1
|
The Evolutionary Arms Race between Virus and NK Cells: Diversity Enables Population-Level Virus Control. Viruses 2019; 11:v11100959. [PMID: 31627371 PMCID: PMC6832630 DOI: 10.3390/v11100959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Viruses and natural killer (NK) cells have a long co-evolutionary history, evidenced by patterns of specific NK gene frequencies in those susceptible or resistant to infections. The killer immunoglobulin-like receptors (KIR) and their human leukocyte antigen (HLA) ligands together form the most polymorphic receptor-ligand partnership in the human genome and govern the process of NK cell education. The KIR and HLA genes segregate independently, thus creating an array of reactive potentials within and between the NK cell repertoires of individuals. In this review, we discuss the interplay between NK cell education and adaptation with virus infection, with a special focus on three viruses for which the NK cell response is often studied: human immunodeficiency virus (HIV), hepatitis C virus (HCV) and human cytomegalovirus (HCMV). Through this lens, we highlight the complex co-evolution of viruses and NK cells, and their impact on viral control.
Collapse
|
2
|
Characterization of immune cell subtypes in three commonly used mouse strains reveals gender and strain-specific variations. J Transl Med 2019; 99:93-106. [PMID: 30353130 PMCID: PMC6524955 DOI: 10.1038/s41374-018-0137-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
The lack of consensus on bone marrow (BM) and splenic immune cell profiles in preclinical mouse strains complicates comparative analysis across different studies. Although studies have documented relative distribution of immune cells from peripheral blood in mice, similar studies for BM and spleen from naïve mice are lacking. In an effort to establish strain- and gender-specific benchmarks for distribution of various immune cell subtypes in these organs, we performed immunophenotypic analysis of BM cells and splenocytes from both genders of three commonly used murine strains (C57BL/6NCr, 129/SvHsd, and BALB/cAnNCr). Total neutrophils and splenic macrophages were significantly higher in C57BL/6NCr, whereas total B cells were lower. Within C57BL/6NCr female mice, BM B cells were elevated with respect to the males whereas splenic mDCs and splenic neutrophils were reduced. Within BALB/cAnNCr male mice, BM CD4+ Tregs were elevated with respect to the other strains. Furthermore, in male BALB/cAnNCr mice, NK cells were elevated with respect to the other strains in both BM and spleen. Splenic CD4+ Tregs and splenic CD8+ T cells were reduced in male BALB/c mice in comparison to female mice. Bone marrow CD4+ T cells and mDCs were significantly increased in 129/SvHsd whereas splenic CD8+ T cells were reduced. In general, males exhibited higher immature myeloid cells, macrophages, and NK cells. To our knowledge, this study provides a first attempt to systematically establish organ-specific benchmarks on immune cells in studies involving these mouse strains.
Collapse
|
3
|
Pyzik M, Dumaine AA, Charbonneau B, Fodil-Cornu N, Jonjic S, Vidal SM. Viral MHC Class I–like Molecule Allows Evasion of NK Cell Effector Responses In Vivo. THE JOURNAL OF IMMUNOLOGY 2014; 193:6061-9. [DOI: 10.4049/jimmunol.1401386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Forbes CA, Scalzo AA, Degli-Esposti MA, Coudert JD. Ly49C-dependent control of MCMV Infection by NK cells is cis-regulated by MHC Class I molecules. PLoS Pathog 2014; 10:e1004161. [PMID: 24873973 PMCID: PMC4038614 DOI: 10.1371/journal.ppat.1004161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/20/2014] [Indexed: 11/18/2022] Open
Abstract
Natural Killer (NK) cells are crucial in early resistance to murine cytomegalovirus (MCMV) infection. In B6 mice, the activating Ly49H receptor recognizes the viral m157 glycoprotein on infected cells. We previously identified a mutant strain (MCMVG1F) whose variant m157 also binds the inhibitory Ly49C receptor. Here we show that simultaneous binding of m157 to the two receptors hampers Ly49H-dependent NK cell activation as Ly49C-mediated inhibition destabilizes NK cell conjugation with their targets and prevents the cytoskeleton reorganization that precedes killing. In B6 mice, as most Ly49H+ NK cells do not co-express Ly49C, the overall NK cell response remains able to control MCMVm157G1F infection. However, in B6 Ly49C transgenic mice where all NK cells express the inhibitory receptor, MCMV infection results in altered NK cell activation associated with increased viral replication. Ly49C-mediated inhibition also regulates Ly49H-independent NK cell activation. Most interestingly, MHC class I regulates Ly49C function through cis-interactions that mask the receptor and restricts m157 binding. B6 Ly49C Tg, β2m ko mice, whose Ly49C receptors are unmasked due to MHC class I deficient expression, are highly susceptible to MCMVm157G1F and are unable to control a low-dose infection. Our study provides novel insights into the mechanisms that regulate NK cell activation during viral infection.
Collapse
Affiliation(s)
- Catherine A. Forbes
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Anthony A. Scalzo
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Mariapia A. Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Vision Science, M517, University of Western Australia, Crawley, Western Australia, Australia
| | - Jerome D. Coudert
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Vision Science, M517, University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| |
Collapse
|
5
|
Senba M, Mori N. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection. Oncol Rev 2012; 6:e17. [PMID: 25992215 PMCID: PMC4419623 DOI: 10.4081/oncol.2012.e17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) has developed strategies to escape eradication by innate and adaptive immunity. Immune response evasion has been considered an important aspect of HPV persistence, which is the main contributing factor leading to HPV-related cancers. HPV-induced cancers expressing viral oncogenes E6 and E7 are potentially recognized by the immune system. The major histocompatibility complex (MHC) class I molecules are patrolled by natural killer cells and CD8+ cytotoxic T lymphocytes, respectively. This system of recognition is a main target for the strategies of immune evasion deployed by viruses. The viral immune evasion proteins constitute useful tools to block defined stages of the MHC class I presentation pathway, and in this way HPV avoids the host immune response. The long latency period from initial infection to persistence signifies that HPV evolves mechanisms to escape the immune response. It has now been established that there are oncogenic mechanisms by which E7 binds to and degrades tumor suppressor Rb, while E6 binds to and inactivates tumor suppressor p53. Therefore, interaction of p53 and pRb proteins can give rise to an increased immortalization and genomic instability. Overexpression of NF-κB in cervical and penile cancers suggests that NF-κB activation is a key modulator in driving chronic inflammation to cancer. HPV oncogene-mediated suppression of NF-κB activity contributes to HPV escape from the immune system. This review focuses on the diverse mechanisms of the virus immune evasion with HPV that leads to chronic inflammation and cancer.
Collapse
Affiliation(s)
- Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
6
|
The NK cell response to mouse cytomegalovirus infection affects the level and kinetics of the early CD8(+) T-cell response. J Virol 2011; 86:2165-75. [PMID: 22156533 DOI: 10.1128/jvi.06042-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells and CD8(+) T cells play a prominent role in the clearance of mouse cytomegalovirus (MCMV) infection. The role of NK cells in modulating the CD8(+) T-cell response to MCMV infection is still the subject of intensive research. For analyzing the impact of NK cells on mounting of a CD8(+) T-cell response and the contribution of these cells to virus control during the first days postinfection (p.i.), we used C57BL/6 mice in which NK cells are specifically activated through the Ly49H receptor engaged by the MCMV-encoded ligand m157. Our results indicate that the requirement for CD8(+) T cells in early MCMV control inversely correlates with the engagement of Ly49H. While depletion of CD8(+) T cells has only a minor effect on the early control of wild-type MCMV, CD8(+) T cells are essential in the control of Δm157 virus. The frequencies of virus epitope-specific CD8(+) T cells and their activation status were higher in mice infected with Δm157 virus. In addition, these mice showed elevated levels of alpha interferon (IFN-α) and several other proinflammatory cytokines as early as 1.5 days p.i. Although the numbers of conventional dendritic cells (cDCs) were reduced later during infection, particularly in Δm157-infected mice, they were not significantly affected at the peak of the cytokine response. Altogether, we concluded that increased antigen load, preservation of early cDCs' function, and higher levels of innate cytokines collectively account for an enhanced CD8(+) T-cell response in C57BL/6 mice infected with a virus unable to activate NK cells via the Ly49H-m157 interaction.
Collapse
|
7
|
How the virus outsmarts the host: function and structure of cytomegalovirus MHC-I-like molecules in the evasion of natural killer cell surveillance. J Biomed Biotechnol 2011; 2011:724607. [PMID: 21765638 PMCID: PMC3134397 DOI: 10.1155/2011/724607] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/28/2011] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells provide an initial host immune response to infection by many viral pathogens. Consequently, the viruses have evolved mechanisms to attenuate the host response, leading to improved viral fitness. One mechanism employed by members of the β-herpesvirus family, which includes the cytomegaloviruses, is to modulate the expression of cell surface ligands recognized by NK cell activation molecules. A novel set of cytomegalovirus (CMV) genes, exemplified by the mouse m145 family, encode molecules that have structural and functional features similar to those of host major histocompatibility-encoded (MHC) class I molecules, some of which are known to contribute to immune evasion. In this review, we explore the function, structure, and evolution of MHC-I-like molecules of the CMVs and speculate on the dynamic development of novel immunoevasive functions based on the MHC-I protein fold.
Collapse
|
8
|
Barton E, Mandal P, Speck SH. Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 2011; 29:351-97. [PMID: 21219186 DOI: 10.1146/annurev-immunol-072710-081639] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gammaherpesviruses are lymphotropic viruses that are associated with the development of lymphoproliferative diseases, lymphomas, as well as other nonlymphoid cancers. Most known gammaherpesviruses establish latency in B lymphocytes. Research on Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68/γHV68/MHV4) has revealed a complex relationship between virus latency and the stage of B cell differentiation. Available data support a model in which gammaherpesvirus infection drives B cell proliferation and differentiation. In general, the characterized gammaherpesviruses exhibit a very narrow host tropism, which has severely limited studies on the human gammaherpesviruses EBV and Kaposi's sarcoma-associated herpesvirus. As such, there has been significant interest in developing animal models in which the pathogenesis of gammaherpesviruses can be characterized. MHV68 represents a unique model to define the effects of chronic viral infection on the antiviral immune response.
Collapse
Affiliation(s)
- Erik Barton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
9
|
Gruenheid S, Gros P. Forward genetic dissection of innate response to infection in inbred mouse strains: selected success stories. Clin Exp Immunol 2011; 162:393-401. [PMID: 21070206 DOI: 10.1111/j.1365-2249.2010.04249.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mouse genetics is a powerful tool for the dissection of genes, proteins, and pathways important in biological processes. Application of this approach to study the host response to infection has been a rich source of discoveries that have increased our understanding of the early innate pathways involved in responding to microbial infections. Here we review some of the key discoveries that have arisen from pinpointing the genetic defect in mouse strains with unusual or extreme response to infection and have led to insights into pathogen sensing pathways and downstream effector functions of the early innate immune response.
Collapse
Affiliation(s)
- S Gruenheid
- Complex Traits Program, McGill University, Montreal, Canada.
| | | |
Collapse
|
10
|
Pyzik M, Gendron-Pontbriand EM, Fodil-Cornu N, Vidal SM. Self or nonself? That is the question: sensing of cytomegalovirus infection by innate immune receptors. Mamm Genome 2010; 22:6-18. [PMID: 20882286 DOI: 10.1007/s00335-010-9286-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/01/2010] [Indexed: 12/18/2022]
Abstract
Cytomegaloviruses (CMV) are ubiquitous, opportunistic DNA viruses that have mastered the art of immune evasion through their ability to mimic host proteins or to inhibit antiviral responses. The study of the host response against CMV infection has illuminated many facets of the complex interaction between host and pathogen. Here, we review evidence derived from the animal models and human studies that supports the central role played by innate immune receptors in the recognition of virus infection and their participation in the many layers of defense.
Collapse
Affiliation(s)
- Michal Pyzik
- Department of Human Genetics and Centre for the Study of Host Resistance, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
11
|
Loewendorf A, Benedict CA. Modulation of host innate and adaptive immune defenses by cytomegalovirus: timing is everything. J Intern Med 2010; 267:483-501. [PMID: 20433576 PMCID: PMC2902254 DOI: 10.1111/j.1365-2796.2010.02220.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human cytomegalovirus (HCMV) (HHV-5, a beta-herpesvirus) causes the vast majority of infection-related congenital birth defects, and can trigger severe disease in immune suppressed individuals. The high prevalence of societal infection, the establishment of lifelong persistence and the growing number of immune-related diseases where HCMV is touted as a potential promoter is slowly heightening public awareness to this virus. The millions of years of co-evolution between CMV and the immune system of its host provides for a unique opportunity to study immune defense strategies, and pathogen counterstrategies. Dissecting the timing of the cellular and molecular processes that regulate innate and adaptive immunity to this persistent virus has revealed a complex defense network that is shaped by CMV immune modulation, resulting in a finely tuned host-pathogen relationship.
Collapse
Affiliation(s)
- A Loewendorf
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | |
Collapse
|
12
|
Survey of the year 2008: applications of isothermal titration calorimetry. J Mol Recognit 2010; 23:395-413. [DOI: 10.1002/jmr.1025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|