evaluated, and the appropriate treatment processes are suggested according to the presence of organic and inorganic contaminants. Electrocoagulation, electrooxidation, and electro-Fenton applications in wastewater have shown effective performance with high removal rates. The disadvantages of these processes are the formation of toxic intermediate metabolites, high energy consumption, and sludge generation. To overcome such disadvantages combined ecotechnologies can be applied in large-scale wastewater pollutants removal. The combination of electrochemical and biological treatment has gained importance, increased removal performance remarkably, and decreased operational costs. The critical discussion with depth information in this review could be beneficial for wastewater treatment plant operators throughout the world.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Ahmet Aygun
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Adedolapo W Adesope
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
8
|
Jin Y, Huang P, Chen X, Li LP, Lin CY, Chen X, Ding R, Liu J, Chen R. Ciprofloxacin degradation performances and mechanisms by the heterogeneous electro-Fenton with flocculated fermentation biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121425. [PMID: 36898645 DOI: 10.1016/j.envpol.2023.121425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic fermentation residue flocculated by polymeric ferric sulfate (PFS) has been classified as a "hazardous waste" in China. In this study, it was recycled into antibiotic fermentation residue biochar (AFRB) by pyrolysis and used as a heterogeneous electro-Fenton (EF) catalyst for ciprofloxacin (CIP) degradation. The results show that PFS was reduced to Fe0 and FeS during pyrolysis, which was beneficial for the EF process. The AFRB with mesoporous structures exhibited soft magnetic features, which were convenient for separation. CIP was completely degraded within 10 min by the AFRB-EF process at an initial concentration of 20 mg/L. Increasing the working current and catalyst dosage within a certain range could improve the degradation rate. ·OH and O2·- were the dominant reactive oxygen species that played critical roles for CIP degradation. The antibacterial groups of CIP have been destroyed by the heterogeneous electro-Fenton process and its toxicity was negligible. The AFRB showed satisfactory performance, even though it was recycled five times. This study provide new insights into the resourceful treatment of antibiotic fermentation residues.
Collapse
Affiliation(s)
- Yanchao Jin
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Peiwen Huang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Xiongjian Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Li-Ping Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, 519087, PR China
| | - Chun-Yan Lin
- School of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Xiao Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Rui Ding
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Jianxi Liu
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Riyao Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China.
| |
Collapse
|
9
|
Du X, Fu W, Su P, Zhang Q, Zhou M. FeMo@porous carbon derived from MIL-53(Fe)@MoO 3 as excellent heterogeneous electro-Fenton catalyst: Co-catalysis of Mo. J Environ Sci (China) 2023; 127:652-666. [PMID: 36522094 DOI: 10.1016/j.jes.2022.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/17/2023]
Abstract
An ultra-efficient electro-Fenton catalyst with porous carbon coated Fe-Mo metal (FeMo@PC), was prepared by calcining MIL-53(Fe)@MoO3. This FeMo@PC-2 exhibited impressive catalytic performance for sulfamethazine (SMT) degradation with a high turnover frequency value (7.89 L/(g·min)), much better than most of reported catalysts. The mineralization current efficiency and electric energy consumption were 83.2% and 0.03 kWh/gTOC, respectively, at low current (5 mA) and small dosage of catalyst (25.0 mg/L). The removal rate of heterogeneous electro-Fenton (Hetero-EF) process catalyzed by FeMo@PC-2 was 4.58 times that of Fe@PC/Hetero-EF process. Because the internal-micro-electrolysis occurred between PC and Fe0, while the co-catalysis of Mo accelerated the rate-limiting step of the Fe3+/Fe2+ cycle and greatly improved the H2O2 utilization efficiency. The results of radical scavenger experiments and electron paramagnetic resonance confirmed the main role of surface-bound hydroxyl radical oxidation. This process was feasible to remove diverse organic contaminants such as phenol, 2,4-dichlorophenoxyacetic acid, carbamazepine and SMT. This paper enlightened the importance of the doped Mo, which could greatly improve the activity of the iron-carbon heterogeneous catalyst derived from metal-organic frameworks in EF process for efficient removal of organic contaminants.
Collapse
Affiliation(s)
- Xuedong Du
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenyang Fu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pei Su
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qizhan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Ambaye TG, Formicola F, Sbaffoni S, Prasad S, Milanese C, Robustelli Della Cuna FS, Franzetti A, Vaccari M. Treatment of petroleum hydrocarbon contaminated soil by combination of electro-Fenton and biosurfactant-assisted bioslurry process. CHEMOSPHERE 2023; 319:138013. [PMID: 36731662 DOI: 10.1016/j.chemosphere.2023.138013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Removing petroleum hydrocarbons (PHCs) from polluted soil is challenging due to their low bioavailability and degradability. In this study, an experiment was carried out to treat soil polluted with petroleum hydrocarbon using a hybrid electro-Fenton (with BDD anode electrode) and biological processes stimulated with long-chain rhamnolipids (biosurfactants). Electro-Fenton treatment was applied as a pretreatment before the biological process to enhance PHC biodegradability, which would benefit the subsequent biological process. The effects of initial pH, hydroxide concentration, soil organic matter composition, PHCs intermediates during the electro-Fenton process, and total numbers of bacteria in the biological process were analyzed to determine the optimum conditions. The results showed that the optimized electrolysis time for the electro-Fenton was 12 h. The change induced during pretreatment at a specified time was found suitable for the biological process stage and led to 93.6% PHC degradation in combination with the electro-Fenton-and-biological process after 72 h. The combined system's performance was almost 40% higher than individual electro-Fenton and biological treatments. GC-MS analysis confirms the formation of 9-octadecen-1-ol (Z), 2-heptadecene, 1-nonadecene, 1-heneicosene, and pentacosane as fragmentation during the PHCs degradation process. Thus, the electro-Fenton process as pretreatment combined with a biological process stimulated with rhamnolipids (biosurfactants) could be effectively applied to remediate soil polluted with PHCs. However, the system needs further research and investigation to optimize electrolysis time and biosurfactant dose to advance this approach in the soil remediation process.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- University of Brescia, Department of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy.
| | - Francesca Formicola
- University of Milano-Bicocca, Department. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Silvia Sbaffoni
- ENEA, Sustainability Department, Resource Valorisation Lab, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Shiv Prasad
- Division of Environment Science ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Chiara Milanese
- H(2) Lab, Chemistry Department & CSGI, University of Pavia, Viale Taramelli 16, 27100, Pavia, Italy
| | - Francesco Saverio Robustelli Della Cuna
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy; Environmental Research Center, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Via Maugeri 2, 27100, Pavia, Italy
| | - Andrea Franzetti
- University of Milano-Bicocca, Department. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Mentore Vaccari
- University of Brescia, Department of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy.
| |
Collapse
|
11
|
Li X, Bai Y, Shi X, Chang S, Tian S, He M, Su N, Luo P, Pu W, Pan Z. A review of advanced oxidation process towards organic pollutants and its potential application in fracturing flowback fluid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45643-45676. [PMID: 36823463 DOI: 10.1007/s11356-023-25191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 04/15/2023]
Abstract
Fracturing flowback fluid (FFF) including various kinds of organic pollutants that do harms to people and new treatments are urgently needed. Advanced oxidation processes (AOPs) are suitable methods in consideration with molecular weight, removal cost and efficiency. Here, we summarize the recent studies about AOP treatments towards organic pollutants and discuss the application prospects in treatment of FFF. Immobilization and loading methods of catalysts, evaluation method of degradation of FFF, and continuous treatment process flow are discussed in this review. In conclusion, further studies are urgently needed in aspects of catalyst loading methods, macromolecule organic evaluation methods, industrial process, and pathways of macromolecule organics' decomposition.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Yang Bai
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Xian Shi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shuang Chang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Shuting Tian
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Meiming He
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Na Su
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Pingya Luo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Wanfen Pu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China.
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| | - Zhicheng Pan
- National Postdoctoral Research Station, Haitian Water Group Co., Ltd, Chengdu, 610041, China
| |
Collapse
|
12
|
Wang J, Liu Z, Sun Z. In-situ cathode induction of HKUST-1-derived polyvalent copper oxides in electro-Fenton systems for effective sulfamethoxazole degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
13
|
Yaghoot-Nezhad A, Wacławek S, Madihi-Bidgoli S, Hassani A, Lin KYA, Ghanbari F. Heterogeneous photocatalytic activation of electrogenerated chlorine for the production of reactive oxygen and chlorine species: A new approach for Bisphenol A degradation in saline wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130626. [PMID: 36588018 DOI: 10.1016/j.jhazmat.2022.130626] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
UV-E-chlorination/hematite nanoparticles (UV/E-Cl/HNs) as a heterogeneous photocatalytic activation of electrogenerated chlorine was assessed for the degradation of bisphenol A (BPA) as a new approach based on the generation of reactive chlorine and oxygen species. The prepared sample was characterized using multiple techniques, such as XRD, FTIR, FESEM, EDS, and BET-BJH. An excellent decontamination efficiency of 99.4% was achieved within 40 min of electrolysis under optimum conditions (pH of 5, HNs dosage 100 mg/L, current density of 20 mA/cm2, and NaCl concentration of 50 mM). The HOCl content was reduced more swiftly in the presence of ultraviolet (UV) irradiation and hematite, resulting in the production of oxidative radicals (i.e., •OH, Cl•, and Cl2•-). The scavenging experiments also verified the vital role of these radicals in oxidative treatment. The UV/E-Cl/HNs process is readily supplied with hydroxyl radicals through several mechanisms. Bicarbonate ions showed a noticeable inhibitory impact, whereas nitrate and sulfate anions only slightly affected BPA degradation. The HNs were a recoverable and stable catalyst for six cycles. Furthermore, the ECOSAR program predicted that the UV/E-Cl/HNs can be labeled as an environmental-friendly process. Eventually, reasonable degradation pathways were proposed based on the identified by-products through experimental and theoretical approaches.
Collapse
Affiliation(s)
- Ali Yaghoot-Nezhad
- Department of Chemical Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan 63187-14331, Iran
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
| | - Soheila Madihi-Bidgoli
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
14
|
Zhang D, Tian W, Chu M, Zhao J, Zou M, Jiang J. B-doped graphitic carbon nitride as a capacitive deionization electrode material for the removal of sulfate from mine wastewater. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Kumar M, Ambika S, Hassani A, Nidheesh PV. Waste to catalyst: Role of agricultural waste in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159762. [PMID: 36306836 DOI: 10.1016/j.scitotenv.2022.159762] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Selvaraj Ambika
- Faculty, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Adjunct Faculty, Department of Climate Change, Indian Institute of Technology Hyderabad, Telangana, India; Faculty and Program Coordinator, E-Waste Resources Engineering and Management, Indian Institute of Technology Hyderabad, Telangana, India
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
16
|
García-Estrada R, Arzate S, Ramírez-Zamora RM. Thiabendazole degradation by photo-NaOCl/Fe and photo-Fenton like processes, using copper slag as an iron catalyst, in spiked synthetic and real secondary wastewater treatment plant effluents. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:620-634. [PMID: 36789708 DOI: 10.2166/wst.2022.424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Thiabendazole degradation (TBZD) in diferent types of water matrices was assessed by applying two Advanced Oxidation Processes, both using simulated solar light (SSL), copper slag (CS) as an iron based catalyst, and separately H2O2 or NaOCl as oxidants. First, optimum conditions for TBZD were evaluated in distilled water, TBZD = 90% at 60 min for CS-H2O2-SSL, and 92% of TBZD in a twelfth of the time by the system CS-NaOCl-SSL; minimum TBZ depletion variations were observed between the first and the fifth reuse test: 88 ± 2% for CS-H2O2-SSL (60 min) and 90 ± 1% for CS-NaOCl-SSL (5 min). Those conditions were tested using a synthetic (SE) and a real secondary effluent (RE) from a wastewater treatment plant. The CS-H2O2-SSL system achieved TBZD of 88 and 77% after 90 min for SE and RE, with kinetic constants of 0.024 and 0.016 min-1, respectively, whereas photo-NaOCl/Fe showed values of 0.365 and 0.385 min-1 for SE and RE, achieving a 94% TBZD removal in both types of water at 10 min. That might be related to the formation of Cl· and HO• during the photo-NaOCl/Fe process, highlighting that the CS-NaOCl-SSL is an attractive option that has great possibilities for scaling up by a better knowledge in real aqueous matrices.
Collapse
Affiliation(s)
- Reyna García-Estrada
- Coordinación de Ingeniería Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - Sandra Arzate
- Coordinación de Ingeniería Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - Rosa-María Ramírez-Zamora
- Coordinación de Ingeniería Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| |
Collapse
|
17
|
Karupppaiah B, Jeyaraman A, Chen SM, Huang YC. Development of Highly Sensitive Electrochemical Sensor for Antibiotic Drug Ronidazole Based on Spinel Cobalt Oxide Nanorods Embedded with Hexagonal Boron Nitride. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Hassani A, Scaria J, Ghanbari F, Nidheesh PV. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. ENVIRONMENTAL RESEARCH 2023; 217:114789. [PMID: 36375505 DOI: 10.1016/j.envres.2022.114789] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Owing to the rapid development of modern industry, a greater number of organic pollutants are discharged into the water matrices. In recent decades, research efforts have focused on developing more effective technologies for the remediation of water containing pharmaceuticals and personal care products (PPCPs). Recently, sulfate radicals-based advanced oxidation processes (SR-AOPs) have been extensively used due to their high oxidizing potential, and effectiveness compared with other AOPs in PPCPs remediation. The present review provides a comprehensive assessment of the different methods such as heat, ultraviolet (UV) light, photo-generated electrons, ultrasound (US), electrochemical, carbon nanomaterials, homogeneous, and heterogeneous catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS). In addition, possible activation mechanisms from the point of radical and non-radical pathways are discussed. Then, biodegradability enhancement and toxicity reduction are highlighted. Comparison with other AOPs and treatment of PPCPs by the integrated process are evaluated as well. Lastly, conclusions and future perspectives on this research topic are elaborated.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Jaimy Scaria
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
19
|
Rivera-Vera C, Muñoz-Lira D, Aranda M, Toledo-Neira C, Salazar R. Study of degradation of norfloxacin antibiotic and their intermediates by natural solar photolysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41014-41027. [PMID: 36626055 DOI: 10.1007/s11356-022-24891-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
In this work, the photolysis of the antibiotic norfloxacin (NOR) and the formation of its photodegradation products were studied using UV and solar radiation. Their extraction was also assessed in Milli-Q water and secondary effluents from a wastewater treatment plant. The photolysis of NOR was chromatographically monitored. The structure of each degradation product is related to the reaction of NOR with reactive oxygen species (ROS), as confirmed using radical quenchers and mass spectrometry. Additionally, the feasibility of extracting NOR and its degradation products was assessed using a commercial solid phase extraction system. Photolysis results showed the formation of five degradation products, generated under exposure to both types of radiation. The decays in NOR concentrations for the solar and UV treatments were adjusted to pseudo first-order kinetics with apparent constant values of ksolar = 1.19 × 10-3 s-1 and kUV = 3.84 × 10-5 s-1. Furthermore, the superoxide radical was the main participant species in the formation of the degradation products P3, P4, and P5. Species P1 and P2 do not need this radical for their formation. The presence of NOR in water opens the possibility of its photolysis by solar radiation. This work contributes to the understanding of the mechanisms that mediate its photodegradation, in addition to studying potential options for its determination and its photodegradation products in the sample treatment.
Collapse
Affiliation(s)
- Camilo Rivera-Vera
- Laboratory of Environmental Electrochemistry, Department of Chemical Materials, LEQMA, Universidad de Santiago de Chile, USACH, Av. Libertador Bernardo O´Higgins 3363, Estación Central, Santiago, Chile
| | - Daniela Muñoz-Lira
- Laboratory of Environmental Electrochemistry, Department of Chemical Materials, LEQMA, Universidad de Santiago de Chile, USACH, Av. Libertador Bernardo O´Higgins 3363, Estación Central, Santiago, Chile
| | - Mario Aranda
- Food and Drug Research Laboratory, Faculty of Chemistry and Pharmacy, Department of Pharmacy, Pontificia Universidad Católica de Chile, Campus San Joaquín, Santiago, Chile
| | - Carla Toledo-Neira
- Laboratory of Environmental Electrochemistry, Department of Chemical Materials, LEQMA, Universidad de Santiago de Chile, USACH, Av. Libertador Bernardo O´Higgins 3363, Estación Central, Santiago, Chile
| | - Ricardo Salazar
- Laboratory of Environmental Electrochemistry, Department of Chemical Materials, LEQMA, Universidad de Santiago de Chile, USACH, Av. Libertador Bernardo O´Higgins 3363, Estación Central, Santiago, Chile.
| |
Collapse
|
20
|
Amarzadeh M, Salehizadeh S, Damavandi S, Mubarak NM, Ghahrchi M, Ramavandi B, Shahamat YD, Nasseh N. Statistical modeling optimization for antibiotics decomposition by ultrasound/electro-Fenton integrated process: Non-carcinogenic risk assessment of drinking water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116333. [PMID: 36208514 DOI: 10.1016/j.jenvman.2022.116333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The present work proposes an ultrasound (US) assisted electro-Fenton (EF) process for eliminating penicillin G (PNG) and ciprofloxacin (CIP) from aqueous solutions and the process was further optimized by response surface methodology (RSM)- Box-Behnken design (BBD). The impact of pH, hydrogen peroxide (H2O2) concentration, applied voltage, initial pollutant concentration, and operating time were studied. The capability application of the electro-Fenton (EF) and US processes was compared separately and in combination under the optimum conditions of pH of 4, a voltage of 15 V, the initial antibiotic concentration of 20.7 mg/L, H2O2 concentration of 0.8 mg/L, and the operating time of 75 min. The removal efficiency of PNG and CIP using the sono-electro-Fenton (SEF) process, as the results revealed, was approximately 96% and 98%, respectively. The experiments on two scavengers demonstrated that ⦁OH contributes significantly to the CIP and PNG degradation by SEF, whereas ⦁O-2 corresponds to only a negligible amount. The total organic carbon (TOC) and chemical oxygen demand (COD) analyses were used to assess the mineralization of CIP and PNG. The efficiency of COD and TOC removal was reached at 73.25% and 62.5% for CIP under optimized operating circumstances, and at 61.52% and 72% for PNG, respectively. These findings indicate that a sufficient rate of mineralization was obtained by SEF treatment for the mentioned pollutants. The reaction kinetics of CIP and PNG degradation by the SEF process were found to follow a pseudo-first-order kinetic model. In addition, the human health risk assessment of natural water containing CIP and PNG that was purified by US, EF, and SEF processes was done for the first time. According to the findings, the non-carcinogenic risk (HQ) caused by drinking purified water by all three systems was calculated in the acceptable range. Thus, SEF is a proper system to remove various antibiotics in potable water and reduces their human health risks.
Collapse
Affiliation(s)
- Mohamadamin Amarzadeh
- Department of Safety Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Saeed Salehizadeh
- Department of Chemical Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Sobhan Damavandi
- Department of Inspection Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam.
| | - Mina Ghahrchi
- Department of Environmental Health Engineering, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran.
| | - Bahman Ramavandi
- Environmental Health Engineering Department, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Yousef Dadban Shahamat
- Department of Environmental Health Engineering, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Negin Nasseh
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
21
|
Dehdar A, Reza Rahmani A, Azarian G, Jamshidi R, Moradi S. Removal of furfural using zero gap electrocoagulation by a scrap iron anode from aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Molodtsova T, Gorshenkov M, Kubrin S, Saraev A, Ulyankina A, Smirnova N. One-step access to bifunctional γ-Fe2O3/δ-FeOOH electrocatalyst for oxygen reduction reaction and acetaminophen sensing. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
S B, Rashmishree KN, Manu B, Sreenivasa MY. Sustainable replacement of EDTA-Biojarosite for commercial iron in the Fenton's and UV-Fenton's degradation of Rhowedamine B - a process optimization using Box-Behnken method. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2008-2019. [PMID: 36315092 DOI: 10.2166/wst.2022.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biojarosite as a replacement for commercial iron catalyst in the oxidative degradation of the dye Rhodamine B was confirmed and established. Investigations on the oxidative degradation by Fenton's oxidation and UV-Fenton's oxidation with EDTA at neutral pH were conducted and degradation of target compound was evaluated. UV-Fenton's oxidation was shown to be efficient over Fenton's oxidation in the degradation of Rhodamine B with removal efficiency of 90.0%. Design of Experiments was performed with Box-Behnken design. Investigation was conducted for the predicted values separately for both Fenton's oxidation and UV-Fenton's oxidation and the Rhodamine B removal was taken as response. Variable parameters biojarosite, H2O2 dosage and EDTA were optimized in the range of 0.1-1 g/L, 2.94-29.4 mM and 10-100 mM, respectively. A quadratic regression model is fitted for both Fenton's and UV-Fenton's oxidation. Analysis of variance (ANOVA) is performed and model fit is discussed.
Collapse
Affiliation(s)
- Bhaskar S
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar, Mangalore 575025, India E-mail:
| | - K N Rashmishree
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar, Mangalore 575025, India E-mail:
| | - B Manu
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar, Mangalore 575025, India E-mail:
| | - M Y Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysuru, Karnataka 570006, India
| |
Collapse
|
24
|
Srinithi S, Anupriya J, Chen SM, Balakumar V. Ultrasonic fabrication of neodymium oxide@titanium carbide modified glassy carbon electrode: An efficient electrochemical detection of antibiotic drug nitrofurazone. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Crispim AC, de Araújo DM, Martínez-Huitle CA, Souza FL, Dos Santos EV. Application of electro-Fenton and photoelectro-Fenton processes for the degradation of contaminants in landfill leachate. ENVIRONMENTAL RESEARCH 2022; 213:113552. [PMID: 35710024 DOI: 10.1016/j.envres.2022.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Worldwide, most solid waste ends its life in landfill sites, which have a significant environmental impact in several respects. In particular, rainfall over landfill sites results in the production of an aqueous leachate containing compounds having low biodegradability, high toxicity, and a high organic load. For this reason, this study aims to investigate the applicability of electro-Fenton (EF) and photoelectro-Fenton (PEF) processes as alternative for treating a local landfill effluent with high organic content (chemical oxygen demand (COD) = 2684.7 mg-O2 L -1) in a continuous-flow reactor (using, for first time, this kind of system with higher electrodes area of 35 cm2) using boron-doped diamond anode (Nb/BDD) and a carbon felt cathode (FC) electrodes. The effects of current density j (30, 60 and 90 mA cm-2) and UV radiation wavelength (UVA and UVC) were studied to evaluate the treatment efficiency as well as the energy consumption. Results clearly showed that, the best efficiencies removing organic matter, in terms of COD, were about 66%, 68% and 89% with an energy consumption of only 19.41, 17.61 and 17.59 kWh kg COD-1 for EF, PEF-UVA and PEF-UVC respectively, at 90 mA cm-2 after 4 h of operation. The treatment of this kind of effluent produced organic and inorganic by-products, the acetic and formic acids as well as NO2-, NO3-, and NH4+, being assessed their concentrations.
Collapse
Affiliation(s)
- Alana C Crispim
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, CEP 59.072-900, RN, Brazil
| | - Danyelle M de Araújo
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, CEP 59.072-900, RN, Brazil
| | - Carlos A Martínez-Huitle
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, CEP 59.072-900, RN, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, 14800 900, Araraquara, SP, Brazil
| | - Fernanda L Souza
- National Nanotechnology Laboratory for Agriculture, Brazilian Agriculture Research Corporation (Embrapa), XV de Novembro Street, 1452, São Carlos, Brazil.
| | - Elisama V Dos Santos
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, CEP 59.072-900, RN, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, 14800 900, Araraquara, SP, Brazil.
| |
Collapse
|
26
|
Sigcha-Pallo C, Peralta-Hernández JM, Alulema-Pullupaxi P, Carrera P, Fernández L, Pozo P, Espinoza-Montero PJ. Photoelectrocatalytic degradation of diclofenac with a boron-doped diamond electrode modified with titanium dioxide as a photoanode. ENVIRONMENTAL RESEARCH 2022; 212:113362. [PMID: 35525294 DOI: 10.1016/j.envres.2022.113362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The electrophoretic deposition of titanium dioxide (TiO2) nanoparticles (Degussa P25) onto a boron-doped diamond (BDD) substrate was carried out to produce a photoanode (TiO2/BDD) to apply in the degradation and mineralization of sodium diclofenac (DCF-Na) in an aqueous medium using photoelectrocatalysis (PEC). This study was divided into three stages: i) photoanode production through electrophoretic deposition using three suspensions (1.25%, 2.5%, 5.0% w/v) of TiO2 nanoparticles, applying 4.8 V for 15 and 20 s; ii) characterization of the TiO2/BDD photoanode using scanning electron microscopy and cyclic voltammetry response with the [Fe(CN)6]3-/4- redox system; iii) degradation of DCF-Na (25 mg L-1) through electrochemical oxidation (EO) on BDD and PEC on TiO2/BDD under dark and UVC-light conditions. The degradation of DCF-Na was evaluated using high-performance liquid chromatography and UV-Vis spectroscopy, and its mineralization measured using total organic carbon and chemical oxygen demand. The results showed that after 2 h, DCF-Na degradation and mineralization reached 98.5% and 80.1%, respectively, through PEC on the TiO2/BDD photoanode at 2.2 mA cm-2 under UVC illumination, while through EO on BDD applying 4.4 mA cm-2, degradation and mineralization reached 85.6% and 76.1%, respectively. This difference occurred because of the optimal electrophoretic formation of a TiO2 film with a 9.17 μm thickness on the BDD (2.5% w/v TiO2, time 15 s, 4.8 V), which improved the electrocatalysis and oxidative capacity of the TiO2/BDD photoanode. Additionally, PEC showed a lower specific energy consumption (1.55 kWh m-3). Thus, the use of nanostructured TiO2 films deposited on BDD is an innovative photoanode alternative for the photoelectrocatalytic degradation of DCF-Na, which substantially improves the degradation capacity of bare BDD.
Collapse
Affiliation(s)
- Carol Sigcha-Pallo
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador; Escuela Politécnica Nacional, Departamento de Ingeniería Civil y Ambiental, Ladrón de Guevara E11-253, Apartado Postal: 17-01-2759, Quito, Ecuador
| | - Juan M Peralta-Hernández
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Cerro de La Venda S/n, Pueblito de Rocha, Guanajuato, 36040, Mexico
| | - Paulina Alulema-Pullupaxi
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador
| | | | - Lenys Fernández
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador
| | - Pablo Pozo
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador
| | - Patricio J Espinoza-Montero
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador.
| |
Collapse
|
27
|
Rahmani F, Ghadi A, Doustkhah E, Khaksar S. In Situ Formation of Copper Phosphate on Hydroxyapatite for Wastewater Treatment. NANOMATERIALS 2022; 12:nano12152650. [PMID: 35957081 PMCID: PMC9370553 DOI: 10.3390/nano12152650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022]
Abstract
Here, we control the surface activity of hydroxyapatite (HAp) in wastewater treatment which undergoes peroxodisulfate (PDS) activation. Loading the catalytically active Cu species on HAp forms a copper phosphate in the outer layer of HAp. This modification turns a low active HAp into a high catalytically active catalyst in the dye degradation process. The optimal operational conditions were established to be [Cu–THAp]0 = 1 g/L, [RhB]0 = 20 mg/L, [PDS]0 = 7.5 mmol/L, and pH = 3. The experiments indicate that the simultaneous presence of Cu-THAp and PDS synergistically affect the degradation process. Additionally, chemical and structural characterizations proved the stability and effectiveness of Cu-THAp. Therefore, this work introduces a simple approach to water purification through green and sustainable HAp-based materials.
Collapse
Affiliation(s)
- Fatemeh Rahmani
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol 4635143358, Iran;
| | - Arezoo Ghadi
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol 4635143358, Iran;
- Correspondence: (A.G.); (E.D.)
| | - Esmail Doustkhah
- Koç University Tüpraş Energy Center (KUTEM), Department of Chemistry, Koç University, Istanbul 34450, Turkey
- Correspondence: (A.G.); (E.D.)
| | - Samad Khaksar
- School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia;
| |
Collapse
|
28
|
Multivariate optimization of the electrochemical degradation for COD and TN removal from wastewater: An inverse computation machine learning approach. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Ebratkhahan M, Zarei M, Babaei T, Hosseini MG, Hosseini MM, Fathipour Z. Efficient electrochemical removal of 5-fluorouracil pharmaceutical from wastewater by mixed metal oxides via anodic oxidation process. CHEMOSPHERE 2022; 296:134007. [PMID: 35181426 DOI: 10.1016/j.chemosphere.2022.134007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the entry of organic compounds into water resources is one of the leading global concerns due to the lack of water resources and rapid population growth. In this research, anodic oxidation (AO) method was used to remove 5-fluorouracil (5-FU) from aqueous solutions via Ni/RuO2 and Ti/IrO2-TiO2-RuO2 electrodes as cathode and anode, respectively. For this purpose, the characterization analysis of the electrodes, including X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, and atomic force microscopy were performed. The electrochemical performance of the anode was investigated via cyclic voltammetry analysis. Then, the effect of operational variables, including applied current (mA), initial pH of the solution, initial 5-FU concentration (mg/L), and process time (min) on the 5-FU removal efficiency under the AO process was evaluated via artificial neural network (ANN) modeling. The results revealed that the maximum 5-FU removal efficiency was 96.96%. The applied current intensity, pH, initial 5-FU concentration, and process time were 300 mA, 5, 20 mg/L, and 140 min, respectively. Moreover, the investigation of 5-FU removal by-products and mineralization efficiency of the AO process was carried out via gas chromatography-mass spectrometry and total organic carbon analysis, respectively. The total organic carbon mineralization efficiency was 84.80% after 6 h of reaction time. The reusability and stability of the Ti/IrO2-TiO2-RuO2 anode on 5-FU removal efficiency were measured and showed an approximately 5% decay in 5-FU removal efficiency after eight consecutive runs. The overall results and analysis confirmed this method is capable of removing 5-FU through Ti/IrO2-TiO2-RuO2 anode and Ni/RuO2 cathode from aqueous medium.
Collapse
Affiliation(s)
- Masoud Ebratkhahan
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mahmoud Zarei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Tala Babaei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mir Ghasem Hosseini
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty, University of Tabriz, Tabriz, Iran.
| | - Mir Majid Hosseini
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty, University of Tabriz, Tabriz, Iran.
| | - Zahra Fathipour
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
30
|
A Review of On-Site Carwash Wastewater Treatment. SUSTAINABILITY 2022. [DOI: 10.3390/su14105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In recent years, people’s environmental awareness has increased. The high density of the urban population has caused a considerable increase in the demand for car washing services, which has created large quantities of car wash wastewater. The main pollutants in car wash wastewater are detergents, dirt, oil, and grease. Untreated wastewater released into rainwater sewer systems or other water bodies may pollute the water and generate excessive bubble foams, which negatively affects urban appearance. Car washes are divided into mechanical car washes and manual or self-service car washes. In general, car washes have a small operation and scale, occupy limited land, and cannot afford wastewater treatment costs. Therefore, most car washes are not equipped with wastewater treatment facilities. Consequently, the discharge of wastewater from car washes negatively affects the water quality in the surrounding environment and results in wasteful use of water resources. This study reviewed 68 research papers on the quality, treatment techniques, treatment costs, and treatment effectiveness of car wash wastewater to provide a reference for car wash operators to contribute to the preservation of water resources. We found that there is a higher chance of recycling car wash wastewater when combing two different techniques for car wash wastewater treatment.
Collapse
|
31
|
Norouzi R, Zarei M, Khataee A, Ebratkhahan M, Rostamzadeh P. Electrochemical removal of fluoxetine via three mixed metal oxide anodes and carbonaceous cathodes from contaminated water. ENVIRONMENTAL RESEARCH 2022; 207:112641. [PMID: 34979125 DOI: 10.1016/j.envres.2021.112641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
In this work, the fluoxetine (FLX) removal has been studied via the anodic oxidation (AO) process. Anode electrodes were Ti/RuO2, Ti/RuO2-IrO2, and Ti/RuO2-IrO2-SnO2, and cathode electrodes were graphite and carbon nanotubes (CNTs). The performances of electrodes were compared in terms of FLX removal efficiency. As a result, Ti/RuO2-IrO2-SnO2 and CNTs were the optimal anode and cathode, respectively. The properties of the optimal electrodes were investigated using scanning electron microscopy, atomic force microscopy and X-ray diffraction spectroscopy. Cyclic voltammetry analysis was performed to study the electrochemical behavior of electrodes. The effect of current intensity (mA), initial pH, initial FLX concentration (mg/L) and process time (min) on the FLX removal efficiency was investigated and the response surface methodology was applied for the optimization of the AO process. The results showed that at current intensity, pH, initial FLX concentration and process time of 500 mA, 6, 25 mg/L and 160 min, maximum FLX removal efficiency was observed, which was 96.25%. Gas Chromatography-Mass Spectrometry (GC-MS), and total organic carbon (TOC) analysis was determined to evaluate the intermediates, and mineralization efficiency. The TOC removal efficiency was reached 81.51% after 6 h under optimal experimental conditions, indicating the successful removal of the FLX.
Collapse
Affiliation(s)
- Ramin Norouzi
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mahmoud Zarei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation.
| | - Masoud Ebratkhahan
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Paria Rostamzadeh
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
32
|
Sheydaei M, Haseli A, Ayoubi-Feiz B, Vatanpour V. MoS 2/N-TiO 2/Ti mesh plate for visible-light photocatalytic ozonation of naproxen and industrial wastewater: comparative studies and artificial neural network modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22454-22468. [PMID: 34787809 DOI: 10.1007/s11356-021-17285-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
This paper presents the results of visible-light assisted photocatalytic ozonation for the degradation of naproxen as a model pharmaceutical pollutant from water using MoS2/N-TiO2 immobilized on a titanium mesh plate in addition to treatment of a real industrial wastewater. The batch studies were performed for naproxen degradation by varying the reaction variables such as ozone flow rate, initial pH and pollutant concertation. It was observed that almost 90% degradation was achieved at pH = 4, ozone flow rate = 3 L min-1 and initial naproxen concentration = 5 mg L-1. The catalyst exhibited constant activity even after seven successive cycles. Comparative studies among sorption, ozonation, photocatalysis, catalytic ozonation and photocatalytic ozonation revealed that the later process had the highest degradation of pollutant. Moreover, an artificial neural network (ANN) model was developed to simulate the performance of visible-light photocatalytic ozonation in naproxen degradation. The developed ANN model could estimate the visible-light photocatalytic ozonation process under the different experimental conditions. Finally, the applicability of the photocatalytic ozonation was successfully approved for industrial wastewater treatment. The results showed that the COD removal efficiency reached 65% within 150 min. HIGHLIGHTS: • MoS2/N-TiO2/Ti was synthesized by the quick electrophoretic deposition method. • The catalyst showed good ability in naproxen degradation via visible-light photocatalytic ozonation. • A three-layer artificial neural network model was developed to predict the naproxen degradation. • Naproxen degradation efficiency through the photocatalytic ozonation was higher than the individual methods. • COD of real wastewater was reduced significantly after the visible-light photocatalytic ozonation process.
Collapse
Affiliation(s)
- Mohsen Sheydaei
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Ali Haseli
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Baharak Ayoubi-Feiz
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| |
Collapse
|
33
|
Interlayered modified hydroxides for removal of graphene oxide from water: Mechanism and secondary applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|